Chapter 9

New Methods for

Kinematic Synthesis

Results that describe new methods for kniematic synthesis presented at various
conferences and in archival journals are reprinted in slightly modified form in the
following sections. The material presented in the first paper was disseminated
in the Proceedings of the International Federation of Machines and Mechanisms
(IFToMM) Tenth World Congress on the Theory of Machines and Mechanisms,
in Oulu, Finland in a paper entitled “The Effect of Data-set Cardinality on
the Design and Structural Errors of Four-bar Function-generators” [1]. This
paper presents the initial observation that as the input-output (IO) data-set
cardinality increases the Euclidean norms of the design and structural errors
converge. The important implication is that the minimisation of the Euclidean
norm of the structural error can be accomplished indirectly via the minimisation
of the corresponding norm of the design error provided that a suitably large

number of input-output pairs is prescribed.

The second paper, entitled “Continuous Approximate Synthesis of Planar
Function-generators Minimising the Design Error” [2], first appeared in the
archival journal Mechanism and Machine Theory in June 2016. In this pa-
per the synthesis equations are integrated in the range between minimum and
maximum input values, thereby reposing the discrete approximate synthesis
problem as a continuous one. Moreover, it is proved that a lower bound of the
Euclidean norm, and indeed of any p-norm, of the design error for planar RRRR
function-generating linkages exists and is attained with continuous approximate

synthesis.
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The third paper, “Solving the Burmester Problem Using Kinematic Map-
ping” [3], initially appeared in the Proceedings of the American Society of Me-
chanical Engineers (ASME) Design Engineering Technical Conferences: Mech-
anisms Conference, and was presented in Montréal, QC, Canada in September
2002. In this paper a method to solve the five-pose Burmester problem for
rigid body guidance using the planar kinematic mapping of Griinwald [4] and
Blashke [5] introduced simultaneously, but independently in 1911, is presented.
This procedure was generalised to all possible planar four-bar mechanisms in
[6].

A new approach for approximate synthesis of planar four-bar mechanisms
that solve the rigid body guidance problem is presented in the fourth paper, en-
titled “Quadric Surface Fitting Applications to Approximate Dimensional Syn-
thesis” [7]. This paper appeared in the Proceedings of the International Fed-
eration of Machines and Mechanisms (IFToMM) Thirteenth World Congress
on the Theory of Machines and Mechanisms, and was presented in Guanaju-
ato, Mexico in June 2011. In this paper an approximate synthesis method is
presented that takes a given set of n desired poses of the coupler of a four-bar
planar mechanism and finds the “best” mechanism that can achieve them. This
is accomplished by solving an equivalent unconstrained non-linear minimisation
problem. The hyperboloids of one sheet or hyperbolic paraboloids that min-
imise the distance between the given n poses in the kinematic mapping image
space of Griinwald and Blashke and n corresponding points that belong to the
quadric surfaces, represent the “best” mechanism that can achieve the desired

poses.

The fifth paper presents work intended to integrate type and dimensional
synthesis solving the five-position Burmester problem and is entitled “Towards
Integrated Type and Dimensional Synthesis of Mechanisms for Rigid Body Guid-
ance” [8]. In this paper kinematic mapping is used to take the first steps towards
development of a general algorithm combining both type and dimensional syn-
thesis of planar mechanisms for rigid body guidance. In this work an algorithm
is presented that can size link lengths, locate joint axes, and, using heuristics,
decide between RR- and PR-dyads that, when combined, can guide a rigid body
exactly through five specified positions and orientations, i.e., the five-position
Burmester problem. The paper was presented at the 2004 Canadian Society for
Mechanical Engineering Forum in London, ON; in June 2004, and appears in

the associated Proceedings.

The sixth paper in this chapter, entitled “Integrated Type And Dimensional
Synthesis of Planar Four-Bar Mechanisms” [9], appears in a book containing



the proceedings of the eleventh in the series of Advances in Robot Kinematics
Conference, and was presented in June 2012 in Innsbruck, Austria. In the paper
a novel approach to integrated type and approximate dimensional synthesis of
general planar four-bar mechanisms (i.e. linkages comprised of any two of RR,
PR, RP, and PP dyads) for rigid-body guidance is proposed. The essence is to
correlate coordinates of the coupler attachment points in two different coordi-
nate frames, thereby reducing the number of independent variables defining a
suitable dyad for the desired rigid-body motion from five to two. After apply-
ing these geometric constraints, numerical methods are used to size link lengths,
locate joint axes, and decide between RR, PR, RP and PP dyads that, when
combined, guide a rigid body through the best approximation, in a least-squares
sense, of n specified positions and orientations, where n > 5. No initial guesses

of type or dimension are required.

The seventh and eighth papers both investigate the derivation and geome-
try of an algebraic version of the IO equation of planar 4R mechanisms. The
seventh, entitled “Input-output Equation for Planar Four-bar Linkages” [10],
appears in a book containing the proceedings of the sixteenth in the series of
Advances in Robot Kinematics Conference, and was presented in July 2018
in Bologna, Italy. While the eighth is entitled “An Algebraic Version of the
Input-output Equation of Planar Four-bar Mechanisms” [11], and appears in a
book containing the proceedings of the eighteenth in the series of conferences
called International Conference on Geometry and Graphics, and was presented
in August 2018 in Milan, Italy.

The algebraic IO equation for planar RRRP and PRRP linkages is derived in
the same way as in [10] in the ninth paper, entitled “An Algebraic Input-Output
Equation for Planar RRRP and PRRP Linkages” [12], first presented at, and
appearing in the proceedings of the 10* CCToMM Symposium on Mechanisms,
Machines, and Mechatronics, Ecole de technologie supérieure, Montréal, QC,
Canada. In this paper it is shown that the IO equations for any planar 4R linkage
is precisely the same as those for any planar four-bar linkage containing as many
as two P-pairs. However, the inputs and outputs are different parameters.

Given that the 10 equations for planar four-bar linkages are the same re-
gardless of the number of P-pairs, provided the maximum is two, the next phase
of this research was to develop a generalised approach to deriving the 10 equa-
tions for planar, spherical, and spatial four-bar linkages of arbitrary kinematic
architecture. The first step towards this goal is presented in the tenth paper,
entitled “A General Method for Determining Algebraic Input-output Equations
for Planar and Spherical 4R Linkages” [13], which has been accepted for pub-
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lication in a book containing the proceedings of the seventeenth in the series
of Advances in Robot Kinematics Conference in Lubljana, Slovenia, originally
scheduled between June 28 - July 2, 2020. Given the COVID-19 pandemic, we’ll
see how that goes.

