
Chapter 9

New Methods for

Kinematic Synthesis

Results that describe new methods for kniematic synthesis presented at various

conferences and in archival journals are reprinted in slightly modified form in the

following sections. The material presented in the first paper was disseminated

in the Proceedings of the International Federation of Machines and Mechanisms

(IFToMM) Tenth World Congress on the Theory of Machines and Mechanisms,

in Oulu, Finland in a paper entitled “The Effect of Data-set Cardinality on

the Design and Structural Errors of Four-bar Function-generators” [1]. This

paper presents the initial observation that as the input-output (IO) data-set

cardinality increases the Euclidean norms of the design and structural errors

converge. The important implication is that the minimisation of the Euclidean

norm of the structural error can be accomplished indirectly via the minimisation

of the corresponding norm of the design error provided that a suitably large

number of input-output pairs is prescribed.

The second paper, entitled “Continuous Approximate Synthesis of Planar

Function-generators Minimising the Design Error” [2], first appeared in the

archival journal Mechanism and Machine Theory in June 2016. In this pa-

per the synthesis equations are integrated in the range between minimum and

maximum input values, thereby reposing the discrete approximate synthesis

problem as a continuous one. Moreover, it is proved that a lower bound of the

Euclidean norm, and indeed of any p-norm, of the design error for planar RRRR

function-generating linkages exists and is attained with continuous approximate

synthesis.
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The third paper, “Solving the Burmester Problem Using Kinematic Map-

ping” [3], initially appeared in the Proceedings of the American Society of Me-

chanical Engineers (ASME) Design Engineering Technical Conferences: Mech-

anisms Conference, and was presented in Montréal, QC, Canada in September

2002. In this paper a method to solve the five-pose Burmester problem for

rigid body guidance using the planar kinematic mapping of Grünwald [4] and

Blashke [5] introduced simultaneously, but independently in 1911, is presented.

This procedure was generalised to all possible planar four-bar mechanisms in

[6].

A new approach for approximate synthesis of planar four-bar mechanisms

that solve the rigid body guidance problem is presented in the fourth paper, en-

titled “Quadric Surface Fitting Applications to Approximate Dimensional Syn-

thesis” [7]. This paper appeared in the Proceedings of the International Fed-

eration of Machines and Mechanisms (IFToMM) Thirteenth World Congress

on the Theory of Machines and Mechanisms, and was presented in Guanaju-

ato, Mexico in June 2011. In this paper an approximate synthesis method is

presented that takes a given set of n desired poses of the coupler of a four-bar

planar mechanism and finds the “best” mechanism that can achieve them. This

is accomplished by solving an equivalent unconstrained non-linear minimisation

problem. The hyperboloids of one sheet or hyperbolic paraboloids that min-

imise the distance between the given n poses in the kinematic mapping image

space of Grünwald and Blashke and n corresponding points that belong to the

quadric surfaces, represent the “best” mechanism that can achieve the desired

poses.

The fifth paper presents work intended to integrate type and dimensional

synthesis solving the five-position Burmester problem and is entitled “Towards

Integrated Type and Dimensional Synthesis of Mechanisms for Rigid Body Guid-

ance” [8]. In this paper kinematic mapping is used to take the first steps towards

development of a general algorithm combining both type and dimensional syn-

thesis of planar mechanisms for rigid body guidance. In this work an algorithm

is presented that can size link lengths, locate joint axes, and, using heuristics,

decide between RR- and PR-dyads that, when combined, can guide a rigid body

exactly through five specified positions and orientations, i.e., the five-position

Burmester problem. The paper was presented at the 2004 Canadian Society for

Mechanical Engineering Forum in London, ON, in June 2004, and appears in

the associated Proceedings.

The sixth paper in this chapter, entitled “Integrated Type And Dimensional

Synthesis of Planar Four-Bar Mechanisms” [9], appears in a book containing



3

the proceedings of the eleventh in the series of Advances in Robot Kinematics

Conference, and was presented in June 2012 in Innsbruck, Austria. In the paper

a novel approach to integrated type and approximate dimensional synthesis of

general planar four-bar mechanisms (i.e. linkages comprised of any two of RR,

PR, RP, and PP dyads) for rigid-body guidance is proposed. The essence is to

correlate coordinates of the coupler attachment points in two different coordi-

nate frames, thereby reducing the number of independent variables defining a

suitable dyad for the desired rigid-body motion from five to two. After apply-

ing these geometric constraints, numerical methods are used to size link lengths,

locate joint axes, and decide between RR, PR, RP and PP dyads that, when

combined, guide a rigid body through the best approximation, in a least-squares

sense, of n specified positions and orientations, where n > 5. No initial guesses

of type or dimension are required.

The seventh and eighth papers both investigate the derivation and geome-

try of an algebraic version of the IO equation of planar 4R mechanisms. The

seventh, entitled “Input-output Equation for Planar Four-bar Linkages” [10],

appears in a book containing the proceedings of the sixteenth in the series of

Advances in Robot Kinematics Conference, and was presented in July 2018

in Bologna, Italy. While the eighth is entitled “An Algebraic Version of the

Input-output Equation of Planar Four-bar Mechanisms” [11], and appears in a

book containing the proceedings of the eighteenth in the series of conferences

called International Conference on Geometry and Graphics, and was presented

in August 2018 in Milan, Italy.

The algebraic IO equation for planar RRRP and PRRP linkages is derived in

the same way as in [10] in the ninth paper, entitled “An Algebraic Input-Output

Equation for Planar RRRP and PRRP Linkages” [12], first presented at, and

appearing in the proceedings of the 10th CCToMM Symposium on Mechanisms,

Machines, and Mechatronics, École de technologie supérieure, Montréal, QC,

Canada. In this paper it is shown that the IO equations for any planar 4R linkage

is precisely the same as those for any planar four-bar linkage containing as many

as two P-pairs. However, the inputs and outputs are different parameters.

Given that the IO equations for planar four-bar linkages are the same re-

gardless of the number of P-pairs, provided the maximum is two, the next phase

of this research was to develop a generalised approach to deriving the IO equa-

tions for planar, spherical, and spatial four-bar linkages of arbitrary kinematic

architecture. The first step towards this goal is presented in the tenth paper,

entitled “A General Method for Determining Algebraic Input-output Equations

for Planar and Spherical 4R Linkages” [13], which has been accepted for pub-
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lication in a book containing the proceedings of the seventeenth in the series

of Advances in Robot Kinematics Conference in Lubljana, Slovenia, originally

scheduled between June 28 - July 2, 2020. Given the COVID-19 pandemic, we’ll

see how that goes.

The results presented in the final three papers in this chapter [14, 15, 16] de-

tail the design parameter spaces of planar and spherical 4R linkages. The first of

the three, entitled “Design Parameter Space of Planar Four-bar Linkages” [14],

was presented at, and appears in the proceedings of the 15th IFToMM World

Congress, 2019, Krakow, Poland, June 30 - July 04, 2019. The main result of

the paper is that the eight linear factors in four of the coefficients of IO equation

define a regular double tetrahedron in the parameter space of the link lengths.

Each linear factor defines a plane which intersects three other planes in the set

in an equilateral triangle, for a total of eight. The two tetrahedra in the regu-

lar double tetrahedron belong to the only uniform polyhedral compound, called

the stellated octahedron, which has order 48 octahedral symmetry. This double

tetrahedron has a regular octahedron at its core and shares its eight vertices

with the cube. The eight equilateral triangles bound the faces of this octahe-

dron. Distinct points in this design parameter space represent distinct function

generators and the locations of the points relative to the eight planes containing

the faces of the double tetrahedron completely determines the mobility of the

input and output links.

The last two papers in this set, entitled “Design Parameter Space of Spherical

Four-bar Linkages” [15], and “Mobility Classification in the Design Parameter

Space of Spherical 4R Linkages” [16], describe a related design parameter space

for spherical 4R linkages. Perhaps the most interesting result is that the co-

efficient factors define eight singular cubic surfaces. Each of the eight cubics

possess six real lines each, three on the plane at infinity and three finite ones.

The three lines at infinity are common to all eight cubics, while the three fi-

nite lines on each surface are equilateral triangles which can be considered the

edges of the double tetrahedron for planar 4R linkages! In this way, the design

parameter spaces of planar and spherical 4R linkages intersect in the edges of

the only uniform polyhedral compound comprising a regular double tetrahe-

dron that intersects itself in a regular octahedron. This is the only uniform

polyhedral compound in the entire universe of polyhedra!
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� Introduction

Design and structural errors are important performance indicators in the assessment and
optimisation of function�generating linkages arising by means of approximate synthesis�
The design error indicates the error residual incurred by a speci	c linkage regarding the
veri	cation of the synthesis equations� The structural error� in turn� is the di
erence
between the prescribed linkage output and the actual generated output for a given input
value �Tinubu and Gupta ����
� From a design point of view it may be successfully argued
that the structural error is the one that really matters� for it is directly related to the
performance of the linkage�
The main goal of this paper is to demonstrate that� as the data�set cardinality in�

creases� the Euclidean norms of the design and structural errors converge� The important
implication is that the minimisation of the Euclidean norm of the structural error can
be accomplished indirectly via the minimisation of the corresponding norm of the design
error� provided that a suitably large number of input�output �I�O� pairs is prescribed�
Note that the minimisation of the Euclidean norm of the design error leads to a linear
least�square problem whose solution can be obtained directly �Wilde ����
� while the
minimisation of the same norm of the structural error leads to a nonlinear least�squares
problem� and hence� calls for an iterative solution �Tinubu and Gupta ����
�

� Procedure

The synthesis problem of four�bar function�generators consists of determining all relevant
design parameters such that the mechanism can produce a prescribed set of m input�
output �I�O� pairs� f�i� �ig

m

� � where �i and �i represent the i
th input and output variables�

respectively� and m is the cardinality of the data�set�
Let n be the number of independent design parameters required to characterise the

mechanism� For planar RRRR linkages� n � � �Freudenstein ����
� while for spherical
RRRR linkages n � � �Hartenberg and Denavit ����
� For spatial RCCC function�
generators� the issue is not as straightforward� The output of this type of linkage consists
of both angular and translational displacements� although they are coupled� If we only
consider the angular output� which is necessary if comparisons are to be made with the
other two for generating identical functions� then n � � �Liu ����
�

To appear in Proc� IFToMM June ��� � c� IFToMM ����



Approximate synthesis problems involve sets of I�O equations such that m � n� If
m � n� the problem is termed exact synthesis and may be considered a special case of the
former �Liu and Angles ����
� The optimisation problem of four�bar function�generators
usually involves the approximate solution of an overdetermined linear system of equations
with the minimum error� The I�O equations can be written in the form

Sk � b� ���

where S is the m� n synthesis matrix� b is an m�dimensional vector� whereas k is the n�
dimensional vector of design variables� usually called the Freudenstein parameters as they
were 	rst introduced in �Freudenstein ����
 for the synthesis of planar four�bar linkages�
Moreover� the ith row of S� sT

i
� and the ith component of b� bi� are functions of �i and �i

only� For the planar RRRR mechanism�

s
T

i
� � � cos�i � cos�i 
 � i � �� ���� m� ���

bi � � cos ��i � �i� 
 � i � �� ���� m� ���

k � � k� k� k� 
T � ���

For the spherical RRRR mechanism�

s
T

i
� � � � cos�i cos�i cos�i cos�i 
 � i � �� ���� m� ���

bi � � � sin�i sin�i 
 � i � �� ���� m� ���

k � � k� k� k� k� 
T � ���

For the spatial RCCC mechanism�

s
T

i
� � � sin�i sin�i sin�i sin�i 
 � i � �� ���� m� ���

bi � � cos�i cos�i 
 � i � �� ���� m� ���

k � � k� k� k� k� 
T � ����

These synthesis equations are linear in the components of k� This matrix form has
obvious representational advantages� but more importantly� it allows us to determine
values of the I�O dial zeros� � and �� that will best condition the synthesis matrix� S �Liu
and Angeles ����
� Here� we regard the I�O pairs as a set of incremental angular changes�
f��i ��ig

m

� � The I�O data set is then

�i � � ���i� �i � � ���i i � �� � � � � m� ����

The Nelder�Mead downhill simplex algorithm in multi�dimensions �Liu and Angeles ����

is employed to estimate the optimal values for � and �� It should be mentioned that� while
changing the dial zeros of the I�O angles improves the condition number� �� of planar
RRRR� spherical RRRR and spatial RCCC linkages� this method does not always work
for spatial RSSR linkages �Liu and Angeles ����
�
When m � n there is� in general� no k which will exactly satisfy all the equations�

There are two well established indicators to assess the approximation error� namely the
design and structural errors� We de	ne the design error vector d as

d � Sk� b� ����

The Freudenstein parameters� k� may be optimised by minimising the Euclidean norm of
d� The scalar objective function is

z �
�

�
�dTWd�� ����

�



which must be minimised over k� The scalar quantity dTWd is the weighted Euclidean
norm of d� The matrixW is a diagonal matrix of positive weighting factors� which can be
used to make some of the data points a
ect the minimisation more� or less� than others�
depending on their relative importance to the design� For the sake of simplicity W will
be set equal to the identity matrix in this article� dTWd being indicated by kdk��
The quantity kdk� can be minimised� in a least squares sense� very e�ciently by trans�

forming S using Householder re�ections �Golub and Van Loan ����
� the Moore�Penrose
generalised inverse thus not being explicitly computed� Design error minimisation is there�
fore a linear problem� a desirable trait� indeed� Unfortunately� as a performance indicator�
the design error is not directly related to the I�O performance of the function�generator�
Alternatively we may approach the optimisation problem by minimising the same norm

of the structural error� Since this error is de	ned as the di
erence between the gener�
ated and prescribed outputs for a given input� it is directly related to function�generator
performance� Let the structural error vector s be de	ned as

s � ��
�� � ��

���
�m � �m

�
�� � ����

where �i is the generated value of the output � attained at � � �i� and �i is� as de	ned
earlier� the prescribed value of the output angle at � � �i� It can be shown that the
structural and design errors are related by

d � d�s� � Sk� b� ����

where d is a nonlinear function of s �Tinubu and Gupta ����
� Hence� it is evident that
minimising kdk� is not equivalent to minimising the Euclidean norm of the structural
error� ksk��
To minimise the Euclidean norm of this error� the iterative Gauss�Newton procedure is

employed� The conditions under which the procedure converges in the neighbourhood of
a minimum are discussed in �Dahlquist and Bj�orck ����
� In this case� the scalar objective
function to be minimised over k is

	 �
�

�
�sTWs�� ����

Here� again� W is set equal to the identity matrix� the weighted Euclidean norm being
indicated by ksk��
We start with an initial guess for the Freudenstein parameters that minimise the Eu�

clidean norm of the design error� and modify the guess until the normality condition�


	


k
� �� ����

is satis	ed to a speci	ed tolerance� �� such that


	


k
� �� for � � �� ����

We do not actually evaluate the normal equations� since they are typically ill�
conditioned� Rather� we proceed in the following way� the ith I�O equation is a function
of �i� �i and the Freudenstein parameters� k� and may be written as

fi��i� �i�k� � �� ����

�



The Jacobian of f with respect to the vector of output values� �� is the following diagonal
matrix�


f


�
� diag

�

f�

��

� � � � �

fm

�m

�
� D� ����

If we regard Eq� ���� as a function of only �i we can write

��k� � �� ����

However� we want

��k� � �� ����

Assume we have an approximation to kopt� which we call k� � obtained from the 
th

iteration� We now require a correction vector� �k� so that

��k� ��k� � �� ����

It can be shown �Dahlquist and Bj�orck ����
� after expanding the left�hand side of Eq� ����
in series� and ignoring higher order terms� that

��k���� � D
��
S�k� ����

the left�hand side of Eq� ���� being �s� � Now we 	nd �k as the least�square approxima�
tion of Eq� ����� It can be proven that �k � � implies 
	�
k � �� which means that we
can satisfy the normality condition without evaluating it explicitly�

We show with one example below that� as the cardinalitym of the data points increases�
the design and structural errors converge�

� Example

We synthesise here a planar RRRR� a spherical RRRR and a spatial RCCC four�bar
mechanism to generate a quadratic function for an input range of �� � �� � ����
namely�

��i �
����

i

��
� ����

For each mechanism the I�O dial zeros ��� �� are selected to minimise the condition
number � of S for each data�set �Liu and Angeles ����
� Then both the design and
structural errors are determined for the linkages that minimise the respective Euclidean
norms for data�sets with cardinalities of m � f��� ��� ��� and ���g� These results are
listed in Tables ���� Finally the structural errors� corresponding tom � ��� of the linkages
that minimise the Euclidean norms of the design and structural errors are graphically
displayed in Fig� ��

�



Table �� Results for m 	 �
�
Planar RRRR Spherical RRRR Spatial RCCC

�opt �deg�� �������� 
������ �
������
�opt �deg�� ������� ������� �
�
���

�opt ������
 �

����� �

�����
kdk� ������ �
�� ���
� �
�� ���
� �
��

ksk� ������ �
�� 
���� �
�� 
���� �
��
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Figure �� Structural error comparison for �i� planar� �ii� spherical RRRR and �iii� spatial RCCC
mechanisms minimising ksk� � kdk��

� Discussion and Conclusions

Examining Tables ���� it can be seen that kdk� and ksk� increase with m for each mech�
anism� The trend for the planar RRRR is towards convergence� It is interesting to note
that the error results are identical for the spherical RRRR and the spatial RCCC link�
ages� except that �opt and �opt are di
erent� In a sense� this is not surprising because of
the symmetrical nature of the function in the �� � plane� Moreover� the synthesis equa�
tions for these two linkages are� with the exception of sign� trigonometric complements
in the form considered in this article� However� compared to the planar RRRR� we see

�



the errors converge near m � ��� but then diverge again for higher values of m� Fig� �
shows the close agreement of the respective structural error curves for m � ��� In all
cases treated� a number of prescribed I�O values of at least m � �� is su�cient for the
minimisation of the Euclidean norm of the design error to lead to the same norm of the
structural error within a reasonable di
erence�
These results support our hypothesis that for a suitably large data�set cardinality link�

age optimisation using design and structural error based objective functions result in vir�
tually identical function�generating mechanisms� The obvious weakness is that the cardi�
nality of the data�set for which convergence is obtained is not known a priori� Nonetheless�
further pursuit of this result is worthwhile because of its computational simplicity�
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A B S T R A C T

It has been observed in the literature that as the cardinality of the prescribed discrete input–
output data set increases, the corresponding four-bar linkages that minimise the Euclidean
norm of the design and structural errors tend to converge to the same linkage. The impor-
tant implication is that minimising the Euclidean norm, or any p-norm, of the structural error,
which leads to a nonlinear least-squares problem requiring iterative solutions, can be accom-
plished implicitly by minimising that of the design error, which leads to a linear least-squares
problem that can be solved directly. Apropos, the goal of this paper is to take the first step
towards proving that as the cardinality of the data set tends towards infinity the observation
is indeed true. In this paper we will integrate the synthesis equations in the range between
minimum and maximum input values, thereby reposing the discrete approximate synthesis
problem as a continuous one. Moreover, we will prove that a lower bound of the Euclidean
norm, and indeed of any p-norm, of the design error for planar RRRR function-generating
linkages exists and is attained with continuous approximate synthesis.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Design and structural errors are important performance indicators in the assessment and optimisation of function-
generating linkages arising by means of approximate synthesis. The design error indicates the error residual incurred by a specific
linkage in satisfying its synthesis equations. The structural error, in turn, is the difference between the prescribed linkage out-
put value and the actual generated output value for a given input value [1]. From a design point of view it may be successfully
argued that the structural error is the one that really matters, for it is directly related to the performance of the linkage.

It wasshown in Ref. [2] that asthe cardinality of the prescribed discrete input–output (I/O) data-set increases, the corresponding
linkages that minimise the Euclidean norms of the design and structural errors tend to converge to the same linkage. The important
implication of this observation is that the minimisation of the Euclidean norm of the structural error can be accomplished
indirectly via the minimisation of the corresponding norm of the design error, provided that a suitably large number of I/O pairs
is prescribed. The importance arises from the fact that the minimisation of the Euclidean norm of the design error leads to a
linear least-squares problem whose solution can be obtained directly as opposed to iteratively [3,4], while the minimisation of
the same norm of the structural error leads to a nonlinear least-squares problem, and hence, calls for an iterative solution [1].
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Several issues have arisen in the design error minimisation of four-bar linkages. First, the condition number of the synthesis
matrix may lead to design parameters that poorly approximate the prescribed function [5]. This problem can be addressed
through careful selection of the I/O pairs used to generate the synthesis matrix. It has also been suggested to introduce dial
zeros whose values are chosen to minimise the condition number of the synthesis matrix [6]. Second, the identified design
parameters have a dependence on the I/O set cardinality. As the number of I/O pairs grows, the magnitude of the design error
tends to converge to a lower bound. Hence, the I/O set cardinality might be fixed as soon as the magnitude of the design error
reaches some pre-defined minimum value [2].

Diverse interesting and useful optimisation strategies have been proposed recently for structural error minimisation in pla-
nar four-bar function-generators. For example, in Ref. [7] the authors define the least squares error between the desired and
generated functions as the objective function for a sequential quadratic programming (SQP) approach. The proposed method
solves a sequence of optimisation subproblems, each of which optimises a quadratic model of the objective function subject
to a linearisation of the constraints based on the distribution of a finite set of precision points. Another novel approach which
considers the minimisation of the structural error of the link lengths is described in Ref. [8]. The method treats one of the
dyads as having fixed distances between joint centres, while the other dyad has links of variable length. The adjustable link
lengths are varied using a discrete set of precision points as benchmarks. A completely different approach is used in Ref. [9] to
develop a probabilistic, time-dependent function-generator synthesis method. The authors introduce the concept of “interval
reliability synthesis”. The dimensions of the link lengths are treated as random variables while their mean values become the
design variables, and the probability of failure to produce the function within a prescribed tolerance is minimised over a defined
time interval and corresponding position level interval of the function. While these methods achieve excellent results, they do
not shed any light on the curious tendency observed in Ref. [2]. What the vast body of literature reporting investigations into
function-generator synthesis optimisation is missing is a systematic study of what the implications are of allowing the cardinal
number of the I/O data set to tend towards infinity.

Hence, the goal of this paper is to take the first step towards proving that the convergence observed in Ref. [2] is true for
planar four-bar function-generators. More precisely, a proof will be given for the design error that as the cardinality of the I/O
data set increases from discrete numbers of I/O pairs to an infinite number between minimum and maximum pairs that a lower
bound for any p-norm of the design error exists, and corresponds to that of the infinite I/O set, thereby changing the discrete
approximate synthesis problem to a continuous approximate synthesis problem. To this end, the design error minimisation
occurs in the space of a continuous function possessing an Lp norm defined later in this paper. However, our study is currently
restricted to the planar RRRR function-generating linkage, where R denotes revolute joint, synthesised using the kinematic model
defined in Ref. [10].

2. Design error minimisation: the discrete approximate approach

The synthesis problem of planar four-bar function-generators consists of determining all relevant design parameters such
that the mechanism can produce a prescribed finite set of m I/O pairs, {xi,vi}m

1 , where xi and vi represent the ith input and
output variables, respectively, and m is the cardinality of the finite data-set. We define n to be the number of independent design
parameters required to fully characterise the mechanism. For planar RRRR linkages, n = 3 [10]. If m = n, the problem is termed
exact synthesis and may be considered a special case of approximate synthesis where m > n.

We consider the optimisation problem of planar four-bar function-generators as the approximate solution of an overde-
termined linear system of equations with the least error. The synthesis equations that are used to establish the linear system
for a four-bar function-generator are the Freudenstein equations [10]. Consider the mechanism in Fig. 1. The ith configuration is
governed by:

k1 + k2 cos(vi) − k3 cos(xi) = cos(xi − vi), (1)

where the k′s are the Freudenstein parameters , which are the following link length ratios:

k1 =
(a2

1 + a2
2 + a2

4 − a2
3)

2a2a4
; k2 =

a1

a2
; k3 =

a1

a4
. (2)

Given a set of three Freudenstein parameters, the corresponding set of link lengths, scaled by a1, are:

a1 = 1; a2 =
1
k2

; a4 =
1
k3

; a3 = (1 + a2
2 + a2

4 − 2a2a4k1)1/2. (3)

The finite set of I/O equations can be written in the following form, using Eq. (1)

Sk = b, (4)
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Fig. 1. A four-bar linkage in two configurations.

where S is the m × 3 synthesis matrix, whose ith row is the 1 × 3 array si, b is an m-dimensional vector, whereas k is the
3-dimensional vector of design variables called the Freudenstein parameters [10]. For the planar RRRR mechanism we have:

si = [1 cosvi − cosxi] , i = 1, . . . , m, (5)

bi = cos(xi − vi), i = 1, . . . , m, (6)

k = [k1k2k3]T . (7)

The synthesised linkage will only be capable of generating the desired function approximately. The design error is the alge-
braic difference of the left-hand side of Eq. (4) less the right-hand side. Because we will be comparing errors associated with
different cardinalities, we now include the cardinality m in the definition. The m-dimensional design error vector dm for a finite
discrete set of m > 3 I/O pairs, {(xi,vi)i=1...m}, is defined as:

dm = Smk − bm. (8)

If the output values prescribed by the functional relationship, vpres,i, correspond precisely to the output values generated
by the mechanism, i.e., vgen,i, then, ‖dm ‖= 0. However, for a general prescribed function vpres(x), ‖dm ‖�= 0 and we seek the
Freudenstein parameter vector that minimises the norm of the design error vector. In general, the weighted Euclidian norm is
used:

‖ dm ‖2
Wm ,2=

1
2

dT
mWmdm, (9)

where Wm is an m × m diagonal matrix with strictly positive elements. In a typical design problem, Wm is used to adjust the
impact on the optimisation of specific I/O pairs. However, for the purposes of this work, Wm will be set to the identity matrix,
Im. The optimal Freudenstein parameters k∗

m for this norm are:

k∗
m = S+

m bm, (10)

where S+
m is the Moore–Penrose generalised inverse of the synthesis matrix, and the corresponding minimal design error is:

→ min
k

‖ dm‖2 =‖ d∗
m‖2 =‖ (Im − SmS+

m )bm‖2. (11)

In general, for any matrix, square or rectangular, the condition number j is a measure of how invertible the matrix is: it is
the ratio of the largest to smallest singular values. Consider the system of linear equations represented by Ax = b. The matrix
A may be viewed as a map from vector space x to vector space b. A very large condition number of A implies that the smallest
singular value of the matrix is very small, meaning that b is poorly approximated by Ax. This also implies that A−1b very poorly
approximates x. Extremely large condition numbers indicate that there is a near linear dependency among some of the rows
of A, meaning that one, or more, of its singular values is very close to zero. Such matrices are termed ill-conditioned. The
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condition number j is a property of the matrix A and entirely independent of the vector spaces x and b. For numerical stability
considerations, it is always desirable to have a well-conditioned synthesis matrix, otherwise the numerical values of S+

m may
be significantly distorted by very small singular values, or singular values identically equal to zero, leading to optimised k that
imply a mechanism which very poorly approximates the function. Hence, the dial zeros a and b, illustrated in Fig. 1, have been
introduced to minimise the condition number, j, of Sm:

xi = a + Dxi; vi = b + Dvi. (12)

When the dial zeros are substituted into Eq. (1), the synthesis equation becomes:

k1 + k2 cos(b + Dvi) − k3 cos(a + Dxi) = cos(a + Dxi − b − Dvi), (13)

and, the I/O pairs are regarded as a discrete set of incremental angular changes {(Dxi,Dvi)i=0..m}. The arrays d∗
m, k∗

m and Sm are
now also functions of the dial zeros. With this modification, the design error minimisation problem can be efficiently solved in
a least squares sense in two steps:

1. determine the dial zeros to minimise the condition number jm(a,b) of the synthesis matrix Sm;
2. determine the corresponding optimal Freudenstein parameters using Eq. (10).

3. Design error minimisation: the continuous approximate approach

A major issue associated with the discrete approach to the design error minimisation is the appropriate choice for the
cardinality of the discrete I/O pair data set such that the minimisation of the structural error is implied. Indeed, the choice of
m depends on the prescribed function Dvpres(Dx) and m is generally fixed when some level of convergence is observed. For
the example used in Ref. [2] m = 40 was observed to be a good choice. We now propose to evaluate the design error over the
continuous range between minimum and maximum, or initial and final, input values of the prescribed function, denoted
[Dx0,Dxf] . We only consider functions that are continuous over [Dx0,Dxf], that are defined in a function space, denoted
C0([Dx0,Dxf ]), whereupon the following Lp-norm has been defined for any continuous function f on the closed interval
[Dx0,Dxf]:

∀f ∈ C0([Dx0,Dxf ]), ‖ f‖p =

(∫ Dxf

Dx0

|f (x)|pdx

)1/p

, (14)

where p is an integer such that p ≥ 1. Imposing the Lp-norm upon this function space makes C0([Dx0,Dxf ]) an Lp-space. Such Lp-
spaces are defined using a generalisation of the vector norm for finite-dimensional vector spaces [4]. Vector norms are special
cases of the family of Lp-norms, often denoted by lp while Lp is reserved for norms in function spaces [4]. The most common
Lp-norms for a continuous function f on a closed interval [a, b], and in fact, the most commonly used vector norms [11], are the
maximum or Chebyshev norm, the Euclidean norm, and the so called Manhattan norm1 which are respectively defined by:

‖ f‖∞ = max
x∈[a,b]

|f (x)|; (15)

‖ f‖2 =

(∫ b

a
f (x)2dx

)1/2

; (16)

‖ f‖1 =
∫ b

a
| f (x)|dx. (17)

The Manhattan and Chebyshev norms are the limiting cases (p = 1 and p = ∞, respectively) of the family of Lp-norms [4].
The Lp-norms obey the following relationship:

‖ f‖∞ ≤ · · · ≤‖ f‖2 ≤‖ f‖1. (18)

Typically, the most appropriate norm must be selected to evaluate the magnitude of the objective function for the error
minimisation, given a function that is to be approximated by the resulting linkage. However, it turns out that Lawson’s

1 The term Manhattan norm arises because the vector norm corresponds to sums of distances along the basis vector directions, as one would travel along a
rectangular street plan.



162 A. Guigue, M. Hayes / Mechanism and Machine Theory 101 (2016) 158–167

algorithm [12,13] can be used to sequentially minimise the Chebyshev norm via the minimisation of the Euclidean norm [14].
This means that the continuous approximate approach to the design error minimisation is independent of the Lp-norm because
it applies to both the Chebyshev and Euclidean norms, and hence all intermediate ones. Therefore, without loss in generality the
Euclidean norm will be used in the example in Section 5, which follows the development of the approach.

Assuming that the prescribed function belongs to C0([Dx0,Dxf ]), the design error is defined using the Euclidean norm, though
any Lp-norm could be used [14]:

‖ d(a,b)‖2 =

(∫ Dxf

Dx0

(k1 + k2 cos(b + Dv) − k3 cos(a + Dx) − cos(a + Dx − b − Dv))2dDx

) 1
2

. (19)

After some algebraic manipulation, it can be shown that the square of Eq. (19) is a quadratic function in terms of the
Freudenstein parameters:

‖ d(a,b) ‖2
2= kT A(a,b)k − 2e(a,b)T k + c(a,b). (20)

The matrix A(a,b) is a 3 × 3 a symmetric positive semidefinite matrix whose six distinct elements aij are:

a11 =
∫ Dxf

Dx0

dDx = Dxf − Dx0;

a12 =
∫ Dxf

Dx0

cos(b + Dv)dDx;

a13 = −
∫ Dxf

Dx0

cos(a + Dx)dDx;

a22 =
∫ Dxf

Dx0

cos2(b + Dv)dDx

a23 = −
∫ Dxf

Dx0

cos(b + Dv) cos(a + Dx)dDx

a33 =
∫ Dxf

Dx0

cos2(a + Dx)dDx;

while e(a,b) is a 3-dimensional vector whose elements are:

e1 =
∫ Dxf

Dx0

cos(a + Dx − b − Dv)dDx;

e2 =
∫ Dxf

Dx0

(cos(b + Dv) cos(a + Dx − b − Dv))dDx;

e3 = −
∫ Dxf

Dx0

(cos(a + Dx) cos(a + Dx − b − Dv))dDx;

and finally c(a,b) is a scalar having the form:

c =
∫ Dxf

Dx0

cos2(a + Dx − b − Dv)dDx.

When A(a,b) is positive definite, the optimal Freudenstein parameters k∗(a,b) which minimise ‖ d(a,b) ‖2
2 (or equivalently

‖d(a,b) ‖2) are:

k∗(a,b) = A−1(a,b)e(a,b), (21)

and the square of the minimal design error is:

min
k

‖ d(a,b) ‖2
2=‖ d∗(a,b) ‖2

2= c(a,b) − e(a,b)T A−1(a,b)e(a,b). (22)
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The assumption of positive definiteness for A(a,b) will be discussed in Section 4. However, a necessary condition for A(a,b)
to be positive definite is that it is non-singular. This justifies a posteriori why we use the dial zeros. In this case, as in Section 2,
the design error minimisation problem is solved in two steps:

1. determine the dial zeros to minimise the condition number j(a,b) of A(a,b);
2. determine the corresponding optimal Freudenstein parameters using Eq. (21).

