
189-692B

Geometry and Topology:

Computing Gröbner Bases
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1 Introduction

There are many algorithms for the numeric solution of non-linear systems of equations. However,

they only approximate the solutions. They ignore the geometric properties of the solution space

and do not take possible alternate descriptions of the system into account [1]. The approximations

can be very accurate, i.e., to many decimal places. If the equations are well conditioned, accuracy

may not even be a relevant issue. Nevertheless, the solutions are still approximate.

Consider a system of linear equations. The computational effort required to solve the system is

dramatically reduced by transforming the system to the reduced row echelon form by Gauss-Jordan

elimination. The reduced system of equations has exactly the same solutions as the original system,

but, depending on the original system, may be ‘easier’ to solve. It would be a good thing if there

were an analogous process that could reduce finite systems of non-linear equations such that the

reduced system was ‘easier’ to solve. In the early 1960’s, Wolfgang Gröbner wondered if such an

algorithm existed.

Gröbner bases were introduced in the Ph.D. thesis of Bruno Buchberger, written in 1965 at the

University of Innsbruck, Austria. They were named in honour of Wolfgang Gröbner, Buchberger’s

supervisor. The essential idea behind the theory is a generalization of the theory of univariate

polynomials and finite systems of linear equations. The Buchberger algorithm [1, 2], which computes

Gröbner bases, is an extension of the division algorithm for polynomial long division, the method of

determining least common multiples (lcm) of certain terms of two polynomials, and the Euclidean

algorithm for determining the greatest common divisor (gcd) of two polynomials. Thus, given a

finite set of multivariate polynomials over a field, the Buchberger algorithm computes a new set

of polynomials, called Gröbner bases, which are generators of the same ideal as the original. The

minimal Gröbner basis of a given ideal are thus a set of basis vectors, in that every polynomial in

the ideal is generated by a linear combination of of the Gröbner basis. The solution space of the

Gröbner basis is identical to the solution space of the ideal. Depending on the given ideal, it may

be that the set of polynomials which comprise the Gröbner basis are ‘easier’ to solve than the given

set of the ideal.

The advantage of using Gröbner bases theory over numerical methods, such as the Newton-

Raphson or secant methods is that the reduction is algebraic, not numeric. Moreover, the Gröbner

bases can always be computed for any ideal and divergence is never a problem.

2 Computational Algebra

A very detailed description of Gröbner bases theory may be found in [1], [2], and [3]. Most of the

notation from [1] will be used here so that additional information will be easily accessible from

that reference without major notation conflicts. A discussion of the basic theory of Gröbner bases

requires a few definitions from abstract algebra.

A group consists of a set, G, together with a binary operator, ∗, defined on G which satisfies

the following axioms:
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i: [closure] x ∗ y ∈ G ∀ x, y ∈ G
ii: [associativity] (x ∗ y) ∗ z = x ∗ (y ∗ z) ∀ x, y, z ∈ G
iii: [identity] ∃ I ∈ G : I ∗ x = x ∗ I = x,

∀ x ∈ G
iv: [inverse] ∃ x−1 ∈ G : x ∗ x−1 = x−1 ∗ x = I,

∀ x ∈ G

If in addition to Axioms 1 through 4, the elements in G are commutative (i.e., x∗y = y∗x, ∀x, y ∈ G)

then G is an Abelian, or commutative group. A sub-group H of group G is a subset of G which is a

group under the binary operator defined on G.

A commutative ring is a set R with two binary operators + (addition) and × (multiplication)

which satisfy the following:

i R is a commutative (Abelian) group with respect to + and ×.

ii The operation × has the closure, associativity, and identity properties.

iii The distributive laws: ∀ x, y, z ∈ R,

x× (y + z) = (x× y) + (x× z),

(x+ y)× z = (x× z) + (y × z).

A field is a commutative ring in which every element, except 0, has a multiplicative inverse.

Let k be a field. A k-vector space, V , is an additive commutative group together with an operation

called scalar multiplication that assigns to each a ∈ k, called a scalar, and to each v ∈ V , called a

vector, an element av ∈ V so that the following hold:

i a1(a2v) = (a1a2)v, ∀ ai ∈ k and ∀ v ∈ V ;

ii (a1 + a2)v = a1v + a2v, ∀ ai ∈ k and ∀ v ∈ V ;

iii a(v1 + v2) = av1 + av2, ∀ a ∈ k and ∀ vi ∈ V ;

iv 1v = v, ∀ v ∈ V .

If v1, · · · ,vn are pairwise different elements of a k-vector space V and for all a ∈ k then any sum

of the form

n∑
i=1

aivi

is also called a linear combination of the vi with coefficients ai.

Let B be a subset of V . B is linearly independent if for all pairwise different v1, · · · ,vn ∈ B
and a1, · · · , an in the field k

n∑
i=1

aivi = 0 implies a1 = · · · = an = 0.
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A set that is not linearly independent is called linearly dependent.