The results presented in the final three papers in this chapter [14, 15, 16] de-
tail the design parameter spaces of planar and spherical 4R linkages. The first of
the three, entitled “Design Parameter Space of Planar Four-bar Linkages” [14],
was presented at, and appears in the proceedings of the 15" IFToMM World
Congress, 2019, Krakow, Poland, June 30 - July 04, 2019. The main result of
the paper is that the eight linear factors in four of the coefficients of 10 equation
define a regular double tetrahedron in the parameter space of the link lengths.
Each linear factor defines a plane which intersects three other planes in the set
in an equilateral triangle, for a total of eight. The two tetrahedra in the regu-
lar double tetrahedron belong to the only uniform polyhedral compound, called
the stellated octahedron, which has order 48 octahedral symmetry. This double
tetrahedron has a regular octahedron at its core and shares its eight vertices
with the cube. The eight equilateral triangles bound the faces of this octahe-
dron. Distinct points in this design parameter space represent distinct function
generators and the locations of the points relative to the eight planes containing
the faces of the double tetrahedron completely determines the mobility of the
input and output links.

The last two papers in this set, entitled “Design Parameter Space of Spherical
Four-bar Linkages” [15], and “Mobility Classification in the Design Parameter
Space of Spherical 4R Linkages” [16], describe a related design parameter space
for spherical 4R linkages. Perhaps the most interesting result is that the co-
efficient factors define eight singular cubic surfaces. Each of the eight cubics
possess six real lines each, three on the plane at infinity and three finite ones.
The three lines at infinity are common to all eight cubics, while the three fi-
nite lines on each surface are equilateral triangles which can be considered the
edges of the double tetrahedron for planar 4R linkages! In this way, the design
parameter spaces of planar and spherical 4R linkages intersect in the edges of
the only uniform polyhedral compound comprising a regular double tetrahe-
dron that intersects itself in a regular octahedron. This is the only uniform

polyhedral compound in the entire universe of polyhedral!
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1 Introduction

Design and structural errors are important performance indicators in the assessment and
optimisation of function-generating linkages arising by means of approximate synthesis.
The design error indicates the error residual incurred by a specific linkage regarding the
verification of the synthesis equations. The structural error, in turn, is the difference
between the prescribed linkage output and the actual generated output for a given input
value [Tinubu and Gupta 1984]. From a design point of view it may be successfully argued
that the structural error is the one that really matters, for it is directly related to the
performance of the linkage.

The main goal of this paper is to demonstrate that, as the data-set cardinality in-
creases, the Euclidean norms of the design and structural errors converge. The important
implication is that the minimisation of the Euclidean norm of the structural error can
be accomplished indirectly via the minimisation of the corresponding norm of the design
error, provided that a suitably large number of input-output (I/O) pairs is prescribed.
Note that the minimisation of the Euclidean norm of the design error leads to a linear
least-square problem whose solution can be obtained directly [Wilde 1982], while the
minimisation of the same norm of the structural error leads to a nonlinear least-squares
problem, and hence, calls for an iterative solution [Tinubu and Gupta 1984].

2  Procedure

The synthesis problem of four-bar function-generators consists of determining all relevant
design parameters such that the mechanism can produce a prescribed set of m input-
output (I1/0) pairs, {¢;, #;} T, where 9); and ¢; represent the i" input and output variables,
respectively, and m is the cardinality of the data-set.

Let n be the number of independent design parameters required to characterise the
mechanism. For planar RRRR linkages, n = 3 [Freudenstein 1955], while for spherical
RRRR linkages n = 4 [Hartenberg and Denavit 1964]. For spatial RCCC' function-
generators, the issue is not as straightforward. The output of this type of linkage consists
of both angular and translational displacements, although they are coupled. If we only
consider the angular output, which is necessary if comparisons are to be made with the
other two for generating identical functions, then n = 4 [Liu 1993].

To appear in Proc. IFToMM June ’99 1 © IFToMM 1999



Approximate synthesis problems involve sets of I/O equations such that m > n. If
m = n, the problem is termed ezact synthesis and may be considered a special case of the
former [Liu and Angles 1992]. The optimisation problem of four-bar function-generators
usually involves the approximate solution of an overdetermined linear system of equations
with the minimum error. The I/O equations can be written in the form

Sk = b, (1)

where S is the m X n synthesis matriz, b is an m-dimensional vector, whereas k is the n-
dimensional vector of design variables, usually called the Freudenstein parameters as they
were first introduced in [Freudenstein 1955] for the synthesis of planar four-bar linkages.
Moreover, the i row of S, sT, and the i"* component of b, b;, are functions of ¢; and ¢;
only. For the planar RRRR mechanism:

sl = [1 cos¢y —cosyy |, i=1,..,m, (2)
by = [cos(vpi—¢i) ], i=1,...m, (3)
k = [k ko k] (4)

For the spherical RRRR mechanism:
sl = [1 —cos¢; cosyy cosdicosty; |, i=1,..,m, (5)
by = [ —sing;sing; |, i=1,..,m, (6)
k = [k ks ks ki ]". (7)

For the spatial RCC'C' mechanism:

s/ = [1 sing; siny; sing;sine; |, i=1,..,m, (8)
b; = |[cosycosg; |, i=1,..,m, 9)
k = [k ky ks ka]". (10)

These synthesis equations are linear in the components of k. This matrix form has
obvious representational advantages, but more importantly, it allows us to determine
values of the I/O dial zeros, a and (3, that will best condition the synthesis matrix, S [Liu
and Angeles 1993]. Here, we regard the I/O pairs as a set of incremental angular changes,
{Av; Ag;}7'. The I/O data set is then

Y =a+ Ay, ¢p=0+A¢; i=1,...,m. (11)

The Nelder-Mead downhill simplex algorithm in multi-dimensions [Liu and Angeles 1993]
is employed to estimate the optimal values for o and 3. It should be mentioned that, while
changing the dial zeros of the I/O angles improves the condition number, , of planar
RRRR, spherical RRRR and spatial RCCC' linkages, this method does not always work
for spatial RSSR linkages [Liu and Angeles 1993].

When m > n there is, in general, no k which will exactly satisfy all the equations.
There are two well established indicators to assess the approximation error, namely the
design and structural errors. We define the design error vector d as

d = Sk—b. (12)

The Freudenstein parameters, k, may be optimised by minimising the Euclidean norm of
d. The scalar objective function is

z = %(dTWd), (13)
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which must be minimised over k. The scalar quantity d” Wd is the weighted Euclidean
norm of d. The matrix W is a diagonal matrix of positive weighting factors, which can be
used to make some of the data points affect the minimisation more, or less, than others,
depending on their relative importance to the design. For the sake of simplicity W will
be set equal to the identity matrix in this article, d¥ Wd being indicated by ||d||».

The quantity ||d||> can be minimised, in a least squares sense, very efficiently by trans-
forming S using Householder reflections [Golub and Van Loan 1989], the Moore-Penrose
generalised inverse thus not being explicitly computed. Design error minimisation is there-
fore a linear problem; a desirable trait, indeed. Unfortunately, as a performance indicator,
the design error is not directly related to the I/O performance of the function-generator.