Intuitively, the continuous approximate approach should correspond to the limit of the discrete approximate approach. This
is proven to be so in the next section.

4. The design error of the discrete approximate approach is lower bounded by that of the continuous
approximate approach

In this section, we assume that Dvpres(Dx) is a continuously differentiable function, however Propositions 1, 2, and 3, which
follow, only require continuity. With this assumption and using the notation introduced in the previous sections, the following
propositions hold.

Proposition 1. A(a,b) is positive semidefinite, and

lim
m→∞ jm(a,b) = j(a,b).

Proposition 2. If A(a,b) possesses full rank, then,

lim
m→∞ k∗

m(a,b) = k∗(a,b).

Recall that k∗(a,b) minimises the design error under the condition that A(a,b) is positive definite. Now, from Proposition 1,
we can claim that A(a,b) is at least positive semidefinite. However, the positive definitiveness is not guaranteed and it justifies
the need for the assumption in Proposition 2.

Proposition 3. If A(a,b) possesses full rank, then,

lim
m→∞

Dxf − Dx0

m
‖ d∗

m(a,b)‖2 =‖ d∗(a,b)‖2.

Proposition 4. Let (a*,b*) be the dial zero pair that minimises j(a,b). If the optimal solution (a∗,b∗) is unique, then,

lim
m→∞(a∗

m,b∗
m) = (a∗,b∗).

Proposition 5. If the optimal solution (a∗,b∗) is unique, then,

lim
m→∞ jm(am,bm) = j(a∗,b∗).

Moreover, if A(a∗,b∗) possesses full rank, then,

lim
m→∞ k∗

m(am,bm) = k∗(a∗,b∗),

and

lim
m→∞

Dxf − Dx0

m
‖ d∗

m(am,bm)‖2 =‖ d∗(a∗,b∗)‖2.

Proposition 5 is our main result. It essentially states that the optimal Freudenstein parameters and the minimal design error
for the discrete approach converge to the optimal Freudenstein parameters and the minimal design error for the continuous
approach.
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4.1. Proofs

Proof of Proposition 1. the proof of Proposition 1 requires the following result.

Proposition 6. Let f be a continuous function on some interval[a, b], then [4]

lim
n→+∞

n−1∑
i=0

b − a
n

f (a + i
b − a

n
) =

∫ b

a
f (x)dx.

From Proposition 6, the elements of Am(a,b) =
Dxf −Dx0

m ST
m(a,b)Sm(a,b) converge to the elements of A(a,b).

Recall the definitions for positive definiteness and positive semidefiniteness: a real n × n matrix A is positive definite if, for
all vectors x ∈ R, xTAx > 0, and positive semidefinite if, for all vectors x ∈ R, xTAx ≥ 0. Now, from the definitions of the elements
aij of A(a,b) we have

A(a,b) =
∫ Dxf

Dx0

BdDx, (23)

where B is a symmetric 3 × 3 matrix:

B =

⎡
⎣ 1 cos(b + Dv) − cos(a + Dx)

cos(b + Dv) cos2(b + Dv) − cos(b + Dv) cos(a + Dx)
− cos(a + Dx) − cos(b + Dv) cos(a + Dx) cos2(a + Dx)

⎤
⎦ . (24)

Matrix B has the special property that it is the vector product of vector v and its transpose, where

v =

⎡
⎢⎢⎣

1
cos(b + Dv)

− cos(a + Dx)

⎤
⎥⎥⎦ , (25)

such that

vvT = B. (26)

Then, for each vector x = [x1, x2, x3]T in R
3 the function

f (x,Dx) = xT Bx

has only non-negative values, as

f (x,Dx) = xT Bx = xT (vvT )x = (xT v)2 ≥ 0.

From this result, it necessarily follows that

xT Ax = xT

(∫ Dxf

Dx0

BdDx

)
x =

∫ Dxf

Dx0

(xT Bx)dDx =
∫ Dxf

Dx0

f (x,Dx)dDx ≥ 0,

which completes the proof. Now, given an arbitrary function, the function-generator designer need only check that the
eigenvalues of the matrix A defined by the given function are all greater than zero.

Proof of Proposition 2. the proof of Proposition 2 requires the following proposition.

Proposition 7. If a sequence of matrices Mn converges to a matrix M and M is invertible then, M−1
n converges to M−1 [15].

From Proposition 1, Am(a,b) converges towards A(a,b). A(a,b) possesses full rank by hypothesis, then there must be some
index m0 such that ∀m ≥ m0 and Am(a,b) possesses full rank. Hence, ∀m ≥ m0Sm(a,b) possesses full rank and the pseudo-
inverse S+

m (a,b) is:

S+
m (a,b) = (ST

m(a,b)Sm(a,b))−1ST
m(a,b) =

Dxf − Dx0

m
A−1

m (a,b)ST
m(a,b). (27)
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Eq. (10) then becomes:

k∗
m(a,b) = A−1

m (a,b)
(
Dxf − Dx0

m
ST

m(a,b)bm(a,b))
)

. (28)

From Proposition 6,
(
Dxf −Dx0

m ST
m(a,b)bm(a,b)

)
converges to e(a,b). From Proposition 7, A−1

m (a,b) converges towards

A−1(a,b), hence k∗
m(a,b) converges towards A−1(a,b)e(a,b) which is equal to k∗(a,b) in Eq. (21). This completes the proof.

Proof of Proposition 3. Eq. (11) can be rewritten:

‖ d∗
m(a,b) ‖2

2= bT
m(a,b)bm(a,b) −

(
ST

m(a,b)bm(a,b)
)T

k∗
m(a,b). (29)

Multiply Eq. (29) by
Dxf −Dx0

m . From Proposition 6,
(
Dxf −Dx0

m ST
m(a,b)bm(a,b)

)
converges to e(a,b) and(

Dxf −Dx0
m bT

m(a,b)bm(a,b)
)

converges to c(a,b). From Proposition 2, k∗
m(a,b) converges towards k∗(a,b). This completes the

proof.

Proof of Proposition 4. the proof of Proposition 4 requires the following proposition:

Proposition 8. Letfbe a function continuously differentiable on[a, b], then [16]

∣∣∣∣∣
∫ b

a
f (x)dx − lim

n→+∞

n−1∑
i=0

b − a
n

f (a + i
b − a

n
)

∣∣∣∣∣ ≤ (b − a) max{f ′(x), x ∈ [a, b]}
n

.

The dial zeros are members of a compact set defined by the Cartesian product K = [−p,p] × [−p,p]. Hence, the maximum
of the first derivative of any entry of Am(a,b) is bounded uniformly relative to (a,b). From Proposition 8, it follows that the
elements of Am(a,b) converge uniformly relative to (a,b) towards the elements of A(a,b).

The sequence (a∗
m,b∗

m) belongs to K. Hence, there exists a subsequent (a∗
v(m),b

∗
v(m)) which converges to some (a∗

v,b∗
v). From

the uniform convergence of Am(a,b), it follows that the elements of Av(m)(a∗
v(m),b

∗
v(m)) converge towards the elements of

A(a∗
v,b∗

v). Following the same arguments used in the proof of Proposition 1, we get:

lim
m→∞ jv(m)(a∗

v(m),b
∗
v(m)) = j(a∗

v,b∗
v), (30)

or (a∗
v(m),b

∗
v(m)) minimises the condition number of Av(m)(a,b), hence:

∀(a,b) ∈ K, jv(m)(a∗
v(m),b

∗
v(m)) ≤ jv(m)(a,b).

From Eq. (30) and Proposition 1, taking the limit on both sides of this inequality gives:

∀(a,b) ∈ K, j(a∗
v,b∗

v) ≤ j(a,b).

Hence, (a∗
v,b∗

v) minimises the condition number of A(a,b). In other words, each convergent (a∗
m,b∗

m) converges to a mini-
mum of the condition number of A(a,b). By hypothesis, this minimum is unique. Hence, ∀v, (a∗

v,b∗
v) = (a∗,b∗) and the whole

sequence (a∗
m,b∗

m) converges to (a∗,b∗). This completes the proof.

Proof of Proposition 5. the first statement of Proposition 5 has been proved in the proof of Proposition 4, see Eq. (30). From the
uniform convergence arising from Proposition 8 the convergence in Proposition 2 and Proposition 3 is in fact uniform. The last
two statements of Proposition 5 follow. To be completely rigorous, Proposition 7 should be modified to uniform convergence,
but doing so introduces no contradictions.

5. Example

The preceding results for continuous approximate synthesis that minimises the design error are now illustrated with an
example. Let the prescribed function be the Ackerman steering condition for terrestrial vehicles. The steering condition can be
expressed as a trigonometric function whose variables are illustrated in Fig. 2:

sin(Dvpres − Dx) − q sin(Dx) sin(Dvpres) = 0, (31)
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Fig. 2. Graphical illustration of the Ackerman steering condition.

with q denoting the length ratio b/a, where a is the distance between front and rear axles, and b the distance between the pivots
of the wheel-carriers, which are coupled to the chassis. With the dial zeros, the expression for the steering condition becomes:

sin(b + Dvpres − a − Dx) − q sin(a + Dx) sin(b + Dvpres) = 0. (32)

For our example, q = 0.5 and [Dx0,Dxf] = [−40.00, 30.00], where angles are specified in degrees. With these values, the
prescribed function, i.e. the steering condition, is continuously differentiable. Hence, Proposition 5 must apply.

5.1. Establishing the optimal dial zeros and Freudenstein parameters

The multi-dimensional Nelder–Mead downhill simplex algorithm [17] is employed to find the optimal values for the dial
zeros. Table 1 lists (a∗

m,b∗
m) for different values of m, as well as (a∗,b∗). From the optimal dial zeros obtained in Table 1, it is now

possible to compute the optimal Freudenstein parameters. Table 2 lists the optimised Freudenstein parameters, ki, synthesis
matrix condition numbers jm, and design error norms which have been normalised by dividing by

√
m for comparison for

different values of m as well as the values using the continuous approach.
Continuous approximate synthesis eliminates the problem of determining an appropriate cardinal number for the data-set

because it evaluates the case for m → ∞. Hence there is no need to search for some convergence in order to set the proper
value of m, which eliminates a source of error. However, the continuous approach requires numerical integrations, which itself
is a source of error. These errors are in fact of the same nature. Indeed, from the development of Section 4, it is clear that
discrete approximate synthesis is essentially a numerical integration method itself: Romberg’s method for example, which is
an extrapolation on the trapezoidal rule [4]. Hence, comparing the errors arising from the discrete approximate synthesis with
continuous approximate synthesis is equivalent to comparing the error terms of two different numerical integration methods.
The example presented above employed the Matlab function quadl, which employs recursive adaptive Lobatto quadrature [18].

Table 1
Optimal dial zeros.

m a∗
m b∗

m a∗ b∗

10 −61.80 67.320 – –
40 −62.17 68.73 – –
100 −62.23 69.03 – –
400 −62.26 69.17 – –
1000 −62.27 69.20 – –
∞ – – −62.27 69.22
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Table 2
Optimised Freudenstein parameters, condition numbers, and normalised design errors.

m k1 k2 k3 jm j∗ ‖ dm ‖2 ‖ d∗ ‖2

10 −0.993 0.412 −0.429 18.24 – 6.93 × 10−4 –
40 −1.001 0.406 −0.425 20.79 – 6.44 × 10−4 –
100 −1.003 0.405 −0.424 21.38 – 6.31 × 10−4 –
400 −1.003 0.404 −0.424 21.69 – 6.24 × 10−4 –
1000 −1.004 0.404 −0.424 21.75 – 6.23 × 10−4 –
∞ −1.004 0.404 −0.424 – 475.03 – 6.23 × 10−4

6. Conclusions and future work

In this paper a proof has been given that the design error of planar RRRR function-generating linkages synthesised using
over-constrained systems of equations established with discrete I/O data sets is bounded by a minimum value established
using continuous approximate synthesis between minimum and maximum I/O values. Evaluating the design error over the
entire continuous range of the function requires the use of a functional normed space, thereby changing the discrete approxi-
mate synthesis problem to a continuous approximate synthesis problem. Assuming that the prescribed function Dvpres(Dx) is
continuously differentiable, it is shown that the dial zeros, the optimal Freudenstein parameters, and the minimal design
error for discrete approximate synthesis converge towards the dial zeros, the optimal Freudenstein parameters and the mini-
mal design error for continuous approximate synthesis. In other words, the continuous approach corresponds to the discrete
approach after setting the cardinality of the I/O set to m → ∞, and represents the bounding optimal values.

The extension of this work is to investigate how the structural error as defined in Ref. [2] bounds the design error. First,
it should be determined whether the structural error minimisation problem can be formulated and, more importantly solved,
using the continuous approach. Second, it should be investigated whether in this case too, the continuous approach corresponds
to the discrete approach with m → ∞. This is certainly much more challenging due to the increased complexity of the continu-
ous structural error minimisation problem, which is a non-linear problem with equality constraints, compared to the continuous
design error minimisation problem, which is a quadratic problem without any constraints. Finally, one might ask whether our
developments could be applied to other mechanism topologies, such as planar mechanisms possessing prismatic joints, as well
as spherical, or spatial linkages.
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ABSTRACT
Planar kinematic mapping is applied to the five-position

Burmester problem for planar four-bar mechanism synthesis.
The problem formulation takes the five distinct rigid body poses
directly as inputs to generate five quadratic constraint equations.
The five poses are on the fourth order curve of intersection of up
to four hyperboloids of one sheet in the image space. Moreover,
the five poses uniquely specify these two hyperboloids. So, given
five positions of any reference point on the coupler and five corre-
sponding orientations, we get the fixed revolute centres, the link
lengths, crank angles, and the locations of the coupler attachment
points by solving a system of five quadratics in five variables that
always factor in such a way as to give two pairs of solutions for
the five variables (when they exist).

1 Introduction
The determination of a planar four-bar mechanism that can

guide a rigid-body through five finitely separatedposes(position
and orientation) is known as thefive-position Burmester prob-
lem, see Burmester (1888). It may be stated as follows. Given
five positions of a point on a moving rigid body and the corre-
sponding five orientations of some line on that body, design a
four-bar mechanism whose coupler crank pins are located on the
moving body and is assemblable upon these five poses. The cou-
pler must assume the five required poses, however sometimes not

∗Address all correspondence to this author.

all five may lie in the same assembly branch.

The problem formulation engenders as many variables as
equations so the synthesis is exact. However, most approaches to
synthesizing a mechanism that can guide the rigid body exactly
through the five positions are rooted in the Euclidean geometry
of the plane in which the rigid body must move. From time to
time this problem has been revisited (Chang,et al, 1991). Read-
ers are refered to this document which contains a recent solution
method and a quite adequate and relevant bibliography. More
recently, classical finite position synthesis has been reviewed by
McCarthy (2000).

We propose a solution obtained in a three-dimensional pro-
jective image space of the rigid body motion. An algebraic ap-
proach to this exact problem based on quaternions is to be found
in Murray and McCarthy (1996). Instead, we use planar kine-
matic mapping. The planar kinematic mapping was introduced
independently by Blaschke and Grünwald in 1911 (Blaschke,
1911; Gr̈unwald, 1911). But, their writings are difficult. In North
America Roth, De Sa, Ravani (De Sa and Roth, 1981; Ravani and
Roth, 1983), as well as others, have made contributions. How-
ever, we choose to build upon interpretations by Husty (1995,
1996), who used the accessible language of Bottema and Roth
(1990).

Kinematic synthesis of four-bar mechanisms using kine-
matic mapping was discussed in Bottema and Roth (1990), origi-
nally published in 1979, and expanded upon in great detail by Ra-
vani (1982), and Ravani and Roth (1983). In this early work, Ra-
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Figure 1. A FOUR-BAR LINKAGE.

vani and Roth developed the framework for performingapprox-
imatedimensional synthesis. Whileexactdimensional synthesis
for the Burmester problem may have been implied, it has never,
to our knowledge, been implemented. Results are so elegantly
obtained in the kinematic mapping image space that we are com-
pelled to expose the methodology and procedure by which these
are produced.

In this image space, the kinematic constraint implied by the
motion of a point bound to move upon a circle of fixed centre and
radius maps to a hyperboloid of one sheet. Thus, the motion of
the coupler of a planar four-bar mechanism connected with four
revolute (R) pairs can be characterized by the fourth order curve
of intersection of two distinct hyperboloids of one sheet in the
image space.

When the kinematic constraint dictates a point moving on
a line with fixed line coordinates, as with a prismatic (P) pair,
the constraint surface is a hyperbolic paraboloid. Hyperboloids
of one sheet and hyperbolic paraboloids are the only types of
constraint surfaces associated with planar mechanisms contain-
ing only lower pair joints (Hayes and Husty, 2001). Here, we as-
sume solutions of the five-position Burmester problem confined
to four-bar mechanisms jointed with four R-pairs, not slider-
cranks. Thus only image space hyperboloids of one sheet will
apply.

2 Planar Kinematic Mapping
One can consider the relative displacement of two rigid-

bodies in the plane as the displacement of a Cartesian reference
coordinate frameEE attached to one of the bodies with respect to
a Cartesian reference coordinate frameFF attached to the other.
Without loss of generality,FF may be considered as fixed while
EE is free to move, as is the case with the four-bar mechanism
illustrated by Figure 1. Then the position of a point inEE in

terms of the basis ofFF can be expressed compactly as

p′ = Rp+d, (1)

where,p is the2×1 position vector of a point inEE, p′ is the
position vector of the same point inFF , d is the position vector
of the origin of frameEE in FF , andR is a2×2 proper orthog-
onal rotation matrix (i.e., its determinant is+1) defined by the
orientation ofEE in FF indicated byφ.

Equation (1) can always be represented as a linear transfor-
mation by making ithomogeneous(see McCarthy (1990), for ex-
ample). Let the homogeneous coordinates of points in the fixed
frameFF be the ratios[X : Y : Z], and those of points in the mov-
ing frameEE be the ratios[x : y : z]. Then Equation (1) can be
rewritten as




X
Y
Z


 =




cosφ −sinφ a
sinφ cosφ b

0 0 1







x
y
z


 . (2)

Equation (2) clearly reflects the fact that a general displacement
in the plane is fully characterized by three parameters, in this
casea, b, andφ.

2.1 Image Space Coordinates and Pole Position
The essential idea of the kinematic mapping introduced by

Blashke (1911) and Grünwald (1911)is to map the three homoge-
neous coordinates of the pole of a planar displacement, in terms
of (a,b,φ), to the points of a three dimensional projective image
space.

The pole,P, of a planar displacement may be described in
the following way. Any planar displacement that is a combina-
tion of translation and rotation may be represented by a single
rotation through a finite angle about a unique fixed axis normal
to the plane. Even a pure translation can be considered a rotation
through an infinitesimal angle about a point at infinity on a line
perpendicular to the direction of the translation. The coordinates
of the piercing point of this axis with the plane of the displace-
ment describe the pole,P. If EE andFF are initially coincident,
then the coordinates ofP are invariant under the its related dis-
placement. That is,P has the same coordinates in bothEE and
FF . This is illustrated in Figure 2.

By using the dehomogenized form of Equation (2) one may
immediately write, after settingXP = xP andYP = yP and solving
the resulting two simultaneous equations

xP =
a
2
− bsinφ

2(1−cosφ)
; yP =

asinφ
2(1−cosφ)

+
b
2
.

The value of the homogenizing coordinate is arbitrary and may,
without loss of generality, be set toz= 2sinφ/2. This means that
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Figure 2. POLE POSITION.

both xP andyP must also be multiplied by this value. Then the
double angle relationships

sin2φ = 2sinφcosφ; cos2φ = cos2 φ−sin2 φ

can be used to obtain the following homogeneous coordinates of
the pole:

XP = xP = asin(φ/2)−bcos(φ/2)
YP = yP = acos(φ/2)+bsin(φ/2)
ZP = zP = 2sin(φ/2) (3)

The kinematic mapping image coordinates are defined, with
respect to the poleP as follows.

X1 = asin(φ/2)−bcos(φ/2)

X2 = acos(φ/2)+bsin(φ/2)

X3 = 2sin(φ/2)

X4 = 2cos(φ/2). (4)

Since each distinct displacement described by(a,b,φ) has
a corresponding unique image point, the inverse mapping can be
obtained from Equation (4): for a given point of the image space,
the displacement parameters are

tan(φ/2) = X3/X4,

a = 2(X1X3 +X2X4)/(X2
3 +X2

4 ),
b = 2(X2X3−X1X4)/(X2

3 +X2
4 ). (5)

Equations (5) give correct results when eitherX3 or X4 is zero.
Caution is in order, however, because the mapping is injective,

not bijective: there is at most one pre-image for each image
point. Thus, not every point in the image space represents a dis-
placement. It is easy to see that any image point on the real line
X3 = X4 = 0 has no pre-image and therefore does not correspond
to a real displacement ofEE. From Equation (5), this condition
rendersφ indeterminate and placesa andb on the line at infinity.

Armed with Equations (4) and (5) any displacement in terms
of X1,X2,X3,X4 can be conveniently converted to the displace-
ment ofEE in terms ofFF .

2.2 Representing Planar Displacements in Terms of
Image Space Coordinates

By virtue of the relationships expressed in Equation (4), the
transformation matrix from Equation (2) may be expressed in
terms of the homogeneous coordinates of the image space. This
yields a linear transformation to express a displacement ofEE
with respect toFF in terms of the image point:

λ




X
Y
Z


 =




X2
4 −X2

3 −2X3X4 2(X1X3 +X2X4)
2X3X4 X2

4 −X2
3 2(X2X3−X1X4)

0 0 X2
3 +X2

4







x
y
z


 , (6)

whereλ is a proportionality constant arising from the use of ho-
mogeneous coordinates. The inverse transformation can be ob-
tained with the inverse of the3× 3 matrix in Equation (6) as
follows.

µ




x
y
z


 =




X2
4 −X2

3 2X3X4 2(X1X3−X2X4)
−2X3X4 X2

4 −X2
3 2(X2X3 +X1X4)

0 0 X2
3 +X2

4







X
Y
Z


 , (7)

with µ being another proportionality constant. The product of
these matrices is homogeneously proportional to a unit matrix:




(X2
3 +X2

4 )2 0 0
0 (X2

3 +X2
4 )2 0

0 0 (X2
3 +X2

4 )2


 .

Clearly, by construction in Equation (4),X2
3 +X2

4 ≡ 2.

2.3 Planar Constraint Equations
Consider the case of an R-R joint dyad. A point onEE

moves on a circle onFF , whose homogeneous equation may
be expressed by:

C0(X2 +Y2)+2C1XZ+2C2YZ+C3Z2 = 0. (8)
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Figure 3. A HYPERBOLOID OF ONE SHEET.

In Equation (8)C0 = k, an arbitrary constant, whileC1 =
−Xm, C2 = −Ym, the circle centre coordinates, andC3 = X2

m +
Y2

m− r2 with r being the circle radius.

Expanding Equation (6) and substituting the expressions for
X, Y, andZ into Equation (8) produces a hyperboloid of one
sheet in the image space, see Figure 3. The hyperboloid takes
the form:

C0z2(X2
1 +X2

2 )+(−C0x+C1z)zX1X3

+(−C0y+C2z)zX2X3 +(−C0y−C2z)zX1X4

+(C0x+C1z)zX2X4 +(−C1y+C2x)zX3X4

+
1
4
[C0(x2 +y2)−2C1xz−2C2yz+C3z2]X2

3

+
1
4
[C0(x2 +y2)+2C1xz+2C2yz+C3z2]X2

4 = 0. (9)

Recall that the coordinates of a point in the moving frame
EE are(x : y : z). The hyperboloid is specified when a reference
point (x : y : z) is given together with the circle coordinates(C0 :
C1 : C2 : C3). The points(X1 : X2 : X3 : X4) represent all possible
displacements ofEE relative toFF under the constraint that one
point inFF moves on a circle inEE.

We can generalize the constraint hyperboloid by considering
the kinematic inversion: a point onFF bound to move on a circle
in EE. We thus expand Equation (5) and substitute the expres-
sions forx, y, andz into Equation (8) and make the following
simplifications. For the given circular constraint it is clear that
C0 = 1. We may also setz = X4 = 1. The general constraint
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Figure 4. A HYPERBOLIC PARABOLOID.

hyperboloid then becomes

(X2
1 +X2

2 )+(C1−x)X1X3 +(C2−y)X2X3

∓(C2 +y)X1± (C1 +x)X2± (C2x−C1y)X3

+
1
4
[(x2 +y2)−2C1x−2C2y+C3]X2

3

+
1
4
[(x2 +y2)+2C1x+2C2y+C3] = 0. (10)

When(x,y) are the coordinates of the moving point expressed in
EE with z= 1 theuppersigns apply. If the constraint is intended
to express the inverse, a point onFF bound to a circle inEE,
then thelower signs applyandx, y or z is substituted wherever
X, Y or Z appears. The situation of a circle moving on a point is
never required in problem formulation.

However if a point is bound to a line,i.e., in the case of a
prismatic joint, and if one desires to treat inversions, the line may
be either onFF or EE. Equation (10) reduces to Equation (11) if
a point is bound to a line andC0 = 0. This produces a hyperbolic
paraboloid in the image space, see Figure 4:

C1X1X3 +C2X2X3∓C2X1±C1X2± (C2x−C1y)X3

−1
4
[2C1x+2C2y−C3]X2

3 +
1
4
[2C1x+2C2y+C3] = 0. (11)

The above constraint surfaces completely describe the dis-
placements of all possible planar dyads constructed with lower
pairs.

3 The Five-Position Burmester Problem
The goal of the dimensional synthesis problem for rigid

body guidance of a 4R planar mechanism is to find themoving

4 Copyright  2002 by ASME



circle points, M1 andM2 of the coupler, i.e., the revolute cen-
tres that move on fixed centred, fixed radii circles as a reference
coordinate system,EE, attached to the coupler, passes through
the desired poses. Thefixed centre pointsfor each circle are the
fixed, or grounded revolute centres,F1 andF2, respectively. The
circle and centre points are illustrated with the four-bar mech-
anism shown in Figure 1. For these constraints, the synthesis
equations are determined using Equation (10).

What we set out to do here is to use the methods of planar
kinematic mapping outlined in (Zsombor-Murray,et al, 2002)
and set up five simultaneous constraint equations, each of which
represents the image space constraint surface for a rigid body
moving freely in the plane except that one point is bound to the
circumference of a fixed circle. These equations are expressed in
terms of the following eight variables.

i. X1, X2, X3, X4 = 1, the dehomogenized coordinates of the
coupler pose in the image space.

ii. C1, C2, C3, the coefficients of a circle equation (C0 = 1).
iii. x, y, z= 1,the coordinates of the moving crank-pin revolute

centre, on the coupler, which moves on a circle.

SinceX1, X2, X3 are given for five desired coupler poses, one
may in principle solve for the remaining five variables (C1, C2,
C3, x, y) . The geometric interpretation is, five given points in
space are common to, at most, four hyperboloids on one sheet.
Each hyperboloid represents a 2R dyad. If two real solutions oc-
cur then all 4R mechanism design information is available (there
are two circles in a feasible mechanism design result):

i. Circle centre is atXm =−C1, Ym =−C2.
ii. Circle radius is given byr2 = C3− (X2

m+Y2
m).

iii. Coupler length is given byL2 = (x2−x1)2 +(y2−y1)2.

4 Analysis
4.1 Converting Pose to Image Space Coordinates

Examine Equations (4) and divide byX4.

X1 =

(
atanφ

2−b)
)

2
, X2 =

(
a+btanφ

2

)

2
, X3 = tan

φ
2
, X4 = 1.

The five given poses being specified as(ai ,bi ,φi), i ∈ {1, ...,5},
the planar coordinates of the moving point and the orientation
of a line on the moving rigid body, all with respect to(0,0,0◦)
expressed inFF . Note that the location of the origin ofFF is
arbitrary, it is only shown on the fixed revolute centre in Figure 1
for convenience.

4.2 Crank Angles
If the desired five poses can be realized with a planar

4R four-bar mechanism, then at least two real solutions in

Figure 5. GENERATING THE FIVE DESIRED POSES.

(C1, C2, C3, x, y) will be obtained, defining two 2R dyads shar-
ing the coupler. To construct the mechanism in its five configu-
rations the crank angles must be determined. To obtain the crank
angles one just takes(x1,y1) and(x2,y2) and performs the linear
transformation, expressed in image space coordinates, five times.




X
Y
1


 =




1−X2
3 −2X3 2(X1X3 +X2)

2X3 1−X2
3 2(X2X3−X1)

0 0 1+X2
3







x
y
1


 .

(X,Y) come in five pairs because five poses are specified.
These are the Cartesian coordinates of the moving revolute cen-
tres expressed inFF , and implicitly define the crank angles. For
a practical design one must check that the solution did not sepa-
rate crank pin coordinates in unconnected mechanism branches.

4.3 Pose Constraint Equation
Given the constraints imposed by four revolute joints, the

pose constraint equation (synthesis equation) is given by Equa-
tion (10) with the upper signs used. For each of the five poses we
obtain:

(X2
1 +X2

2 )+(C1−x)X1X3 +(C2−y)X2X3

−(C2 +y)X1 +(C1 +x)X2 +(C2x−C1y)X3

+1
4[(x2 +y2)−2C1x−2C2y+C3]X2

3
+1

4[(x2 +y2)+2C1x+2C2y+C3] = 0.

(12)
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Figure 6. THE FIVE DESIRED POSES.

5 Example and Verification
The kinematic mapping solution to the five-position

Burmester problem is illustrated with the following example
problem. In order to verify our synthesis results, we started with
Figure 5, wherein one sees a four-bar mechanism design repre-
sented by dotted crank pin circles and a couplerCD which has
been placed in five feasible poses. Then an arbitrary pointA and
orientation lineAB were specified. These were used to specify
the given five poses, listed in Table 2. The fixed revolute centres
and link lengths of the four-bar mechanism used to generate the
poses, which we can check for verification, are listed in Table 1,
all coordinates given relative toFF . The coordinate information
obtained from these were inserted into the five synthesis equa-
tions. The results at the end constitute obvious confirmation con-
cerning the effectiveness of the kinematic mapping approach to
solving the Burmester problem.

Given the Cartesian coordinates of five positions of a refer-
ence point on a rigid body, together with five orientations of the
rigid body which correspond to the positions, all relative to an
arbitrary fixed reference frame,FF . The reference point is the
origin of a coordinate system,A, attached to the rigid body. In
Figure 6 the five poses are indicated by the position ofA and the
orientation of a line in the directionxA axis. The coordinates and
orientations are listed in Table 2.

The given five poses are mapped to five sets of coordinates in
the image space. Using a computer algebra software package, we
substitute the corresponding values forX1, X2, X3, together with
X4 = 1 into Equation (12) yields the following five quadratics in

Parameter Value

F1 (-8,0)

F2 (8,0)

F1F2 16

F1C 8

CD 10

DF2 14

Table 1. THE GENERATING MECHANISM

ith Pose,Ai a b ϕ (deg)

1 -3.339 1.360 150.94

2 -2.975 7.063 114.94

3 -3.405 9.102 100.22

4 -7.435 11.561 74.07

5 -9.171 11.219 68.65

Table 2. FIVE RIGID BODY POSES IN FF .

C1, C2, C3, x, andy:

51.62713350−26.52347891C1 +28.43187273x

+3.439909575y+10.80321393C2 +3.971769828y2

+3.971769828x2−6.943539655C1x+3.971769828C3−
6.943539655C2y−3.858377808C1y+3.858377808C2x = 0 (13)

50.78111719−5.144112496C1 +13.24300208x

−.485305000y+12.21272826C2 + .8645567222y2

+.8645567222x2− .7291134440C1x+ .8645567222C3

−.7291134440C2y−1.567873365C1y+1.567873365C2x = 0 (14)

57.40558942−4.139456673C1 +11.62418825x

+2.110482435y+11.06529652C2 + .6078497318y2

+.6078497318x2− .2156994635C1x+ .6078497318C3

−.2156994635C2y−1.196410852C1y+1.196410852C2x = 0 (15)

74.12376162−5.833830775C1 +7.121746695x

+8.099525062y+9.071273378C2 + .3923221773y2

+.3923221773x2 + .2153556452C1x+ .3923221773C3

+.2153556452C2y− .7545122328C1y+ .7545122328C2x = (16)

76.96602922−6.723290851C1 +5.212549019x

+9.256210937y+8.224686519C2 + .3665516768y2

+.3665516768x2 + .2668966465C1x+ .3665516768C3

+.2668966465C2y− .6827933120C1y+ .6827933120C2x = 0 (17)

6 Copyright  2002 by ASME



Solving the system of Equations (13)-(17) yields four sets of
values forC1, C2, C3, x, andy, two being real, and the remaining
two being complex conjugates. The two real sets of hyperboloid
coefficients are listed in Table 3. The corresponding synthesized
four-bar fixed revolute centres and link lengths are listed in Ta-
ble 4, rounded to same three decimal places as the graphically
determined generating mechanism listed in Table 1.