Let k be any field, N be the field of non-negative integers, i.e., the integers 0, 1, 2, 3, · · · , V be

any k-vector space, and B ⊂ V . B is a generating system of V if ∀ v ∈ V , ∃ n ∈ N, v1, · · · ,vn ∈ B,

and a1, · · · , an ∈ k with

v =
n∑
i=1

aivi.

B is called a basis of V if it is a linearly independent generating system. The following proposition

is important to Gröbner bases theory: If V is a k-vector space and B is a subset of V then the

following are equivalent

i B is a basis of V .

ii B is a minimal generating system for V .

A polynomial in n variables, f(x1, · · · , xn), with coefficients in k is a finite sum of terms of

the form

ajx
β1
1 · · ·xβnn ,

where aj ∈ k, j ∈ N, and βi ⊂ N such that, i = 1, · · · , n. The polynomial f may be thought of as

a sequence of numbers where aj = 0 for all but finitely many a ∈ k and j ∈ N.

Let k[x1, · · · , xn] be the set of all polynomials in n variables1 with coefficients in the field k.

With respect to polynomial addition and multiplication k[x1, · · · , xn] is a commutative polynomial

ring. This commutative polynomial ring k[x1, · · · , xn] is also a k-vector space with basis the set Tn
of all power products

Tn = {xβ11 · · · xβnn |βi ⊂ N, i = 1, · · · , n}.

For example, a power product could be x41x
6
2x

2
5x

3
8.

All polynomials are uniquely determined by their coefficients. A univariate polynomial may

be represented by a sequence of real numbers, the coefficients ai 6= 0, i ∈ {1, 2, 3, · · · }, a ∈ R.

Observe that this sequence is a function that maps a positive, non-zero integer to a real number

F : N→ R.

Similarly, a multivariate polynomial can be represented by a function. The real numbers are

replaced by an arbitrary ring, R. Further, coefficients are needed not just for powers xn of x, but

for power products of variables as well, i.e., xβ11 · · ·xβnn . The function may be represented as

F : Nn → R.

This function assigns a coefficient in the ring R to each n-tuple (β1, · · · , βn).

1From now on, whenever just one, two, or three variable polynomials are considered, variables with subscripts

will not be used. Rather, the variables will be denoted x, y, or z as needed.
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An affine n-space is defined as

kn = {(a1, · · · , an)|ai ∈ k, i = 1, · · · , n}.
The ai are the basis vectors of the n-space. For example, if k = R, kn = Rn is the Euclidean

n-space.

A polynomial f ∈ k[x1, · · · , xn] determines a function kn → k defined by

(a1, · · · , an)→ f(a1, · · · , an), ∀ (a1, · · · , an) ∈ kn.
This function is called evaluation [1], and maps the affine n-space kn to the field k. Hence, there

are two distinct ways to regard a polynomial f ∈ k[x1, · · · , xn]: one is as a formal polynomial in

k[x1, · · · , xn]; the other is as a function that maps kn → k. In [1], this dual existence of polynomials

is considered to be the “...bridge between algebra and geometry”.

The variety defined by f , V (f), is the set of solutions to the equation f = 0, i.e., the zeros,

or roots of the polynomial. It is defined mathematically as

V (f) = {(a1, · · · , an) ∈ k|f(a1, · · · , an) = 0, } ⊆ kn.

For a set of polynomials f1, · · · , fs ∈ k[x1, · · · , xn] the variety V (f1, · · · , fs) is the set of all solutions

to the system

f1 = f2 = · · · = fs = 0, (2.1)

or, more formally

V (f1, · · · , fs) = {(a1, · · · , an) ∈ k|fi(a1, · · · , an) = 0, i = 1, 2, · · · , s}.
Hence, the variety defined by a set of polynomials, or in other words, a system of equations, is the

set of all intersections of the system

V (f1, · · · , fs) =
s⋂
i=1

V (fi).

For example, the variety V (x2 + y2 − 4, x − 2y2) ⊆ R2 is the intersection of the circle x2 + y2 = 4

and the parabola x = 2y2 in the xy-plane.

Let R be a commutative ring, and {0} 6= I ⊆ R. Then I is called an ideal of R if

i x+ y ∈ I,∀ x, y ∈ I, and

ii ar ∈ I,∀ a ∈ I and r ∈ R.

I is trivial if I = {0}, and proper if I 6= R. The ideal generated by the set of polynomials f1, · · · , fs
is denoted by 〈f1, · · · , fs〉, and is defined mathematically

〈f1, · · · , fs〉 =

{
s∑
i=1

uifi|ui ∈ k[x1, · · · , xn], i = 1, · · · , s

}
.

This means that if f1,f2 ∈ I then so is f1+f2, and if f1 ∈ I and u is any polynomial in k[x1, · · · , xn],

then uf ∈ I. The set of polynomials {f1, · · · , fs} is a generating set of the ideal I. An ideal may

have many different generating sets with different numbers of elements. For example, in k[x, y],

〈x+ y, x〉 = 〈x, y〉 = 〈x+ xy, x2, y2, y + xy〉.