Alternatively we may approach the optimisation problem by minimising the same norm
of the structural error. Since this error is defined as the difference between the gener-
ated and prescribed outputs for a given input, it is directly related to function-generator
performance. Let the structural error vector s be defined as

o1 — 1
s = :

{ : ; ) (14)
Pm — Pm

where ¢, is the generated value of the output ¢ attained at ¢ = 1);, and ¢; is, as defined
earlier, the prescribed value of the output angle at ¢» = ;. It can be shown that the
structural and design errors are related by

d = d(s) = Sk-—b, (15)

where d is a nonlinear function of s [Tinubu and Gupta 1984]. Hence, it is evident that
minimising ||d|| is not equivalent to minimising the Euclidean norm of the structural
error, ||s||z.

To minimise the Euclidean norm of this error, the iterative Gauss-Newton procedure is
employed. The conditions under which the procedure converges in the neighbourhood of
a minimum are discussed in [Dahlquist and Bjoérck 1969]. In this case, the scalar objective
function to be minimised over k is

1
¢ = §(STWS). (16)
Here, again, W is set equal to the identity matrix, the weighted Euclidean norm being
indicated by ||s]|2-
We start with an initial guess for the Freudenstein parameters that minimise the Eu-
clidean norm of the design error, and modify the guess until the normality condition,

9¢

= — 17
ak Y ( )
is satisfied to a specified tolerance, €, such that
0
8_l<< < ¢ fore > 0. (18)

We do not actually evaluate the normal equations, since they are typically ill-
conditioned. Rather, we proceed in the following way: the i* /O equation is a function
of v;, ¢; and the Freudenstein parameters, k, and may be written as

fi(i, pisk) = 0. (19)
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The Jacobian of f with respect to the vector of output values, ¢, is the following diagonal
matrix:

of .. (94 Ofm\ _

If we regard Eq. (19) as a function of only ¢; we can write

k) = . (21)

However, we want

ok) = ¢ (22)

Assume we have an approximation to ko, which we call k¥, obtained from the v
iteration. We now require a correction vector, Ak, so that

ok’ +Ak) = o. (23)

It can be shown [Dahlquist and Bjorck 1969], after expanding the left-hand side of Eq. (23)
in series, and ignoring higher order terms, that

$(k') — = D 'SAk, (24)

the left-hand side of Eq. (24) being —s”. Now we find Ak as the least-square approxima-
tion of Eq. (24). It can be proven that Ak =~ 0 implies 9(/0k = 0, which means that we
can satisfy the normality condition without evaluating it explicitly.

We show with one example below that, as the cardinality m of the data points increases,
the design and structural errors converge.

3 Example

We synthesise here a planar RRRR, a spherical RRRR and a spatial RCCC four-bar
mechanism to generate a quadratic function for an input range of 0° < Ay < 60°,
namely,

9Ny

Agi = —

(25)

For each mechanism the I/O dial zeros («, ) are selected to minimise the condition
number k of S for each data-set [Liu and Angeles 1993]. Then both the design and
structural errors are determined for the linkages that minimise the respective Euclidean
norms for data-sets with cardinalities of m = {10,40,70, and 100}. These results are
listed in Tables 1-4. Finally the structural errors, corresponding to m = 40, of the linkages

that minimise the Euclidean norms of the design and structural errors are graphically
displayed in Fig. 1.



Table 1: Results for m = 10.
Planar RRRR Spherical RRRR Spatial RCCC

opt (deg.) 123.8668 133182 ~16.6817

Bopt (deg.) 91.7157 89.5221 -0.4781
Kopt 33.2074 200.5262 200.5262
1d|l 7.273 x 1073 7.60 x 104 7.60 x 10~
18] 5.965 x 10~3 417 x 104 417 x 104

Table 2: Results for m = 40.
Planar RRRR Spherical RRRR Spatial RCCC

opt (deg.) 117.4593 12.7696 ~47.2301

Bopt (deg.) 89.4020 88.8964 -1.1037
Kopt 32.5549 203.0317 203.0317
IE 1.571 x 1072 1.887 x 103 1.887 x 103
8|2 1.502 x 102 1.057 x 1073 1.057 x 1073

Table 3: Results for m = 70.
Planar RRRR Spherical RRRR Spatial RCCC

opt (deg.) 116.4699 1277014 ~47.2987

Bopt (deg.) 89.0488 88.8045 -1.1956
Kopt 32.5242 204.7696 204.7696
I 2.088 x 102 2.536 x 103 2.536 x 10~3
8] 2.040 x 102 1.423 x 1073 1.423 x 1073

Table 4: Results for m = 100.
Planar RRRR Spherical RRRR Spatial RCCC

Gope (deg.) 116.0679 12.6740 47,3261
Bopt (deg.) 88.9057 88.7674 -1.2326
Kopt 32.5170 205.5603 205.5603
Idfs 2499 x 10~ 3.047x 103 3.047 x 10~3
sl 2464 %1072  1.712x10°%  1.712x 10
. i ;\\\ //' 0.005 [ "\ / \ 1 0.005 2 - —«// s \
2 r/ TN ya 1 ‘g’—onosm RN / & = ~0.005 / . \\ ,/// i \
sl. - '!" 7 - N 1 .S|. —0.010 - [ / ‘\‘\ 1 .? ~0.010 / - //—/‘ e —\‘ o
Sl /’ : : - ] S goisff - | 1 S o015 / - - - R
o3 /" ‘istrgctural Error ] —0.020 % i - Strgctural Error - \ . -0.020 & .
_0.4L ! Design Error 4 0025k i Design Error L _0.025 Design Error IR
Input angle: ¥ (deg.) Input angle: ¥ (deg.) Input angle: Y (deg.)
(i) (i4) (ii1)

Figure 1. Structural error comparison for (i) planar, (i7) spherical RRRR and (iii) spatial RCCC
mechanisms minimising ||s||2 & ||d||2.

4 Discussion and Conclusions

Examining Tables 1-4, it can be seen that ||d||; and ||s||s increase with m for each mech-
anism. The trend for the planar RRRR is towards convergence. It is interesting to note
that the error results are identical for the spherical RRRR and the spatial RCC'C' link-
ages, except that a,py and B, are different. In a sense, this is not surprising because of
the symmetrical nature of the function in the 1) — ¢ plane. Moreover, the synthesis equa-
tions for these two linkages are, with the exception of sign, trigonometric complements
in the form considered in this article. However, compared to the planar RRRR, we see



the errors converge near m = 40, but then diverge again for higher values of m. Fig. 1
shows the close agreement of the respective structural error curves for m = 40. In all
cases treated, a number of prescribed I/O values of at least m = 10 is sufficient for the
minimisation of the Euclidean norm of the design error to lead to the same norm of the
structural error within a reasonable difference.