Coefficient Solution 1 Solution 2

C1 -7.983138944 7.997107716

C2 -.027859304 -.000953257

C3 -131.4773813 -.022545268

x 2.932070052 -3.579426217

y -8.023883728 -.435620093

Table 3. THE HYPEBOLOID COEFFICIENTS

Parameter Value

F1 (-7.997,0.001)

F2 (7.983,-0.023)

F1F2 15.980

F1C 7.999

CD 10.003

DF2 13.972

Table 4. THE SYNTHESIZED MECHANISM

While the synthesized mechanism link lengths and centre
coordinates are affected by the numerical resolution of the graph-
ical construction of the generating mechanism, we believe this
example demonstrates the utility of kinematic mapping to solv-
ing the five-position Burmester problem.

6 Computational Pathology
Notice that feasible slider-crank solutions were implicitly

excluded by choosing to setC0 = z = 1 rather than, say,C2 =
y = 1. This is similar to excluding half-turnEE orientations by
settingX4 = 1 rather than, say,X3 = 1. It is recommended that

algorithmic implementation should retainX4 = 2cos(φ/2) and
contain features to replaceC0 = 1 with C1,C2 orC3 = 1 andz= 1
with x or y = 1 should results wherex→ y→ ∞ with C0 = z= 1
occur.

7 Conclusions
We have used kinematic mapping to solve the five position

planar Burmester problem. Five rigid body poses are mapped
to points in a three dimensional projective image space and are
used directly as inputs to generate five quadratic constraint sur-
face equations in that space. The solutions, when they exist,
give the coefficients of the hyperboloids having the five points
in common. Each hyperboloid yields a fixed revolute centre,
link lengths, crank angles, and coupler attachment points. This
method is elegant in that the design task for any composition of
R and P joints (open RR, PR, and RP chains) can be treated with
a single formulation with no special cases.
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M. John D. Hayes∗ S. Radacina Rusu†

Mechanical and Aerospace Engineering,
Carleton University,
Ottawa, ON., Canada

Abstract— An approximate synthesis method is pre-
sented that takes a given set of n desired poses of the cou-
pler of a four-bar planar mechanism and finds the “best”
mechanism that can achieve them. This is accomplished by
solving an equivalent unconstrained non-linear minimiza-
tion problem. The hyperboloids of one sheet or hyperbolic
paraboloids that minimize the distance between the given
n poses in the kinematic mapping image space and n cor-
responding points that belong to the quadric surfaces, rep-
resent the “best” mechanism that can achieve the desired
poses. The procedure is tested successfully on an RRRR
mechanism.

Keywords: kinematic mapping; quadric surface fitting; approxi-
mate dimensional synthesis.

I. Introduction

Kinematic synthesis of planar four-bar mechanisms for
rigid body guidance was first proposed by Burmester [1].
Burmester theory states that five finitely separated poses
(positions and orientations) of a rigid body define a pla-
nar four-bar mechanism that can guide a rigid body exactly
through those five poses. Burmester showed that the prob-
lem leads to at most four dyads that, when paired, determine
at most six different four-bar mechanisms that can guide the
rigid body exactly through the poses.

Although the solution to the five-pose Burmester prob-
lem yields mechanisms that have no deviation from the pre-
scribed poses, a major disadvantage is that only five posi-
tions and associated orientations may be prescribed. The
designer has no control over how the mechanism behaves
for any intermediate pose. This can be a difficult challenge
in confined and crowded operating spaces. To gain a mea-
sure of control over the intermediate poses it is necessary
to have a means by which to synthesize a mechanism that
guides a rigid body through n prescribed poses, with n > 5.
In general, an exact solution does not exist to this problem.
The problem is known as approximate synthesis, where the
mechanism determined to be the solution will guide a rigid-
body through the prescribed poses with the smallest error,
typically in a least-squares sense. The approximate solu-
tion will be unique up to the error minimization criteria.
The literature is rich with a large variety of numerical ap-
proaches to pure approximate kinematic synthesis of this

∗jhayes@mae.carleton.ca
†srrusu@connect.carleton.ca

type, see [2], [3], [4], [5] for example.
A possibly much more intuitive approach is to build the

approximation algorithm in the kinematic mapping image
space introduced simultaneously, but independently in 1911
in [6] and [7]. In this paper, a novel approach to approxi-
mate kinematic synthesis for rigid body guidance is pre-
sented that uses the geometry of the image space to fit a set
of points, representing desired positions and orientations,
to quadric surfaces representing mechanism dyads. It is
important to note that the optimization considers only kine-
matics. Dynamics and static force issues such as transmis-
sion angle and mechanical advantage are not considered.
Such a restriction still applies to a vast array of planar four
bar mechanism applications [8]. A very detailed summary
of the geometry on the kinematic mapping image space can
be found in [9], but a brief description of properties ger-
mane to algorithm presented in this paper is presented be-
low.

II. Kinematic Mapping

One can consider the relative displacement of two rigid-
bodies in the plane as the displacement of a Cartesian ref-
erence coordinate frame E attached to one of the bodies
with respect to a Cartesian reference coordinate frame Σ
attached to the other. Without loss of generality, Σ may be
considered fixed with E free to move.

The homogeneous coordinates of points represented inE
are given by the ratios (x : y : z). Those of the same points
represented in Σ are given by the ratios (X : Y : Z). The
position of a point (X : Y : Z) in E in terms of the basis
of Σ can be expressed compactly as

 X
Y
Z

 =

 cosϕ − sinϕ a
sinϕ cosϕ b

0 0 1

 x
y
z

 , (1)

where the pair (a, b) are the (X/Z, Y/Z) Cartesian coordi-
nates of the origin of E expressed in Σ, and ϕ is the orien-
tation of E relative to Σ, respectively.

The essential idea of kinematic mapping is to map the
three homogeneous coordinates of the pole of a planar dis-
placement, in terms of (a, b, ϕ), to the points of a three di-
mensional projective image space. The image space coor-
dinates are defined as:

1
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X1 = a sin (ϕ/2)− b cos (ϕ/2); X3 = 2 sin (ϕ/2)

X2 = a cos (ϕ/2) + b sin (ϕ/2); X4 = 2 cos (ϕ/2). (2)

The mapping is injective, not bijective: there is at most
one pre-image for each image point. Any image point on
the real line l, defined by the intersection of the coordinate
planes X3 = X4 = 0, has no pre-image and therefore does
not correspond to a real displacement of E. See [9], for a
detailed analysis of the geometry of the image space.

To be practical, we can remove the one parameter fam-
ily of image points for coupler orientations of ϕ = π, and
normalize the image space coordinates by setting X4 =
1. Conceptually, this implies dividing the Xi by X4 =
2 cos (ϕ/2) giving

X1 =
1
2

(a tan (ϕ/2)− b) ; X3 = tan (ϕ/2)

X2 =
1
2

(a+ b tan (ϕ/2)) ; X4 = 1. (3)

Since each distinct displacement described by (a, b, ϕ)
has a corresponding unique image point, the inverse map-
ping can be obtained from Eqs. (3): for a given point of the
image space, the displacement parameters are

tan (ϕ/2) = X3,

a = 2(X1X3 +X2)/(X2
3 + 1),

b = 2(X2X3 −X1)/(X2
3 + 1). (4)

By virtue of the relationships expressed in Eqs. (3), the
transformation matrix from Eq. (1) may be expressed in
terms of the homogeneous coordinates of the image space.
After setting z = 1, which is done because no practical
coupler will have a point at infinity, one obtains a linear
transformation to express a displacement of E with respect
to Σ in terms of the coordinates of the image point:

[
X
Y
Z

]
=

[
1−X2

3 −2X3 2(X1X3 +X2)
2X3 1−X2

3 2(X2X3 −X1)
0 0 X2

3 + 1

][
x
y
1

]
.

(5)

A. Planar Constraint Equations

Corresponding to the kinematic constraints imposed by
RR- and PR-dyads are quadric constraint surfaces in the
image space. A general equation is obtained when (X : Y :
Z) from Eqs. (5) are substituted into the general equation
of a circle, the form of the most general constraint, [10]:

K0(X2 + Y 2) + 2K1XZ + 2K2Y Z +K3Z
2 = 0. (6)

The result is that the constraint surfaces corresponding to
RR, andPR-dyads can be represented by one equation (see
[10], for how to includeRP - and PP -dyads as well). After
re-arranging in terms of the constraint surface shape param-
eters K0, K1, K2, K3, x, and y, treating the image space
coordinates X1, X2, and X3 as constants yields Eq. (7).

[
1
4 (X2

3 + 1)x2 + (X2 −X1X3)x+ 1
4 (X2

3 + 1)y2−
(X1 +X2X3)y +X2

2 +X2
1

]
K0+[

1
2 (1−X2

3 )x−X3y +X1X3 +X2

]
K1+[

X3x+ 1
2 (1−X2

3 )y −X1 +X2X3

]
K2+

1
4 (X2

3 + 1)K3 = 0. (7)

For a particular dyad the associated [K0 : K1 : K2 : K3],
along with the design values of the coordinates of the cou-
pler attachment point (x, y), expressed in reference frame
E, are substituted into Eq. (7) revealing the image space
constraint surface for the given dyad. The Ki in Eqs. (6)
and (7) depend on the constraints imposed by the dyad.

For RR-dyads K0 = 1 and the surface is a hyperboloid
of one sheet, when projected into the hyperplane X4 = 1,
that intersects planes parallel to X3 = 0 in circles, [11].
The Ki are termed circular coefficients and are defined as:

[K0 : K1 : K2 : K3] = [1 : −Xc : −Yc : (K2
1 +K2

2 − r
2)], (8)

where the ungroundedR-pair in anRR-dyad is constrained
to move on a circle of constant radius, r, and fixed centre
coordinates in Σ, (Xc, Yc).

Linear constraints result when PR-dyads are employed.
In this case K0 = 0 and the constraint surface is an hy-
perbolic paraboloid, when projected into the hyperplane
X4 = 1, with one regulus ruled by skew lines that are all
parallel to the plane X3 = 0, [11]. The linear coefficients
are defined as

[K0 : K1 : K2 : K3] = [0 : 1
2L1 : 1

2L2 : L3], (9)

where the Li are line coordinates obtained by Grassmann
expansion of the determinant of any two distinct points on
the line, [12]. We obtain

[K0 : K1 : K2 : K3] =

[0 : − 1
2

sinϑΣ : 1
2

cosϑΣ : FX/Σ sinϑΣ − FY/Σ cosϑΣ] (10)

where ϑΣ is the angle the direction of translation makes
with respect to the X-axis, expressed in Σ, FX/Σ, FY/Σ,
represent the homogeneous coordinates (X : Y : 1), ex-
pressed in reference frame Σ, of a point on the line that is
fixed relative to Σ.

2
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III. Fitting Displacements (Image Space Points) to Con-
straint Surfaces

To use kinematic mapping for approximate synthesis re-
quires the best approximation, in a least squares sense, of
the constraint surface coefficients K0, K1, K2, K3, x, and
y given a suitably over constrained set of image space co-
ordinates X1, X2, X3, and X4 which represent the desired
set of positions and orientations of the coupler. The given
image space points are on some space curve. The points
on this curve must be projected onto the best fourth order
curve of intersection of two constraint surfaces correspond-
ing to two possible dyads from which a mechanism can be
constructed which possesses motion characteristics closest
to those specified. The solution to this problem is the solu-
tion to the approximate synthesis problem using kinematic
mapping for rigid body guidance.

We may begin the search for a solution by generating a
set of image space points that satisfy a known image space
constraint hyperboloid. If the cardinality of the set of points
is much larger than the number of constants required to de-
fine the hyperboloid then we should be able to fit the points
to the surface. In other words, identify the equation, in a
least squares sense, that the points satisfy.

One possibility is to identify the implicit quadric surface
equations in the nullspace of the set of equations. That is, an
arbitrary quadric surface has the following implicit second
order equation:

c0X
2
4 + c1X

2
1 + c2X

2
2 + c3X

2
3 + c4X1X2 + c5X2X3+

c6X3X1 + c7X1X4 + c8X2X4 + c9X3X4 = 0. (11)

Given a sufficiently large set of points, one may be able to
identify the 10 coefficients c0 . . . c9 that define the quadric
surface that is closest, in some sense, to the given points.
But, two surfaces are required, one for each of the two
dyads comprising the mechanism.

Fig. 1. Intersection curve of two RR hyperboloids of one sheet.

Fig. 2. Intersection curve of one RR hyperboloid of one sheet and one
RP hyperbolic paraboloid.

The best four bar mechanism will be composed of RR,
PR or RP -dyads. Due to their motion constraints, RR-
dyads map to hyperboloids of one sheet, while PR and
RP -dyads map to hyperbolic paraboloids in the image
space [9], [11]. The two constraint surfaces that intersect in
the curve closest to the reference curve will yield the best
mechanism for the given set of desired poses in some sense.
The curve of intersection of the quadric surfaces of the dyad
pairs for RRRR, RRRP and PRRP mechanisms are il-
lustrated in Figures 1, 2, and 3. Considering that the curve
closest, in the least squares sense, to the reference curve
must be the intersection of two quadric surfaces as shown
above, it is obvious that the curve belongs to each of those

Fig. 3. Intersection curve of two PR hyperbolic paraboloids.

3
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two quadric surfaces. Thus the solution to the approximate
synthesis problem is finding the best two quadric surfaces
(hyperboloid of one sheet or hyperbolic paraboloid) that
contain a curve that is closest to the reference curve, in a
least squares sense.

Fig. 4. Points on 4th-order curve of intersection of two image space
quadric constraint hyperboloids.

Fig. 5. The mechanism used to generate the poses.

IV. Example

The way the algorithm will be described is through an
example. To generate a set of points that lie exactly on
one of these constraint surfaces a parametric equation of
the surface is required. It is a simple matter to parametrize
Eq. (7), see [11]. Note the typo in this paper in Eq. (7):

the − signs should be replaced by + signs so that it
reads K0(X2 + Y 2) + 2K1XZ + 2K2Y Z + K3Z

2. The
parametrization is

[
X1

X2

X3

]
= 1

2

[
([x−K1]t+K2 + y) + (r

√
t2 + 1) cos ζ

([y −K2]t−K1 − x) + (r
√
t2 + 1) sin ζ

2t

]
,

ζ ∈ {0, . . . , 2π},
t ∈ {−∞, . . . ,∞}, (12)

where x and y are the coordinates of the moving revolute
centre expressed in the moving frame E, K1 and K2 are
the coordinates of the fixed revolute centre expressed in Σ
multiplied by −1 (i.e., K1 = −Xc and K2 = −Yc), r is
the length between the moving and fixed revolute centres,
while t and ζ are free parameters. To simplify the coef-
ficients begin with the surface having the following shape
parameters: K0 = X4 = z = 1, K1 = K2 = x = y = 0,
r = 2, K3 = −4 (recall that K3 = K2

1 + K2
2 − r2). A set

of 40 image space points, shown in Figure 4 was generated
by the linkage geometry, illustrated in Figure 5

Using the general quadric surface equation, Eq. (11), the
image space coordinates of the 40 poses generate a set of 40
synthesis equations in terms of the 10 surface shape param-
eters {c0, c1, · · · , c9}. The two quadric surfaces that best fit
the given points lie in the null space of the synthesis ma-
trix A, whose same numbered elements in each row are the
terms of the Xi, i ∈ {1, 2, 3, 4} scaled by the surface shape
parameters, ci, i ∈ {0, 1, · · · , 9}. The two surfaces clos-
est, in a least squares sense, to the null space of A can be
identified using singular value decomposition (SVD). Ap-
plying SVD to the overconstrained set of synthesis equa-
tions Ac = 0 reveals that the matrix A is rank deficient by
two. That is, two of its singular values are zero, or compu-
tationally close to zero. In this case the two smallest sin-
gular values are 1.0 × 10−15, and 3.0 × 10−15. Hence,
the two smallest singular values may be considered to be
effectively zero, and near the numerical resolution of the
computer. The next smallest singular value is 6.5 × 10−3,
which is five orders of magnitude smaller than the largest
singular value of 88.8. It is a simple matter to identify the
array of surface shape parameters, c, that correspond to the
two smallest singular values of the synthesis matrix A [13].
The coefficients are listed as Surfaces M , N and O in Ta-
ble I, with M corresponding to the smallest, N the second
smallest, and O the third smallest singular value.

The quadric surface type information is embedded in its
coefficients. The implicit equation of the quadric surface
can be classified according certain invariants of its discrimi-
nant and quadratic form [14]. Written in discriminant form,

4
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Surface c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
M 1.0000 0.1380 0.0738 -0.3967 -0.0962 0.1201 0.0473 0.8249 -0.3372 -0.2950
N 1.0000 0.2603 0.5297 2.1392 0.0424 -0.0456 0.0145 0.7035 -1.0782 3.9373
O 1.0000 -0.3583 -0.3583 -0.0271 0.0000 -0.4448 0.1494 -0.9881 0.1732 0.0509

TABLE I. The surface shape parameters identified with SVD.

Surface rank(D) rank(Q) sign of det(Q) sign of T1 sign of T2 Quadric surface
M 4 3 + + - Hyperboloid of one sheet
N 4 3 - + + Hyperboloid of two sheets
O 3 3 + - + Hyperboloid of one sheet

TABLE II. Quadric constraint surface type.

Eq. (11) becomes:
X1

X2

X3

X4


T 

c1
1
2c4

1
2c6

1
2c7

1
2c4 c2

1
2c5

1
2c8

1
2c6

1
2c5 c3

1
2c9

1
2c7

1
2c8

1
2c9 c0



X1

X2

X3

X4

 = (13)

XTDX.

The associated quadratic form is:

Q =

 c1
1
2c4

1
2c6

1
2c4 c2

1
2c5

1
2c6

1
2c5 c3

 . (14)

Both the discriminant, D, and the quadratic form, Q,
are square symmetric matrices. It can be shown [14] that
quadric surfaces can be classified by conditions on the rank
of the discriminant, rank(D), the rank of the quadriatic
form, rank(Q), the sign of the determinant of the discrim-
inant, det(D), the sign of the product of det(Q) with the
trace of Q (indicated by T1), and the sign of the sum of the
two-rowed principal minors of Q (indicated by T2). This
last invariant is more precisely defined as

T2 =
3∑

i=1,j=2,i<j

∣∣∣∣ qii qij
qij qjj

∣∣∣∣ , (15)

where the qij are the elements of Q.
A quadric surface is an hyperboloid of one sheet if

rank(D) = 4, rank(Q) = 3, det(D) > 0, and either
T2 ≤ 0, or both T1 ≤ 0 and T2 > 0. A quadric surface is an
hyperboloid of two sheets if all the above conditions on the
invariants are met, with the exception that det(D) < 0. A
quadric surface is an hyperbolic paraboloid if rank(D) = 4
and rank(Q) = 2. The values of these parameters for each
of Surfaces M , N , and O are listed in Table II.

Surfaces M and O are two hyperboloids of one sheet,
while Surface N is a hyperboloid of two sheets. Since a
hyperboloid of two sheets does not represent a planar dyad
constraint surface, the conclusion is that the quadric sur-
faces that best fit the reference curve, in the least squares

sense, are two hyperboloids of one sheet. Despite the fact
that the second RR-dyad constraint surface is far removed
from the null space of the synthesis matrix, it nevertheless
indicates that an RRRR mechanism will best approximate
the desired coupler poses.

A. Minimization

Points on a hyperboloid of one sheet can be obtained us-
ing Eq. (12), where K1, K2, K3, x, and y are the con-
straint surface shape parameters described in Section II-A.
The approximate synthesis problem can be solved using an
equivalent unconstrained non-linear minimization problem.
This problem can be stated in the following way: find the
set of surface shape parameters (K1, K2, K3, x, y) that
minimize the total spacing between all 40 points on the ref-
erence curve and 40 points that lie on the surface of a hy-
perboloid of one sheet where t = X3 = X3ref

:

d =
40∑

i=1

√
(X1refi

−X1i
)2 + (X2refi

−X2i
)2. (16)

The two sets of parameters that minimize d represent the
two best constraint surfaces that intersect closest to the ref-
erence curve. Therefore, they represent the best dyad pair
that approximate the desired 40 poses. This formulation
results from the fact that t = X3 is a free parameter in
the parametric equation for the hyperboloid of one sheet,
Eq. (12). Thus, for any hyperboloid of one sheet there exist
40 points with the same t = X3 coordinates as the 40 points
on the reference curve. Furthermore X1 and X2 have the
same form in Eq. (12), so the distance between each point
on the reference curve and each corresponding point on the
quadric surface in the hyperplane t = X3 can be simply
measured on the X1X2 hyperplane. Hence, d can be de-
fined.

The second free parameter, ζ, in Eq. (12) is found by a
minimization sub routine, which runs for each correspond-
ing point generated on the quadric surface with the same
t = X3 coordinate as a point on the reference curve. This
simply implies that for a constraint hyperboloid of one sheet
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cut by a plane corresponding to t = X3 there is only one
point on the circular trace of the hyperboloid of one sheet
in that hyperplane that is closest to the corresponding point
on the reference curve and that the (X1, X2) coordinates
of the closest point are only a function of ζ. Another im-
plication is that the distance between the point generated
with coordinates (X1, X2) and the corresponding point on
the reference curve is only dependent on the surface shape
parameters K1, K2, K3, x, and y.

B. Initial Guesses

In order for the algorithm to converge to the solution that
minimizes d, decent initial guess for the shape parameters
are required. While initial guesses may be good or bad, the
minimization algorithm above allows for each of them to
converge to the best solution and to quantify the deviation
of the poses generated by the identified mechanism. Out of
the 40 points on the reference curve five points spaced rel-
atively widely apart are arbitrarily chosen giving five equa-
tions in the five unknown surface shape parameters, after
setting K0 = 1 in Eq. (7), knowing that the surface should
be a hyperboloid of one sheet. Seven initial guesses are
tabulated in Table III.

The idea behind this technique is that the curve that is
closest to the reference curve is by definition also closest to
the points on the reference curve and thus a curve that ex-
actly passes through five of the points may also be relatively
close to the best curve being sought. The minimization
algorithm will iteratively jump to the closest curve from
curves that may be close to the reference curve by mini-
mizing d. Furthermore, the initial guess procedure could
be repeated for a different set of points on the reference
curve and more initial guesses can be found. Statistics and
heuristics could be used to actually narrow down the initial
guesses. For the sake of testing this approximate synthesis
method, this is not done, and all initial guesses are consid-
ered equal and all resulting solutions are evaluated.

C. Minimization Results

Non-linear unconstrained programming methods such as
the Nelder-Mead simplex method [15] and the Hookes-
Jeeves method [16] have been used with similar outcomes.
The results of the minimization corresponding to each ini-
tial guess can be observed in Figures 6-12.

In each figure, the solid dots represent the desired 40
poses in the projection of the kinematic mapping image
space into the hyperplane X4 = 1. These 40 reference
points lie on the solid reference curve. The small circles are
the corresponding 40 points generated by the mechanism
identified from the minimization algorithm. These points
lie on the surface of a constraint hyperboloid of one sheet
that the algorithm converged to starting from the particular
initial guess. The results can now be visually compared. In
each figure, the images on the left are the results and refer-
ence curve projected onto the plane X3 = 0.

Fig. 6. Graphical results for Initial Guess 1.

Fig. 7. Graphical results for Initial Guess 2.

Fig. 8. Graphical results for Initial Guess 3.

Fig. 9. Graphical results for Initial Guess 4.
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Guess K1 K2 K3 x y
1 -73.59218 -21.00890 5467.99420 23.99357 56.20798
2 -7.08742 -5.53320 46.84468 -1.58544 -3.19723
3 9.75170 5.29780 27.84599 -2.29188 -7.86290
4 -5.00000 0.00000 21.00000 3.00000 -2.00000
5 1.00000 -1.00000 -23.00000 -1.00000 -2.00000
6 -20.98570 -14.15501 297.79812 -1.28879 0.56361
7 -3.05304 -6.54866 48.44514 -3.82887 -1.05131

TABLE III. Initial Guesses.

Parameter Guess 1 Guess 2 Guess 3 Guess 4 Guess 5 Guess 6 Guess 7
K1 -97.720 -18.202 888.914 -5.000 1.000 -25.445 -1.398
K2 -57.463 -12.363 432.395 0.000 -1.000 -17.073 -6.191
K3 1491.757 261.650 -2374.375 21.000 -23.000 390.531 36.554
x -1.133 -1.287 -0.894 3.000 -1.000 -1.309 -4.388
y 0.534 0.889 -5.375 -2.000 -2.000 1.030 -2.361

Iterations 450 623 718 101 176 745 436
d 1.1132 1.9333 6.726 0.0004 0.0010 1.5746 4.8138

TABLE IV. Results.

Fig. 10. Graphical results for Initial Guess 5.

Fig. 11. Graphical results for Initial Guess 6.

Fig. 12. Graphical results for Initial Guess 7.

The numerical results are tabulated in Table IV. The val-
ues of d that resulted from the minimization algorithm can
now be compared. These values indicate how close the par-
ticular hyperboloid of one sheet obtained is to the reference
curve. It is evident that Initial Guesses 4 and 5 generate the
best hyperboloids of one sheet that intersect closest to the
40 points on the reference curve. The geometry of the best
generating RRRR mechanism can now be extracted using
this pair of RR-dyads and their surface shape parameters.

Fig. 13. Curve of intersection of best hyperboloids of one sheet.

It is to be noted that these are exactly the RR-dyads that
were originally used to construct the initial given 40 poses,
and hence the approximate synthesis was indeed successful.
It should also be noted that the initial guess values for the
shape parameters listed in Table III are completely different
from the shape parameters that resulted from the minimiza-
tion algorithm with the corresponding initial guess with the
exception of Initial Guesses 4 and 5. This is not the case

7



13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-23 June, 2011 A7-561

for the other initial guesses because, even though the cor-
responding hyperboloid of one sheet fit the five arbitrarily
chosen points on the reference curve well, the quadric sur-
faces very poorly fit the 40 points on the reference curve
and the algorithm converged to a different, better solution.
The curve of intersection of the best hyperboloids of one
sheet corresponding to Initial Guesses 4 and 5 can be seen
in Figure 13.

D. What Happens When Specified Poses are Not Perfect?

Arguably the example was contrived to be successful, but
is also very illustrative of the importance of good initial
guesses. The specified 40 poses lie exactly on the curve of
intersection of two constraint hyperboloids of one sheet. To
introduce poses that do not lie perfectly on such a 4th order
curve which lies exactly on two constraint hyperboloids of
one sheet, the initial specified 40 poses were truncated to 2
decimal places to introduce error, and the approximate syn-
thesis algorithm was rerun. The results obtained are listed
in Table V.

Parameter Truncated Guess 4 Truncated Guess 4
K1 -5.01374158 1.00543179
K2 0.00000497 -0.99534789
K3 21.12526403 22.98658405
x 3.00653176 -1.00047287
y -1.98696494 -2.01010896

Iterations 134 329
d 0.1194434 0.0740493

TABLE V. Truncated Results.

It is to be seen that the fit is worse than that for the mech-
anism identified from the results in Table IV, still the min-
imization converged to similar results in terms of the best
RR-dyad pair.

V. Conclusions

Kinematic mapping of distinct displacement poles to dis-
tinct points in a 3D projective image space was successfully
used for approximate kinematic synthesis for rigid body
guidance. A new approximate synthesis method was devel-
oped and successfully tested, and could have a wide range
of applications as it has been presented in a general way
which can be further expanded or simplified.

For the case of a mechanism containing a PR-dyad, the
same method can be used with the exception that the con-
ditions on the identified quadratic form of the quadric that
best satisfied the specified poses will indicate that the spec-
ified image space points best fit a constraint hyperbolic
paraboloid. No heuristics are necessary and given the ini-
tial desired poses, the entire approximate synthesis can be
carried out using software to return a list of the best gen-
erating mechanisms ranked according to d, their closeness

to the given poses. The unconstrained non-linear program-
ming problem developed has only five variables and is eas-
ily solved by several methods. A minimization algorithm
could actually be further customized to “jump” from lo-
cal minima to other local minima depending on the desired
closeness to the given poses. Furthermore some relation-
ships between the variables could be built in to the algo-
rithm so it recognizes undesirable solutions from the per-
spective of surface shape parameters and avoids iterations
in those directions.

The method developed drives the solution mechanism to
achieve exactly the desired poses but not necessarily a line
of best fit through the poses. This may be desirable for
a mechanism designer who wants a point on the coupler
to go through exactly some specified poses but does not
care about the path in between them. If this is not satisfac-
tory then the designer can simply specify more points where
the path is not well defined and the approximate synthesis
method will yield a more desirable solution.
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Wiss. Wien, 120: 677-741, 1911.

[8] A.G. Erdman, G.N. Sandor and S. Kota Mechanism Design: Analy-
sis and Synthesis, 4th Ed. Prentice Hall, 2001

[9] O. Bottema and B. Roth. Theoretical Kinematics. Dover Publica-
tions, Inc. New York, NY, U.S.A., 1990.

[10] M.J.D. Hayes, P.J. Zsombor-Murray, and C. Chen. “Kinematic Anal-
ysis of General Planar Parallel Manipulators”. ASME, Journal of
Mechanical Design, 126(5): 866-874, 2004.

[11] M.J.D. Hayes, M.L. Husty. “On the Kinematic Constraint Surfaces
of General Three-Legged Planar Robot Platforms”. Mechanism and
Machine Theory, 38(5): 379-394, 2003.

[12] M.J.D. Hayes, T. Luu, X.-W. Chang. “Kinematic Mapping Applica-
tion to Approximate Type and Dimension Synthesis of Planar Mech-
anisms”. 9th Advances in Robotic Kinematics, eds. Lenarčič, J. and
Galletti, C., Kluwer Academic Publishers, Dordrecht, the Nether-
lands, pp. 41-48, 2004.

[13] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu-
merical Recipes in C, 2nd Edition. Cambridge University Press,
Cambridge, England, 1992.

[14] A. Dresden. Solid Analytical Geometry and Determinants. Dover
Publications, Inc. New York, NY, U.S.A., 1964.

[15] J.A. Nelder and R. Mead. “A Simplex Method for Function Mini-
mization”. Computer Journal, 7: 308-313, 1965.

[16] R. Hooke and T.A. Jeeves. “Direct Search Solution of Numerical and
Statistical Problems”. Journal of the ACM (JACM), 8(2): 212-229,
1961.

8



Towards Integrated Type and Dimensional Synthesis of
Mechanisms for Rigid Body Guidance

M.J.D. Hayes1, P.J. Zsombor-Murray2
1Department of Mechanical & Aerospace Engineering, Carleton University,

1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada,
jhayes@mae.carleton.ca

2Centre for Intelligent Machines, McGill University,
817 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada

paul@cim.mcgill.ca

In this paper kinematic mapping is used to take the first steps towards development of a general algorithm
combining both type and dimensional synthesis of planar mechanisms for rigid body guidance. In the present
work we develop an algorithm that can size link lengths, locate joint axes, and using heuristics decide between
RR- andPR-dyads that, when combined, can guide a rigid body exactly through five specified positions and
orientations, i.e., the five-position Burmester problem. An example is given providing proof-of-concept.

1 Introduction

The determination of a planar four-bar mechanism
that can guide a rigid body through five finitely
separatedposes(position and orientation) is known
as thefive-position Burmester problem. It may be
stated as follows: given five positions of a point on a
moving rigid body and the corresponding five orien-
tations of some line on that body, design a four-bar
mechanism whose coupler is the moving body and
is assemblable upon these five poses. The coupler
must assume the five required poses, even though
it may be that not all five lie in the same assembly
branch. Burmester showed that the problem leads to,
at most, four dyads that can be taken two at a time:
there can be as many as six different four-bar mech-
anisms that can guide a rigid body exactly through
five specified poses [1].

From time to time dimensional synthesis for the
Burmester problem has been revisited, see for ex-
ample [2]. More recently, classical finite position
synthesis has been reviewed in [3]. An algebraic ap-
proach to this exact problem based on quaternions is
to be found in [4]. Instead, we use planar kinematic
mapping whose geometry is analogous to quater-
nions. The planar kinematic mapping was intro-
duced independently by Blaschke and Grünwald in
1911 [5, 6], and is summarized in [7].

In general, dimensional synthesis for rigid body
guidance assumes a mechanismtype: i.e., planar
4R; slider-crank; crank-slider; trammel, etc.. Our
aim is to develop a completely general planar mech-

anism synthesis algorithm that integrates bothtype
and dimensionalsynthesis for five-position exact
synthesis. It was shown in [8] how kinematic map-
ping can be used for exact dimensional synthesis.