It is important to note that a variety is determined by an ideal, not by a particular set of

equations, or polynomials.
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3 The Univariate Case

There exist many algorithms to numerically solve systems like the one in Equation (2.1). They do

not take into consideration the geometric properties of the variety, nor consider its possible alternate

descriptions. Systems of linear equations can be transformed with Gauss-Jordan elimination to

the reduced row echelon form. This is the form of the coefficient matrix where every row has a

leading ‘1’ with zeros directly beneath and above it. This system has the same solutions as the

original, but requires less computational effort to solve. Gröbner bases theory offers an analogous

procedure for non-linear systems. This method involves finding a ‘better’ representation for the

corresponding variety (solution space), meaning that the original non-linear system is now ‘easier’ to

solve. The desired ‘better’ representation for the variety V (f1, · · · , fs) will be a ‘better’ generating

set for the ideal I = 〈f1, · · · , fs〉. ‘Better’, in this case, means the new set of generators give a

better understanding of the algebraic structure of I = 〈f1, · · · , fs〉, and the geometric structure of

V (f1, · · · , fs).

To obtain the ‘better’ generating set the following problem must be addressed: the ‘better’

generating set of polynomials must be in the same ideal as the original set. This is called the ideal

membership problem. Suppose the univariate polynomials f, g1, · · · , gs are given over a field and it

must be determined if f ∈ I〈gi〉, i.e., if f is in the ideal generated by the gi. The greatest common

divisor (gcd), g, of I〈gi〉 must be determined. Then f is divided by g. The polynomial f will be

in the ideal I〈gi〉 if and only if the remainder of this division is zero. If this is the case, then a

polynomial q must exist that satisfies f = qg.

Gröbner basis theory extends this idea to multivariate polynomials. The criterion for ideal

membership is similar. If the polynomial reduction, which is also called generalized division, of f by

g1, · · · , gs has a remainder of zero, then f ∈ I〈gi〉. The main theorem that makes the theory work

is that it is possible to generalize the Euclidean algorithm to a preprocessing of the set g1, · · · , gs in

such a way that another set is obtained which generates the same ideal and has the desired property

that the remainder is zero for every division with a member of the ideal as the dividend. Ideal bases

with this property are called Gröbner bases. The preprocessing, i.e., the computation of a Gröbner

basis from a given set of polynomials is the Buchberger algorithm. It is the multivariate analogue

to the Euclidean algorithm, and, as well, a generalization of Gauss-Jordan elimination from linear

algebra to the non-linear case [2].

3.1 The Euclidean Algorithm

Buchberger’s algorithm for computing Gröbner bases is essentially a generalization of the Euclidean

algorithm for determining the gcd of two univariate polynomials. It may also be viewed as Gauss-

Jordan row reduction for systems of non-linear equations. Before discussing Buchberger’s algorithm

it would be helpful to review the Euclidean algorithm.

The algorithm attributed to Euclid is for determining the greatest common divisor (gcd) of

two positive integers, the largest integer that divides both of them with out leaving a remainder.

Suppose a and b are positive integers denoted the dividend and divisor if a > b. Then for some

integers q1 and r1 (the first quotient and remainder), 0 ≤ r1 < b.

a = q1b+ r1.
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Since r1 < b, we also have

b = q2r1 + r2,

where q2 and r2 are integers, with 0 ≤ r2 < r1.

Successive divisions produce the sequence of equations

a = q1b+ r1, 0 ≤ r1 < b,

b = q2r1 + r2, 0 ≤ r2 < r1,

r1 = q3r2 + r3, 0 ≤ r3 < r2,
...

...

rn−2 = qnrn−1 + rn, 0 = rn < rn−1 < rn−2.

Since the successive remainders are decreasing non-negative integers, the remainder rn = 0 must be

obtained after a finite number of divisions. The gcd of a and b is the last positive (i.e. non-zero)

remainder in the sequence. This is so because rn−1 is a divisor of each divisor and of each remainder.

It must, therefore, be a divisor of each dividend, and the gcd of a and b is the same as that of rn−2

and rn−1, namely, rn−1 [5].

For example, let a = 1071 and b = 462. Since a > b then a is the dividend and b is the divisor.

Applying the Euclidean Algorithm produces the following sequence of equations:

a = q1b+ r1 =⇒ 1071 = 2(462) + 147;

b = q2r1 + r2 =⇒ 462 = 3(147) + 21;

r1 = q3r2 + r3 =⇒ 147 = 7(21) + 0.

Since r3 = 0 the algorithm terminates with 21 as the gcd of 1071 and 462.