These results support our hypothesis that for a suitably large data-set cardinality link-
age optimisation using design and structural error based objective functions result in vir-
tually identical function-generating mechanisms. The obvious weakness is that the cardi-
nality of the data-set for which convergence is obtained is not known a priori. Nonetheless,
further pursuit of this result is worthwhile because of its computational simplicity.
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1. Introduction

Design and structural errors are important performance indicators in the assessment and optimisation of function-
generating linkages arising by means of approximate synthesis. The design error indicates the error residual incurred by a specific
linkage in satisfying its synthesis equations. The structural error, in turn, is the difference between the prescribed linkage out-
put value and the actual generated output value for a given input value [1]. From a design point of view it may be successfully
argued that the structural error is the one that really matters, for it is directly related to the performance of the linkage.

ItwasshowninRef.[2]thatasthe cardinality of the prescribed discrete input-output (I/O) data-setincreases, the corresponding
linkages that minimise the Euclidean norms of the design and structural errors tend to converge to the same linkage. The important
implication of this observation is that the minimisation of the Euclidean norm of the structural error can be accomplished
indirectly via the minimisation of the corresponding norm of the design error, provided that a suitably large number of I/O pairs
is prescribed. The importance arises from the fact that the minimisation of the Euclidean norm of the design error leads to a
linear least-squares problem whose solution can be obtained directly as opposed to iteratively [3,4], while the minimisation of
the same norm of the structural error leads to a nonlinear least-squares problem, and hence, calls for an iterative solution [1].
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Several issues have arisen in the design error minimisation of four-bar linkages. First, the condition number of the synthesis
matrix may lead to design parameters that poorly approximate the prescribed function [5]. This problem can be addressed
through careful selection of the /O pairs used to generate the synthesis matrix. It has also been suggested to introduce dial
zeros whose values are chosen to minimise the condition number of the synthesis matrix [6]. Second, the identified design
parameters have a dependence on the I/O set cardinality. As the number of I/O pairs grows, the magnitude of the design error
tends to converge to a lower bound. Hence, the I/O set cardinality might be fixed as soon as the magnitude of the design error
reaches some pre-defined minimum value [2].

Diverse interesting and useful optimisation strategies have been proposed recently for structural error minimisation in pla-
nar four-bar function-generators. For example, in Ref. [7] the authors define the least squares error between the desired and
generated functions as the objective function for a sequential quadratic programming (SQP) approach. The proposed method
solves a sequence of optimisation subproblems, each of which optimises a quadratic model of the objective function subject
to a linearisation of the constraints based on the distribution of a finite set of precision points. Another novel approach which
considers the minimisation of the structural error of the link lengths is described in Ref. [8]. The method treats one of the
dyads as having fixed distances between joint centres, while the other dyad has links of variable length. The adjustable link
lengths are varied using a discrete set of precision points as benchmarks. A completely different approach is used in Ref. [9] to
develop a probabilistic, time-dependent function-generator synthesis method. The authors introduce the concept of “interval
reliability synthesis”. The dimensions of the link lengths are treated as random variables while their mean values become the
design variables, and the probability of failure to produce the function within a prescribed tolerance is minimised over a defined
time interval and corresponding position level interval of the function. While these methods achieve excellent results, they do
not shed any light on the curious tendency observed in Ref. [2]. What the vast body of literature reporting investigations into
function-generator synthesis optimisation is missing is a systematic study of what the implications are of allowing the cardinal
number of the I/O data set to tend towards infinity.

Hence, the goal of this paper is to take the first step towards proving that the convergence observed in Ref. [2] is true for
planar four-bar function-generators. More precisely, a proof will be given for the design error that as the cardinality of the I/O
data set increases from discrete numbers of I/O pairs to an infinite number between minimum and maximum pairs that a lower
bound for any p-norm of the design error exists, and corresponds to that of the infinite I/O set, thereby changing the discrete
approximate synthesis problem to a continuous approximate synthesis problem. To this end, the design error minimisation
occurs in the space of a continuous function possessing an L, norm defined later in this paper. However, our study is currently
restricted to the planar RRRR function-generating linkage, where R denotes revolute joint, synthesised using the kinematic model
defined in Ref. [10].

2. Design error minimisation: the discrete approximate approach

The synthesis problem of planar four-bar function-generators consists of determining all relevant design parameters such
that the mechanism can produce a prescribed finite set of m 1/0 pairs, {{;, ¢;}]", where ; and ¢; represent the jth input and
output variables, respectively, and m is the cardinality of the finite data-set. We define n to be the number of independent design
parameters required to fully characterise the mechanism. For planar RRRR linkages, n = 3 [10]. If m = n, the problem is termed
exact synthesis and may be considered a special case of approximate synthesis where m > n.

We consider the optimisation problem of planar four-bar function-generators as the approximate solution of an overde-
termined linear system of equations with the least error. The synthesis equations that are used to establish the linear system
for a four-bar function-generator are the Freudenstein equations [10]. Consider the mechanism in Fig. 1. The ith configuration is
governed by:

ky + ko cos(¢i) — ks cos(i;) = cos(i — @), (1)
where the k's are the Freudenstein parameters , which are the following link length ratios:

2 2 2 2
k _(ai+a3+aj—a3) b= =%
1= ——; K= —; 3= —.

2(12(14 [¢h) ag

(2)
Given a set of three Freudenstein parameters, the corresponding set of link lengths, scaled by a;, are:
1
a=1 aG=-— a=-—; a=(1+a+d-2a0ak)/? (3)
3

The finite set of I/O equations can be written in the following form, using Eq. (1)

Sk = b, (4)
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7% VZ

Fig. 1. A four-bar linkage in two configurations.

where S is the m x 3 synthesis matrix, whose i™ row is the 1 x 3 array s;, b is an m-dimensional vector, whereas K is the

3-dimensional vector of design variables called the Freudenstein parameters [10]. For the planar RRRR mechanism we have:

si = [lcos@; —cosy;], i=1,...,m, (5)
bi =cos(¢; —¢;), i=1,...,m, (6)
k = [kikaks]". (7)

The synthesised linkage will only be capable of generating the desired function approximately. The design error is the alge-
braic difference of the left-hand side of Eq. (4) less the right-hand side. Because we will be comparing errors associated with
different cardinalities, we now include the cardinality m in the definition. The m-dimensional design error vector d,, for a finite
discrete set of m > 3 1/O pairs, {();, ©;)i=1.m}, is defined as:

dy, = Snk —bp. (8)

If the output values prescribed by the functional relationship, @,;, correspond precisely to the output values generated
by the mechanism, i.e., Qg ;, then, [|dm ||= 0. However, for a general prescribed function Cpres(®), Ildm [I7= 0 and we seek the
Freudenstein parameter vector that minimises the norm of the design error vector. In general, the weighted Euclidian norm is
used:

1
I dp H\Z/vm,z: i dngmdm. (9)
where Wy, is an m x m diagonal matrix with strictly positive elements. In a typical design problem, Wy, is used to adjust the
impact on the optimisation of specific I/O pairs. However, for the purposes of this work, Wy, will be set to the identity matrix,
I;». The optimal Freudenstein parameters k, for this norm are:

Kk, = St by, (10)
where S} is the Moore-Penrose generalised inverse of the synthesis matrix, and the corresponding minimal design error is:

= min || dull =/ dll2 =1 (In = SuS; bmllz. (11)

In general, for any matrix, square or rectangular, the condition number x is a measure of how invertible the matrix is: it is
the ratio of the largest to smallest singular values. Consider the system of linear equations represented by Ax = b. The matrix
A may be viewed as a map from vector space X to vector space b. A very large condition number of A implies that the smallest
singular value of the matrix is very small, meaning that b is poorly approximated by Ax. This also implies that A~'b very poorly
approximates X. Extremely large condition numbers indicate that there is a near linear dependency among some of the rows
of A, meaning that one, or more, of its singular values is very close to zero. Such matrices are termed ill-conditioned. The
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condition number k is a property of the matrix A and entirely independent of the vector spaces x and b. For numerical stability
considerations, it is always desirable to have a well-conditioned synthesis matrix, otherwise the numerical values of S;; may
be significantly distorted by very small singular values, or singular values identically equal to zero, leading to optimised k that
imply a mechanism which very poorly approximates the function. Hence, the dial zeros o and f3, illustrated in Fig. 1, have been
introduced to minimise the condition number, k, of Sp,;:

bi=o+ AP @ =B+ A (12)
When the dial zeros are substituted into Eq. (1), the synthesis equation becomes:
ky + ky cos(B + Ag;) — ks cos(a + As;) = cos(a + Ags; — B — Ag;), (13)

and, the I/O pairs are regarded as a discrete set of incremental angular changes {(Ays;, AQ;)i=o_m}. The arrays d;,, ki, and S, are
now also functions of the dial zeros. With this modification, the design error minimisation problem can be efficiently solved in
a least squares sense in two steps:

1. determine the dial zeros to minimise the condition number xp,(c, 3) of the synthesis matrix Sy;;
2. determine the corresponding optimal Freudenstein parameters using Eq. (10).

3. Design error minimisation: the continuous approximate approach

A major issue associated with the discrete approach to the design error minimisation is the appropriate choice for the
cardinality of the discrete I/O pair data set such that the minimisation of the structural error is implied. Indeed, the choice of
m depends on the prescribed function Ag,,,(Ay) and m is generally fixed when some level of convergence is observed. For
the example used in Ref. [2] m = 40 was observed to be a good choice. We now propose to evaluate the design error over the
continuous range between minimum and maximum, or initial and final, input values of the prescribed function, denoted
[Atso, Afs] . We only consider functions that are continuous over [Agsy, Ay, that are defined in a function space, denoted
CO([Ad/o.Adff]), whereupon the following L,-norm has been defined for any continuous function f on the closed interval

[Arg, Ayg]:

Ady 1/p
vf e CO([Adso, A1), 1l fllp = (/Aw 1f(¢)|l’d¢) , (14)
0

where p is an integer such that p > 1. Imposing the L,-norm upon this function space makes C°([ Ay, Ayss]) an Ly-space. Such Lp-
spaces are defined using a generalisation of the vector norm for finite-dimensional vector spaces [4]. Vector norms are special
cases of the family of Ly-norms, often denoted by I, while L, is reserved for norms in function spaces [4]. The most common
Lp-norms for a continuous function f on a closed interval [a, b], and in fact, the most commonly used vector norms [11], are the
maximum or Chebyshev norm, the Euclidean norm, and the so called Manhattan norm! which are respectively defined by:

I flloo = Xrggf] 1 (15)
) 1/2
I £l =( / f(x)zdx) ; (16)
b
T =/a F(x)ldx. (17)

The Manhattan and Chebyshev norms are the limiting cases (p = 1 and p = oo, respectively) of the family of L,-norms [4].
The Ly-norms obey the following relationship:

I flloo < -+ < fll2 <l fll- (18)

Typically, the most appropriate norm must be selected to evaluate the magnitude of the objective function for the error
minimisation, given a function that is to be approximated by the resulting linkage. However, it turns out that Lawson’s

1 The term Manhattan norm arises because the vector norm corresponds to sums of distances along the basis vector directions, as one would travel along a
rectangular street plan.
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algorithm [12,13] can be used to sequentially minimise the Chebyshev norm via the minimisation of the Euclidean norm [14].
This means that the continuous approximate approach to the design error minimisation is independent of the L,-norm because
it applies to both the Chebyshev and Euclidean norms, and hence all intermediate ones. Therefore, without loss in generality the
Euclidean norm will be used in the example in Section 5, which follows the development of the approach.

Assuming that the prescribed function belongs to CO([ Ay, Aysr]), the design error is defined using the Euclidean norm, though
any Lp-norm could be used [14]:

1
2

I d(o, B)ll2 = (/A:d]f (k1 + ky cos(B + AQ) — k3 cos(a + Ag) — cos(a + A — 3 — A(,D))szl/J) . (19)

After some algebraic manipulation, it can be shown that the square of Eq. (19) is a quadratic function in terms of the
Freudenstein parameters:

I d(e, B) 2= KkTA(ct, B)k — 2e(e, B)TK + (e, B). (20)

The matrix A(c, 3) is a 3 x 3 a symmetric positive semidefinite matrix whose six distinct elements a;; are:

Ay
an =/ dAy = Ay — Ay

Qg
My
ayp = / cos(B + AQ)dAYs;
Airg
Al[;f
a3 = —/ cos(a + Ag)dAY;
Ao
avp
ay = / cos”(B + AQ)dAY
J g
Ay
a3 = —/ cos(B + A@) cos(a + A)dAY
Ao
A'JJ]‘ )
33 = / cos”(a + AY)dAYs;
A

while e(a, 3) is a 3-dimensional vector whose elements are:

Ay
e1 = " cos(ax + Ay — 3 — Ap)dAYs;
Ay
e, = / (cos(B + Ap)cos(a + Ay — B — A@))dAYs;
A
Ay
e3 = — /Adf (cos(ax + A) cos(a + A — B — A@))dAYs;

and finally c(a, B) is a scalar having the form:

Ay
c= cos?(a + AP — B — AQ)dA.
Ao

When A(e, B) is positive definite, the optimal Freudenstein parameters k*(c, 3) which minimise || d(c, ) ||% (or equivalently
(e, B) II2) are:

k(o B) = A (@, Be(a, B), (21)
and the square of the minimal design error is:

min || d(c ) 13=1 d*(c., B) 13= c(c, B) — e(c, BT A~} (v, Ble(ct, B). (22)
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The assumption of positive definiteness for A(c, 3) will be discussed in Section 4. However, a necessary condition for A(c, 3)
to be positive definite is that it is non-singular. This justifies a posteriori why we use the dial zeros. In this case, as in Section 2,
the design error minimisation problem is solved in two steps:

1. determine the dial zeros to minimise the condition number k(«, 3) of A(c, B);
2. determine the corresponding optimal Freudenstein parameters using Eq. (21).

Intuitively, the continuous approximate approach should correspond to the limit of the discrete approximate approach. This
is proven to be so in the next section.