We employ the Blashke-Grünwald mapping of
planar kinematics [5, 6] to regard the problem from
a projective geometric perspective, thereby obtain-
ing a system of five non-linear equations in five un-
knowns expressed in terms of a sixthhomogenizing,
or influence coefficient. The value of the sixth un-
known determinestype. The six unknowns represent
one dyad. The solutions of the system of equations
leads to, at most, four dyads, thereby agreeing with
Burmester theory.

It is convenient to characterize rigid body dis-
placements by a coordinate systemE that moves
relative to a fixed coordinate systemΣ, see Figure 1.
General planar displacements are then the transfor-
mation of points described inE to the coordinates of
the same points described inΣ. The constraints on
linkages imposed by different joint types can then be
described geometrically.

Planar linkages contain either revolute (R-pairs),
or prismatic (P -pairs). These kinematic pairs per-
mit rotations about one axis, or translations parallel
to one direction, respectively. In the kinematic map-
ping image space anRR-dyad (three binary links
jointed end to end by twoR-pairs) constraint in-
volving a point with fixed coordinates inE forced
to move on a circle with fixed radius and centre in
Σ is a hyperboloid of one sheet. APR-dyad (three
binary links jointed in series by aP -pair and anR-
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pair) imposes the constraint where a point with fixed
coordinates inE is restricted to move on a line with
fixed line coordinates inΣ. This constraint maps to a
hyperbolic paraboloid in the image space. TheRP -
dyad is the kinematic inversion of thePR-dyad. It’s
constraints also map to hyperbolic paraboloids. The
PP -dyad constraints map to a plane in the image
space. These are the four possible lower pair dyads
for planar mechanisms.

The algorithm that performs both type and di-
mensional synthesis for rigid body guidance must
identify the constraint surfaces that intersect in the
curve specified by the image space points of the five
given poses. The way the constraints are formulated,
the influence coefficient, mentioned earlier, can have
either the value 1 or 0, indicating either anRR- or
PR-dyad, respectively.

The planarRRRP four-bar linkage shown in
Figure 1 can be decomposed into anRR- and aPR-
dyad. TheRR-dyad is composed of the grounded
R-pair centred at the base-fixed pointF1 and the
moving R-pair centred at the pointM1. ThePR-
dyad is composed of the slidingP -pair and theR-
pair connected to it with centre atM2. In thePR-
dyad, theP -pair slides on a line with fixed position
and direction relative to the base-fixedR-pair cen-
tred atF1. This RRRP linkage is used to gener-
ate the five specified poses. Clearly, the algorithm
must identify the constraint surfaces corresponding
to the givenRR- andPR-dyads. Using heuristics,
we succeed in identifying these dyads, together with
two additional RR-dyads, thereby agreeing with
Burmester theory. These are the first steps towards
the general algorithm.

2 Kinematic Mapping

The motion of the coupler in a four-bar mechanism
can be described by the motion of a reference frame
E that moves with the coupler, relative to a ground-
fixed non moving reference frameΣ. TheRRRP
linkage shown in Figure 1 illustrates these two co-
ordinate reference frames. The homogeneous coor-
dinates of points represented inE are given by the
ratios(x : y : z). Those of points represented inΣ
are given by the ratios(X : Y : Z).

The homogeneous transformation that maps the
coordinates of points inE toΣ, which also describes
the displacement ofE relative toΣ, can be written: X

Y
Z

 =

 cos ϕ − sin ϕ a
sin ϕ cos ϕ b

0 0 1

  x
y
z

 . (1)

Equation (1) indicates that general planar displace-

ments are characterized by the three parametersa,
b, andϕ, where the pair (a, b) are the(X/Z, Y/Z)
Cartesian coordinates of the origin ofE expressed
in Σ, andϕ is the orientation ofE relative toΣ, re-
spectively.

All general planar displacements (i.e., any com-
bination of translations and rotations) may be rep-
resented by a single rotation through a finite angle
about a fixed axis normal to the plane of the dis-
placement. Even a pure translation may be consid-
ered a rotation through an infinitesimal angle about
the point at infinity in the direction normal to the
translation. The coordinates of the piercing point of
the rotation axis with the plane of the displacement
describe thepole of the displacement. The coordi-
nates of the pole are invariant under the associated
transformation described by Equation (1).

The pole coordinates for a particular displace-
ment come from the eigenvector corresponding to
the one real eigenvalue of Equation (1). Denoting
them by the subscriptp, the homogeneous pole co-
ordinates, which are the same in bothE andΣ, are:

Xp = xp = a sin (ϕ/2)− b cos (ϕ/2),

Yp = yp = a cos (φ/2) + b sin (ϕ/2),

Zp = zp = 2 sin ϕ/2.

Note that the value of the homogenizing coordi-
nate is arbitrary. Without loss in generality it is set
Zp = zp = 2 sin ϕ/2.

The essential idea of kinematic mapping is to
map the three homogeneous coordinates of the pole
of a planar displacement, in terms of three parame-
ters that characterize it,(a, b, ϕ), to the points of a
three dimensional projective image space. The kine-
matic mapping image coordinates are defined as:

X1 = a sin (ϕ/2)− b cos (ϕ/2)
X2 = a cos (ϕ/2) + b sin (ϕ/2)
X3 = 2 sin (ϕ/2)
X4 = 2 cos (ϕ/2). (2)

Since each distinct displacement described by
(a, b, ϕ) has a corresponding unique image point,
the inverse mapping can be obtained from Equa-
tion (2): for a given point of the image space, the
displacement parameters are

tan (ϕ/2) = X3/X4,

a = 2(X1X3 + X2X4)/(X2
3 + X2

4 ),

b = 2(X2X3 −X1X4)/(X2
3 + X2

4 ). (3)

By virtue of the relationships expressed by
Equations (2), the transformation matrix from Equa-
tion (1) may be expressed in terms of the homoge-
neous coordinates of the image space. This yields a
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Figure 1:RRRP linkage used to generate the five poses for the example.

linear transformation to express a displacement ofE
with respect toΣ in terms of the image point [7]:

λ

 X
Y
Z

 = T

 x
y
z

 , (4)

whereλ is some non-zero constant arising from the
use of homogeneous coordinates and

T =

 X2
4 −X2

3 −2X3X4 2(X1X3 + X2X4)
2X3X4 X2

4 −X2
3 2(X2X3 −X1X4)

0 0 X2
3 + X2

4

 .

The inverse transformation can be obtained with the
inverse of the matrix in Equation (4) as follows.

γ

 x
y
z

 = T−1

 X
Y
Z

 , (5)

with γ being another non-zero constant arising from
the use of homogeneous coordinates and

T−1=

 X2
4−X2

3 2X3X4 2(X1X3−X2X4)
−2X3X4 X2

4−X2
3 2(X2X3+X1X4)

0 0 X2
3 + X2

4

 .

2.1 Kinematic Constraints

There is a specific type of constrained motion cor-
responding to each type of planar lower-pair dyad:

RR-type; PR-type; RP -type; andPP -type. Be-
cause a motion is a continuous set of displacements,
and because a displacement maps to a point, a con-
strained motion will map to a continuous set of
points in the image space. As shown in [9], the con-
straints imposed by the four different dyad types are
quadric surfaces with special properties in the image
space.

A clearer picture of the image space constraint
surface that corresponds to the possible kinematic
constraints emerges when(X : Y : Z), or (x : y :
z) from Equations (4), or (5) are substituted into the
general equation of a circle, the form of the most
general constraint [10]:

K0(X
2+Y 2)+2K1XZ+2K2Y Z+K3Z

2 = 0. (6)

TheKi in Equation (6) depend on the constraint im-
posed by the dyad. The result is that the constraint
surfaces corresponding toRR, PR, andRP -dyads
can be represented byoneequation [10]. It is ob-
tained by substituting the results from Equations (4),
or (5) into Equation (6). However, the expression is
greatly simplified under the following assumptions:

1. No mechanism of practical significance will have
a point at infinity, so it is safe to setz = 1.

2. Coupler rotations ofϕ = π (half-turns) have im-
ages in the planeX4 = 0. Because theXi are im-
plicitly defined by Equation (2), settingϕ = π gives

(X1 : X2 : X3 : X4) = (a : b : 2 : 0). (7)
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When we remove the one parameter family of im-
age points for coupler orientations ofϕ = π we can,
for convenience, normalise the image space coordi-
nates by settingX4 = 1. Conceptually, this implies
dividing theXi by X4 = 2 cos ϕ/2 giving

X1 =
1
2

(a tan (ϕ/2)− b)

X2 =
1
2

(a + b tan (ϕ/2))

X3 = tan (ϕ/2)
X4 = 1. (8)

Applying these assumptions to Equations (4), or
(5) gives the simplified constraint surface equation
upon substitution in Equation (6):

K0(X
2
1 + X2

2 ) + (−K0x + K1)X1X3

+(−K0y + K2)X2X3 ∓ (K0y + K2)X1

±(K0x + K1)X2 ∓ (K1y −K2x)X3

+ 1
4
[K0(x

2 + y2)− 2(K1x + K2y) + K3]X
2
3

+ 1
4
[K0(x

2 + y2) + 2(K1x + K2y) + K3] = 0. (9)

TheXi are the image space coordinates that rep-
resent a displacement ofE relative toΣ. The x
andy, after settingz = 1, are the Cartesian coor-
dinates of the coupler attachment point inE. For
both theRR- andPR-dyads the coupler and base-
fixed link are joined by anR-pair, hence these co-
ordinates are conveniently selected to be the rota-
tion centre of theR-pair. The constraint surfaces for
these dyads are obtained by using theuppersigns in
Equation (9). Note that forRP -dyads the kinematic
constraint is inverted: instead of anR-pair centre
constrained to move along a fixed line yielding a
fixed range of points, we have a movable line con-
strained to move on a fixed point yielding a planar
pencil of lines on the fixed point. For this case we
use the alternate form of Equation (9) where the co-
ordinates(X : Y : 1) of the fixedR-pair centre are
used in place of(x : y : 1), and thelower signs are
used. See [10] for a detailed explanation.

PP -dyads represent a special case. The image
space constraint surface corresponding to possible
displacements of a PP-dyad is a degenerate quadric
that splits into a real and an imaginary plane. This is
because only curvilinear motion of the coupler can
result. Becauseϕ is constant, the image space co-
ordinatesX3 = f(ϕ) andX4 = g(ϕ) must also be
constant. Hence, the finite part of the two dimen-
sional constraint manifold is linear and must be a
hyper-plane. The plane is completely determined by
the coupler orientation. When the image space is
normalised by settingX4 = 1, the surface equation
is simplyX3 = tan (ϕ/2).

In what follows onlyRR- and PR-dyads will
be considered to provide some degree ofproof-of-
concept. Development, refinement, and generaliza-
tion of this approach will come in subsequent publi-
cations.

2.2 RR-type Circular Constraints

The ungroundedR-pair in an RR-dyad is con-
strained to move on a circle with a fixed centre.
Meanwhile, the coupler can rotate about the mov-
ing R-pair when the coupler connection to the other
dyad has been removed. This two parameter fam-
ily of displacements corresponds to a two parameter
hyperboloid of one sheet in the image space. An im-
portant property of the hyperboloid is that sections
in planes parallel toX3 = 0 are circles [9]. Each
one of these image space circles represents possible
coupler displacements with a fixed orientation. Thus
the constraints imposed byRR-dyads are calledcir-
cular constraints. The exact coefficients of the hy-
perboloid are determined by substituting in Equa-
tion (9) the appropriate values for the kinematic pa-
rameters:

K0 = 1,

K1 = −Xc,

K2 = −Yc,

K3 = K2
1 + K2

2 − r2, (10)

where(Xc, Yc) are the Cartesian coordinates of the
fixed circle centre in the reference frame that is con-
sidered to be non-moving, andr is the circle ra-
dius. If the kinematic constraint is a fixed point in
E bound to fixed circle inΣ, then (x, y) are the
Cartesian coordinates of the coupler reference point
in E, and the upper signs apply. If the kinematic
constraint is a fixed point inΣ bound to fixed circle
in E, then(X, Y ) are substituted for(x, y) as the
coordinates of the coupler reference point inΣ, and
the lower signs apply.

2.3 PR-type Linear Constraints

Linear constraints result whenPR- andRP -dyads
are employed. The linear coefficients are defined as

[K0 : K1 : K2 : K3] = [0 : 1
2L1 : 1

2L2 : L3], (11)

where theLi are line coordinates obtained by Grass-
mann expansion of the determinant of any two dis-
tinct points on the line [11].

Of these in the present work we consider only
PR-dyads. The direction of the line is a design con-
stant, described by the angle it makes with respect to
the fixed base frameΣ, indicated byϑΣ. The point
at infinity contained on the line is determined by the
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direction of the line, and hence can be specified as
(cos ϑΣ : sinϑΣ : 0). Additionally, the location of a
fixed point on the line, also expressed inΣ, is given
by the coordinatesFΣ. The line equation inΣ for
a givenPR-dyad is obtained from the Grassmann
expansion:∣∣∣∣∣∣

X Y Z
FX/Σ FY/Σ FZ/Σ

cos ϑΣ sin ϑΣ 0

∣∣∣∣∣∣ = 0, (12)

where the notationFX/Σ, FY/Σ, FZ/Σ, represent the
homogeneous coordinates(X : Y : Z), expressed
in reference frameΣ, of a fixed point on the line that
is fixed relative toΣ. Applying Equations (11) and
(12) we obtain

K0 = 0,

K1 = −
FZ/Σ

2
sin ϑΣ,

K2 =
FZ/Σ

2
cos ϑΣ,

K3 = FX/Σ sin ϑΣ − FY/Σ cos ϑΣ. (13)

The direction of the translation permitted by the
P -pair is specified by the angle the line makes ex-
pressed inΣ, ϑΣ. When the coordinates of a fixed
point on the line are known, we obtain the line co-
efficients [K0 : K1 : K2 : K3]. These, along
with the design values of the coordinates of the cou-
pler attachment point(x, y), expressed in reference
frame E, substituted into Equation (9) reveals the
image space constraint surface for the givenPR-
dyad. This surface is an hyperbolic paraboloid [9]
with one regulus ruled by skew lines that are all par-
allel to the planeX3 = 0.

2.4 The Burmester Problem in the Im-
age Space

Each specified pose ofE determines a point,(X1 :
X2 : X3 : X4), in the image space. If the displace-
ments are feasible, the five points lie on the curve
of intersection of the dyad constraint surfaces. The
five points are enough to determine the intersecting
quadrics. Recall that, in general, nine points are re-
quired to specify a quadric. The special nature of
the constraint surfaces represent four constraints on
these quadrics.

The hyperboloids, corresponding toRR-dyads,
intersect planes parallel toX3 = 0 in circles. Thus,
all constraint hyperboloids contain the image space
equivalent of theimaginary circular points, J1 and
J2: (1 : ±i : 0 : 0). The pointsJ1 and J2 are
imaginary points on the real line,l, of intersection

of the planesX3 = 0 andX4 = 0. This real line
is the axis of a pencil of planes that includes the
complex conjugate planesV1 and V2, defined by:
X3 = ±iX4. The hyperboloids all haveV1 andV2

as tangent planes, though not necessarily atJ1 and
J2.

The hyperbolic paraboloids, corresponding to
PR- andRP -dyads, containl as a generator. There-
fore all constraint hyperbolic paraboloids containJ1

andJ2, moreoverV1 andV2 are the tangent planes
at these two points. Thus every constraint surface
for RR-, PR-, andRP -dyads have these four con-
ditions in common, reducing the number of indepen-
dent parameters to five.

Our approach is to leaveK0 as an unspecified
variable homogenizing coordinate and solve the syn-
thesis equations in terms ofK0. In general, the
constantsK1, K2, andK3 will depend onK0. If
these multipliers become very large (on the order of
106) indicating a very large crank radius then we set
K0 = 0 and use line coordinate definitions forK1,
K2, andK3 in Equation 13 giving aPR-dyad. Oth-
erwise,K0 = 1, and the circle coordinate definitions
for K1, K2, andK3 in Equation 10 are used yielding
anRR-dyad.

3 Example

The mechanism illustrated in Figure 1 was used to
generate the five poses listed in Table 1 and dis-
played in Figure 2. For this generating mechanism,
the origin of reference frameE, OE , is on the centre
of the R-pair on the coupler pointM2. Homoge-
neous coordinates inE are described by the triples
of ratios(x : y : z). The coupler reference points
M1 andM2 define the direction of thex-axis. The
positivey-axis is as shown in Figures 1 and 2. Frame
Σ is as shown in the same two figures. Reference
frameE moves with the coupler. The fixedR-pair
center is located on pointF1. The geometry of the
generating mechanism is listed in the right hand side
of Table 1.

The given five poses are mapped to the coor-
dinates of five points in the image space. Using a
computer algebra software package, we substitute
the corresponding values forX1, X2, X3, together
with X4 = 1 andz = 1 into Equation (9), effec-
tively projecting the points onto the embedded Eu-
clidean Space. This produces the following five non-
linear equations in terms ofK0, K1, K2, K3, x, and
y, which are quadratic whenK0 is considered con-
stant:
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Figure 2: The five poses.

pose a b ϕ (deg) parameter value

1 5.24080746 4.36781272 43.88348278 F1 (X : Y : Z) = (1.5 : 2 : 1)

2 5.05087057 4.03883237 57.45578356 M1 (x : y : z) = (−2 : 0 : 1)

3 4.76358093 3.54123213 66.99534998 M2 (x : y : z) = (0 : 0 : 1)

4 4.43453496 2.97130779 72.10014317 M1M2 l = 2

5 4.10748142 2.40483444 72.30529428 F1M1 r = 2.5

P -pair angle ϑΣ = 60 (deg)

Table 1: Five poses of theRRRP mechanism; Geometry of theRRRP generating mechanism.

(13.52428430 + 3.954702976x− 0.281732470y + 0.2905708072x2 + 0.2905708072y2)K0+
(3.045651308 + 0.4188583855x− 0.4028439264y)K1+

(2.538317736 + 0.4028439264x + 0.4188583855y)K2 + 0.2905708072K3; (14)

(13.59714292 + 3.980465638x− 1.355748810y + 0.3251080324x2 + 0.3251080324y2)K0+
(3.284157186 + 0.3497839351x− 0.5481168944y)K1+

(2.626113690 + 0.3497839351y + 0.5481168944x)K2 + 0.3251080324K3; (15)

(12.66604850 + 3.682213684x− 2.157608235y + 0.3595038128x2 + 0.3595038128y2)K0+
(3.425051014 + 0.2809923744x− 0.6618272064y)K1+

(2.546172905 + 0.6618272064x + 0.2809923744y)K2 + 0.3595038128K3; (16)

(10.89749412 + 3.205294435x− 2.529259406y + 0.3824518134x2 + 0.3824518134y2)K0+
(3.391991875 + 0.2350963732x− 0.7278785984y)K1+

(2.272764106 + 0.7278785984x + 0.2350963732y)K2 + 0.3824518134K3; (17)

(8.686958330 + 2.714462017x− 2.440453512y + 0.3834517468x2 + 0.3834517468y2)K0+
(3.150041851 + 0.2330965065x− 0.7306209600y)K1+

(+1.844275934 + 0.7306209600x + 0.2330965065y)K2 + 0.3834517468K3; (18)
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Parameter Surface 1 Surface 2 Surface 3 Surface 4

K1 −1.500K0 −4.2909× 106K0 −15.6041K0 −8.3011K0

K2 −2.0000K0 2.4773× 106K0 3.4362K0 −5.0837K0

K3 −2.5801× 10−6K0 2.3334× 107K0 107.3652K0 93.4290K0

x −2.0000 8.1749× 10−7 0.2281 3.7705

y 3.4329× 10−7 −1.3214× 10−6 −0.7845 −2.0319

Table 2: The identified constraint surface coefficients.

Parameter Relation Value

F1 (−K11 ,−K21) (1.500, 2.000)

M1 (x1, y1) (−2.000, 3.4329× 10−7)

M2 (x2, y2) (8.1749× 10−7,−1.3214× 10−6)

ϑΣ arctan
(
−K11
K21

)
60.0◦

Table 3: Geometry of one of six synthesized mechanisms that is a good approximation of the generating
RRRP linkage in Figure 1.

Solving the system of Equarions (14-18) for the
unknownsK1, K2, K3, x, andy in terms ofK0

yields the set of four solutions listed in Table 2. Sub-
stituting these values into Equation (9) gives four
distinct constraint surfaces in the image space, in
terms of the homogenizing circle, or line coordinate,
K0.

At the present time, heuristics must be used
to select an appropriate value forK0 by compar-
ing the relative magnitudes ofK1 and K2. Re-
call that the circle coordinates are defined to be
K1 = −Xc, andK2 = −Yc, the Cartesian coor-
dinates of the fixed revolute centres, multiplied by
-1, expressed inΣ. The crank radius is given by
r = +

√
K2

3 − (K2
1 + K2

2 ). The coefficients for
Surfaces 1, 3, and 4 representRR-dyads with finite
rotation centres whenK0 = 1. However, the coeffi-

cients for Surface 2, relative to the other three, have
a rotation centre whose location approaches infinity,
(4.2909× 106,−2.4773× 106) with a crank radius
of 4.9547×106, also approaching infinity, while the
relative values ofx andy indicate this attachment
point is onOE . This surface should clearly be re-
computed as an hyperbolic paraboloid revealing the
correspondingPR-dyad. Recall the line coordinate
definition, withK0 left unspecified:

K0 = K0,

K1 = −
FZ/Σ

2
sinϑΣ,

K2 =
FZ/Σ

2
cos ϑΣ,

K3 = FX/Σ sinϑΣ − FY/Σ cos ϑΣ. (19)

The angle of the direction of translation of theP -

Solution Dyad surface pairing

1 Dyad 1 - Dyad 2

2 Dyad 2 - Dyad 3

3 Dyad 2 - Dyad 4

4 Dyad 1 - Dyad 3

5 Dyad 1 - Dyad 4

6 Dyad 3 - Dyad 4

Table 4: Dyad pairings yielding the six synthesized mechanisms.
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Figure 3: The six synthesized mechanisms.

pair relative to theX-axis ofΣ is ϑΣ. The transla-
tion direction of aPR-dyad that could be combined
with any of the threeRR-dyads is thus

ϑΣ = arctan
(
−K1

K2

)
= arctan

(
4.2909× 106K0

2.4773× 106K0

)
= 60.0◦. (20)

Employing plane trigonometry, it is simple to
extract the link lengths and joint locations of the
dyad associated with each of the four constraint sur-
faces. The generating mechanism is reproduced
when the dyads corresponding to Surfaces 1 and 2
are paired. We obtain the geometry listed in Ta-
ble 3 (note, the second subscript refers to the par-

ticular surface). The six possible mechanisms are
the combinations of the four dyads taken two at a
time. These are listed in Table 4 and are illustrated
in Figure 3.

4 Conclusions

The example presented herein illustrates that the
general image space constraint surface equation,
leaving K0 unspecified, can be used for general
type and dimensional synthesis for planar mecha-
nisms. For a set of five poses generated by a par-
ticular slider-crank, we synthesized six mechanisms,
including the one that generated the poses, that can
guide the coupler through the five poses. Three of
the six synthesized linkages are slider-cranks while
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the remaining three are4R mechanisms. The cou-
pler point is the centre of theR-pair connecting the
coupler to theP -pair. This coupler point is clearly
bound to a line in theRRRP linkages, but not in
the case of the4R’s. This approach to planar four-
bar mechanisms stands to offer the designerall pos-
sible linkages that can attain the desired poses, not
just 4R’s and not just slider-cranks, butall feasi-
ble four-bar linkage architectures along with their
dimensions.

Outstanding issues involve the following. The
heuristics must be rethought so that an algorithm
for type selection can be developed. Moreover, the
problem formulation must be reconsidered in such a
way that bothPR- andRP -dyads can be typed, and
extracted from the solutions. The geometric reason-
ing explaining why five image space points are suf-
ficient to define four unique quadrics must be for-
malized. Additionally, the geometric interpretation
of K0 must be investigated. How, for example, are
the constraint hyperbolic paraboloids parameterized
in the image space without settingK0 = 0?

Finally, methods to apply this technique to ap-
proximate synthesis should be investigated. The
resulting problem would involve fitting a suitable
number of points to surfaces in the image space.
More specifically, fitting points to the curve of inter-
section of constraint surfaces. To do this some form
of least-squares error minimization would have to
be employed. The outcome would be a single dyad
pair: the one corresponding to the two constraint
surfaces whose intersection best approximates the
given set of desired poses
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Integrated Type And Dimensional Synthesis of
Planar Four-Bar Mechanisms

Tim J. Luu and M. John D. Hayes

Abstract A novel approach to integrated type and approximate dimensional synthe-
sis of planar four-bar mechanisms (i.e. linkages comprised of any two of RR, PR,
RP, and PP dyads) for rigid-body guidance is proposed. The essence is to corre-
late coordinates of the coupler attachment points in two different coordinate frames,
thereby reducing the number of independent variables defining a suitable dyad for
the desired rigid-body motion from five to two. After applying these geometric con-
straints, numerical methods are used to size link lengths, locate joint axes, and de-
cide between RR, PR, RP and PP dyads that, when combined, guide a rigid body
through the best approximation, in a least-squares sense, of n specified positions
and orientations, where n≥ 5. No initial guesses of type or dimension are required.
An example is presented illustrating the effectiveness and robustness of this new
approach.

Key words: Approximate type and dimensional synthesis; planar four-bar mecha-
nisms; rigid body guidance; singular value decomposition.

1 Introduction

Planar linkages contain either revolute (R-pairs), or prismatic (P-pairs). These kine-
matic pairs permit rotations about one axis, or translations parallel to one direction,
respectively. In general, dimensional synthesis for rigid body guidance assumes a
mechanism type: i.e., planar 4R; slider-crank; crank-slider; trammel, etc.. Our aim
is to develop a completely general planar mechanism synthesis algorithm that in-

Tim J. Luu
Neptec Design Group Ltd., Ottawa, Ontario, Canada e-mail: tluu@neptec.com
M. John D. Hayes
Carleton University, Deptartment of Mechanical and Aerospace Engineering e-mail:
jhayes@mae.carleton.ca
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2 Tim J. Luu and M. John D. Hayes

tegrates both type and dimensional synthesis for n-position approximate synthe-
sis for rigid body guidance. The pairing of the two types leads to four possible
dyads: revolute-revolute (RR), prismatic-revolute (PR), revolute-prismatic (RP), and
prismatic-prismatic (PP).

There is an extensive body of literature reporting research on approximate di-
mensional kinematic synthesis of planar four-bar mechanisms for rigid-body guid-
ance, see for example [12, 1, 6, 5, 4, 9]. However, there are no methods reported in
the substantial body of literature that successfully integrate both type and approxi-
mate dimensional synthesis of planar four-bar mechanisms for rigid body guidance,
without a priori knowledge or initial guesses with the exception of two special cases
reported in [3, 2]. In this paper a method for doing so is presented for the first time.

The minimization criteria of the algorithm presented in this paper is purely math-
ematical: the condition number of the synthesis matrix. The algorithm will be en-
hanced when the transmission angle is incorporated as an optimization objective.
It would be additionally beneficial to examine the order and branch defect prob-
lems. It may be that advances made in [10] can be incorporated into the integrated
type-dimensional synthesis algorithm to address these issues. These issues notwith-
standing, the algorithm presented in this paper is a robust foundation upon which to
build. The algorithm is being adapted for synthesis of spatial motion platforms.

2 Kinematic Constraints: Circular and Linear

The motion of the coupler link in a four-bar planar mechanism is determined by the
relative displacements of all links in the kinematic chain. The relative displacement
of two rigid bodies in the plane can be considered as the displacement of a Cartesian
reference coordinate frame E attached to one of the bodies with respect to a Carte-
sian reference coordinate frame Σ attached to the other. Without loss of generality,
Σ may be considered fixed with E free to move, see Figure 2. The homogeneous
coordinates of points represented in E are given by the ratios (x : y : z). Those of
the same points represented in Σ are given by the ratios (X : Y : Z). The mapping
between the coordinates of points expressed in the two reference frames is given by
the homogeneous coordinate transformation

X
Y
Z

=

 cosθ −sinθ a
sinθ cosθ b

0 0 1

 x
y
z

 , (1)

where (a,b) are the ( X
Z ,

Y
Z ) Cartesian coordinates of the origin of E with respect to

Σ , and θ is the orientation of E relative to Σ . Any point (x : y : z) in E can be mapped
to (X : Y : Z) in Σ using this transformation. For rigid body guidance, each pose is
defined by the position and orientation of E with respect to Σ , which is specified
by the ordered triple (a,b,θ). Dyads are connected through the coupler link at the
coupler attachment points M1 and M2, see Figure 1.
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There is a specific type of constrained mo-
tion corresponding to each one of the four
types of planar lower-pair dyad. The un-
grounded R pair in an RR dyad is constrained
to move on a circle with a fixed centre. Be-
cause of this they are denoted circular con-
straints. Linear constraints result when PR
and RP dyads are employed because the R
pair attachment point is constrained to move
on a line defined by the P pair translation di-
rection. The PP dyad represents a planar con-
straint: the line of one P pair direction is con-
strained to translate on the direction line of the
other. Fig. 1. Planar RRRP linkage.

It can be shown [2] that the model representing both circular and linear con-
straints for n Cartesian point coordinate pairs can be expressed in matrix form as

Ck =
[

X2
j +Y 2

j 2X j 2Yj 1
]

K0
K1
K2
K3

= 0, (2)

where C is an n× 4 dimensional array with j ∈ {1,2, . . . ,n}, with X and Y being
the Cartesian coordinates of points on either a circle or line, and the Ki are constant
shape parameters determined by the constraint imposed by the dyad [2].

For circular constraints the Ki are defined as

K0 = 1, K1 =−Xc, K2 =−Yc, K3 = K2
1 +K2

2 − r2, (3)

where (Xc,Yc) are the Cartesian coordinates of the circle centre expressed in Σ and
r is the circle radius.

Linear constraints require K0 = 0 and the remaining Ki are proportional to line
coordinates defined by

K1 =−
1
2

FZ/Σ sinθΣ , K2 =
1
2

FZ/Σ cosθΣ , K3 = FX/Σ sinθΣ −FY/Σ cosθΣ , (4)

where (FX/Σ : FY/Σ : FZ/Σ ) are homogeneous coordinates of a fixed point, expressed
in Σ , on the line that makes an angle θΣ with the positive X-axis in Σ .

In the definitions of the Ki, the parameter K0 acts as a binary switch between
circular and linear constraints. When K0 = 1 Equation (2) represents the implicit
equation of points on a circle, and when K0 = 0 the equation becomes that of a line.
Nonetheless, K0 is still an homogenizing parameter whose value is arbitrary. The Ki
can be normalized by K0, but only when K0 is nonzero.
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3 Integrating Type and Approximate Dimensional Synthesis

Equations (2), (3), and (4) are used to integrate type and approximate dimensional
synthesis of planar for-bar mechanisms for rigid-body guidance. Constructing the
required synthesis matrix C based on the prescribed poses is done by relating the
position of the two rigid body attachment points M1 and M2 in both reference frames
E and Σ , see Figure 1. Reference frames Σ and E are correlated in two ways:

1. Points M1 and M2 move on circles or lines in Σ ;
2. Points M1 and M2 have constant coordinates in E.

Let (x,y) be the coordinates expressed in E of one of the coupler attachment
points, M, and (X ,Y ) be the coordinates of the same point expressed in Σ . Carrying
out the matrix multiplication in Equation (1) yields

X = xcosθ − ysinθ +az,
Y = xsinθ + ycosθ +bz,
Z = z.

(5)

Ignoring infinitely distant coupler attachment points, it is reasonable to set z = 1
in Equation (5) and substituting the result into Equation (2), with j ∈ {1,2, . . . ,n}
yields

Ck =


(xcosθ j− ysinθ j +a j)

2 +(xsinθ j + ycosθ j +b j)
2

2(xcosθ j− ysinθ j +a j)
2(xsinθ j + ycosθ j +b j)

1


T 

K0
K1
K2
K3

= 0. (6)

Prescribing n > 5 poses makes C an n×4 matrix. The parameters x and y possess
constant values in E. The n-dimensional vector parameters a, b, and θ in C are all
known a priori because they are the specified poses of E with respect to Σ .

The only unknown parameters in C are x and y. Determining the x and y that best
satisfy Equation (6) will solve the problem. Once values for x and y are obtained C
is fully determined, which allows the vector k to be identified. The problem is now a
two dimensional search for x and y. However, at least two dyads are required to form
a planar mechanism. This implies that there must be at least two distinct values for
x and y in order for a complete solution to exist. The x and y are found such that they
satisfy Equation (6). For equations of the form Ck = 0 the only real k that satisfies
the equation is the zero vector if C is not singular. In other words, for non-trivial k
to exist, C must be rank deficient [11]. The task becomes finding values for x and y
that make C rank deficient, or failing that, the most ill-conditioned.