The operations used in the Euclidean algorithm are addition and division. These operators

may also be used on polynomials. Hence, the Euclidean algorithm may be used to determine the gcd

of two polynomials. The main tool in the Euclidean algorithm is the division algorithm employed

in the long division of real numbers. What follows is the first division and subtraction steps in

obtaining the first remainder in the gcd example above. Continued application of the division

algorithm reveals that quotient of the division of 1071 by 462 yields 2.31818181818 · · · , which is an

infinitely periodically repeating decimal.

divisor - 462 1071

2 � quotient

� dividend

924

147

subtract

� remainder

3.2 The Univariate Polynomial Division Algorithm

In this section we consider polynomials in one variable: 0 6= f ∈ k[x]. The degree of a polynomial

f , denoted by deg(f), is the largest exponent of x in f . The leading term of f , lt(f), is the highest
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Table 1: Polynomial term reference terminology.

Symbol Meaning

deg(f) Degree of polynomial f

lt(f) The leading term of polynomial f

lc(f) The leading coefficient of polynomial f

degree term of f . The leading coefficient of f , lc(f), is the coefficient of lt(f). These are summarised

in Table 1. So, if

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

with a0, · · · , an ∈ k and an 6= 0, then deg(f)=n, lt(f)=anx
n, and lc(f)=an.

The polynomial f is divisible by the polynomial g if and only if deg(g)≤deg(f). Consider the

two polynomials

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

g = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0,

with n = deg(f) ≥ m = deg(g). If this is so, then g divides f .

The first step in the division of f by g is to subtract from f the product an
bm
xn−mg. The factor

of g in this product is
lt(f)
lt(g)

. The remainder after the first division step is denoted as r1 and is

r1 = f − lt(f)

lt(g)
g.

The first remainder r1 is called a reduction of f by g and the process of computing r1 is indicated

by

f
g−→ r1.

It is to be observed that deg(r1) is necessarily less than deg(f) due to the subtraction of the

factor of g that eliminates lt(f). If deg(r1) >deg(g) the process continues, reducing r1 by g to

obtain r2 as

r2 = r1 −
lt(r1)

lt(g)
g.

The division algorithm continues until the final remainder equals zero, or the degree of the remainder

is less than deg(g). At this point lt(g) can no longer be used to eliminate lt(r). If the polynomial

division required three steps to obtain the final remainder, the reduction could be represented by

f
g−→ r1

g−→ r2
g−→ r.

However, the following shorthand may be used to indicate that repeated reduction steps were used:

f
g−→+ r.
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Note that an ordering of the polynomials is implied. That is, for the algorithm to terminate,

the final remainder r must be zero, or have a degree less than that of g. This can only occur if the

powers of x are ordered with xm < xn and m < n. The last condition, m < n is equivalent to the

statement that xm divides xn [1].

It is well established ([4, 5, 6]) that, given a non-zero polynomial g ∈ k[x], then for any

f ∈ k[x] with deg(f) ≥ deg(g), ∃ q, the quotient, and the remainder, r, both ∈ k[x] such that

f = qg + r, with r = 0 or deg(r) < deg(g).

Moreover, q and r are unique. The single variable division algorithm is listed below.

Algorithm 3.1 The One Variable Division Algorithm.

INPUT: f, g ∈ k[x] with g 6= 0 and deg(f) ≥deg(g)
OUTPUT: q, r : f = qg + r and r = 0 or deg(r) <deg(g)
INITIALIZATION: q := 0; r := f
WHILE r 6= 0 AND deg(g) ≤deg(r) DO

q := q +
lt(r)

lt(g)

r := r − lt(r)

lt(g)
g

CONTINUE

END

Next, consider an ideal I = 〈f1, f2〉 ∈ k[x]. The gcd of f1 and f2 will have a variety identical

to V (f1, f2) [1]. Hence, it may be that the system (f1, · · · , fs) can be solved with less computational

effort if g = gcd(f1, · · · , fs) is first computed with the Euclidean algorithm. Then all solutions to

the system are obtained by solving g = 0. The gcd of f1 and f2 is a polynomial with the following

properties [6]:

1. g divides both f1 and f2;

2. if h ∈ k[x] divides f1 and f2, then h divides g;

3. g is monic, i.e., lc(g) = 1.

Furthermore, any other polynomial in k[x] for which the remainder is zero upon division by g is in

I. The gcd g is said to generate I, and is the ‘best’ generator for the ideal.

The Euclidean algorithm, discussed earlier, may be expressed as follows:

Algorithm 3.2 The Euclidean Algorithm

INPUT: f1, f2 ∈ k[x], with at least one of f1, f2 not zero
OUTPUT: f = gcd(f1, f2)
INITIALIZATION:f := f1, g := f2
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WHILE g 6= 0 DO

f
g−→+ r

f := g

g := r

f :=
1

lc(f)
f

CONTINUE

END

4 Term Orders

Employing Gauss-Jordan elimination or the Euclidean algorithm requires a certain ordering of

terms. For example, univariate polynomials are ordered by term degree, with the leading term

having the highest degree if the division or Euclidean algorithms are to be used. For solving linear

systems, the order is unimportant, but it must be specified. For multivariate systems, an analogous

order is required.