4. The design error of the discrete approximate approach is lower bounded by that of the continuous
approximate approach

In this section, we assume that Ap,,.(A¢) is a continuously differentiable function, however Propositions 1, 2, and 3, which
follow, only require continuity. With this assumption and using the notation introduced in the previous sections, the following
propositions hold.

Proposition 1. A(a, 3) is positive semidefinite, and
lim xp(a, B) = k(a, B).
m—oo

Proposition 2. If A(a, 3) possesses full rank, then,

nlll_r}go ki (o, B) = K* (o, B).

Recall that k*(a, 3) minimises the design error under the condition that A(e, 3) is positive definite. Now, from Proposition 1,
we can claim that A(a, 3) is at least positive semidefinite. However, the positive definitiveness is not guaranteed and it justifies
the need for the assumption in Proposition 2.

Proposition 3. If A(«, 3) possesses full rank, then,

lim
m—oo

Ar — A
w I dzy(c B)ll2 = d*(ct B)ll2.

Proposition 4. Let (o*,3¥) be the dial zero pair that minimises x(c3). If the optimal solution (a*, 3%) is unique, then,
lim (a, i) = (o', ).
Proposition 5. If the optimal solution (a*, 3*) is unique, then,
rrlll_f}go Km(0tm, Bm) = K(a, B*).
Moreover, if A(a*, 3%) possesses full rank, then,
Jim 16 (oim, ) = k(o)
and

lim
m—oo

Afrr — A
B =80 | 4 oo il =1 e ).

Proposition 5 is our main result. It essentially states that the optimal Freudenstein parameters and the minimal design error
for the discrete approach converge to the optimal Freudenstein parameters and the minimal design error for the continuous
approach.
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4.1. Proofs
Proof of Proposition 1. the proof of Proposition 1 requires the following result.

Proposition 6. Let f be a continuous function on some interval[a, b], then [4]

n-1
. b—a .b—a
Jim > flati

)=[mm

From Proposition 6, the elements of A (a, B) = WSL(a,B)Sm(a,B) converge to the elements of A(c, 3).
Recall the definitions for positive definiteness and positive semidefiniteness: a real n x n matrix A is positive definite if, for
all vectors X € R, X'Ax > 0, and positive semidefinite if, for all vectors X € R, X’Ax > 0. Now, from the definitions of the elements

a;; of A(y, 3) we have

A
A(a,p) = / " Bdy, (23)
Ay
where B is a symmetric 3 x 3 matrix:
B 1 cos(f3 + Ap) —cos(a + Ay)
B=| cos(B+ Ap) cos?(B + Ap) —cos(B + Ap)cos(a + AY) | . (24)
| —cos(a + Ag) —cos(3 + Ap)cos(a + AYr) cos?(a + AY)

Matrix B has the special property that it is the vector product of vector v and its transpose, where

B 1
. cos(B + Ap)
V= —costa+ Ag) | (25)
such that
WT = B. (26)

Then, for each vector X = [x1,X,X3]7 in R3 the function
f(x, AY) = x"Bx
has only non-negative values, as
fx,APp) =x"Bx = x"(wh)x = (x'v)> > 0.
From this result, it necessarily follows that
Ayg Ay Al[lf
XTAx = x / BdAy )x = / XBR)dAY = [ f(x Ap)dAY > O,
J Ay NS J A
which completes the proof. Now, given an arbitrary function, the function-generator designer need only check that the
eigenvalues of the matrix A defined by the given function are all greater than zero.
Proof of Proposition 2. the proof of Proposition 2 requires the following proposition.

Proposition 7. If a sequence of matrices My, converges to a matrix M and M is invertible then, M, converges to M~ [15].

From Proposition 1, Ap(a, B) converges towards A(c, B). A(a, B) possesses full rank by hypothesis, then there must be some
index mg such that vm > mg and An(a, 3) possesses full rank. Hence, vm > moSn(a, ) possesses full rank and the pseudo-
inverse S;; (a, B) is:

Ay — Agrg
m

S (e B) = (Sp(et B)Sm(ct, B))'Spy(c, B) = AL (e B)S (e B). (27)



A. Guigue, M. Hayes / Mechanism and Machine Theory 101 (2016) 158-167 165

Eq. (10) then becomes:

ki (e, B) = Az (a0, B) (A‘”f Aogr (@, B)bm(a.[ﬁ))) . (28)

m

From Proposition 6, (Mf;"ﬂsfn(a,[ﬁ)bm(a,ﬁ)) converges to e(a,3). From Proposition 7, A;!(a,8) converges towards
A~ (o, B), hence kr.(c, B) converges towards A~ (a, B)e(e, B) which is equal to k*(c, 8) in Eq. (21). This completes the proof.

Proof of Proposition 3. Eq. (11) can be rewritten:

T
| d5(eB) 13= B (c BBl B) — (Shict Bbm(eB) Ki(ct, ) (29)

Multiply Eq. (29) by %. From Proposition 6, (@Sﬁ(a,[j)bm(a, [5)) converges to e(a,B) and
(@b;(a, [:})bm(a,[ﬁ)) converges to ¢(a, 3). From Proposition 2, k%,(, 3) converges towards K*(a, 3). This completes the
proof.

Proof of Proposition 4. the proof of Proposition 4 requires the following proposition:

Proposition 8. Letfbe a function continuously differentiable on[a, b], then [16]

n—+oo n

n-1 "/
’/ fX)dx— lim Zb;af(a—i-ib;a) - (b—a)max{f(x),XG[a,b]}.
=0

The dial zeros are members of a compact set defined by the Cartesian product K = [—m,m] x [—m, 7). Hence, the maximum
of the first derivative of any entry of An(c, ) is bounded uniformly relative to («, 3). From Proposition 8, it follows that the
elements of A, (v, B) converge uniformly relative to («, 3) towards the elements of A(c, B).

The sequence (o, B;;,) belongs to K. Hence, there exists a subsequent (a&m) ﬁ(’;(m ) which converges to some (og, 3;). From
the uniform convergence of An(a,B), it follows that the elements of Ayqn)(c @(m) B m )) converge towards the elements of
Ao, B5). Following the same arguments used in the proof of Proposition 1, we get:

A Fg(m)(Qgm): Bimy) = 190 Bp). (30)
or (a;(m),[*};(m)) minimises the condition number of Ayy,)(c, B), hence:
V(e B) € K, Kg(m)(0gmy Bygmy) < Keom)(@t, B).
From Eq. (30) and Proposition 1, taking the limit on both sides of this inequality gives:
v(a, B) € K, K(og, By) < K(a, B).
Hence, (o, B¢) minimises the condition number of A(c, 3). In other words, each convergent (o, Br,) converges to a mini-

mum of the condition number of A(e, 3). By hypothesis, this minimum is unique. Hence, v¢, (o, ;) = (o, 3*) and the whole
sequence (o, B%,) converges to (a*, 3%). This completes the proof.