The conditioning of a matrix is measured by the ratio of the largest and smallest
singular values of the matrix, which is called the condition number κ . It is compu-
tationally more convenient to use is the inverse of the condition number, γ

γ ≡ 1
κ
=

σMIN

σMAX
,0≤ γ ≤ 1, (7)
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because it is bounded both from above and below. A well conditioned matrix has
γ ≈ 1, while an ill-conditioned matrix has γ ≈ 0. Therefore, selecting x and y that
renders C the most rank deficient involves minimizing γ .

The Nelder-Mead Downhill Simplex Method in Multidimensions algorithm may
be used for this minimization [7]. This method requires only function evaluations,
not derivatives. It is not very efficient in terms of the evaluations it requires, but for
the problem at hand the computational burden is relatively small. We will not discuss
the convergence properties, because any optimization method may be employed.

Since the Nelder-Mead algorithm needs an initial guess, γ may be plotted in terms
of x and y first, in the neighborhood of (x, y) = (0, 0) up to a user-defined range of
the maximum distance that the coupler attachment points can be from the moving
frame E origin, denoted ε . As x and y represent the position of a coupler attachment
point with respect to moving refernece frame E. The x and y parameters may then
be selected approximately corresponding to the smallest value of γ . These points
represent the local minima of the entire γ plot, that is, with ε = ∞. However, for
practical reasons, with ε finite, these minima may be regarded as the global minima
of the region of interest. At least two minima are required to obtain a planar four-
bar mechanism, as each minimum corresponds to a single dyad. The Nelder-Mead
algorithm is fed these approximate values as inputs, and converges to the values of
x and y that minimize γ .

Once the values of x and y have been determined the matrix C in Equation (6)
can be populated. The k parameters may then be estimated. We have elected to use
singular value decomposition (SVD) because we are necessarily required to work
with either singular, or numerically very-close-to-singular sets of equations. SVD
decomposes any given m×n matrix C into the product of three matrix factors such
that

Cm×n = Um×mSm×nVT
n×n, (8)

where U and V are orthogonal, and S is a rectangular matrix whose only non-zero
elements are on the diagonal of the upper n× n sub-matrix. These diagonal ele-
ments are the singular values of C arranged in descending order, lower bounded by
zero [8]. SVD constructs orthonormal bases spanning the range of C in U and the
nullspace of C in V. If C is rank deficient, then the last n−rank(C) singular values
of C are zero. Furthermore, the corresponding columns of V are unit basis vectors
that span the nullspace of C. As such, any linear combination of these columns is a
non-trivial solution that best satisfies the system Ck = 0.

For overconstrained systems, where the m× n matrix C has m > n, in general
no non-trivial exact solution exists, because in general an overconstrained synthesis
matrix possesses full rank. In this case, the optimal approximate solution in a least-
squares sense is last column of V, corresponding to the smallest singular value of
C. Furthermore, the more ill-conditioned C is, the closer the optimal approximate
solution is to being an exact solution. Because the Ki are homogeneous, the scaling
posses no problem because k will be normalized by dividing through by K0. In
the case where K0 ≈ 0, or K0 = 0 the linear definitions for K1, K2, and K3 from
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Fig. 2 The γ plot of the poses defining a square corner.

Equation (4) are used. The switching threshold for K0 to represent either an RR or
PR (or RP) dyad must be user defined based on the geometry of the problem.

Note that PP dyads are a special case. Two serial P pairs restricts the distal link
from changing its orientation. For type synthesis, given any set of poses with non
constant orientation, the PP dyad is immediately ruled out.

3.1 Example

Consider an example that requires completely general integrated type and approxi-
mate dimensional synthesis by defining poses that are impossible to generate exactly
by any four-bar planar mechanism. The poses define a square corner. A point on a
rigid body moves linearly between the Cartesian coordinates from (0, 1) to (1, 0) via
(1,1). The orientation increases linearly from 0 to 90 degrees. The poses are listed
in Table 1.

Pose 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a 0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
b 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0.0

θ ◦ 0.0 4.5 9.0 13.5 18.0 27.0 31.5 36.0 45.0 49.5 54.0 58.5 63.0 72.0 76.5 81.0 85.5 90.0

Table 1 Specified poses defining a square corner.
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A planar four-bar mechanism cannot exactly replicate the motion defined above
because points on the coupler generate either a 6th, 4th, or 2nd order curve. The curve

xn + yn = 1 (9)

approaches a square corner as n→∞. With n≤ 6 for planar four-bar mechanisms, it
is impossible to exactly replicate the desired motion. Although a PPPP mechanism
may be able to generate the desired point translation, the change in orientation rules
out this type of mechanism.

The pose data are substituted into Equation (6) to populate C. The γ of C are then
plotted as a function of x and y and are shown in Figure 2. As can be seen in this
figure, two distinct minima occur at approximately (0.8, 0.6) and (0.8, -0.6). Using
the Nelder-Mead minimization and the pair of approximate x and y as initial guesses,
the exact values of the two minima are found, and listed in Figure 3. These values are
then substituted into Equation (6) to completely determine C. SVD is then applied
to C to find k corresponding to each minimum. The values of k thus determined are
also listed in Figure 3. The resulting synthesized mechanism, illustrated in Figure 3,
is composed of two RR dyads centred on (4.5843, -1.0539) and (-1.0539, 4.5843),
both with links having length 1.7307.

Fig. 3 Identified RRRR mechanism and corresponding dyads.

Dyad 1 Dyad 2
x 0.8413 0.8413
y 0.5706 -0.5706

K0 0.2010 0.2010
K0/K0 1 1
K1/K0 -4.5843 1.0549
K2/K0 1.0539 -4.5843
K3/K0 1.2704 1.2704

4 Conclusions

In this paper a novel method was presented that integrates type and approximate
dimensional synthesis of planar four-bar mechanisms used for rigid-body guidance.
Coupler attachment points are correlated between moving frame E and fixed frame
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Σ thereby reducing the number of independent variables defining a suitable dyad
for the desired poses from five to two. Numerical methods are then used to deter-
mine both mechanism type and approximate dimensions. A numerical example was
presented, illustrating the utility of the algorithm.
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Abstract. In this paper the generalised input-output (I-O) equation for planar
4R function generators is derived in a new way, leading to the algebraic form of
the well known Freudenstein equation. The long term goal is to develop a gener-
alised method to derive constraint based algebraic I-O equations that can be used
for continuous approximate synthesis, where the synthesis equations are inte-
grated between minimum and maximum input angle values resulting in a linkage
whose objective function has been optimised over every output angle. In this pa-
per we use a planar projection of Study’s soma and the Cartesian displacement
constraints for the dyads. These are mapped to the image space leading to four
constraint equations in terms of the image space coordinates and the sines and
cosines of the input and output angles. Using the tangent of the half angle sub-
stitution the trigonometric equations are converted to algebraic ones. Algebraic
methods are used to eliminate the image space coordinates, then the polynomial
resultants are found to obtain common roots leading to the desired equations.

Keywords: Function generators, continuous approximate synthesis, kinematic
mapping, polynomial resultants.

1 Introduction

A planar 4R function generator correlates
driver and follower angles in a functional re-
lationship. The mechanism essentially gen-
erates the function ϕ = f (ψ), or vice versa,
see Fig. 1. Design methods typically em-
ploy the Freudenstein synthesis equations
to identify link lengths required to generate
the function [2,4]. For over-determined sets
of prescribed input-output (I-O) angle pairs,
these equations are linear in the three un-
known Freudenstein parameters, which are Fig. 1. 4R Function Generator.

ratios of the link lengths, and can be solved for using any least squares method to min-
imise a specified performance error. To the best of the authors knowledge, there are
no alternative algebraic models of the function generator displacement equations in the
accessible literature.
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It has been observed [7,5] that as the cardinality of the prescribed discrete I-O data
set increases, the corresponding four-bar linkages that minimise the Euclidean norm of
the design and structural errors tend to converge to the same linkage. The important im-
plication is that minimising the Euclidean norm, or any p-norm, of the structural error
can be accomplished indirectly by minimising the same norm of the design error. In [5]
the trigonometric Freudenstein synthesis equations are integrated in the range between
minimum and maximum input values, thereby reposing the discrete approximate syn-
thesis problem as a continuous one whereby the objective function is optimised over
the entire I-O range. Hence, our long-term goal is to determine a general method to
derive motion constraint based algebraic I-O equations that may be used together with
the method of continuous approximate synthesis [5] to obtain the very best linkage that
can generate an arbitrary function. The goal of this paper is to develop one in the hope
of providing new insight into the continuous approximate synthesis of function genera-
tors, while mitigating numerical integration error. Of course, the same equation will be
obtained by making the tangent half-angle substitutions directly into the Freudenstein
equation then collecting terms after factoring, normalising, and eliminating non-zero
factors. But that must be the case since the geometric relations require that outcome,
however this is irrelevant because the goal is to generalise a method to develop con-
straint based algebraic I-O equations for continuous approximate synthesis of planar,
spherical, and spatial linkages. This paper represents the first step in that long journey.

2 Geometric and Algebraic Approach

The Freudenstein equation relating the input to the output angles of a planar 4R four-bar
mechanism, with link lengths as in Fig. 1, was first put forward in [3]. In the equation
the angle ψ is traditionally selected to be the input while ϕ is the output angle:

k1 + k2 cos(ϕi)− k3 cos(ψi) = cos(ψi−ϕi). (1)

Equation (1) is linear in the ki Freudenstein parameters, which are defined in terms of
the link length ratios as

k1 ≡
(a2 +b2 +d2− c2)

2ab
,

k2 ≡
d
a
,

k3 ≡
d
b
.


⇔



d = 1,

a =
1
k2
,

b =
1
k3
,

c = (a2 +b2 +d2−2abk1)
1/2.

The new idea starts the same as with the Freudenstein method, writing the displace-
ment constraints in terms of the I-O angles. Continuing with tradition, we select ψ to
be the input angle and ϕ to be the output angle. Let Σ be a non moving Cartesian co-
ordinate system with coordinates X and Y whose origin is located at the centre of the
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ground fixed link R-pair with length a. Let E be a coordinate system that moves with
the coupler of length c whose origin is at the centre of the distal R-pair of link a, having
basis directions x and y.

The displacement constraints for the origin of E can be expressed as

X−acosψ = 0,
Y −asinψ = 0, (2)

while those for point F , located at the centre of the distal R-pair on the output link with
length b are

X−d−bcosϕ = 0,
Y −bsinϕ = 0. (3)

Next, we use a planar projection of Study’s soma coordinates [8] to establish the
I-O equation. Any displacement in Euclidean space, E3, can be mapped in terms of the
coordinates of a 7-dimensional projective image space using the transformation [1]

T =


x2

0+x2
1+x2

2+x2
3 0 0 0

2(−x0y1+x1y0−x2y3−x3y2) x2
0+x2

1−x2
2−x2

3 2(x1x2−x0x3) 2(x1x3+x0x2)

2(−x0y2+x1y3+x2y0−x3y1) 2(x1x2+x0x3) x2
0−x2

1+x2
2−x2

3 2(x2x3−x0x1)

2(−x0y3−x1y2+x2y1+x3y0) 2(x1x3−x0x2) 2(x2x3+x0x1) x2
0−x2

1−x2
2+x2

3

 . (4)

This transforms the coordinates of any point described in a moving 3D coordinate sys-
tem E to the coordinates of the same point in a relatively fixed 3D coordinate system Σ

(assuming that the two frames are initially coincident) after a given displacement of E
relative to Σ in terms of the coordinates of a point on the Study quadric, S2

6. In order for
a point in the image space to represent a real displacement, and therefore to be located
on S2

6, the non-zero condition of x2
1 + x2

2 + x2
3 + x2

4 6= 0 must be satisfied.
The transformation matrix T simplifies considerably when we consider displace-

ments that are restricted to the plane. Three degrees of freedom are lost and hence four
Study parameters vanish. The displacements may be restricted to any plane. Without
loss in generality, we may select one of the principal planes in Σ . Thus, we arbitrarily
select the plane Z = 0. Since E and Σ are assumed to be initially coincident, this means

W
X
Y
0

 = T


w
x
y
0

 , (5)

leaving us with the four soma coordinates

(x0 : x3 : y1 : y2). (6)

The non-zero condition is now x2
0 + x2

3 6= 0, and the fourth row and column of the re-
duced T contains only this condition as the last element with zeros elsewhere leading
to the trivial equation Z = z = 0. We can therefore eliminate the fourth row and column
and normalise the coordinates with the nonzero condition giving the planar mapping
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equation

T =
1

x2
0 + x2

3

 x2
0 + x2

3 0 0
2(−x0y1 + x3y2) x2

0− x2
3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0− x2

3

 . (7)

We can now express a point in Σ in terms of the soma coordinates and the corresponding
point coordinates in E as 1

X
Y

= T

1
x
y

=
1

x2
0 + x2

3

 x2
0 + x2

3

2(−x0y1 + x3y2)+(x2
0− x2

3)x− (2x0x3)y
−2(x0y2 + x3y1)+(2x0x3)x+(x2

0− x2
3)y

 . (8)

The novelty of the approach begins with creating two Cartesian vector constraint
equations containing the nonhomogeneous coordinates in Equations (2) and (3), but
substituting the values in Equation (8) for (X ,Y ). These two vector equations are F1 = 0
and F2 = 0:

F1 =
1

x2
0 + x2

3

[
2(−x0y1 + x3y2)+(x2

0− x2
3)x−2x0x3y− (acosψ)(x2

0 + x2
3)

−2(x0y2 + x3y1)+2x0x3x+(x2
0− x2

3)y− (asinψ)(x2
0 + x2

3)

]
= 0;

F2 =
1

x2
0 + x2

3

[
2(−x0y1 + x3y2)+(x2

0− x2
3)x−2x0x3y− (bcosϕ +d)(x2

0 + x2
3)

−2(x0y2 + x3y1)+2x0x3x+(x2
0− x2

3)y− (bsinϕ)(x2
0 + x2

3)

]
= 0.

Now we determine equations for the coupler. The coordinate system that moves with
the coupler has its origin, point E, on the centre of the R-pair, as in Fig. 1, having
coordinates (x,y) = (0,0), while point F is on the R-pair centre on the other end having
coordinates (x,y) = (c,0). One more vector equation, H1 is obtained by substituting
(x,y) = (0,0) in F1, and another, H2 is obtained by substituting (x,y) = (c,0) in F2.
Next H1 and H2, two rational expressions, are converted to factored normal form. This
is the form where the numerator and denominator are relatively prime polynomials with
integer coefficients. The denominators for both H1 and H2 are the nonzero condition
x2

0 + x2
3, which can safely be factored out of each equation leaving the following two

vector equations with polynomial elements:

H1 =

[
−acosψ(x2

0 + x2
3)+2(−x0y1 + x3y2)

−asinψ(x2
0 + x2

3)−2(x0y1 + x3y2)

]
= 0; (9)

H2 =

[
−(bcosϕ +d)(x2

0 + x2
3)+ c(x2

0− x2
3)+2(−x0y1 + x3y2)

−bsinϕ(x2
0 + x2

3)+2c(x0x3)−2(x0y2 + x3y1)

]
= 0. (10)

The system of four displacement constraints on the I-O equations are H1 = 0 and
H2 = 0. However, these are trigonometric equations. We convert them to algebraic ones
using the tangent of the half-angle substitutions

u = tan
ψ

2
, v = tan

ϕ

2
,
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and

cosψ =
1−u2

1+u2 , sinψ =
2u

1+u2 ,

cosϕ =
1− v2

1+ v2 , sinϕ =
2v

1+ v2 .

The usual constraint equations in the kinematic mapping image space are obtained
by considering H1 and H2 with the tangent of the half-angles, giving four new algebraic
polynomials when considering the individual elements converted to factored normal
form. The denominators are u2 +1 and v2 +1 which can safely be factored out because
they are always non-vanishing. The resulting four algebraic equations are expressed in
terms of the elements of K1 = 0 and K2 = 0:

K1 =

 (au2−a)(x2
0 + x2

3)+2u2(−x0y1 + x3y2)+2(−x0y2 + x3y1)

−2au(x2
0 + x2

3)−2(1+u2)(−x0y2 + x3y1)

= 0; (11)

K2 =


(v2(b−d)+b−d)(x2

0 + x2
3)+(cv2 + c)(x2

0− x2
3)+

2(1+ v2)(−x0y1 + x3y2)

2cv2x0x3−2(v2 +bv+1)(x2
0 + x2

3)+2cx0x3

= 0. (12)

Factoring the resultant of the first and second elements of K1 = 0 with respect to u,
as well as the first and second elements of K2 = 0 with respect to v yields the two
displacement constraint equations in the image space:

a2(x2
0 + x2

3)−4(y2
1 + y2

2) = 0,

(b2− c2−d2)(x2
0 + x2

3)+2cd(x2
0− x2

3)+4c(x0y1 + x3y2)+

4d(−x0y1 + x3y2)−4(y2
1 + y2

2) = 0.

Inspection of the quadratic forms of these two equations reveals that they are two hy-
perboloids of one sheet, which is exactly what is expected for two RR dyads [6]. But
these are not the constraints we are looking for. We want to eliminate the image space
coordinates using K1 = 0 and K2 = 0 to obtain an algebraic polynomial with the tangent
half angles u and v as variables and link lengths as coefficients.

To obtain this algebraic polynomial we start by setting the homogenising coordinate
x0 = 1, which can safely be done since we are only concerned with real finite displace-
ments. Next, observe that the two equations represented by the components of K1 = 0
(Equation (11)) have a simpler form than those of K2 = 0 (Equation (12)), and are linear
in y1 and y2. Solving these two equations for y1 and y2 reveals that

y1 =
1
2

a(u2−2ux3−1)
u2 +1

, (13)

y2 =
1
2

a(u2x3 +2u− x3)

u2 +1
. (14)
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Equations (13) and (14) reveal the common denominator of u2+1, which can never
be less than 1, and hence may be factored out. Now we back-substitute these expressions
for y1 and y2 into the array components of Equation (12), thereby eliminating these
image space coordinates, and factor the resultant with respect to x3 which yields four
factors. The first three are

4c2, (u2 +1)3, (v2 +1)3.

None of these three factors can ever be zero and at the same time represent a real dis-
placement constraint, hence they are eliminated. The remaining factor is a polynomial
with only u and v as variables and link lengths a, b, c, and d, as coefficients. This is
exactly the constraint equation we desire. It is factored, and the terms collected then
distributed over u and v revealing

(a−b+ c+d)(a−b− c+d)u2v2 +(a+b− c+d)(a+b+ c+d)u2+
(a+b− c−d)(a+b+ c−d)v2−8abuv+(a−b+ c−d)(a−b− c−d) = 0.

(15)

Equation (15) is an algebraic polynomial of degree four which represents the I-O
equation for any planar 4R mechanism. It has two singular points at infinity, namely
those of the X- and Y -axes. These two singular points are either double points, or acn-
odes, i.e. isolated, or hermit points in the solution set of a polynomial equation in two
real variables. When both are double points the mechanism is a double crank, when
both are acnodes the mechanism is a double rocker. In the event the mechanism is a
folding four-bar then the degree of Equation (15) is less than four.

Freudenstein’s equation [4] is linear in the ratios of the link lengths and therefore is
ideally suited to identifying link lengths that minimise some mechanism performance
error in a least squares sense for approximate synthesis. The corresponding algebraic
form of Freudenstein’s equation is Equation (15), which is quadratic in the link lengths
a, b, c, and d, but still lends itself to linear least squares error minimisation subject
to quadratic constraints, and the method presented in [5]. However, in the following
example we shall use exact synthesis, using only three of the prescribed sets on I-O
pairs, and leave the approximate case to future work.

3 Example

This example serves to demonstrate that Equation (15) can be used to identify link
lengths to create a 4R mechanism to generate an arbitrary function. Here, the function
is specified in terms of the tangent of the half angle parameters v = f (u) as

v = 2+ tan
(

u
u2 +1

)
. (16)

Eight I-O pairs [u,v] were specified as, using Fig. 1 for reference,

[0,2],
[

1
4
,

30055
13419

]
,

[
1
2
,

49597
20471

]
,

[
3
4
,

48857
19383

]
,

[
1,

64699
25409

]
,

[
5
4
,

25536
10091

]
,

[
3
2
,

110471
44235

]
,

[
2,

49597
20471

]
.
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Since a function generator is scalable, and hence only the ratios of the link lengths
are needed, we set d = 1 and solve for the remaining three using the first, fourth, and
eighth I-O pairs, giving, in generic units of length, a =−0.23, b = 1.43, and c = 1.20.
Another linkage was identified using the second, fourth, and seventh I-O pairs giving
nearly identical link lengths. Note that it is not uncommon in computational methods to
obtain negative link lengths. These lengths are directed distances, and a =−0.23 means
that the distance is directed from the distal R-pair in link a to the origin, instead of the
other way around, as in [9].

In Fig. 2 the prescribed I-O function is plotted as the dashed curve, and the I-O
function generated by the two identified linkages are plotted as the solid curves. The
generated function shows good fidelity relative to the prescribed function over a rea-
sonable range of I-O angles.

Fig. 2. Graphical representation of results.

4 Conclusions

In this paper a new method for deriving the I-O equations of planar 4R function genera-
tors was presented. The Cartesian displacement constraints of the two dyads comprising
a planar 4R mechanism are expressed in terms of lengths and angles. This set of general
constraint equations is mapped to a planar projection of Study’s soma coordinates. The
reason for using this unconventional form of planar kinematic mapping is to be able to
apply these methods to spherical and spatial function generators in future work, where
all eight soma coordinates will be needed. The result of this step is two arrays in terms
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of the I-O angles, link lengths, and soma coordinates. The equations are converted from
trigonometric expressions to algebraic ones with the tangent of the half angle substi-
tutions. These equations are used to eliminate the soma coordinates. What remains is
factored using resultants, and all non-zero factors are eliminated, ultimately leaving an
algebraic polynomial that is of degree four in the tangent of the half angle parameters,
and quadratic in the link lengths.

The I-O equation derived in this paper is an algebraic, however nonlinear, polyno-
mial in terms of the link lengths. Regardless, this algebraic formulation will signifi-
cantly mitigate the effect of round-off errors observed in the numerical integration of
the trigonometric Freudenstein synthesis equations [5]. While the very same I-O equa-
tion is, necessarily, obtained starting from the Freudenstein equation, the point of the
presented material is to generalise the derivation of function generator I-O equations.
The ultimate goal is to use continuous I-O data sets to synthesise the very best linkage
to generate an arbitrary planar, spherical, or spatial function. Derivation of the planar
algebraic I-O equation is one of the first steps towards this goal.
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Abstract. This paper uses a formulation of the motion of the planar
four-bar mechanism in the projective three-space of planar kinematic
mapping and an algebraic version of the input-output relation is derived.
This fourth order algebraic curve describes a new convenient form of
the Freudenstein equation. Different geometric properties of the curve,
independent of the design parameters, are carried out and their impact
on the topology of the mechanism is shown. Furthermore the coefficients
of this algebraic input-output curve are interpreted geometrically in the
design parameter space which yields regions of parameter sets to the
different topologies of four-bar mechanisms.
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1 Introduction

Planar four-bar linkages and their variants are probably the biggest kinematic
success story of all time and are the practically most used planar mechanisms.
Therefore it is not surprising that they are the best investigated mechanisms.
Because of the simple design (Fig. 2), consisting of four bars connected via
four revolute joints, they are introduced and analyzed in every basic course in
kinematics. Four-bar mechanisms are used to transmit motion in many classical
applications that range from moving windshield wiper blades, oil pumps to moun-
tain bike suspensions. The analysis of these devices ranges from the discussion of
coupler curves to the differential geometric properties of the whole motion (see
e.g.[1]). Synthesis theory (see e.g. [9], [8], [7]) provides the designer with all the
tools to design a mechanism for a specific motion or functional relation between
the input and the output joint. It is well known that an exact functional relation
between input and output can only be achieved for three or four positions of
input and output link. In the early 1950s F. Freudenstein derived in his PhD
thesis ([3]) an elegant equation that relates the input and output angle of a
four-bar. This equation is widely used for function generation:

R1 cosφ−R2 cosψ +R3 = cos(φ− ψ), (1)
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In Eq. (1), which is nowadays called “Freudenstein equation”, Ri are functions of
the dimensional parameters a, b, c and d of the mechanism (see Fig. 1), φ and ψ
are the input and output angles.

Using complex numbers in the description of planar displacements K.H. Siecker
[10] derived input-output relations of different designs of four-bars and plotted
the resulting curves.

In this contribution an algebraic version of the input-output (IO) equation is
presented which, to the best of the authors’ knowledge, has never been derived
before.

2 Input-Output Equation

Let the base of the four-bar be denoted by d, both arms a, b and the coupler c
(Fig. 1, the sliders on the right side show the current values of the design variables
a, b, c, d).

Fig. 1. Four-bar

To derive the algebraic version of the IO-equation it makes sense to use the
algebraic version of the coordinate transformation matrix between the coupler
system Σ(C;x, y) and the base Σ0(A;X,Y ):

T =

 x20 + x23 0 0
−2x0y1 + 2x3y2 x20 − x23 −2x0x3
−2x0y2 − 2x3y1 2x0x3 x20 − x23

→
 1
X
Y

 = T

 1
x
y

 . (2)
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Using the fact that points C and D move on circles c1 : X = a cos(t), Y = a sin(t),
c2 : X = b cos(s) + d, Y = b sin(s) and replacing the coordinates X,Y with
the coordinates of C and D in the base frame (T · (1, 0, 0)T and T · (1, c, 0)T ,
respectively) one can obtain the following four equations:

a cos(t)(x20 + x23) + 2(x0y1 − x3y2) = 0,

a sin(t)(x20 + x23) + 2(x0y2 + x3y1) = 0,

(b cos(s) + d)(x20 + x23)− c(x20 − x23) + 2(x0y1 − x3y2) = 0,

b sin(s)(x20 + x23)− 2x0x3c+ 2(x0y2 + x3y1) = 0 (3)

Using the tangent of the half-angle substitutions (Weierstraß substitution),

cos(t) =
1− u2

1 + u2
, sin(t) =

2u

1 + u2
, cos(s) =

1− v2

1 + v2
, sin(s) =

2v

1 + v2

yields:

a(1− u2)(x20 + x23) + 2(1 + u2)(x0y1 − x3y2) = 0,

au(x20 + x23) + (1 + u2)(x0y2 + x3y1) = 0,

b(1− v2)(x20 + x23) + (1 + v2)((d− c)x20 + (d+ c)x23 + 2(x0y1 − x3y2)) = 0

bv(x20 + x23)− c(1 + v2)x0x3 + (y2x0 + y1x3)(1 + v2) = 0 (4)

Eqs. (4) describe the four-bar completely and they have a nice symmetry: if the
input-output parameters u and v are eliminated, then two equations in the four
homogeneous image space coordinates x0, x3, y1 and y2 remain.

H1 :(x20 + x23)a
2 − 4y21 − 4y22 = 0

H2 :(b2 − c2 + 2cd− d2)x20 + 4(cy1 − dy1)x0 + (b2 − c2 − 2cd− d2)x23+
4(cy2 + dy2)x3 − 4y21 − 4y22 = 0

They determine the coupler motion in the three dimensional image space P3.
Geometrically these equations describe two hyperboloids. The intersection curve
of both hyperboloids represents the kinematic image of the four-bar motion. This
interpretation is reported e.g. in Bottema-Roth [1] and it was successfully used
in the analysis of planar parallel manipulators (see e.g. [5]).

If, on the other hand, the image space coordinates xi, yj are eliminated from
Eqs. (4) then a single equation remains which describes the IO-relation of the
four-bar. Using the normalizing condition x0 = 1 yields:

k : Au2v2 +Bu2 − 8 abuv + Cv2 +D = 0, where (5)
A = (a− b+ c+ d) (a− b− c+ d) , B = (a+ b− c+ d) (a+ b+ c+ d)

C = (a+ b− c− d) (a+ b+ c− d) , D = (a− b+ c− d) (a− b− c− d)

It is of interest to note that all eight ± combinations of b, c, d, while a remaining
positive, appear as binary products in these coefficients. By using the normalizing
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condition x0 = 1 π-turns of the coupler frame with respect to the base frame are
excluded. This case is treated by using x0 = 0 as a normalizing condition in a
second computation, but here only complex or discrete solutions are obtained,
which are of no interest at this point. Some elementary properties of the IO-
equation (5), which are independent of the design parameters of the four-bar
are:

1. k is a quartic curve,
2. k has two double points, the points at infinity of the u and v axes of the

parameter plane,
3. k is of class 8 and has 12 inflection points and 8 double tangents,
4. k has genus 1, is therefore an elliptic curve.

These properties will be proven in the following paragraphs. Item one of this
list is obvious from Eq. (5). The second item can be shown as follows: at first
Eq. (5) is homogenized with homogenizing coordinate w.

kh : (−d+ a+ c− b)(−d+ a− c− b)w4 + (d+ a− c+ b)(d+ a+ c+ b)u2w2−
8abuvw2 + (−d+ a− c+ b)(−d+ a+ c+ b)v2w2+

(d+ a+ c− b)(d+ a− c− b)u2v2 = 0 (6)

Differentiation with respect to the three variables u, v, w yields:

∂kh
∂u

= 2(d+ a− c+ b)(d+ a+ c+ b)uw2−

8abw2v + 2(d+ a+ c− b)(d+ a− c− b)uv2 = 0 (7)
∂kh
∂v

= − 8abuw2 + 2(−d+ a− c+ b)(−d+ a+ c+ b)vw2+

2(d+ a+ c− b)(d+ a− c− b)u2v = 0 (8)
∂kh
∂w

= 4(−d+ a+ c− b)(−d+ a− c− b)w3+

2(d+ a− c+ b)(d+ a+ c+ b)u2w−
16abuvw + 2(−d+ a− c+ b)(−d+ a+ c+ b)v2w = 0 (9)

A simple computation shows that the four Eqns. (6), (7), (8) and (9) in the
three unknowns u, v, w have two common solutions which are independent of the
design parameters a, b, c, d:

D1 := {w = 0, u = 1, v = 0}, D2 := {w = 0, u = 0, v = 1} (10)

The corresponding points are the points at infinity of the u- and v-axis. Both
points can have real or complex tangents depending on the values of the design
parameters. Possible combinations of these cases have different meanings for the
corresponding mechanisms which will be discussed separately.

The third item of the properties list follows directly from the Plücker formula
which links the class ν, the degree n, the number of double points d and the
number of cusps r:

ν = n(n− 1)− 2d− 3r, (11)
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As the degree of the IO equation is four, the number of double points is two
and the number of cusps is zero, the class is eight. The genus one of the curve,
independent of the design parameters, also follows from classical formulas and
can be found already in the textbook of Fladt [2].

From these properties and a theorem on algebraic curves proven by A. Harnack
in [4], which relates the branches of an algebraic curve to its genus, one can
immediately conclude that a four-bar can never have more than two assembly
modes. Harnack proofs that an algebraic curve of genus p can have at most p+ 1
branches. The input-output equation k is a quartic curve of genus 1, therefore,
following Harnack, it can have at most two branches. Each branch corresponds to
one assembly mode. This concludes the proof of the above mentionend properties.

The coefficients A,B,C,D in Eq. (5) are closely related to the well known
Grashof conditions and determine the topology of the four-bar. The reality of the
tangents of the double points D1 and D2 decides the topology of the mechanism.
There are three possibilities:

1. The tangents of both double points are real, that means that both arms can
completely turn around; the mechanism is a double crank (Fig. 2).

Fig. 2. Four-bars and IO-curves: double crank, two assembly modes

2. One pair of double point tangents is real and the other is complex conjugate
(the double point is an acknode or hermit point). The mechanism is a crank-
rocker. Which arm makes the rocker depends on the double point which is
the acknode (Fig. 3). In the figure one can also see that the curve consists of
two different branches and this means that the mechanism has two assembly
modes. An easy computation yields the maximum and minimum of the rocker
angle in both assemblies. The corresponding points on the IO curve are
shown in Fig. 3 as M,U on one branch and N,V on the other branch. The
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interval between the the maximum and the minimum of the v-values (distance
of the horizontal tangents) yields the swing angle of the rocker.

Fig. 3. Four-bars and IO-curves: crank-rocker, two assembly modes

3. Both pairs of double point tangents are complex (both double points are
acknodes): The mechanism is a double rocker. The IO curve is finitely closed
(Fig. 4). The enclosing rectangle with sides parallel to the u- and v- axes
determines the maximum and minimum rocker angles. The dashed curves in
Fig. 4 are the curves given by the partial derivatives.

Fig. 4. Four-bars and IO-curves: double rocker,
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2.1 Special Cases

Several special cases can occur in a four-bar mechanism. All of them also show
up in special IO curves. In the following some of these designs are discussed and
linked to special types of the IO curves.