Recall that the set of power products is denoted by

Tn = {xβ11 , · · · , xβnn |βi ∈ N, i = 1, · · · , n}.

Let xβ = xβ11 , · · · , xβnn , where β = (β1, · · · , βn) ∈ Nn. Note that in this paper “power product”

always refers to a product of the xi variables, while “term” always refers to the product of a

coefficient and a power product. Every power product is a term with coefficient 1, but not every

term is a power product. It will be assumed that the different terms in a polynomial have different

power products, so 3x2y would never be written as 2x2y + x2y. The terms in a polynomial are

arranged in increasing or decreasing order, hence there must be a way to compare any two power

products. The order must be a total order. That is, given any xα, xβ ∈ Tn, exactly one of the

following must be true:

xα < xβ; xα = xβ; or xα > xβ.

The following three total term orders are used effectively in determining Gröbner bases [1, 2, 3].

Definition 4.1 Let lex denote the lexicographical order on Tn with x1 > x2 > · · · > xn and be

defined as follows: If

α = (α1, · · · , αn),β = (β1, · · · , βn) ∈ Nn,

then

xα < xβ ⇐⇒


the first coordinates αi and βi in α and β

from the left which are different satisfy αi < βi.

“From the left” means starting with the largest variables.
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In the case of two variables x1 and x2 with x1 > x2 using the lexicographical order we have

1 < x2 < x22 < x32 < · · · < x1 < x2x1 < x22x1 < · · · < x21 < · · · .

As mentioned earlier, when only several variables are used we will normally use x, y, and z

instead of subscripted ones, but an ordering must be specified nonetheless. For example, in the

commutative polynomial ring k[x, y] using the lexicographical order with x < y, the following order

is implied

1 < x < x2 < x3 < · · · < y < xy < x2y < · · · < y2 < · · · .

In the example above the order of x and y was changed from what was likely expected to emphasise

the need to impose an order among the variables.

Definition 4.2 Let deglex denote the degree lexicographical order on Tn with x1 > x2 > · · · >
xn and be defined as follows: If

α = (α1, · · · , αn),β = (β1, · · · , βn) ∈ Nn,

then

xα < xβ ⇐⇒


∑n

i=1αi <
∑n

i=1 βi
or∑n

i=1αi =
∑n

i=1 βi and xα < xβ

with respect to lex with x1 > · · · > xn.

Using the degree lexicographical ordering the power products are first ordered by total degree and

any ties are broken using the lex order. In the case of two variables with x2 < x1 we have

1 < x2 < x1 < x22 < x1x2 < x21 < x32 < x1x
2
2 < x21x2 < x31 < · · · .

In the commutative polynomial ring k[x, y] the degree lexicographical ordering with x < y is

1 < x < y < x2 < xy < y2 < x3 < x2y < xy2 < y3 < · · ·

The final term ordering is the degree reverse lexicographical order.

Definition 4.3 Let degrevlex denote the degree reverse lexicographical order on Tn with

x1 > x2 > · · · > xn and be defined as follows: If

α = (α1, · · · , αn),β = (β1, · · · , βn) ∈ Nn,

then

xα < xβ ⇐⇒


∑n

i=1αi <
∑n

i=1 βi
or∑n

i=1αi =
∑n

i=1 βi and the first coordinates αi and βi in

α and β from the right, which are different, satisfy αi > β.
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In this case, “from the right” means that the smallest variables are compared until a set of corre-

sponding exponents are found that have different values.

In the case of two variables, deglex and degrevlex are identical. But, if there are three or more

variables in the ring this is no longer the case. This can be seen in the following example:

x21x2x3 > x1x
3
2 for deglex with x1 > x2 > x3

but, if the degrevlex order is used the opposite is true:

x21x2x3 < x21x
3
2 for degrevlex with x1 > x2 > x3.

Using degrevlex the exponents of x3 are compared because they are the first from the right that are

different. That is, on the left hand side the exponent of x3 is 1, on the right hand side is exponent

is 0. The tie is broken because 1 > 0, hence xα < xβ.

To compare the three term orderings, consider the polynomial in k[x, y, z], described by f =

4x2y2z − 10xy4 + 2x4.

lex with x > y > z =⇒ xy4 < x2y2z < x4,

=⇒ f = 2x4 + 4x2y2z − 10xy4.

deglex with x > y > z =⇒ x4 < xy4 < x2y2z,

=⇒ f = 4x2y2z − 10xy4 + 2x4.

degrevlex with x > y > z =⇒ x4 < x2y2z < xy4,

=⇒ f = −10xy4 + 4x2y2z + 2x4.

Again, note that for the degrevlex ordering, to break the tie the first set of different exponents from

the right are those of z. Since 1 > 0 then x2y2z < xy4.