Proof of Proposition 5. the first statement of Proposition 5 has been proved in the proof of Proposition 4, see Eq. (30). From the
uniform convergence arising from Proposition 8 the convergence in Proposition 2 and Proposition 3 is in fact uniform. The last
two statements of Proposition 5 follow. To be completely rigorous, Proposition 7 should be modified to uniform convergence,
but doing so introduces no contradictions.

5. Example
The preceding results for continuous approximate synthesis that minimises the design error are now illustrated with an

example. Let the prescribed function be the Ackerman steering condition for terrestrial vehicles. The steering condition can be
expressed as a trigonometric function whose variables are illustrated in Fig. 2:

SIN(AQ@pres — At) — p sin(As) sin(A@pres) = 0, (31)
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o
<
bl |

Fig. 2. Graphical illustration of the Ackerman steering condition.

with p denoting the length ratio b/a, where a is the distance between front and rear axles, and b the distance between the pivots
of the wheel-carriers, which are coupled to the chassis. With the dial zeros, the expression for the steering condition becomes:

sin(3 + A@pres — ot — A) — psin(a + A) sin(B + AQpres) = 0. (32)

For our example, p = 0.5 and [Aysy, Ajys] = [-40.00,30.00], where angles are specified in degrees. With these values, the
prescribed function, i.e. the steering condition, is continuously differentiable. Hence, Proposition 5 must apply.

5.1. Establishing the optimal dial zeros and Freudenstein parameters

The multi-dimensional Nelder-Mead downhill simplex algorithm [17] is employed to find the optimal values for the dial
zeros. Table 1 lists (g, By,) for different values of m, as well as (o*, 3*). From the optimal dial zeros obtained in Table 1, it is now
possible to compute the optimal Freudenstein parameters. Table 2 lists the optimised Freudenstein parameters, k;, synthesis
matrix condition numbers K, and design error norms which have been normalised by dividing by /m for comparison for
different values of m as well as the values using the continuous approach.

Continuous approximate synthesis eliminates the problem of determining an appropriate cardinal number for the data-set
because it evaluates the case for m — oo. Hence there is no need to search for some convergence in order to set the proper
value of m, which eliminates a source of error. However, the continuous approach requires numerical integrations, which itself
is a source of error. These errors are in fact of the same nature. Indeed, from the development of Section 4, it is clear that
discrete approximate synthesis is essentially a numerical integration method itself: Romberg’s method for example, which is
an extrapolation on the trapezoidal rule [4]. Hence, comparing the errors arising from the discrete approximate synthesis with
continuous approximate synthesis is equivalent to comparing the error terms of two different numerical integration methods.
The example presented above employed the Matlab function quadl, which employs recursive adaptive Lobatto quadrature [18].

Table 1

Optimal dial zeros.
m ap, B o B
10 -61.80 67.320 - -
40 -62.17 68.73 - -
100 -62.23 69.03 - -
400 -62.26 69.17 - -
1000 -62.27 69.20 -
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Table 2
Optimised Freudenstein parameters, condition numbers, and normalised design errors.
m k1 ko k3 Km K* I dm ll2 Id* |
10 -0.993 0.412 -0.429 18.24 - 6.93 x 10~ -
40 —-1.001 0.406 -0.425 20.79 - 6.44 x 104 -
100 -1.003 0.405 -0.424 21.38 - 6.31 x 1074 -
400 —-1.003 0.404 —0.424 21.69 - 6.24 x 1074 -
1000 —-1.004 0.404 -0.424 21.75 - 6.23 x 1074 -
00 —-1.004 0.404 -0.424 - 475.03 - 6.23x 1074

6. Conclusions and future work

In this paper a proof has been given that the design error of planar RRRR function-generating linkages synthesised using
over-constrained systems of equations established with discrete I/O data sets is bounded by a minimum value established
using continuous approximate synthesis between minimum and maximum I/O values. Evaluating the design error over the
entire continuous range of the function requires the use of a functional normed space, thereby changing the discrete approxi-
mate synthesis problem to a continuous approximate synthesis problem. Assuming that the prescribed function A, (A) is
continuously differentiable, it is shown that the dial zeros, the optimal Freudenstein parameters, and the minimal design
error for discrete approximate synthesis converge towards the dial zeros, the optimal Freudenstein parameters and the mini-
mal design error for continuous approximate synthesis. In other words, the continuous approach corresponds to the discrete
approach after setting the cardinality of the I/O set to m — oo, and represents the bounding optimal values.

The extension of this work is to investigate how the structural error as defined in Ref. [2] bounds the design error. First,
it should be determined whether the structural error minimisation problem can be formulated and, more importantly solved,
using the continuous approach. Second, it should be investigated whether in this case too, the continuous approach corresponds
to the discrete approach with m — oo. This is certainly much more challenging due to the increased complexity of the continu-
ous structural error minimisation problem, which is a non-linear problem with equality constraints, compared to the continuous
design error minimisation problem, which is a quadratic problem without any constraints. Finally, one might ask whether our
developments could be applied to other mechanism topologies, such as planar mechanisms possessing prismatic joints, as well
as spherical, or spatial linkages.
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ABSTRACT all five may lie in the same assembly branch.
Planar kinematic mapping is applied to the five-position The problem formulation engenders as many variables as

Burmester problem for planar four-bar mechanism synthesis. equations so the synthesis is exact. However, most approaches to
The problem formulation takes the five distinct rlgld bOdy poses Synthesizing a mechanism that can guide the r|g|d body exacﬂy
directly as inputs to generate five quadratic constraint equations. through the five positions are rooted in the Euclidean geometry
The five poses are on the fourth order curve of intersection of up of the plane in which the rigid body must move. From time to

to four hyperboloids of one sheet in the image space. Moreover, time this problem has been revisited (Chaeigal, 1991). Read-

the five poses uniquely specify these two hyperboloids. So, given ers are refered to this document which contains a recent solution
five positions of any reference point on the coupler and five corre- method and a quite adequate and relevant bibliography. More

sponding orientations, we get the fixed revolute centres, the link recently, classical finite position synthesis has been reviewed by
lengths, crank angles, and the locations of the coupler attachmentnicCarthy (2000).

points by solving a system of five quadratics in five variables that
always factor in such a way as to give two pairs of solutions for
the five variables (when they exist).