Degree reduction of the IO curve: The degree of the IO curve drops when the
coefficient A = (d+ a+ c− b) (d+ a− c− b) of x2y2 in Eq. (6) vanishes. There
are several possibilities:

1. (d+ a− c− b) = 0, then kh reduces to

w2(a2w2+a2v2−2abw2−2abuv−acw2−acv2+b2w2+b2u2+bcw2+bcv2) = 0.

kh splits into a hyperbola and the line at infinity. The mechanism is a folding
four-bar (Fig. 5).

Fig. 5. Folding four-bar a+ d = b+ c.

2. (d+ a+ c− b) = 0. then kh reduces to

w2(a2w2+a2v2−2abw2−2abuv+acw2+acv2+b2w2+b2u2−bcw2−bcu2) = 0.

This case has only one folding assembly, but generates no mechanism, because
the hyperbola is complex.
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3. Further degree reduction occurs when a = b and c = d. This yields the
parallel-bar mechanism. Then kh reduces to three linear terms:

w2(−y + x)(bu− bv + du+ dv) = 0 (12)

The first term in Eq. (12) corresponds to the line at infinity. The second term
is the IO equation for the parallel bar, which is obviously a 1:1 transmission
and the third term is the constant ratio transmission equation for the anti-
parallelogram mechanism.

Fig. 6. Parallel-bar mechanism, both assembly modes

Folding four-bar mechanisms: Folding of the four-bar can only occur when the
input angle is either 0◦ or 180◦. The design conditions for folding are that the
sum of two sides is equal to the sum of the other two. Hence three possibilities
exist: 1. a+ b = c+ d, 2. a+ c = b+ d and 3. a+d=b+c. The last case had been
treated already in the last paragraph. The two other cases remain.

1. a+ b = c+ d. Substitution into Eq. (6) yields:

a(a− c)u2v2 + w2(a+ b)(a− c+ b)u2 − 2abuvw2 + bw4(b− c) = 0

Fig. 7 shows the general situation on the left. The folding happens at u = 0
and v =∞. When additionally c = b holds, then kh splits into the line u = 0
and a cubic curve.

u(aw2u+ auv2 + bw2ux− 2bw2v − buv2) = 0

The line u = 0 belongs to a full rotation capability of the mechanism about
the point B in the folded position. The corresponding mechanism is a kite
four-bar (Fig. 7 right).

2. a+ c = b+ d Substitution into Eq. (6) yields:

a(a+ c)u2w2 − 2abuvw2 + (b− c)v2w2 + (a+ c− b)(a− b)u2v2 = 0

The coefficient of w4 vanishes and the folding happens at u = v = 0 (Fig. 8).



An Algebraic Version of the IO Equation of Planar Four-Bar Mechanisms 9

Fig. 7. Left: Folding four-bar mechanism a+ b = c+ d right: Kite-mechanism

Fig. 8. Folding four-bar mechanism a+ c = b+ d

3 Design Parameter Space

The nice structure of the coefficients A,B,C,D gives reason for an interpretation
in a three dimensional projective space. As d can never become zero it is chosen
as homogenizing coordinate and set to d = 1. It turns out that the eight linear
factors in Eq. (5) can be interpreted as eight planes determined by the faces of a
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Fig. 9. Geometric interpretation of the linear factors of Eq. (5).

regular octahedron with vertices V1 = (1, 0, 0), V2 = (−1, 0, 0), V3 = (0, 1, 0), V4 =
(0,−1, 0), V5 = (0, 0, 1), V6 = (0, 0,−1). The eight planes cluster the design space
into several different sectors that give answers to the question if the double points
are knots or hermits. The reality of the double point tangents yield necessary
conditions for the decision if an arm of the four-bar is a crank or a rocker.
Fig. 9 shows four out of the eight planes and a point P in a sector bounded by
three planes. It can be shown that this region corresponds to the case of the
crank-rocker mechanism.

More important is the fact that the IO-equation can easily be used for
approximate function generation (see [6]).

4 Conclusions

In the paper an algebraic version of the input-output equation of planar four-bar
mechanisms was derived. It turned out that the curve is in general of degree
four and several algebraic and differential geometric properties of this curve were
derived and linked to the topology of the corresponding mechanisms. It was
shown that special topologies of the mechanism correspond to special designs of
the IO curve. In the special cases this curve has either a finite double point or
the degree drops. It is believed that this work can be a starting point for a new
type of IO synthesis for four-bar mechanisms.
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Abstract

In this paper the algebraic input-output (IO) equations for planar RRRP and PRRP
linkages are derived by mapping the linkage displacement constraints into Study's soma
coordinates and then using tangent-half angle substitutions to transform the trigono-
metric into algebraic expressions. Both equations are found to be equivalent to the
one that has already been derived for RRRR linkages, giving exciting new insight into
kinematic analysis and synthesis of planar four-bar linkages. The algebraic properties
of the IO curve equations yield information regarding the topology of the linkage, such
as the sliding position limits of the prismatic joints and/or the angle limits of the ro-
tational joints. Additionally, the utility of the equations is successfully demonstrated
with two approximate synthesis examples.

Keywords: function generator; four-bar linkages; Study soma coordinates.
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1 Introduction

In 1954 F. Freudenstein developed an elegant trigonometric equation for planar four-bar
linkages connected by four rotational (R) joints (Freudenstein, 1954). The equation, nowa-
days known as the Freudenstein equation, is widely used in function-generator analysis and
synthesis theory. It gives designers a tool to identify the link lengths of mechanisms that
optimally transform, typically in a least-squares sense, a speci�c input angle into a desired
output angle governed by a speci�ed functional relation, f(ψ) = ϕ. Let d be the distance
between the centres of the R-joints connected to the relatively non-moving base; a the driver
or input link length which is moving with an angle ψ; b the follower or output link length
which is moving with an angle ϕ; and c the coupler length of a planar RRRR linkage, see
Fig. 1. Then, the displacement of the mechanism in terms of the link lengths a, b, c, d,
the input angle ψ, and the output angle ϕ is governed by the following input-output (IO)
equation

k1 + k2 cos(ϕi)− k3 cos(ψi) = cos(ψi − ϕi). (1)

Eq. (1) is linear in the ki Freudenstein parameters, which are de�ned in terms of the link
length ratios as:

k1 ≡
(a2 + b2 + d2 − c2)

2ab
; k2 ≡

d

a
; k3 ≡

d

b
.

X

Y

E

c

a
b

d

F

x

y

Figure 1: Planar 4R function generator.

In (Hayes et al., 2018) the authors Hayes, Husty, and Pfurner provided an alternative
derivation of a general algebraic IO equation for the same type of mechanism:

Au2v2 +Bu2 + Cv2 − 8abuv +D = 0 (2)
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where

A = (a− b− c+ d)(a− b+ c+ d) = A1A2;

B = (a+ b− c+ d)(a+ b+ c+ d) = B1B2;

C = (a+ b− c− d)(a+ b+ c− d) = C1C2;

D = (a− b+ c− d)(a− b− c− d) = D1D2;

u = tan
ψ

2
;

v = tan
ϕ

2
.

Eq. (2) is an algebraic quartic equation in terms of input and output joint angle param-
eters u and v. It was obtained by mapping the linkage constraint equations of the input
and output links, i.e., circular motion for the distal R-joints, into Study's soma coordi-
nates (Study, 1903; Bottema and Roth, 1990), converting the trigonometric expressions into
algebraic ones by applying the tangent of the half-angle, or Weierstraÿ, substitutions (Bradley
and Smith, 1995), and �nally eliminating the Study coordinates to obtain the quartic IO
curve (Hayes et al., 2018; Husty and Pfurner, 2018). The soma coordinates are used to
represent distinct spatial rigid body displacements in three dimensional Euclidean space as
distinct points in a higher dimensional projective space. Eight projective soma coordinates
result from mapping a displacement to the seven dimensional projective kinematic mapping
image space. A displacement can be represented in Euclidean space as a change in position
and orientation of a moving coordinate system expressed with respect to a non-moving one.
The �rst four soma coordinates are typically established as the four Euler rotation parame-
ters (Bottema and Roth, 1990; Husty et al., 1997) to quantify the new orientation, while the
remaining four represent the translation component of the displacement and are obtained as
distinct linear combinations of the Cartesian coordinates of the new location of the origin of
the moving coordinate system and the Euler parameters. For planar displacements two of
the Euler parameters and two of the translation parameters are identically zero.

We believe that this new method for determining the IO equation can be further ex-
panded to four-bar mechanisms of any topology for planar, spherical, and spatial mecha-
nisms. Ultimately, this would provide designers with a versatile tool for optimal synthesis
of function generating mechanisms. While others have examined the possibilities of a uni-
�ed approach to four-bar mechanism analysis and synthesis, see (Bai and Angeles, 2008)
for example, proposed methods failed to identify a single algebraic and constraint-based IO
equation that is truly generalised to four-bars containing two, one, or no prismatic (P) joints.
Planar four-bar mechanisms containing more than two P-joints result in linear IO relations
and can only generate translations. Hence, they are not considered herein.

In this paper we will derive the algebraic IO equations for RRRP, and PRRP linkages
using the same technique developed in (Hayes et al., 2018). The main goal is to demonstrate
that the method of deriving the algebraic forms of the IO equations using Study's soma
and elimination theory (Salmon, 1885; Cox et al., 1997) lead to precisely the same equation,
namely Eq. (2), with only the roles of constant and variable changing for certain design
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parameters. We will then interpret some important characteristics of the resulting algebraic
IO curves in the coordinate plane of the input and output variables employing the theory of
planar algebraic curves (Husty et al., 1997; Salmon, 1879a,b; Primrose, 1955; Hilton, 1920;
Harnack, 1876). Finally, we will illustrate these characteristics with two function generator
approximate synthesis examples using the algebraic form of the associated IO equation.

2 Algebraic IO Equation for RRRP Function Generators

c

a

d

b

O

E

F

G
X

Y

x

y

Figure 2: Planar RRRP function generator.

The planar RRRP linkage, also called a crank-slider, is a widely used mechanism found
in a variety of applications, such as piston-cylinder engines or reciprocating pumps (Wun-
derlich, 1970; Uicker et al., 2017). This linkage transforms a rotational input motion into
a reciprocating translational output motion. A schematic of the linkage type is shown in
Fig. 2. In the �rst step, as in the derivation of Eq. (2), the displacement constraints of the
driver and follower have to be de�ned (Hayes et al., 2018; Husty and Pfurner, 2018). For
that purpose, let Σ1 be a �xed Cartesian coordinate system whose origin is at the centre
of the ground-�xed driver R-joint, E the intersection point of the driver and coupler link
centre lines, and F the intersection point of the coupler and the follower link centre lines.
While point E is moving on a circle with a radius of length a around the origin O of Σ1,
F is moving on a line which intersects the baseline at point G making a �xed angle ϕ at a
distance d from the origin of Σ1. Hence, the positions of E and F can be described as points
in Σ1 by the following array element constraint equations

XE − a cosψ = 0,
YE − a sinψ = 0,

(3)

XF − d− b cosϕ = 0,
YF − b sinϕ = 0.

(4)
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Note that these constraint equations are identical to those formulated for the 4R linkage
in (Hayes et al., 2018), but where the roles of b and ϕ are reversed: b here is a variable
distance and ϕ is a �xed angle. This allows us to proceed in determining the IO equation
in the same manner. Let Σ2 be a coordinate frame, which moves with the coupler, whose
origin is centred at E with x-axis pointing towards F . Then the homogeneous transformation
matrix, expressed in soma coordinates (x0 : x3 : y1 : y2), between the two coordinate frames
is given by (Hayes et al., 2018)

T =
1

x2
0 + x2

3

 x2
0 + x2

3 0 0

2(−x0y1 + x3y2) x2
0 − x2

3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0 − x2

3

 . (5)

For example, a point (x, y) in Σ2 can be expressed as a point (X, Y ) in Σ1 using the
coordinate transformation  1

X

Y

 = T

 1

x

y

 (6)

Now, in the coordinate frame Σ2 the two end points of the coupler E and F have coordinates
(x, y) = (0, 0) and (c, 0), respectively. These are transformed using Eq. (6) to their represen-
tations in Σ1, and the results are equated to the coordinates for points E and F in Eqs. (3)
and (4), which, when simpli�ed, reveal the following four array element position constraint
equations in terms of the link lengths, input and output angles ψ and ϕ, as well as the four
soma coordinates x0, x3, y1, and y2:

−a cosψ(x2
0 + x2

3) + 2(−x0y1 + x3y2) = 0;

−a sinψ(x2
0 + x2

3)− 2(x0y1 + x3y2) = 0;

−(b cosϕ+ d)(x2
0 + x2

3) + c(x2
0 − x2

3) + 2(−x0y1 + x3y2) = 0;

−b sinϕ(x2
0 + x2

3) + 2c(x0x3)− 2(x0y2 + x3y1) = 0.

 (7)

The tangent of the half angle substitutions

u = tan
ψ

2
, v = tan

ϕ

2
, (8)

cosψ =
1− u2

1 + u2
, sinψ =

2u

1 + u2
, (9)

cosϕ =
1− v2

1 + v2
, sinϕ =

2v

1 + v2
, (10)

are used to transform the trigonometric constraint-based relations in Eq. (7) to algebraic
equations. After eliminating the image space coordinates xi and yi using resultants and
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elimination theory, then collecting the results for the variables u and b, the following algebraic
IO equation emerges

k : = Au2b2 +Bb2 + Cu2b− 8abuv +Db+ Eu2 + F = 0, (11)

where

A = v2 + 1,

B = v2 + 1,

C = −2 (v − 1) (v + 1) (a+ d) ,

D = 2 (v − 1) (v + 1) (a− d) ,

E =
(
v2 + 1

)
(a+ c+ d) (a− c+ d) ,

F =
(
v2 + 1

)
(a+ c− d) (a− c− d) .

By rearranging Eq. (11) it can easily be shown that it is identical to Eq. (2) when the
terms multiplying u and v are collected and factored instead of u and b. The di�erence
from a designers' perspective is only that the variables of the 4R linkage are the IO angle
parameters u and v, while those for the RRRP linkage are the input angle parameter u and
output slider distance b.

2.1 Interpretation of the RRRP IO Equation

Analysing Eq. (11) using the theory of planar algebraic curves (Husty et al., 1997; Primrose,
1955) one can see that it has the following characteristics which are independent of the
constant design parameter lengths a, c, d, and constant angle parameter v.

1. Eq. (11) is of degree n = 4 in variables u and b.

2. It contains two double points, DP = 2, each located at the intersections with the line
at in�nity of the u- and b-axis in the u-b variable design parameter plane.

3. It has genus p = 1, hence, it is an elliptic curve and the maximum number of assembly
modes of the linkage becomes m = p + 1 = 2 (Husty and Pfurner, 2018; Harnack,
1876).

These three characteristics are now proved to be true for all non-degenerate planar RRRP
linkages. The �rst item is obvious by inspection. The proof of the second item requires that
Eq. (11) be homogenised. If we use the arbitrary homogenising coordinate w we obtain

kh : = Au2b2 +Bb2w2 + Cu2bw − 8avubw2 +Dbw3 + Eu2w2 + Fw4 = 0, (12)

which now contains seven terms all homogeneously of degree 4 in terms of u, b, and w. The
three partial derivatives of kh with respect to the three variable coordinates u, b, and w are

7



all homogeneously of degree 3:

∂kh
∂u

= 2Aub2 + 2Cubw − 8avbw2 + 2Euw2 = 0;

∂kh
∂b

= 2Au2b+ 2Bbw2 + Cu2w − 8avuw2 +Dw3 = 0;

∂kh
∂w

= 2Bb2w + Cu2b− 16avubw + 3Dbw2 + 2Eu2w + 4Fw3 = 0.


(13)

Equations (12) and (13) have two common solutions which are independent of the link lengths
a, c, and d, as well as angle parameter v, which are embedded in the coe�cients A, B, C,
D, E, and F :

S1 := {u = 1, b = 0, w = 0}, S2 := {u = 0, b = 1, w = 0}. (14)

These two points, called double points, common to all algebraic IO curves for every planar
RRRP four-bar mechanism are the points on the line at in�nity w = 0 of the u- and b-axes,
respectively. Each of these double points can have real or complex tangents depending on
the values of the three constant link lengths a, c, and d, which in turn determines the nature
of the mobility of the linkage. Since these two double points are uniquely de�ned relative
to the regular points on the curve, they are also known as singular points (Primrose, 1955;
Hilton, 1920).

The discriminant of Eq. (12), evaluated at a double point, reveals whether that double
point has a pair of real or complex conjugate tangents (Husty et al., 1997; Hilton, 1920) in
turn yielding information about the topology of the mechanism (Husty and Pfurner, 2018;
Hilton, 1920). If the tangents are complex conjugates the double point is an acnode: a
hermit point that satis�es the equation of the curve but is isolated from all other points
on the curve. If this is the case then the slider travel, represented by b, is restricted. The
discriminant and the meaning of its value are (Husty et al., 1997; Hilton, 1920)

∆ =

(
∂2kh
∂u∂w

)2

− ∂2kh
∂u2

∂2kh
∂w2


> 0 ⇒ two real distinct tangents (crunode),
= 0 ⇒ two real coincident tangents (cusp),
< 0 ⇒ two complex conjugate tangents (acnode).

For the homogeneous IO equation of an RRRP linkage, Eq. (12), the discriminant of the
point at in�nity (u : b : w) = (0 : 1 : 0) on the b-axis is

∆ = −4(v2 + 1)2, (15)

meaning that the double point associated with the output slider is always an acnode in-
dependently of the link lengths and orientation of the slider. It should not surprise that
the discriminant of Eq. (12) is always negative, since the slider must always have �nite
translation limits.

To determine whether the rotational input link is a crank or a rocker, it is su�cient to
determine if the numerical value of the coe�cient E in Eq. (11) is less than zero when the

8



coordinates in Σ1 are transformed by the rotation about OΣ1 required to make v = 1, i.e.,
ϕ = π/2. Since the two factors (v2 + 1) and (a + c + d) in E must always be greater than
zero, it is a simple matter to show that the condition for input link a to be a crank reduces
to

a− c+ d < 0. (16)

The proof for the third item comes from the de�nition of genus, which in this case is the
di�erence between the maximum number of double points for a curve of degree 4 and the
actual number of double points it possesses. The maximum number of double points, DPmax

for an arbitrary algebraic curve of degree n is given by (Hunt, 1978)

DPmax =
1

2
(n− 1)(n− 2).

The maximum number of double points for a curve of degree 4 is 3. We see that because the
algebraic IO curve has only 2 double points, it is de�cient by 1, hence its genus is p = 1.
Because of this, it cannot be parameterised, and it is de�ned to be an elliptic curve (Primrose,
1955). This de�nition does not mean that the curve has the form of an ellipse, rather that
the curve can be expressed, with a suitable change of variables, as an elliptic curve. In the
plane, every elliptic curve with real coe�cients can be put in the standard form

x2
2 = x3

1 + Ax1 +B

for some real constants A and B. We now consider some illustrative RRRP examples.

I

II

SP: singular point of the 

input parameters

𝑆𝑃1

∆𝒃𝑰𝒕𝒐𝒕

∆𝒖𝑰𝒕𝒐𝒕

∆𝒃𝟏𝟐

𝑆𝑃2
∆𝒃𝟏𝟏

𝑆𝑃4

𝑆𝑃3

∆𝒖𝑰𝑰𝒕𝒐𝒕

∆𝒃𝟐𝟏
∆𝒃𝑰𝒕𝒐𝒕

∆𝒃𝟐𝟐

𝑏

𝑢

𝑎

𝑐2

𝑑

𝜑𝜓 = 124°

𝑏1 = 4.02

𝑏2 = 2.26

𝑐1

Figure 3: RRRP where a = 2.8, c = 1.7, d = 1, v = 1.5.

Example 1. Design parameter selection: a = 2.8; c = 1.7; d = 1; v = 1.5.
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With the chosen design parameters, the input link a is a rocker because Eq. (16) is > 0
for some −π ≤ ψ ≤ π. Two di�erent assembly modes I and II can be identi�ed examining
Fig. 3. Each assembly mode has two locations where the mechanism is positioned at an
input singular con�guration where the tangents of the IO equation are vertical, separating
each assembly mode into two working modes. If the link is assembled according to the upper
right part of the curve (assembly mode I), ∆uItot and ∆bItot correspond to the maximum
swing angle and maximum sliding position, respectively. Considering each working mode
separately, ∆b11 and ∆b12 correspond to the maximum sliding position in assembly mode I.
Similarly, if the link is assembled according to the lower left part of the curve (assembly
mode II), ∆uIItot and ∆bIItot correspond to the maximum swing angle and maximum sliding
position. The maximum sliding positions for each working mode are ∆b21 and ∆b22.

Figure 4: RRRP where a = 2.8, c = 1.7, d = 1, v = 0.

Example 2. Design parameter selection: a = 2.8; c = 1.7; d = 1; v = 0.
Taking the same design parameters, but changing the orientation of the slider to v = 0

reveals a representation of the IO equation as shown in Fig. 4. Again, examining Eq. (16)
shows that the expression is not < 0 for every −π ≤ ψ ≤ π, hence, the input link is a
rocker. The linkage is once again split into two assembly modes, I and II. Due to the
chosen parametrisation according to Eq. (8) and as ψ = π is included in assembly mode I,
the graph contains the point at u = ±∞, explaining the asymptotes of the IO equation. The
maximum swing angle as well as the maximum sliding position can be evaluated analogous
to the previous example.

Example 3. Design parameter selection: a = 2; c = 2.5; d = 1; v = 0.2.
These design parameters yield an IO equation illustrated in Fig. 5. In contrast to the

previous examples, Eq. (16) is < 0 meaning that the input link a can fully rotate. This
linkage also possesses two assembly modes I and II, resulting in identical maximum sliding
position, ∆bItot = ∆bIItot. In this example, points where the mechanism is located at an
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Figure 5: RRRP where a = 2, c = 2.5, d = 1, v = 0.2.

input singular con�guration do not exist. The output linkage movement is unambiguously
de�ned via the linkage assembly.

Figure 6: RRRP where a = c = 1.7, d = 1, v = 0.

Example 4. A very special RRRP linkage arises when a = c and v = 0.
With these conditions, the factors of Eq. (11) simplify to

(b+ d)(bu2 + 2cu2 + du2 + b− 2c+ d) = 0. (17)

As a result, this special IO equation is decomposed into two operation modes. Moreover,
two additional double points can be observed. These double points, the bifurcation points,
BP1 and BP2, are always located at

11



BP1(+1,−d), BP2(−1,−d).

This IO equation has four di�erent working modes, the input link a is able to rotate com-
pletely, and the mechanism has the ability to fold. From Eq. (17), the global maximum is
found at bmax = 2c− d and the global minimum is the asymptote at bmax = −2c− d which
leads to the following four maximum sliding positions ∆bimax

∆b1max , = 4a = 4c ∆b2max , = 2c ∆b3max , = 2c ∆b4max , = 0. (18)

An example of the IO equation (where a = c = 1.7 and d = 1) is illustrated in Fig. 6.

2.2 RRRP Approximate Synthesis

To show that Eq. (11) can be used to generate arbitrary functions of the form f(ψ) = b, an
example approximating the curve

b = cos(ψ) (19)

is considered. For this example, 50 sample points were evenly distributed within the interval
−3 ≤ u ≤ 3.

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1

1.5
Example for Approximate Synthesis - RRRP

Figure 7: a = 0.9426, c = 1.1587, d = 1, v = 1.5× 10−5.

The Newton-Gauss algorithm was used to iteratively minimise the structural error, the
error residual found between the prescribed curve and the curve generated by the link-
age (Tinubu and Gupta, 1984). The optimised function approximation with an RRRP
linkage is obtained with the identi�ed design parameters a = 0.9426, c = ±1.1587, d = 1,
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and v = ±1.5× 10−5. Fig.7 illustrates the structural error of the identi�ed linkage. This
example underscores the applicability of the general algebraic IO equation for RRRP in
addition to RRRR linkages.

3 Algebraic Equation for PRRP Function Generators

As it was demonstrated that the general algebraic IO equation is useful for RRRP mechanism
synthesis, it is reasonable to expect that the equation is equally valid for PRRP mechanisms.
We won't consider mechanisms with greater than two P-joints since such linkages can only
generate translations. The PRRP mechanism consists of one prismatic, two rotational, and
another prismatic joint. In addition to a translational output motion b, the input motion a
of the function generator is also a translation governed by a functional relation expressed by
f(a) = b. The most common con�guration is the elliptical trammel whose prismatic joint
directions are perpendicular to each other, but for a general PRRP mechanism the P-joint
axes may have any non-zero angle between them, as illustrated in Fig. 8.

a

X

Y

E

F

d

G

c

b

Figure 8: A PRRP linkage.

Since the two prismatic joints are both moving on a line, the initial constraint equations
for the PRRP can again be set up according to Eqs. (3) and Eqs. (4). Note that in this
particular case, the variables of the IO equation become a and b, while u, v, c, and d
represent the design parameters. According to the same derivation for the RRRP and the
RRRR function generators, but instead treating both a and b as variables, the IO equation
of the function generator becomes

Aa2 +Bb2 + Cab+Da+ Eb+ F = 0, (20)
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where the coe�cients are factors of constants u, c, d, and v:

A =
(
v2 + 1

) (
u2 + 1

)
;

B =
(
v2 + 1

) (
u2 + 1

)
;

C = −2 (uv − u+ v + 1) (uv + u− v + 1) ;

D = 2 d
(
v2 + 1

)
(u− 1) (u+ 1) ;

E = −2 d (v − 1) (v + 1)
(
u2 + 1

)
;

F = −
(
v2 + 1

) (
u2 + 1

)
(c− d) (c+ d) .

Again, by collecting the variables in a di�erent way it can easily be shown that Eq. (20)
is identical to Eqs. (2) and (11).

3.1 Interpretation of the PRRP IO Equation

Eq. (20) has the following characteristics.

1. It is of degree n = 2.

2. It is a quadratic equation in two variables, thus, the IO equation is a conic section.

3. It's IO curve possesses genus p = 0, hence the maximum number of assembly modes
of the linkage is m = p+ 1 = 1 (Husty and Pfurner, 2018; Harnack, 1876).

From the discriminant, ∆q, of the quadratic form associated with the conic section implied
by Eq. (20)

∆q =

∣∣∣∣ A C/2
C/2 B

∣∣∣∣ , (21)

we can, according to Tab. 1, determine whether the conic is an ellipse, parabola or hyper-
bola (Glaeser et al., 2016). For Eq. (20) the discriminant reduces to

∣∣∣∣ (v2 + 1) (u2 + 1) − (uv − u+ v + 1) (uv + u− v + 1)
− (uv − u+ v + 1) (uv + u− v + 1) (v2 + 1) (u2 + 1)

∣∣∣∣ =

4 (uv + 1)2 (u− v)2 (22)

Discriminant of a non-degenerated conic Shape
∆q > 0 ellipse
∆q = 0 parabola
∆q < 0 hyperbola

Table 1: Impact of the discriminant value on the shape of function the PRRP can generate.
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Since Eq. (22) is independent of link lengths then ∆q ≥ 0 for all PRRP linkages and the
conic represented by Eq. (20) can never be an hyperbola. The graph of the IO equation is
always an ellipse with but one exception: if u = −1/v or u = v, the conic becomes a special
parabola, i.e., two parallel lines. A distinguished ellipse, the circle, arises when A = B and
C = 0 which are the cases for

u = ±1, v = 0 u = 0, v = ±1, (23)

i.e., when the axes are perpendicular to each other. These �ndings align with the litera-
ture (Sangwin, 2009) proving that this type of mechanism generates an ellipse, con�rming
the validity of the derived PRRP IO equation.

Figure 9: PRRP where v = 1.7, u = 0.8, c = 2, d = 1.

Example 5. Design parameter selection: v = 1.7; u = 0.8; c = 2; d = 1.
Fig. (9) illustrates the maximum sliding positions atot and btot. Considering a to be the

input slider, two singular points separate the curve into two working modes. Hence, the
output slider can have two di�erent maximum sliding positions ∆b1 and ∆b2.

3.2 PRRP Approximation Synthesis

To show that Eq. (20) can also be used to generate a general function f(a) = b, we now
consider an example where the desired function is

b = cos(a). (24)

For this example 50 sample points are selected to be evenly distributed within the interval
0 ≤ a ≤ 2. Again, the Newton-Gauss algorithm is used to minimise the structural error.
As a result, the best approximation with a PRRP linkage is obtained with the identi�ed
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constants c = 2.0313, d = 1, u = −1.1868, and v = 0.1353, or c = 2.0313, u = 1.1868 and
v = −0.1353. The designer may chose between these two di�erent assembly modes. The
structural error is illustrated in Fig. 10. The desired curve is illustrated in red, and the blue
curve represents the approximation obtained by the PRRP linkage. For this example, the
approximation obtained by the PRRP function generator is notably close to the prescribed
curve. Hence, this example con�rms the applicability of Eq. (20) for approximate synthesis
problems.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Example for Approximate Synthesis - PRRP

Figure 10: PRRP: v = 0.1353, u = −1.1868, c = .03132, d = 1.

4 Conclusions

In this paper two algebraic IO equations for RRRP and PRRP linkages were derived. It was
shown that these equations are identical to the algebraic equation for RRRR linkages derived
in (Hayes et al., 2018). We believe this to be a remarkable result having never been reported
in the vast body of archival literature collected since antiquity! Analysing the equations
revealed that the RRRP linkage can have a maximum of two assembly modes which can
be divided into two working modes. A folding mechanism occurs if a = c and v = 0. The
PRRP linkage has only one assembly mode. It was demonstrated that its IO curve is either
an ellipse or if u = −1/v or u = v two parallel lines. Furthermore, both equations were
veri�ed by a synthesis example that approximated the respective design parameters. Being
able to expand the algebraic IO equation to two additional linkages, RRRP and PRRP, helps
designers to choose the optimal linkage with the optimal design parameters with reduced
time and e�ort. The generalisation of this paper is an important step towards the main goal
of synthesising the optimal linkage of planar, spherical, or spatial function generators.
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A General Method for Determining Algebraic
Input-output Equations for Planar and
Spherical 4R Linkages

Mirja Rotzoll1, M. John D. Hayes1, Manfred L. Husty2, and Martin Pfurner2

Abstract A new and completely general method for determining the algebraic input-
output (IO) equations for planar and spherical 4R linkages is presented in this pa-
per. First, the forward kinematics transformation matrix of an arbitrary planar or
spherical open 4R kinematic chain is computed in terms of its Denavit-Hartenberg
parameters, where the link twist and joint angles are converted to their tangent half-
angle parameters. This transformation matrix is mapped to its corresponding eight
Study coordinates. The serial kinematic chain is conceptually closed by equating
the forward kinematics transformation to the identity matrix. Equating the two cor-
responding Study arrays yields four equations in terms of the four revolute joint
angle parameters. Gröbner bases are then used to eliminate the two intermediate
joint angle parameters leaving an algebraic polynomial in terms of the input and
output joint angle parameters and the four twist angle or link length parameters. In
the limit, as the sphere radius becomes infinite and the link twist angle parameters
are expressed as ratios of arc length and sphere radius in the general spherical alge-
braic IO equation, the only terms that remain are those in the planar 4R IO equation.

Key words: Algebraic input-output equation, planar and spherical four-bar linkage,
Study coordinates, kinematic mapping.

1 Introduction

Four-bar linkages, consisting of four rigid bodies connected by revolute (R) joints
have fascinated mathematicians and engineers for centuries. One of the greatest
successes was the establishment of an input-output (IO) equation by F. Freudenstein,
which correlates the driver input angle ψ to the follower output angle ϕ according

1 Carleton University, Department of Mechanical and Aerospace Engineering, Ottawa, ON,
Canada.
2 University of Innsbruck, Unit Geometry and Surveying, Innsbruck, Austria.
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to a function ϕ = f (ψ) [5]. The IO equation developed in [5] is trigonometric,
whereas in [6] an algebraic version is derived by mapping the constraint equations
of the driver and follower into Study’s kinematic image space [1, 11]. Let a, b, c, d
be the link lengths of the four-bar mechanism, and ψ and ϕ the respective input and
output angles, then the movement of the mechanism is governed by the following
IO equation

X

Y

E

c

a
b

d

F

x

y

Fig. 1 Planar 4R function generator.

Au2v2 +Bu2 +Cv2−8abuv+D = 0 (1)

where

A = (a−b− c+d)(a−b+ c+d),

B = (a+b− c+d)(a+b+ c+d),

C = (a+b− c−d)(a+b+ c−d),

D = (a−b+ c−d)(a−b− c−d),

u = tan
ψ

2
,

v = tan
ϕ

2
.