5 Multivariate Polynomial Division Algorithm

Table 2: Polynomial term reference terminology for multiple variables.

Symbol Meaning

deg(f) Degree of polynomial f

lt(f) The leading term of polynomial f

lc(f) The leading coefficient of polynomial f

lp(f) The leading power product of polynomial f

Now, consider the case of ideals generated by more than two multivariate polynomials, I =

〈f1, · · · , fs〉. In order to divide f by f1, · · · , fs requires a reworking of the division and Euclidean

algorithms given earlier. The general idea is the same as for linear and univariate polynomials:

cancel terms of f using the leading terms of the fi’s, so that new terms are of smaller order than

the cancelled terms, and continue the process of subtracting multiples of the fi’s until the remainder
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has a degree smaller than any of the fi’s. One complicating factor is that the dividend may have

more than one divisor.

Before commencing we will denote the leading power product of polynomial f as lp(f). The

lp is listed in Table 2, while deg, lt, and lc are the same as in Table 1. Given f, g, h ∈ k[x1, · · · , xn]

with g 6= 0, the reduction symbol given earlier

f
g−→ h

may be thought of as f reducing to h modulo g (in other words the difference of f and h is divisible

by g) in a single step, if and only if lp(g) divides a non-zero term aix
αi
i that appears in f , and

h = f − aix
αi
i

lt(g)
g.

In this regard, h is the remainder of a one step division of f by g. This process of subtracting off

terms in f that are divisible by lt(g) continues until h = 0, or deg(h) <deg(g). This final remainder

is denoted by r.

Let f, h, and f1, · · · , fs be polynomials in k[x1, · · · , xn], with fi 6= 0(1 ≤ i ≤ s), and let

F = {f1, · · · , fs}. Then

f
F−→+ h

is the notation for f reduces to h modulo F , if and only if there exists a sequence of indices

i1, i2, · · · , it ∈ {1, · · · , s} and a sequence of polynomials h1, · · · , ht−1 ∈ k[x1, · · · , xn] such that

f
fi1−→ h1

fi2−→ h2
fi3−→ · · ·

fit−1−→ ht−1

fit−→ h.

If h = 0 or there is no power product in h that is divisible by any of the lp(fi), then h

is reduced with respect to the set of non-zero polynomials F . Such a reduced polynomial is a

remainder and is called r. In other words, r can not be reduced modulo F . This reduction process

allows for the definition of a multivariate division algorithm, analogous to the univariate case.

Given f, f1, · · · , fs ∈ k[x1, · · · , xn] with fi 6= 0, the algorithm below returns quotients ui, · · · , us ∈
k[x1, · · · , xn], and a remainder r ∈ k[x1, · · · , xn], such that

f = u1f1 + · · ·+ usfs + r.

Algorithm 5.1 Multivariate Polynomial Division Algorithm.

INPUT: f, f1 · · · , fs ∈ k[x1, · · · , xn] with fi 6= 0(1 ≤ i ≤ s)
OUTPUT: u1, · · · , us, r such that f = u1f1 + · · ·+ usfs + r and

r is reduced with respect to {f1, · · · , fs} and
max(lp(u1)lp(f1),· · · ,lp(us)lp(fs),lp(r))=lp(f).

INITIALIZATION:u1 := 0, · · · , us := 0, r := 0, h := f
WHILE h 6= 0 DO

IF ∃ i such that lp(fi) divides lp(h) THEN
choose the least i such that lp(fi) divides lp(h)

ui := ui +
lt(h)

lt(fi)

h := h− lt(h)

lt(fi)
fi
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ELSE

r := r + lt(h)

h := h− lt(h)

CONTINUE

END

Note that in this algorithm an ordering is assumed among the polynomials in the set {f1, · · · , fs}
when i is chosen to be least such that lp(fi) divides lp(h). The univariate polynomial division al-

gorithm starts with r = f , then multiples of fi are subtracted off until lt(r) is not divisible by

lt(fi). Because more than one divisors may be involved in the multivariate case, the polynomial

h is introduced into the algorithm. It begins with h = f and r = 0, and the leading term of h is

subtracted off when conditions permit or else the leading term of of h is added to into r, building

up the expression for the remainder.

Example 5.1

It is required to reduce f by F , where

F = {f1, f2},
f1 = yx− y,
f2 = y2 − x,
f = y2x.

The order is deglex with y > x.
INITIALIZATION: u1 := 0, u2 := 0, r := 0, h := y2x
First pass through the WHILE loop:

yx = lp(f1) divides lp(h) = y2x

u1 := u1 +
lt(h)

lt(f1)
= y

h := h− lt(h)

lt(f1)
f1

= y2x− y2x

yx
(yx− y)

= y2

Second pass through the WHILE loop:
yx = lp(f1) does not divide lp(h) = y2

y2 = lp(f2) divides lp(h) = y2

u2 := u2 +
lt(h)

lt(f2)
= 1

h := h− lt(h)

lt(f2)
f2

= y2 − y2

y2
(y2 − x)

= x

13



Third pass through the WHILE loop:
yx = lp(f1) does not divide lp(h) = x
y2 = lp(f2) does not divide lp(h) = x

r := r + lt(h) = x

h := h+ lt(h) = 0

The WHILE loop stops and gives the OUTPUT

f
F−→+ x

and

f = yf1 + f2 + x.