In addition, it was shown in [10] that Equation (1) is not only valid for planar
four-bar linkages containing revolute joints, but also for planar four-bar linkages
containing up to two prismatic joints. In this paper we will describe a method that
can be applied to both planar and spherical four-bar linkages to derive the respective
IO equations. Moreover, we will show that planar linkages can be interpreted as
special cases of spherical linkages, thus, expanding the generality of the IO equation
obtained in [6].

2 Study’s kinematic mapping

Consider a coordinate system Σ2 that moves with a rigid body relative to a sta-
tionary reference frame Σ1. The Euclidean displacement group D ∈ SO(3) can be
represented by

p′ = Ap+ t (2)

where p is a 3× 1 position vector in Σ2, A is a proper orthogonal 3× 3 rotation
matrix, t is a 3×1 position vector of the origin of Σ2 expressed in Σ1, and p′ is the
3×1 position vector of p expressed in Σ1 [7, 9].

Displacements of kinematic chains are often parametrised using the Denavit-
Hartenberg (DH) convention [3]. The four associated DH parameters are the link
lengths ai, link twist angles τi, joint angles θi, and link offsets di. According to
this convention the coordinate transformation from the coordinate system for joint i
relative to the coordinate system of the previous joint i−1 is given by
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i−1
i T =


cosθi −sinθi cosτi sinθi sinτi ai cosθi
sinθi cosθi cosτi −cosθi sinτi ai sinθi

0 sinτi cosτi di
0 0 0 1

=

 A t

0 0 0 1

 . (3)

With Study’s kinematic mapping distinct Euclidean displacements can be repre-
sented as distinct points x = [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]

T ∈ P7 where the first
four entries are obtained using the matrix elements ai j of A

x0 : x1 : x2 : x3 =


1+a11 +a22 +a33 : a32−a23 : a13−a31 : a21−a12,
a32−a23 : 1+a11−a22−a33 : a12 +a21 : a31 +a13,
a13−a31 : a12 +a21 : 1−a11 +a22−a33 : a23 +a32,
a21−a12 : a31 +a13 : a23 +a32 : 1−a11−a22 +a33.

(4)

Four different combinations of the rotation matrix elements are needed since certain
displacements make one or more of the relations lead to (0 : 0 : 0 : 0), the exceptional
generator in P7. Once the xi have been determined, the remaining four entries are
computed as linear combinations of the vector elements of the translation t and the
xi determined above, giving

y0 = 1
2 (t3x3 + t2x2 + t1x1), y1 = 1

2 (t3x2− t2x3− t1x0),

y2 = 1
2 (−t3x1 + t1x3− t2x0), y3 = 1

2 (−t3x0 + t2x1− t1x2).
(5)

These eight Study parameters must fulfill the Study condition in order to represent a
Euclidean displacement, meaning the eight ratios represent a point on Study’s seven
dimensional quadric S

x0y0 + x1y1 + x2y2 + x3y3 = 0 (6)

excluding the exceptional generator E

(x0 : x1 : x2 : x3) = (0 : 0 : 0 : 0). (7)

3 Planar four-bar linkage

To derive the algebraic IO equation for planar four-bar mechanisms using the DH
convention [3] and Study’s kinematic mapping [11], we first consider the four-bar
mechanism to be an open kinematic chain connected by four rotational joints as
shown in Fig. 2. The respective DH parameters are listed in Table 1. Note that for
planar mechanisms all link twists and all link offsets are identically zero. This sim-
plifies the overall transformation matrix 0

4T, which maps the coordinates of points
described in the end-link coordinate frame to those of the base frame:

0
4T =0

1 T 1
2T 2

3T 3
4T, (8)
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Fig. 2 Open 4R chain.

Table 1 DH parameters for open 4R chain.

joint axis i link length ai link angle θi link offset di link twist τi
1 a1 θ1 0 0
2 a2 θ2 0 0
3 a3 θ3 0 0
4 a4 θ4 0 0

where the transformation matrices 0
1T, 1

2T, 2
3T and 3

4T are evaluated according to
Equation (3). The computed transformation matrix can be mapped onto Study’s
quadric using Equations (4, 5) resulting in a Study array with zero entries for x1, x2,
y0 and y3. After normalizing, the remaining four Study parameters become

x0 = (2v2v3v4−2v2−2v3−2v4)v1 +(−2v3−2v4)v2−2v3v4 +2, (9)
x3 = ((−2v3−2v4)v2−2v3v4 +2)v1−2v2v3v4 +2v2 +2v3 +2v4, (10)
y1 = ((v4(a1−a2 +a3−a4)v3−a1 +a2 +a3 +a4)v2 +(−a1−a2 +a3 +a4)v3

−v4(a1 +a2 +a3−a4))v1 +((a1−a2 +a3 +a4)v3 + v4(a1−a2−a3 +a4))v2

+v4(a1 +a2−a3 +a4)v3−a1−a2−a3−a4, (11)
y2 = (((a1−a2 +a3 +a4)v3 + v4(a1−a2−a3 +a4))v2 + v4(a1 +a2−a3 +a4)v3

−a1−a2−a3−a4)v1 +(−v4(a1−a2 +a3−a4)v3 +a1−a2−a3−a4)v2

+(a1 +a2−a3−a4)v3 + v4(a1 +a2 +a3−a4), (12)

where vi = tan(θi/2).
To close the four-bar mechanism, 0

4T is equated to the identity matrix which we
also map using Equations (4, 5) onto Study’s quadric, resulting in the following
Study parameters after normalising:

I 7→ [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]T ∈ P7 (13)

Equating the Study array of the overall transformation 0
4T to the Study array of

the identity matrix, i.e. setting Equations (10-12) equal to zero, forces the coordi-
nate frame of the end-effector to align with that of the base; but to satisfy the DH
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Fig. 3 Closed 4R kinematic chain.

convention they are both rotated by π . Thus, the joint angles, θi, are measured as
illustrated in Fig. 3. We select the three Equations that are equal to zero, (10-12),
and manipulate them with Gröbner bases to eliminate the intermediate joint angle
parameters, v2 and v3. After collecting the input and output angle parameters v1 and
v4, the following algebraic IO equation emerges

Av2
1v2

4 +Bv2
1 +Cv2

4−8a1a3v1v4 +D = 0, (14)

where
A = (a1−a2 +a3−a4)(a1 +a2 +a3−a4) = A1A2,

B = (a1 +a2−a3−a4)(a1−a2−a3−a4) = B1B2,

C = (a1−a2−a3 +a4)(a1 +a2−a3 +a4) = C1C2,

D = (a1 +a2 +a3 +a4)(a1−a2 +a3 +a4) = D1D2.

It can be shown that Equation (14) is identical to Equation (1) if the phase shift of
the input and output angle as well as the different notation are considered.

4 Spherical four-bar linkage

It will now be demonstrated that the same procedure can be applied to determine
the IO equation for spherical linkages. The DH parameters for a spherical open 4R
kinematic chain are listed in Table 2. Note that in the spherical case all link lengths,
ai, and offsets, di, are zero with strict adherence to the DH conventions for assigning
parameters [3]. After evaluating the overall transformation matrix in terms of DH
parameters by applying Equation (3), the result can be mapped with Equations (4, 5)
onto Study’s quadric. Then setting vi = tan(θi/2) and αi = tan(τi/2) into the result

Table 2 Open spherical 4R kinematic chain DH parameters.

joint axis i link length ai link angle θi link offset di link twist τi
1 0 θ1 0 τ1
2 0 θ2 0 τ2
3 0 θ3 0 τ3
4 0 θ4 0 τ4
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gives a Study array with non-zero entries for x0, x1, x2 and x3, while the yi are all
identically zero, as expected:

x0 = ((2α4((v2v3v4 + v2− v3 + v4)v1 +(v3− v4)v2 + v3v4 +1)α3

+(2v2v3v4−2v2 +2v3 +2v4)v1 +(−2v3−2v4)v2 +2v3v4−2)α2

+((−2v2v3v4−2v2−2v3 +2v4)v1 +(2v3−2v4)v2−2v3v4−2)α3

+(2((v2v3v4− v2− v3− v4)v1 +(v3 + v4)v2 + v3v4−1))α4)α1

+(((2v2v3v4 +2v2−2v3 +2v4)v1 +(−2v3 +2v4)v2−2v3v4−2)α3

−(2((v2v3v4− v2 + v3 + v4)v1 +(v3 + v4)v2− v3v4 +1))α4)α2

+(2((v2v3v4 + v2 + v3− v4)v1 +(v3− v4)v2− v3v4−1))α4α3

+(2v2v3v4−2v2−2v3−2v4)v1 +(−2v3−2v4)v2−2v3v4 +2; (15)
x1 = ((((−2v2v3v4−2v2 +2v3−2v4)v1 +(−2v3 +2v4)v2−2v3v4−2)α3

+(2((v2v3v4− v2 + v3 + v4)v1 +(−v3− v4)v2 + v3v4−1))α4)α2

−2α4((v2v3v4 + v2 + v3− v4)v1 +(−v3 + v4)v2 + v3v4 +1)α3

+(−2v2v3v4 +2v2 +2v3 +2v4)v1 +(−2v3−2v4)v2−2v3v4 +2)α1

+((2((v2v3v4 + v2− v3 + v4)v1 +(−v3 + v4)v2− v3v4−1))α4α3

+(2v2v3v4−2v2 +2v3 +2v4)v1 +(2v3 +2v4)v2−2v3v4 +2)α2

+((−2v2v3v4−2v2−2v3 +2v4)v1 +(−2v3 +2v4)v2 +2v3v4 +2)α3

+(2((v2v3v4− v2− v3− v4)v1 +(−v3− v4)v2− v3v4 +1))α4; (16)
x2 = (((((−2v3 +2v4)v2−2v3v4−2)v1 +2v2v3v4 +2v2−2v3 +2v4)α3

−(2(((v3 + v4)v2− v3v4 +1)v1 + v2v3v4− v2 + v3 + v4))α4)α2

+(2(((v3− v4)v2− v3v4−1)v1 + v2v3v4 + v2 + v3− v4))α4α3

+((−2v3−2v4)v2−2v3v4 +2)v1 +2v2v3v4−2v2−2v3−2v4)α1

+(−(2(((v3− v4)v2 + v3v4 +1)v1 + v2v3v4 + v2− v3 + v4))α4α3

+((2v3 +2v4)v2−2v3v4 +2)v1−2v2v3v4 +2v2−2v3−2v4)α2

+(((−2v3 +2v4)v2 +2v3v4 +2)v1 +2v2v3v4 +2v2 +2v3−2v4)α3

−(2(((v3 + v4)v2 + v3v4−1)v1 + v2v3v4− v2− v3− v4))α4; (17)
x3 = (((2(((v3− v4)v2 + v3v4 +1)v1− v2v3v4− v2 + v3− v4))α4α3

+((−2v3−2v4)v2 +2v3v4−2)v1−2v2v3v4 +2v2−2v3−2v4)α2

+(((2v3−2v4)v2−2v3v4−2)v1 +2v2v3v4 +2v2 +2v3−2v4)α3

+2α4(((v3 + v4)v2 + v3v4−1)v1− v2v3v4 + v2 + v3 + v4))α1

+((((−2v3 +2v4)v2−2v3v4−2)v1−2v2v3v4−2v2 +2v3−2v4)α3

−(2(((v3 + v4)v2− v3v4 +1)v1− v2v3v4 + v2− v3− v4))α4)α2

+2α4(((v3− v4)v2− v3v4−1)v1− v2v3v4− v2− v3 + v4)α3

+((−2v3−2v4)v2−2v3v4 +2)v1−2v2v3v4 +2v2 +2v3 +2v4. (18)

Again, the open kinematic chain is closed by equating the Study array to the cor-
responding identity array in Study coordinates, i.e. setting Equations (16-18) equal
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to zero. Subsequently, we use Gröbner bases to eliminate the intermediate angle
parameters v2 and v3 from Equations (16-18), and obtain the desired IO equation

Av2
1v2

4 +Bv2
1 +Cv2

4 +8α1α3
(
α2

4 +1
)(

α2
2 +1

)
v1v4 +D = 0, (19)

where

A = (α1α2α3−α1α2α4 +α1α3α4−α2α3α4 +α1−α2 +α3−α4)

(α1α2α3−α1α2α4−α1α3α4−α2α3α4−α1−α2−α3 +α4) ,

B = (α1α2α3 +α1α2α4−α1α3α4−α2α3α4 +α1 +α2−α3−α4)

(α1α2α3 +α1α2α4 +α1α3α4−α2α3α4−α1 +α2 +α3 +α4) ,

C = (α1α2α3−α1α2α4−α1α3α4 +α2α3α4−α1 +α2 +α3−α4)

(α1α2α3−α1α2α4 +α1α3α4 +α2α3α4 +α1 +α2−α3 +α4) ,

D = (α1α2α3 +α1α2α4 +α1α3α4 +α2α3α4−α1−α2−α3−α4)

(α1α2α3 +α1α2α4−α1α3α4 +α2α3α4 +α1−α2 +α3 +α4) .

It can be shown that Equation (19) is identical to the corresponding trigonometric
IO equation for spherical four-bar linkages found in [9].

5 Planar 4R linkages as a special case of the spherical 4R linkage

The two algebraic IO equations for planar and spherical 4R linkages already sug-
gest some similarities. As demonstrated in [8], the motion of the planar 4R linkage
represents a special case of the spherical 4R linkage. To show that the same relation-
ship is true for the IO equations, we consider the directions of the joint axes. While
the joint axes of the spherical 4R linkage intersect in the centre of the sphere, the
joint axes of the planar 4R linkage are all parallel. In Euclidean space E3 parallel
lines never intersect, however, they do meet in a point at infinity in any projective
extension of E3 [2, 4]. This suggests that if the radius of a spherical linkage ap-
proaches infinity, the linkage becomes a planar mechanism in the limit [8]. As the
link twist parameters αi of the spherical IO equation are proportional to the ratios
of the arc lengths to the sphere radius [12], we can make the following substitution
in Equation (19)

αi ∝
ai

r
. (20)

In the resulting equation the first two cubic factors simplify to

lim
r→∞
−1

r

(a1a2a3

r2 − a1a2a4

r2 +
a1a3a4

r2 − a2a3a4

r2 +a1−a2 +a3−a4

)
(
−a1a2a3

r2 +
a1a2a4

r2 +
a1a3a4

r2 +
a2a3a4

r2 +a1 +a2 +a3−a4

)
. (21)

In the limit the only terms remaining inside the parentheses in Equation (21) are

(a1−a2 +a3−a4)(a1 +a2 +a3−a4) = A1A2. (22)
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Proceeding with the other cubic factors in the same manner the algebraic IO equa-
tion for a spherical 4R mechanism leads directly to that of a planar 4R, Equa-
tion (14), in the limit. As mentioned, this aligns with the results from [8], and further
confirms the validity of the derived IO equations as well as the observation in [9]
that there exists a connection between the planar and the spherical 4R IO equations
via the RSSR linkage.

6 Conclusions

We have successfully demonstrated a general method to derive the algebraic IO
equations for spherical and planar 4R linkages. It requires defining the DH parame-
ters for an open 4R kinematic chain, mapping its coordinate transformation matrix
onto Study’s quadric, conceptually closing the 4R chain by equating the correspond-
ing Study coordinates to the identity array and eliminating the intermediate joint an-
gles using Gröbner bases. Moreover, we have shown that the planar 4R IO equation
represents a special case of the spherical 4R by evaluating the limit at infinity of the
equation.
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Abstract. A new algebraic input-output relation for planar four-bar
mechanisms is a quartic curve in the input-output joint angle parameter
plane. This equation contains four terms with quadratic coefficients of
link lengths which all factor into the product of two linear terms. The
structure of these eight linear factors suggests that they are the eight
faces of an octahedron in a design parameter space of the link lengths. In
this paper we show that the design parameter octahedron space implies a
complete classification scheme for all 27 possible planar 4R mechanisms,
in addition to linkages containing one, or two prismatic joints.

Keywords: Algebraic input-output relation; planar four-bar linkage; design pa-
rameter octahedron.

1 Introduction

In the firmament of mechanical design the four-bar linkage burns as its brightest
star. This is seen to be true when one considers the tremendous volume of litera-
ture investigating analysis and design of four-bar mechanisms, ranging from an-
tiquity to present [1]. In this paper
we investigate the geometry of the de-
sign parameter space of planar four-
bar mechanisms. Since we will be con-
cerned with the input-output (IO) re-
lation, we will use the standard de-
scription of a planar 4R function gen-
erator for reference. Such a function
generator correlates driver and fol-
lower angles such that the mechanism
generates the function ϕ = f(ψ), or
vice versa, see Fig. 1. Fig. 1. Planar 4R linkage.

Surprisingly, design methods have not focused on algebraic IO equations,
rather they generally use the transcendental Freudenstein synthesis equations
[3], or variants thereof. The Freudenstein equation relating the input to the
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output angles of a planar 4R four-bar mechanism, with link lengths as in Fig. 1,
was first put forward in [4]. In the equation the angle ψ is traditionally selected
to be the input while ϕ is the output angle:

k1 + k2 cos(ϕi)− k3 cos(ψi) = cos(ψi − ϕi). (1)

Eq. (1) is linear in the ki Freudenstein parameters, which are defined in terms
of the link length ratios as:

k1 ≡ (a2 + b2 + d2 − c2)

2ab
; k2 ≡ d

a
; k3 ≡ d

b
.

In this paper we use instead the algebraic IO relation derived in [7] and
the geometric analysis of the quartic algebraic IO curve in [8] to show that it
implies a classification scheme for all 27 possible planar 4R mechanisms [11].
The classification scheme characterises all Grashof and non-Grashof ranges of
motion of the input and output links. Moreover, the structure of the algebraic
IO equation suggests a design parameter space [8] that will be examined more
fully in this paper.

Study’s kinematic mapping image space coordinates and resultants were em-
ployed in [7] to derive the IO equation. Then Weierstraß (tangent of the half-
angle) substitutions

u = tan

(
ψ

2

)
, v = tan

(ϕ
2

)

were applied to convert the trigonometric equation to an algebraic one, which
has the following form:

Au2v2 +Bu2 + Cv2 − 8abuv +D = 0 (2)

where;

A = (a− b− c+ d)(a− b+ c+ d) = A1A2;

B = (a+ b− c+ d)(a+ b+ c+ d) = B1B2;

C = (a+ b− c− d)(a+ b+ c− d) = C1C2;

D = (a− b+ c− d)(a− b− c− d) = D1D2.

Eq. (2) is quartic in the coordinate plane of u and v. Since the distance d between
the ground fixed links can be viewed as a scaling factor for function generators,
without loss in generality we can normalise a, b, and c by d and consider the
design parameter sub-space comprised of three mutually orthogonal bases dis-
tances with d = 1. Another way of looking at the design parameter sub-space is
as the projection of the four dimensional space onto the hyperplane d = 1.

Regardless, it is shown in [8] that the quartic curve represented by Eq. (2)
has two double points, and therefore possesses genus 1. The double points are
the points at infinity of the u and v axes in the u-v plane. Each of these double
points can have real or complex tangents depending on the values of the link
lengths, which in turn determines the nature of the mobility of the linkage, as
well as the number of assembly modes (the maximum is two), and the number
of folding assemblies (the maximum is three).
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2 Design Parameter Octahedron

In the design parameter space, the eight linear factors in Eq. (2) can be inter-
preted as the eight faces of a regular octahedron determined by the six ver-
tices V = (a, b, c) : V1 = (1, 0, 0); V2 = (−1, 0, 0); V3 = (0, 1, 0); V4 =
(0,−1, 0); V5 = (0, 0, 1); V6 = (0, 0,−1), see Fig. 2.

Fig. 2. Design parameter octahedron.

Each face of the octahedron lies en-
tirely in one of the eight quadrants in
the parameter space. Given the octa-
hedron, four questions that naturally
arise.

1. What do the six vertices imply?
2. What is the significance of points

on the octahedron edges?
3. What is the significance of points

on the octahedron faces?
4. What is the significance of the lo-

cation of a general point in the pa-
rameter space?

2.1 The Six Octahedron Vertices

With reference to Fig. 2, each of the six octahedron vertices lie at the terminal
ends of the design parameter space basis unit vectors, a, b, and c. They comprise
the six points V1,2 = (±1, 0, 0), V3,4 = (0,±1, 0), V5,6 = (0, 0,±1). Each vertex is
the point common to the planes of four faces and represents a degenerate planar
four-bar mechanism with no mobility because it contains two links of zero length
and two links of unit length.

2.2 The Twelve Octahedron Edges

Again, referring to Fig. 2, each of the twelve octahedron edges, excluding the
vertices, is the line in common with two octahedron faces. Each edge lies entirely
in one of eight design parameter sub-space coordinate planes. For example, the
edge that lies in the coordinate plane spanned by the positive basis vectors a
and b is the intersection of the face planes defined by the vertices {V1, V3, V5}
and {V1, V6, V3}. Each edge represents a degenerate four-bar mechanism with no
mobility because it contains one link of zero length.

2.3 Points on the Eight Octahedron Faces

Because of the beautiful structure of the eight linear factors in Eq. (2), it may
be shown in a straightforward way that each of the linear factors defines one
of eight planes containing one of the octahedron faces. In Euclidean space, E3,
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a necessary and sufficient condition that four points, whose homogeneous point
coordinates are (x0 : x1 : x2 : x3), (y0 : y1 : y2 : y3), (z0 : z1 : z2 : z3) and
(w0 : w1 : w2 : w3), be coplanar is that [2, 5]

∣∣∣∣∣∣∣∣

x0 x1 x2 x3

y0 y1 y2 y3
z0 z1 z2 z3
w0 w1 w2 w3

∣∣∣∣∣∣∣∣
= 0. (3)

It follows that the plane determined by three distinct points has the equation

X0x0 +X1x1 +X2x2 +X3x3 = 0, (4)

where the plane coordinates [X0 : X1 : X2 : X3] are obtained by Grassmannian
expansion [10] of the matrix in Eq. (3), giving

∣∣∣∣∣∣
y1 y2 y3
z1 z2 z3
w1 w2 w3

∣∣∣∣∣∣
x0 +

∣∣∣∣∣∣
y0 y3 y2
z0 z3 z2
w0 w3 w2

∣∣∣∣∣∣
x1 +

∣∣∣∣∣∣
y0 y1 y3
z0 z1 z3
w0 w1 w3

∣∣∣∣∣∣
x2 +

∣∣∣∣∣∣
y0 y2 y1
z0 z2 z1
w0 w2 w1

∣∣∣∣∣∣
x3 = 0. (5)

Employing the Grassmannian expansion we obtain the equation of the plane
containing the octahedron face defined by the vertices {V1, V6, V3} using their
homogeneous coordinates: V = (1 : a : b : c) ⇒ V1 = (1 : 1 : 0 : 0), V6 = (1 : 0 :
0 : −1), V3 = (1 : 0 : 1 : 0). Using the determinants in Eq. (5) and the three
vertices reveals the corresponding plane coordinates as

[X0 : X1 : X2 : X3] =

⎡
⎣
∣∣∣∣∣∣
1 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣
:

∣∣∣∣∣∣
1 0 0
1 −1 0
1 0 1

∣∣∣∣∣∣
:

∣∣∣∣∣∣
1 1 0
1 0 −1
1 0 0

∣∣∣∣∣∣
:

∣∣∣∣∣∣
1 0 1
1 0 0
1 1 0

∣∣∣∣∣∣

⎤
⎦ = [1 : −1 : −1 : 1]. (6)

Hence, the plane equation containing face {V1, V6, V3} can be expressed as

1− a− b+ c = 0. (7)

When the coordinates in Eq. (7) are homogenised, the relation can be expressed
as

a+ b− c− d = 0. (8)

Thus, the plane equation determined by the three vertices {V1, V6, V3} is precisely
the linear factor C1 in Eq. (2). The remaining seven linear factors in Eq. (2) are,
similarly, the plane equations for the seven other octahedron faces. If a point in
the design parameter space satisfies Eq. (8), then it lies in the plane of the face
spanned by the three vertices {V1, V6, V3}, and the corresponding mechanism has
link lengths constrained by the relation a+ b = c+ d. Depending on the lengths
of the individual links satisfying this relation the resulting mechanism can be
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a double crank, double rocker, or crank rocker, and can have as many as three
folding configurations and assembly modes [8, 11].

Similarly, points in the planes of the faces spanned by vertices {V2, V5, V3}
and by vertices {V1, V5, V4} lead to the plane equations

1 + a− b− c = 0 and 1− a+ b− c = 0,

which correspond to the linear factors A1 and D1 respectively, when the coordi-
nates are homogenised giving

a− b− c+ d = 0 and a− b+ c− d = 0.

Points laying in the planes of these two faces correspond to linkages with link
lengths constrained by the relations a+ d = b+ c and a+ c = b+ d. Again, de-
pending on the lengths, the resulting mechanisms can be a double-crank, double-
rocker, or crank-rocker, and can have as many as three folding configurations and
assembly modes. However, points in the planes spanned by the remaining five
faces, corresponding to linear factors A2, B1, B2, C2, and D2 represent linkages
with zero finite mobility because either the sum of the magnitudes of all the link
lengths is identically zero, or one link length is equal to the sum of the lengths
of the remaining three links.

2.4 A General Point in the Design Parameter Space

The location of a single point in the design parameter space is a specific planar
4R whose link lengths satisfy Eq. (2). The values of the link lengths are directed
distances, and hence can be positive or negative. Clearly, if one of the lengths
is identically zero, then the resulting 3R linkage is a structure. The absolute
values of the link lengths identified with Eq. (2) lead to an alternate form of
the classification scheme for planar 4R linkages first presented in [11] and later
refined in [9], and hence to an expression for the Grashof condition. Recall that
the Grashof condition states that a planar 4R will contain one link that can fully
rotate if

l + s < p+ q, (9)

where l and s refer to the lengths of the longest and shortest links, while p and
q are the lengths of the two intermediate links.

Input Link, a. The limits of angular displacement for the input link, a, if they
exist, can be determined using the law of cosines and the two triangles formed
by the lengths a and d when the coupler and output link align, giving lengths
c− b and c+ b, respectively, see Fig. 3. In order for ψmin and ψmax to exist, then

−1 ≤ cos(ψ) ≤ 1. (10)

It can be shown using the methods in [9, 11] that the conditions leading to
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Fig. 3. The angular limits of the output link, if they exist, are ψmin and ψmin .

−1 < cos(ψ) > 1 can be expressed as the product of two linear factors from
Eq. (2). The fist product concerns the existence of ψmin:

(a+ b− c− d)(a− b+ c− d) > 0 (i.e. C1D1 > 0). (11)

If this condition is satisfied, then both factors must be either positive or negative,
and the input link has no ψmin. This implies that the input link can rotate
through ψ = 0 reaching angles below the line joining the centres of the two
ground fixed R-pairs. If this condition is not satisfied then one of either C1 or
D1 is negative and ψmin may be computed, using the upper sign (c− b)2, as1

ψmin
max

= cos−1

(
a2 + d2 − (c∓ b)2

2ad

)
. (12)

Referring again to Fig. 3, the second product concerns the existence of ψmax,
and can be expressed as:

(a− b− c+ d)(a+ b+ c+ d) < 0 (i.e. A1B2 < 0). (13)

If this condition is satisfied then ψmax does not exist, and the input link can
rotate through π. Since B2 must always be positive, this condition simplifies to

a+ d < b+ c. (14)

If the condition in Eq. (13) is not satisfied, then it must be that a + d ≥ b + c,
and ψmax may be computed using the lower sign (c+ b)2 in Eq. (12).

The classification, as in [11], uses the observation that if C1D1 > 0 and A1 <
0 then neither ψmin nor ψmax exist, and the input link is a fully rotatable crank
and therefore the link lengths must satisfy the Grashof condition. If C1D1 > 0
while A1 ≥ 0 then ψmax exists, but not ψmin, and the input link is a 0-rocker
because it rocks through 0 between the ±ψmax limits. If C1D1 ≤ 0 while A1 < 0

1 Note that cos(ψ) returns the same value for ±ψ. Hence, the cos−1 function leads
to two limiting values of ±ψmin and ±ψmax, one for each of the elbow up and elbow
down configurations of the linkage.
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then ψmin exists, but not ψmax, and the input link is a π-rocker because it rocks
through π between the ±ψmin limits. Alternately, if C1D1 ≤ 0 and A1 ≥ 0
then both ψmin and ψmax exist and the input link is a rocker which can pass
through neither 0 nor π and rocks in one of two sperate ranges: ψmin ≤ ψmax;
or −ψmax ≤ −ψmin.

Output Link, b. The limits of angular displacement for the output link, b,
if they exist, can be determined using the law of cosines and the two triangles
formed by the lengths b and d when the coupler and input link align, giving
lengths c + a and c − a, respectively, see Fig. 4. Note that ϕ in this case is an
exterior angle, and the corresponding angle used in the law of cosines is π − ϕ
necessitating a sign change: − cos(π − ϕ) = cos(ϕ). In order for ϕmin and ϕmax

to exist, then
−1 ≤ cos(ϕ) ≤ 1. (15)

The conditions leading to −1 > cos(ϕ) > 1 can be expressed as the products of

Y

X

a+c

Y

b
min

d

max

c-a b

X

a

d

Fig. 4. The angular limits of the output link, if they exist, are ϕmin and ϕmin .

two linear factors from Eq. (2). If ϕmin does not exist then a and c can’t align
and:

(a− b+ c− d)(a+ b+ c+ d) > 0 (i.e. D1B2 > 0). (16)

Since B2 is always positive, then in order to satisfy Eq. (16) D1 must also be
positive. This leads to the simpler expression for the condition in Eq. (16):

a+ c > b+ d. (17)

If this condition is satisfied, then ϕmin does not exist and the output link can
rotate through ϕ = 0 reaching angles below the line joining the centres of the
two ground fixed R-pairs. When this condition is not satisfied then D1 is either
identically zero or negative meaning that ϕmin exists and may be computed using
the upper sign (a+ c)2 in Eq. (18) as

ϕmin
max

= cos−1

(
(a± c)2 − (b2 + d2)

2bd

)
. (18)
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Referring again to Fig. 4, the second product concerns the existence of ϕmax,
and can be expressed as:

(a− b− c+ d)(a+ b− c− d) < 0 (i.e. A1C1 < 0). (19)

If this condition is satisfied then ϕmax does not exist, and the output link can
rotate through π. Satisfying this condition requires that one factor is positive
while the other is negative. If the condition in Eq. (19) is not satisfied, then it
must be that A1 and C1 are either both positive or negative. In this case ϕmax

may be computed using the lower sign (a− c)2 in Eq. (18).

Again, following [11], the Grashof condition for this case is A1C1 < 0 and
D1 > 0. Using these conditions as indicators, the output link can also be a crank,
a 0-rocker, a π-rocker, or a rocker restricted to one of the two separate ranges
ϕmin ≤ ϕmax; or −ϕmax ≤ −ϕmin.

Implications of Vanishing Linear Factors. The remaining conditions to
consider are if any one, or more, of the three factors are identically zero. Consider
the following zeros:

A1 = 0 ⇒ a− b− c+ d = 0 ⇒ a+ d = b+ c;

C1 = 0 ⇒ a+ b− c− d = 0 ⇒ a+ b = c+ d;

D1 = 0 ⇒ a− b+ c− d = 0 ⇒ a+ c = b+ d.

If only one of A1 = 0, C1 = 0, or D1 = 0, then the mechanism is a point on one
of the planes containing the faces of the octahedron spanned by either vertices
{V2, V5, V3}, {V1, V6, V3}, or {V4, V1, V5}, respectively. In each case, the linkage
has a single folding configuration. If two of the factors are identically zero, then
the mechanism is represented by a point that lies on the line of intersection of
the two corresponding faces, which is never an octahedron edge for pairs of these
three faces. In this case, the linkage has two folding configurations because of the
equality in length of two different sums of pairs of link lengths. Finally, if all three
factors are simultaneously identical to zero, the corresponding mechanism is
represented by the point common to the planes of all three associated octahedron
faces. It is a simple matter to show this leads to a third order equation with only
one solution: a = b = c = d. In the design parameter space normalised with
d = 1, this means the point (1, 1, 1), a rhombus linkage possessing three folding
configurations.

2.5 Classification

Any planar 4R linkage can be classified according to the values of the three
linear factors A1, C1, and D1 which can each either be positive, identically zero,
or negative. Using the criteria from above the linkage type can be classified
according to it’s link lengths. All 27 possible mechanisms are listed in Table 1.
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# A1 C1 D1 Input a Output b # A1 C1 D1 Input a Output b

1 + + + 0-rocker 0-rocker 15 0 0 - crank π-rocker
2 + + 0 0-rocker 0-rocker 16 0 - + π-rocker crank
3 + + - rocker rocker 17 0 - 0 crank crank
4 + 0 + 0-rocker crank 18 0 - - crank π-rocker
5 + 0 0 0-rocker crank 19 - + + crank crank
6 + 0 - 0-rocker π-rocker 20 - + 0 crank crank
7 + - + rocker crank 21 - + - π-rocker π-rocker
8 + - 0 0-rocker crank 22 - 0 + crank crank
9 + - - 0-rocker π-rocker 23 - 0 0 crank crank
10 0 + + crank crank 24 - 0 - crank π-rocker
11 0 + 0 crank crank 25 - - + π-rocker 0-rocker
12 0 + - π-rocker π-rocker 26 - - 0 crank 0-rocker
13 0 0 + crank crank 27 - - - crank rocker
14 0 0 0 crank crank

Table 1. Classification of all possible planar 4R linkages. Shaded cells satisfy the
Grashof condition.

2.6 Continuous Sets of Points in the Design Parameter Space

Planar four-bar linkages however are not exclusively jointed with R-pairs, they
often contain P -pairs. However, four-bar mechanisms containing more than two
P -pairs cannot move the coupler in general plane motion, rather they can only
generate translations and hence are not considered here. A kinematic inversion of
an RRRP linkage will possess one variable link length and one variable joint an-
gle, typically called a slider-crank. Hence the roles of fixed constant and variable
in Eq. 2 can be reassigned to generate a function of the form b = f(u), for exam-
ple. The important thing to note is that the same IO equation can be used for
kinematic synthesis! The resulting mechanism however, will not be represented
by a single point in the design parameter space. Rather, it will be represented by
a line parallel to the basis vector direction representing the variable link length.
The length of the line will be determined by the extremities of the slider trans-
lation. This will be interesting to investigate in function generation optimisation
problems, but will be left for future work.

The kinematic inversions of the elliptic-trammel PRRP linkage are theRPPR
and RRPP linkages known as Oldham’s coupling and the Scotch yoke, respec-
tively. These linkages possess two variable link lengths. It turns out that Eq. 2
can also be used for function generation synthesis. We believe this to be re-
markable! Again, the roles of fixed constant and variable are reassigned. In this
case the function generation synthesis problem can be modelled with Eq. 2 to
generate functions of the form b = f(a), while the angles represented by u and
v are now constants that are identified in the synthesis. In the design param-
eter space the resulting mechanism will be represented by a curve that is the
approximated functional relationship between lengths a and b over the desired
maximum input-output range. Again, algorithm development for approximate
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function generation problems for PRRP type linkages will be left for future
work.

3 Conclusions

In this paper we have considered the design and analysis of planar four-bar
linkages that can move the coupler in general plane motion in a fundamentally
new way. Using the algebraic IO curve from [7, 8] we have shown that the eight
linear factors of link lengths can be interpreted as the eight faces of a regular
octahedron in the function generator design parameter space of link lengths
projected into the hyperplane d = 1. We have shown that a point in the design
parameter space represents a planar 4R linkage, while it’s location implies the
IO limits of the input and output links yielding the classification from [11].
We believe that this work, together with [8], will lead to a new approach to
approximate synthesis optimisation using continuous approximate synthesis as
introduced in [6].
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Design Parameter Space of Spherical Four-bar
Linkages

M.J.D. Hayes1, M. Rotzoll2, C. Ingalls3, and M. Pfurner4

Abstract. Four link twist angles are the design parameters for spherical 4R linkages: changing
the magnitudes of the twist angles changes the motion characteristics of the linkage. A new quartic
algebraic input-output equation for spherical four-bar linkages, obtained in another paper, contains
four terms which each factor into pairs of distinct cubics in the link twists. These eight cubic
factors possess a symmetry that suggest they combine to form a shape that, at least locally, bears a
remarkable resemblance to a pair of dual tetrahedra in the design parameter space of the link twists.
In this paper we show that the location of points relative to the eight distinct cubic surfaces implies
a complete classification scheme for all possible spherical 4R linkages. Moreover, we show that
the design parameter spaces of both the spherical and planar 4R linkages, with suitable scaling,
intersect in 12 lines which form the 12 edges of a pair of dual tetrahedra.

Key words: Spherical four-bar linkages; design parameter space; uniform polyhedral compound.

1 Introduction

Over the millennia, four-bar linkages have become ubiquitous with applications
ranging from aircraft landing gear deployment systems to beer bottle cap clamps.
One might, however naı̈vely, be led to the conclusion that all is known. Nonethe-
less, through continued investigation, commencing with the ground breaking work
of Ferdinand Freudenstein in the 1950s [5, 6], new discoveries and new insight
continue to be obtained, often with surprising results. See [10], for example, for a
comprehensive collection of results offered by a vast array of investigators over the
last 175 years.

The algebraic input-output (IO) equation for any planar four-bar linkage is a
polynomial equation in the variable input (driver) link and output (follower) link
angle parameters expressed in terms of the link lengths. Because the link lengths

1Mech. and Aero. Engineering, Carleton University, Canada, e-mail: john.hayes@carleton.ca
2Mech. and Aero. Engineering, Carleton University, Canada, e-mail: mirja.rotzoll@carleton.ca
3School of Math. and Stats., Carleton University, Canada, e-mail: colin.ingalls@carleton.ca
4Unit Geometry and Surveying, University of Innsbruck, e-mail: martin.pfurner@uibk.ac.at
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Table 1 Denavit-Hartenberg parameters for a planar 4R chain.

joint axis i link length ai link angle θi link offset di link twist τi

1 a1 θ1 0 0
2 a2 θ2 0 0
3 a3 θ3 0 0
4 a4 θ4 0 0

impose mobility constraints on the input and output links, they are considered de-
sign parameters. Since the coupler motion is embedded in the polynomial, the IO
equation is well suited to function generation synthesis. Moreover, it is an algebraic
equation so the theory of algebraic geometry [2] can be applied to reveal character-
istics of the IO relationship that may otherwise be occluded by trigonometry.

Individual link coordinate systems are assigned according to the original Denavit-
Hartenberg convention [4]. Link parameters of length, ai, joint angle, θi, link offset,
di, and link twist angle, τi are all defined relative to these coordinate systems. For a
planar 4R linkage the design parameters are the four link lengths, a1, a2, a3, and a4,
see Fig. 1(a), as the relative lengths determine the mobility capability of the linkage,
while the relative angles between the links θ1, θ2, θ3, and θ4, are variables in the IO
equation. The link offsets and twist angles are all identically zero, see Table 1. Note
that the base coordinate system illustrated in Fig. 1(a) is an artifact of the method
used to derive the algebraic IO equation, see [13] for the details. Regardless, only
the origin and direction of the z0/4-axis are fixed by the convention while the direc-
tion of the x0/4-axis is rotated by π radians compared to the usual representation,
while the y0/4-axis completes the right-handed coordinate system.

(a) (b)

Fig. 1 Planar 4R chain and associated design parameter tetrahedra.

The algebraic IO equation for a planar 4R linkage is a planar quartic curve in the
IO angle parameters v1 = tanθ1/2 and v4 = tanθ4/2 [7]. The link length coefficients
are embedded in four quadratic terms that are each comprised of two factors that are
linear sums of link lengths. The algebraic IO equation, as derived in [13], is
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Av2
1v2

4 +Bv2
1 +Cv2

4−8a1a3v1v4 +D = 0, (1)

where

A = (a1−a2 +a3−a4)(a1 +a2 +a3−a4) = A1A2,

B = (a1 +a2−a3−a4)(a1−a2−a3−a4) = B1B2,

C = (a1−a2−a3 +a4)(a1 +a2−a3 +a4) = C1C2,

D = (a1 +a2 +a3 +a4)(a1−a2 +a3 +a4) = D1D2.

Since we are dealing with function generators, the scale of the linkage is irrelevant.
Without loss in generality, we can normalise the four link lengths by a4, the distance
between the centres two ground fixed R-pairs, thereby setting a4 = 1. Projected into
this hyperplane, the remaining three lengths can be used to establish three mutu-
ally orthogonal basis vectors. The eight symmetric linear factors, having the form
(a1±a2±a3±1), can be represented as eight planes in the ai for the eight permu-
tations in sign. These eight planes intersect in the 12 edges of a pair of dual regular
tetrahedra [8] while the plane segments bounded by the 12 edges are the tetrahedra
faces, see Fig. 1(b).

These two tetrahedra belong to the only uniform polyhedral compound, called
the stellated octahedron, which has order 48 octahedral symmetry [3]. This double
tetrahedron has a regular octahedron at its core and shares its eight vertices with the
cube [3]. Distinct points in this design parameter space represent distinct function
generators and the locations of the points relative to the eight planes containing
the faces of the double tetrahedron completely determines the mobility of the input
and output links. There are 27 types of mobility conditions, determined using the
techniques found in [8, 11], which depend on the signs of the sums of lengths in the
three terms A1, B1, and C1 from Eq. (1).

The focus of this paper is the design parameter space corresponding to spherical
4R linkages. Thus, the quartic algebraic IO equation for spherical 4R mechanisms,
as derived in [13], is manipulated to examine the design parameter space implied
by the magnitudes of the link twist angle parameters defined as αi = tan(τi/2),
where τi specifies the twist angles according to the original Denavit-Hartenberg
convention [4]. For a spherical 4R the design parameters are the four link twist
angles, τi, while the relative link angles are the four variable θi. The link lengths and
offsets are identically zero, see Table 2. In comparison with the design parameter
space of planar 4R mechanisms [8] we see some startling similarities. But first, the
spherical 4R IO equation needs some discussion.

Table 2 DH parameters a spherical 4R chain.

joint axis i link length ai link angle θi link offset di link twist τi

1 0 θ1 0 τ1
2 0 θ2 0 τ2
3 0 θ3 0 τ3
4 0 θ4 0 τ4
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2 The Spherical 4R Algebraic IO Equation

The R-pair axes of a spherical 4R mechanism all intersect at the centre of the sphere,
while those of a planar 4R mechanism are all parallel meaning that they can be
thought of as intersecting in the same point at infinity of the projective extension
of the planar 4R Euclidean plane. As shown in [13], this means that the planar 4R
mechanism is a special case of the spherical 4R. In the limit, as the radius of the
sphere tends towards infinity, the algebraic IO equations of the spherical and planar
4R mechanisms are projectively equivalent. This suggests that there should be some
similarities between the respective design parameter spaces.

A new and general method for deriving an algebraic form of the spherical 4R
mechanism IO equation is presented in [13]. This method, using Study’s kinematic
mapping [1, 15], can also be used to derive the algebraic IO equation for planar 4R
mechanisms, and we are working towards applying it to spatial 4R’s. Regardless,
the algebraic IO equation for spherical 4R’s has the form

Av2
1v2

4 +Bv2
1 +Cv2

4 +8α1α3
(
α2

4 +1
)(

α2
2 +1

)
v1v4 +D = 0, (2)

where

A = (α1α2α3−α1α2α4 +α1α3α4−α2α3α4 +α1−α2 +α3−α4)

(α1α2α3−α1α2α4−α1α3α4−α2α3α4−α1−α2−α3 +α4) ,

B = (α1α2α3 +α1α2α4−α1α3α4−α2α3α4 +α1 +α2−α3−α4)

(α1α2α3 +α1α2α4 +α1α3α4−α2α3α4−α1 +α2 +α3 +α4) ,

C = (α1α2α3−α1α2α4−α1α3α4 +α2α3α4−α1 +α2 +α3−α4)

(α1α2α3−α1α2α4 +α1α3α4 +α2α3α4 +α1 +α2−α3 +α4) ,

D = (α1α2α3 +α1α2α4 +α1α3α4 +α2α3α4−α1−α2−α3−α4)

(α1α2α3 +α1α2α4−α1α3α4 +α2α3α4 +α1−α2 +α3 +α4) .

In this equation the joint angle parameters are vi = tanθi/2, where the IO an-
gle parameter pair are v1 and v4, while the four link twist angle parameters are
αi = tanτi/2. The link twist angles, τi, are defined using the original Denavit-
Hartenberg assignment convention [4]. It can be shown that Eq. (2) is identical to
the corresponding trigonometric IO equation for spherical four-bar linkages found
in [11].

2.1 Interpretation of the Spherical 4R IO Equation

Analysing Eq. (2) using the theory of planar algebraic curves [12] one can see that
it has characteristics which are independent of the constant design parameters αi.
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Clearly, Eq. (2) is of degree n = 4 in variables v1 and v4. It is also of interest to de-
termine the planar curve’s double, or singular, points. To identify these double points
Eq. (2) must first be homogenised. We arbitrarily select w to be the homogenising
coordinate, which gives

kh : Av2
1v2

4 +Bv2
1w2 +Cv2

4w2 +8α1α3(α
2
4 +1)(α2

2 +1)v1v4w2 +Dw4 = 0. (3)

The double points are revealed by the locations of where the Jacobian ideal van-
ishes [12]. This ideal is generated by(

∂kh

∂v1
,

∂kh

∂v4
,

∂kh

∂w
.

)
(4)

Solving the system of equations implied by Eq. (4) for v1, v4, and w reveals two
double points located at infinity along the v1- and v4-axes, which exactly mirrors
the results reported in [9] for planar 4R mechanisms:

(v1 : v4 : w) = (1 : 0 : 0) ; (0 : 1 : 0) . (5)

These two double points are common to all algebraic IO curves for every spherical
4R four-bar mechanism. Each of these double points can have real or complex tan-
gents depending on the values of the four constant link twist parameters αi, which
in turn determines the nature of the mobility of the linkage.

The discriminant of Eq. (3), evaluated at a double point, reveals whether that
double point has a pair of real or complex conjugate tangents [2] in turn yielding
information about the topology of the mechanism [9]. The discriminant and the
meaning of its value are [2]

∆ =

(
∂ 2kh

∂vi∂w

)2

− ∂ 2kh

∂v2
i

∂ 2kh

∂w2

> 0⇒ two real distinct tangents (crunode),
= 0⇒ two real coincident tangents (cusp),
< 0⇒ two complex conjugate tangents (acnode).

For the homogeneous IO equation of a spherical 4R linkage, Eq. (3), the discrim-
inant of the point at infinity (v1 : v4 : w) = (1 : 0 : 0) on the v1-axis is obtained by
setting i = 4 in the discriminant equation, i.e. ∂v4, while the discriminant of the
other point at infinity on the v4-axis is obtained by setting i = 1 in the discriminant
equation, i.e. ∂v1, giving

∆v1 =−4AB, ∆v4 =−4AC. (6)

Since the values of Eq.s (6) depend on the products and sums of link twist angle
parameters their values may be either greater than, less than, or identically equal
to zero. Certainly, the classification of the mobility of the input and output links is
determined by these values.

Finally, because an equation of degree n= 4 can have a maximum of three double
points, the algebraic IO equation possesses genus 1 since it has only two. Because of
this, it cannot be parameterised by rational functions, and is defined to be an elliptic
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curve [12]. Moreover, since the curve has genus 1 for every spherical 4R linkage,
there are, at most, two assembly modes roughly corresponding to “elbow-up” and
“elbow-down” [9].

3 Spherical 4R Design Parameter Space

The eight factors in the four coefficients A, B, C, and D in Eq. 2 are cubics in the
αi design constant twist angle parameters and have an intoxicating symmetric struc-
ture. When α1, α2, and α3 are projected into the hyperplane α4 = 1 for a spherical
4R function generator, we can treat the three twist angle parameters α1, α2, and
α3 as mutually orthogonal basis vector directions. Fig.s 2(a) and (b) illustrate the
eight factors in each of the planar and spherical 4R IO equations where the surfaces
are plotted in the ranges ai = ±1 and αi = ±1. The planar 4R surface is a regular
double tetrahedron with the special property of being the only uniform polyhedral
compound [3]. The spherical 4R surfaces have the appearance of being a double
tetrahedron, but they are cubic surfaces and therefore are not.

(a)

a1a2

a3

(b)

a1a2

a3

Fig. 2 Design parameter space surfaces: (a) planar 4R; (b) spherical 4R.

Cubic surfaces have fascinated mathematicians for several centuries. Clearly, the
eight cubic factors in Eq. (2) possess some special properties. The first cubic factor
in coefficient A from Eq. (2), which we will name A1, after α4 has been set to 1, can
be homogenised with coordinate w to reveal

A1,h : α1α2α3−α1α2w+α1α3w−α2α3w+α1w2−α2w2 +α3w2−w3. (7)
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The double points for this cubic are revealed by the locations of where the Jacobian
ideal generated by (

∂A1,h

∂α1
,

∂A1,h

∂α2
,

∂A1,h

∂α3
,

∂A1,h

∂w

)
(8)

vanishes. It turns out that all eight cubics share the same three double points, namely

(α1 : α2 : α3 : w) = (1 : 0 : 0 : 0) ; (0 : 1 : 0 : 0) ; (0 : 0 : 1 : 0) . (9)

The discriminant evaluated at each of the three double points, common to all eight
cubics, is ∆ = 4 for each double point. Since this discriminant is always greater
than zero, the double points are all ordinary [2] because there are two distinct, real
tangents at each double point. Alternately, we observe that each cubic surface meets
the plane at infinity in the three lines α1 = α2 = α3 = 0. The singular double points
are the vertices of this triangle. It can be shown that the two lines through each
vertex are in the tangent singular cone at the vertex and because the Hessian of A1,h
is non-zero at each vertex then each one is an ordinary double point.

It is well known that cubic surfaces can contain as many as 27 lines [14]. It is also
shown in [14] that a cubic surface possessing three ordinary double points can have,
at most, 12 lines. While the procedure for determining the lines is not particularly
germane to this paper, nonetheless it can be shown that of these 12 lines six are
complex and six are real. Of the six real lines three are at infinity. The remaining
three lines on each surface intersect each other in an equilateral triangle. Moreover,
different pairs of the cubics share a line, meaning that there are 12 distinct lines
among the eight cubics. The set of twelve distinct lines on each of the eight surfaces
intersect to form the edges of a double tetrahedron! This double tetrahedron can
be regarded, philosophically, as the intersection of planar and spherical 4R design
parameter spaces. Treating the αi as directed distances the location of a point in this
space determines the linkage mobility, as for planar 4R linkages [8].

(b)(a)

a1a2

a3 a3

a1a2

Fig. 3 12 distinct lines, three on each of eight cubics: (a) zoomed out; (b) zoomed in.
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4 Conclusions

In this paper we have shown that there is a profound relationship between the de-
sign parameter spaces of planar and spherical 4R linkages. Indeed, if we ignore the
difference between units of length for the ai and measures of angle for the αi and
simply consider the magnitudes, we see that the design parameter spaces of planar
and spherical 4R linkages intersect in the edges of the only uniform polyhedral com-
pound, called the stellated octahedron, which has order 48 octahedral symmetry: a
regular double tetrahedron that intersects itself in a regular octahedron. We believe
that there is something remarkable in the fact that the design parameter spaces of
these two classes of mechanism intersect in the only uniform polyhedral compound
in the universe of polyhedra!
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Abstract. The four arc length angles of the links in a spherical 4R link-
age completely determines the mobility of the driver and follower (input
and output) links. Its design parameter space therefore consists of the
four arc length angle tangent half-angle parameters αi, i ∈ {1, 2, 3, 4}.
Treating these parameters as homogeneous coordinates one can, with-
out affecting the mobility characteristics, project the four-space into the
hyperplane of one of the parameters which represents a three-space in
the remaining parameters. When the three αi are treated as basis direc-
tions then the location of a point in the space determines the mobility
characteristics of the chain. The algebraic input-output equation of the
spherical 4R, an algebraic polynomial in terms of the four αi and the
input and output angle tangent half-angle parameters v1 and v4, is a
planar quartic curve in v1 and v4. Four of the coefficients each factor
into the product of two cubic surfaces in the four αi. Each of the eight
cubic factors contain linear terms where the four linear αi possess eight
distinct variations in sign. In this paper the spherical cosine law is used
to identify conditions enabling the input and output links to be fully
rotatable cranks or to have angular displacement limits in several ways.
The occurrence or absence of angular displacement limits for the input
and output links is completely determined by the signs of products of
four of the linear portions of the cubic coefficients, and therefore by the
location of a point in the design parameter space spanned by the αi.

Keywords: Spherical 4R · Design parameter space · Mobility limits.

1 Introduction

Spherical 4R linkages have been the focus of research for centuries [2]. Arguably
the most successful mechanical system built on spherical 4R closed complex
kinematic chains is the Agile Eye [7], introduced in 1994 and used as a cam-
era pointing system. Four years later the mobility conditions on the input and
output links in spherical function generators were classified using the trigono-
metric input-output (IO) equation [12], but 24 years earlier type and mobility
considerations were examined [6]. This type of mechanical system still excites
the imagination, see [11] for a recent example. Hence, we believe there is suf-
ficient justification to revisit the mobility conditions on the input and output
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Fig. 1. Spherical 4R DH reference frames and parameters.

links of spherical 4R mechanisms imposed by the fixed distances between the
R-pair centres in light of a novel algebraic IO equation [13].

Consider the arbitrary spherical 4R linkage illustrated in Fig. 1. The IO equa-
tion expresses the functional relationship between the input and output angles,
θ1 = f(θ4) in terms of the constant angular distances between the four R-pair
centres, τi. The derivation of the algebraic form of the spherical IO equation
makes use of the original Denavit-Hartenberg (DH) parametrisation of the kine-
matic geometry [3]. It also requires that all measures of angle be converted to
algebraic parameters using the so called Weierstrass1 tangent half-angle substi-
tutions:

vi = tan
θi
2
, αi = tan

τi
2

;

cos θi =
1− v2i
1 + v2i

, cos τi =
1− α2

i

1 + α2
i

;

sin θi =
2vi

1 + v2i
, sin τi =

2αi

1 + α2
i

.

1 Named after mathematician Karl Weierstrass (1815 - 1897), without any claim of
the substitution in Weierstrass’ own writings. Indeed, these substitutions are first
used in a recognisable way [1] by Leonhard Euler in [5], but come from the much
older rational parameterisation of the unit circle which uses the t-line construction
and the formula x = (1− t2)/(1 + t2), y = 2t/(1 + t2). This substitution goes back
in some form to Euclid, at least, who used it to generate Pythagorean triples [4].
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Making these substitutions the algebraic form of the IO equation is derived
as [13]

Av21v
2
4 +Bv21 + Cv24 + 8α1α3

(
α2
4 + 1

) (
α2
2 + 1

)
v1v4 +D = 0, (1)

where

A = A1A2 = (α1α2α3 − α1α2α4 + α1α3α4 − α2α3α4 + α1 − α2 + α3 − α4)

(α1α2α3 − α1α2α4 − α1α3α4 − α2α3α4 − α1 − α2 − α3 + α4) ,

B = B1B2 = (α1α2α3 + α1α2α4 − α1α3α4 − α2α3α4 + α1 + α2 − α3 − α4)

(α1α2α3 + α1α2α4 + α1α3α4 − α2α3α4 − α1 + α2 + α3 + α4) ,

C = C1C2 = (α1α2α3 − α1α2α4 − α1α3α4 + α2α3α4 − α1 + α2 + α3 − α4)

(α1α2α3 − α1α2α4 + α1α3α4 + α2α3α4 + α1 + α2 − α3 + α4) ,

D = D1D2 = (α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4 − α1 − α2 − α3 − α4)

(α1α2α3 + α1α2α4 − α1α3α4 + α2α3α4 + α1 − α2 + α3 + α4) .

The eight cubic factors in the four coefficients A, B, C, and D are symmetric
singular cubics which each possess three finite lines and three common lines at
infinity [9]. Different pairs of the eight surfaces have one finite line in common,
meaning there are 12 distinct finite lines among the eight surfaces. The finite
lines contain the twelve edges of a regular double tetrahedron. Without loss in
generality, the surfaces are projected into the hyperplane α4 = 1 for visualisation,
see Fig. 2. If the αi are interpreted as directed distances, each distinct point in
this space represents a different spherical 4R linkage, while it’s location implies
the mobility of the input and output links, hence the space is called the design
parameter space of spherical 4R linkages.

2 Mobility Conditions

The magnitudes of the linear components of four of the eight coefficient factors
in Eq. (1) determine the mobility of the input and output links leading to results
remarkably similar to [8]. Hence, the location of a point in the projection of the
design parameter space illustrated in Fig. 2 defines the mobility of a linkage
assembled with the links possessing the distances between the R-pairs implied
by the values of α1, α2, and α3 with α4 = 1. The effect of normalising α1, α2,
and α3 with α4 is to place the associated function-generator on the surface of
a unit sphere and merely scales the angular distances between the R-pairs. The
linear components of interest are contained in the factors A1, B1, C1, and D1 in
Eq. (1), and are correspondingly labelled as

Al1 = α1 − α2 + α3 − α4, Bl1 = α1 + α2 − α3 − α4,
Cl1 = −α1 + α2 + α3 − α4, Dl1 = −α1 − α2 − α3 − α4.

}
(2)

The following classification requires that α4 correspond to the relatively non-
moving link.
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(b)(a)

a1a2

a3 a3

a1a2

Fig. 2. Eight cubic surfaces in the spherical 4R design parameter space: (a) zoomed
out; (b) zoomed in.

Existence Condition for θ1min . Examining the spherical 4R illustrated in
Fig. 1 the input link can correspond to either τ1 or τ3. We arbitrarily assign the
input link to be τ1 and θ1 its input angle. If the relative lengths of the links
permit, the links corresponding to τ2 and τ3 can align on the same great circle.
In this configuration θ1 will be either at its minimum or maximum value. If the
arc length of the great circle segment is determined by the angle τ2 − τ3 then
θ1 will be at its minimum value, denoted θ1min

. In order to be able to attain
this configuration then it must be that cos θ1min

≤ 1. If, on the other hand,
cos θ1min

> 1 then the alignment of τ2 and τ3 on the same great circle is not
mechanically possible and τ1 will be able to traverse the positive x0-axis passing
through θ1 = 0. This condition can be modelled using the law of cosines for
spherical triangles [14]

cos θ1min
=

cos (τ2 − τ3)− cos τ1 cos τ4
sin τ1 sin τ4

> 1. (3)

Rearranging Eq (3) and using the addition/subtraction identity

cosφ1 cosφ2 + sinφ1 sinφ2 = cos (φ1 − φ2)

yields the equivalent condition of

cos (τ2 − τ3) > cos (τ1 − τ4). (4)

Because the magnitude of the cosine function decreases as the absolute value
of its argument increases in the range 0 ≤ ∆τ ≤ π, Eq. (4) can be re-expressed
equivalently as

(τ2 − τ3)2 < (τ1 − τ4)2, ⇒ (τ2 − τ3)2 − (τ1 − τ4)2 < 0. (5)
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This difference of squares is factored according to a2− b2 = (a+ b)(a− b), giving

(τ1 + τ2 − τ3 − τ4)(−τ1 + τ2 − τ3 + τ4) < 0. (6)

Converting these factors of sums and differences of angles to their algebraic
equivalents yields sums and differences of the αi which correspond to −Al1 and
Bl1, two linear components of the factors listed in Eq. (2), giving

(α1 + α2 − α3 − α4)︸ ︷︷ ︸
Bl1

(−α1 + α2 − α3 + α4)︸ ︷︷ ︸
−Al1

< 0, (7)

or

Al1Bl1 > 0. (8)

Hence, the condition for θ1min
to exist is Al1Bl1 ≤ 0. If, on the other hand,

Al1Bl1 > 0 then the link defined by α1 can cross the positive x0-axis, passing
through 0.

Existence Condition for θ1max . If the relative lengths of the links allow τ2
and τ3 to align on the same great circle with arc length determined by τ2 + τ3
then θ1 will be at its maximum value, denoted θ1max

. The condition enabling
link α1 to pass through π on the x0-axis, meaning that θ1max

does not exist, is
again modelled with the law of cosines for spherical triangles as:

cos θ1max
=

cos (τ2 + τ3)− cos τ1 cos τ4
sin τ1 sin τ4

< −1. (9)

Rearranging Eq. (9) and using the addition/subtraction identity gives the con-
dition

cos (τ2 + τ3) < cos (τ1 + τ4)

Now, following the same procedure as for θ1min leads to the inequality condition
for the non-existence of θ1max as the product of the sums and differences of the
linear elements listed in Eq. (2)

(α1 + α2 + α3 + α4)︸ ︷︷ ︸
−Dl1

(−α1 + α2 + α3 − α4)︸ ︷︷ ︸
Cl1

> 0, (10)

or

Cl1Dl1 < 0. (11)

Existence Condition for θ4min . The procedure for determining the condi-
tions on the link lengths for the existence of a minimum output angle, θ4min

, is
similar to that of determining the conditions for θ1, but uses a different spherical
triangle. In order for θ4min

to exist, then links τ1 and τ2 must align on the same
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great circle with arc length determined by τ2−τ1. If this configuration cannot be
reached by the mechanism then θ4min

does not exist and cos θ4min
> 1, meaning

that τ4, or α4 depending on how it is represented, can pass through 0 on the
x4-axis. Hence, the condition required for θ4min to not exist is given by

cos θ4min
=

cos (τ2 − τ1)− cos τ3 cos τ4
sin τ3 sin τ4

> 1. (12)

The equivalent condition, in the range 0 ≤ ∆τ ≤ π, is given by factoring the
difference of squares and converting the τi to αi is

(−α1 + α2 + α3 − α4)︸ ︷︷ ︸
Cl1

(−α1 + α2 − α3 + α4)︸ ︷︷ ︸
−Al1

< 0. (13)

This means that the condition for θ4min
to not exist thus enabling α3 to pass

though 0 is

Al1Cl1 > 0. (14)

Existence Condition for θ4max . The condition for the existence of θ4max

is that links τ1 and τ2 must align on the same great circle with arc length
determined by τ1 + τ2. For α4 to have the ability to pass through π on the
x4-axis is given by cos θ4max

< −1, meaning that

cos θ4max =
cos (τ1 + τ2)− cos τ3 cos τ4

sin τ3 sin τ4
< −1. (15)

Following the same procedure detailed as for θ1min
leads to the condition for

the non-existence of θ4max
as

(α1 + α2 + α3 + α4)︸ ︷︷ ︸
−Dl1

(α1 + α2 − α3 − α4)︸ ︷︷ ︸
Bl1

> 0. (16)

This means that the condition for θ4max to not exist thereby enabling α3 to pass
though π is

Bl1Dl1 < 0. (17)

2.1 Mobility Classification for Spherical 4R Linkages

It is to be seen that the magnitude of four of the linear components, Al1, Bl1,
Cl1, and Dl1 of the eight cubic factors of the coefficients of Eq. (1) completely de-
termines the mobility of the input and output links. The eight distinct mobility
types are listed in Table 1. Depending on the twist angle parameters and sphere
radius, each of the first three of the four linear components can be positive, neg-
ative, or identically zero, while Dl1 is always less than zero. In the classification
scheme first presented in [12] and later refined in [10] trigonometric relations are
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Table 1. Classification of non-folding spherical 4R linkages. Shaded cells satisfy the
Grashof condition.

# Al1 Bl1 Cl1 Dl1 Input α1 Output α4

1 - - - - 0-rocker 0-rocker
2 + - - - rocker rocker
3 - + - - rocker crank
4 - - + - crank rocker
5 + + - - 0-rocker π-rocker
6 + - + - π-rocker 0-rocker
7 - + + - π-rocker π-rocker
8 + + + - crank crank

only considered. Because the sum of any two angles in a spherical triangle can
exceed π, but not 2π, while the sum of the three interior angles is greater than
π, but less than 3π, it may happen that the argument of the cosine function is
not in the range between 0 and π. To address this the trigonometric form of the
Dl1 term is modified to

D′l1 = 2π − τ1 − τ2 − τ3 − τ4.

Depending on the magnitudes of the angles D′l1 may be less than, greater
than, or identically equal to 0. If D′l1 < 0 then the linkage wraps around the
sphere [10]. Regardless, for each of the eight possible mechanism types possessing
mobility determined by the signs of the other three linear factors is precisely the
same as those for the case where D′l1 > 0. Moreover, when converted to their
algebraic parameters we see that D′l1 = Dl1 since tan 2π/2 = 0. Therefore we
only consider the eight cases where Dl1 < 0 which aligns with results already
established in the literature [10, 12].

Moreover the Grashof condition is satisfied when the product Al1Bl1Cl1Dl1 <
0. The four possible Grashof linkages are the shaded cells in Table 1. If the link
lengths permit any one, or any combination of Al1, Bl1, or Cl1 to be identically
zero, then the linkage can fold, however, in the interest of brevity, none of these
additional 19 folding linkages are tabulated.

3 Conclusions

In this paper, using the algebraic IO equation for spherical 4R linkages from [13],
we have shown that the linear elements of the four of the eight cubic factors of
link lengths play a role in characterising the mobility characteristics of the input
and output links. Any point in the design parameter space of the link length
parameters α1, α2, and α3 projected into the hyperplane α4 = 1 establishes
the mobility characteristics listed in Table 1. While the results themselves are
not new, the method by which they are obtained is. Moreover, since the same
approach can be applied to planar 4R linkages as well, it is approaching the
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completely general function generator algebraic IO equation we are attempt-
ing to develop for any planar, spherical, or spatial four-bar linkage kinematic
architecture.
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