6 Gröbner Bases

The stage is finally set for the definition of a Gröbner Basis.

Definition 6.1 A Gröbner Basis for an ideal I is a set of non-zero polynomials G = {g1, · · · , gt}
contained in I if and only if for all f ∈ I such that f 6= 0, ∃ i ∈ {1, · · · , t} such that lp(gi) divides

lp(f).

That is, if G is a Gröbner basis for I, then all polynomials in I can be reduced with respect to G.

For a subset S of k[x1, · · ·xn], the leading term ideal of S is defined to be the ideal

Lt(S) = 〈lt(s)|s ∈ S〉.

With this definition in mind, the following statements are equivalent [1]:

1. G is a Gröbner basis for I.

2. f ∈ I if and only if f
G−→+ 0.

3. Lt(G) =Lt(I).

The proof for the existence of G is given in [1].

6.1 Buchberger’s Algorithm

In this section, Buchberger’s algorithm for computing Gröbner bases will be presented. But first,

one more definition is required.
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Definition 6.2 Let 0 6= f, g ∈ k[x1, · · · , xn]. Let the least common multiple (lcm) of two power

products be denoted L =lcm(lp(f),lp(g)). The polynomial

S(f, g) =
L

lt(f)
f − L

lt(g)
g

is defined to be the S-polynomial of f and g.

S-polynomials are used for the following reason. In the division of f by f1, · · · , fs, it may

happen that some term aix
αi
i in f is divisible by both lp(fi) and lp(fj) with i 6= j, hence, aix

αi
i is

divisible by L =lcm(lp(fi),lp(fj)). If f is reduced by fi then

h1 = f − aix
αi
i

fi
fi

is obtained. On the other hand, if f is reduced by fj

h2 = f − aix
αi
i

fj
fj

will be obtained. The ambiguity introduced is

h2 − h1 =
aix

αi
i

fi
fi −

aix
αi
i

fj
fj =

aix
αi
i

L
S(fi, fj).

A key theorem concerning S-polynomials is due to Buchberger.

Theorem 6.1 (Buchberger) Let G = {g1, · · · , gt} be a set of non-zero polynomials in k[x1, · · · , xn].

G is a Gröbner basis for the ideal I = 〈g1, · · · , gt〉 if and only if for all i 6= j,

S(gi, gj)
G−→+ 0.

Buchberger’s proof is given in [1].

The Buchberger theorem outlines a strategy for computing Gröbner bases: Reduce the S-

polynomials and if a remainder is non-zero, add it to the list of polynomials in the generating

set. Continue doing this until there are ‘enough’ polynomials in the generating set to make all

S-polynomials reduce to zero. Buchberger’s algorithm will produce a Gröbner basis for the ideal

I = 〈f1, · · · , fs〉, given F = {f1, · · · , fs} with fi 6= 0(1 ≤ i ≤ s).

Algorithm 6.1 Buchberger’s Algorithm for Computing Gröbner bases.

INPUT: F = {f1, · · · , fs} ⊆ k[x1, · · · , xn] with fi 6= 0(1 ≤ i ≤ s)

OUTPUT: G = {g1, · · · , gs}, a Gröbner basis for I

INITIALIZATION: G := F,G := {{fi, fj}|fi 6= fj ∈ G}
WHILE G 6= 0 DO

Choose any {f, g} ∈ G
G := G − {{f, g}}
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S(f, g)
G−→+ h, where h is reduced with respect to G

IF h 6= 0 THEN

G ∪ {{u, h}| ∀ u ∈ G}
G := G ∪ {h}

CONTINUE

END

Figure 1: Non-linear equations f1 & f2: intersecting circle and ellipse.

Example 6.1

Consider a set of non-linear equations in two variables. The variety of this set contains the real

intersections, if any, of these equations. Let the first equation represents a circle with radius 2,

centred at the origin of an orthogonal planar Cartesian coordinate system, x2 + y2 = 4. It is

required to determine the set of real intersections (if any) of this circle with the ellipse described

by 2x2 + y2 = 5. These two equations may be rearranged as polynomials in two variables, x and y:

f1 : x2 + y2 − 4; (6.1)

f2 : 2x2 + y2 − 5. (6.2)

As polynomials they are members of the ideal I = 〈f1, f2〉. A plot of these geometric entities reveals

that they do, indeed, have four intersections. This is shown in Figure 1. Hence, the variety is not

the empty set. However, the goal of this example is to illustrate how the Buchberger algorithm

computes a Gröbner basis for the ideal I. First, a term ordering is required. We will choose lex

with y < x, specify the input to the algorithm, and proceed:
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INITIALIZATION: G := {f1, f2},G := {{f1, f2}}.

Pass one through the WHILE loop:
G := {{f1, f2}} − {{f1, f2}} = 0.

S(f1, f2) =
L

lt(f1)
f1 −

L

lt(f2)
f2

=
x2

x2
(x2 + y2 − 4)− x2

2x2
(2x2 + y2 − 5)

=
1

2
y2 − 3

2
.

S(f1, f2) = 1
2
y2 − 3

2
can be reduced by neither f1 or f2.

Then S(f1, f2)
G−→+= h 6= 0.

This being the case, let f3 := 1
2
y2 − 3

2
.

Continuing with the first pass:
G := {{f1, f3}{f2, f3}},
G := {f1, f2, f3}.

Pass two through the WHILE loop:
Choose {{f1, f3}} ∈ G,
G := {{f2, f3}}.

S(f1, f3) =
x2y2

x2
(x2 + y2 − 4)− x2y2

(y2/2)
(
1

2
y2 − 3

2
)

= 3x2 + y4 − 4y2

= 3f1 + 4f 2
3 − 2f3 + 0.

This implies that

S(f1, f3)
G−→+ 0 = h.

Pass three through the While loop:
Choose {{f2, f3}} ∈ G,
G := 0.

S(f2, f3) =
x2y2

2x2
(2x2 + y2 − 5)− x2y2

(y2/2)
(
1

2
y2 − 3

2
)

= 3x2 +
1

2
y4 − 5

2
y2

= 3f1 + 2f 2
3 − 5f3 + 0.

This implies that

S(f2, f3)G−→+0 = h.

The WHILE loop stops, since G = 0,

G := {f1, f2, f3}.
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The output of Buchberger’s algorithm may depend on the S-polynomials, that is, in each pass

of the WHILE loop {f, g} ∈ G is chosen arbitrarily. In some cases, if the order is changed the

output may be a different Gröbner basis. However, the job the Gröbner basis were required to do

was to render the system ‘easier’ to solve. But, the algorithm gave us the original second degree

polynomials plus a third univariate second degree polynomial. We are, seemingly, worse off than

before! However, our goose is not yet cooked. The computed Gröbner basis can be minimized. This

leads to the following definition.

Definition 6.3 A Gröbner basis G = {g1, · · · , gt} is called minimal if for

all i, lc(gi)=1 and for all i 6= j, lp(gi) does not divide lp(gj).

In the previous example, it is readily shown that lp(f2) and lp(f1) divide each other. However,

f4 can be obtained as a linear combination of f1 and f2:

f4 = f2 − f1,
= 2x2 + y2 − 5− (x2 + y2 − 4),

= x2 − 1.

Hence, the Gröbner basis is also represented by G = {f4, f3} But, G is not yet minimal because

lt(f3) 6= 1. This is easily remedied by multiplying through by 2, giving f5 = 2f3 = y2 − 3. This

gives a minimal Gröbner basis for I = 〈f1, f2〉 of

G = {x2 − 1, y2 − 3}, (6.3)

with all conditions satisfied.

The minimal Gröbner basis are the minimal generating set of the ideal to which equations 6.1

and 6.2 belong. That is, every polynomial in the ideal to which f1 and f2 belong can be expressed

by a linear combination of the Gröbner basis, f4 and f5. The circle is a combination of f4 + f5 and

the ellipse is a combination of 2f4 + f5.

Geometrically, f4 and f5 represent a set of two pairs of orthogonal lines, shown in Figure 2a.

Clearly then, the points shared by the lines x = ±
√

1 and y = ±
√

3 are the same as those shared

by x2 + y2 = 4 and 2x2 + y2 = 5. The variety V (f1, f2) is identical to the variety V (f4, f5). This

is illustrated in Figure 2b. The difference is that it requires less computational effort to solve the

system of {f4, f5} than {f1, f2}.

6.2 Gröbner Basis Computation Using Maple

The Gröbner basis for the same ideal I and term ordering from the previous example were deter-

mined using the computer algebra software package Maple. They were found to be

{x2 − 1, y2 − 3}. (6.4)

They are a set of univariate polynomials

g1 : x2 − 1,

g2 : y2 − 3.

It is immediately seen that g1 = f4 and g2 = f5.
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(a) The four orthogonal lines. (b) V (f1, f2) = V (f4, f5).

Figure 2: The Gröbner bases f4 and f5 generate I = 〈f1, f2〉

7 Conclusions

A brief introduction to the theory of Gröbner bases has been presented. Because the algorithm

for computing these bases reduces systems of non-linear equations algebraically, it offers strong

competition to the well established numerical methods for solving such systems. The computational

complexity is probably on par with most numerical methods, however divergence is never a problem.
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