We propose a solution obtained in a three-dimensional pro-
jective image space of the rigid body motion. An algebraic ap-
proach to this exact problem based on quaternions is to be found
in Murray and McCarthy (1996). Instead, we use planar kine-
matic mapping. The planar kinematic mapping was introduced
independently by Blaschke and iwald in 1911 (Blaschke,
1911; Gilnwald, 1911). But, their writings are difficult. In North
America Roth, De Sa, Ravani (De Sa and Roth, 1981; Ravani and
Roth, 1983), as well as others, have made contributions. How-
ever, we choose to build upon interpretations by Husty (1995,

sponding five orientations of some line on that body, design a 1996), who used the accessible language of Bottema and Roth

. : (1990).
four-bar mechanism whose coupler crank pins are located on the ’ ] ] ] ] ]
moving body and is assemblable upon these five poses. The cou- ~ Kinematic synthesis of four-bar mechanisms using kine-

pler must assume the five required poses, however sometimes nof"atic mapping was discussed in Bottema and Roth (1990), origi-
nally published in 1979, and expanded upon in great detail by Ra-

vani (1982), and Ravani and Roth (1983). In this early work, Ra-

1 Introduction

The determination of a planar four-bar mechanism that can
guide a rigid-body through five finitely separafgasegposition
and orientation) is known as tHeve-position Burmester prob-
lem see Burmester (1888). It may be stated as follows. Given
five positions of a point on a moving rigid body and the corre-

*Address all correspondence to this author.
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terms of the basis dfF can be expressed compactly as
p'=Rp+d, (1)

where,p is the2 x 1 position vector of a point ifEE, p’ is the

position vector of the same point i, d is the position vector
of the origin of frameEE in FF, andR is a2 x 2 proper orthog-
onal rotation matrixi(e. its determinant is+1) defined by the
orientation ofEE in FF indicated byy.

Equation (1) can always be represented as a linear transfor-
mation by making ihomogeneou&see McCarthy (1990), for ex-
ample). Let the homogeneous coordinates of points in the fixed
Figure 1. A FOUR-BAR LINKAGE. frameFF be the ratio$X 'Y Z], and those of points in the mov-
ing frameEE be the ratiogx : y: Z. Then Equation (1) can be
rewritten as

vani and Roth developed the framework for performamgprox- i{( . z?ngp ;im(p; X @)
imatedimensional synthesis. Whikxactdimensional synthesis 7 o Otp ng 1 32/ '

for the Burmester problem may have been implied, it has never,
to our knowledge, been implemented. Results are so elegantly
obtained in the kinematic mapping image space that we are com-
pelled to expose the methodology and procedure by which these
are produced.

In this image space, the kinematic constraint implied by the
motion of a point bound to move upon a circle of fixed centre and 2.1 Image Space Coordinates and Pole Position
radius maps to a hyperboloid of one sheet. Thus, the motion of ~ The essential idea of the kinematic mapping introduced by
the coupler of a planar four-bar mechanism connected with four Blashke (1911) and Gnwald (1911)is to map the three homoge-
revolute (R) pairs can be characterized by the fourth order curve neous coordinates of the pole of a planar displacement, in terms
of intersection of two distinct hyperboloids of one sheet in the ©f (a,b,9), to the points of a three dimensional projective image
image space. space. _ _ _

When the kinematic constraint dictates a point moving on The pole,P, of a planar displacement may be described in
a line with fixed line coordinates, as with a prismatic (P) pair, the following way. Any planar displacement that is a combina-
the constraint surface is a hyperbolic paraboloid. Hyperboloids fion of translation and rotation may be represented by a single
of one sheet and hyperbolic paraboloids are the only types of rotation through a finite angle abput a unique f|x¢d axis normgl
constraint surfaces associated with planar mechanisms contain-{0 the plane. Even a pure translation can be considered a rotation
ing only lower pair joints (Hayes and Husty, 2001). Here, we as- through an |nf|n|te3|mal angle about a pomt_ at infinity on a line
sume solutions of the five-position Burmester problem confined Perpendicular to the direction of the translation. The coordinates
to four-bar mechanisms jointed with four R-pairs, not slider- of the piercing point of this axis with the plane of the displace-

cranks. Thus only image space hyperboloids of one sheet will ment describe the pol®, If EE andFF are initially coincident,
apply. then the coordinates &f are invariant under the its related dis-

placement. That id? has the same coordinates in b&k and
FF. This is illustrated in Figure 2.
By using the dehomogenized form of Equation (2) one may

2 Planar Kinematic Mapping immediately write, after settingp = xp andYp = yp and solving
One can consider the relative displacement of two rigid- the resulting two simultaneous equations

bodies in the plane as the displacement of a Cartesian reference

coordinate fram&E attached to one of the bodies with respect to Xp = a_ bsing o = asing +E

a Cartesian reference coordinate frafte attached to the other. 2 2(1-cosp)’ 2(1—cosp)  2°

Without loss of generalityi- F may be considered as fixed while

EE is free to move, as is the case with the four-bar mechanism The value of the homogenizing coordinate is arbitrary and may,

illustrated by Figure 1. Then the position of a pointEtE in without loss of generality, be sette= 2sing/2. This means that

Equation (2) clearly reflects the fact that a general displacement
in the plane is fully characterized by three parameters, in this
casea, b, andg.
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Y not bijective: there is at most one pre-image for each image
X point Thus, not every point in the image space represents a dis-
placement. It is easy to see that any image point on the real line
X3 = X4 = 0has no pre-image and therefore does not correspond
to a real displacement &E. From Equation (5), this condition
renderspindeterminate and placesandb on the line at infinity.
b Armed with Equations (4) and (5) any displacement in terms
¥ >\ yP\fgj of X1, X2, X3,X4 can be conveniently converted to the displace-
ﬁb

/

~

ment ofEE in terms ofFF.

X

2.2 Representing Planar Displacements in Terms of

Image Space Coordinates
Figure 2. POLE POSITION. By virtue of the relationships expressed in Equation (4), the
transformation matrix from Equation (2) may be expressed in
terms of the homogeneous coordinates of the image space. This
yields a linear transformation to express a displacemebf
with respect td=F in terms of the image point:

w a

both xp andyp must also be multiplied by this value. Then the
double angle relationships

sin2p = 2sinpcosp, cos2p = cos P—Sir’ @ X X2 — X2 —2XaXa 2(XaXa +XeXa) | [
A H = [ 2XaXq XZ— X3 2(X2X3—X1X4)] [ ] . (6)
can be used to obtain the following homogeneous coordinates of Z 0 0 XZ+ X2 z
the pole:
whereA is a proportionality constant arising from the use of ho-
Xp = Xp = asin(g/2) —bcos(¢/2) mogeneous coordinates. The inverse transformation can be ob-
tained with the inverse of th8 x 3 matrix in Equation (6) as

Yo = yp = acos(@/2)+bsin(@/2)

Zp = zp = 2sin(@/2) 3) follows.

—2XaXa XF = X5 20XX3 + X1 Xa) | | Y
0 0 XZ+XZ z

respect to the polB as follows. y

X
The kinematic mapping image coordinates are defined, with u [ ]
z

[x}—xg 2X3X4 2(x1x3—x2x4)] [x]
()

X1 = asin(@/2) —bcos(¢/2)

Xz = acos(¢/2) + bsin(g/2) with P being another proportionality constant. The product of
X3 = 2sin(@/2) these matrices is homogeneously proportional to a unit matrix:
X4 = 2c08@/2). @)
(X2+X2)2 0 0
2 | yw2)2
Since each distinct displacement described &y, ) has 0 (X5 +X3) ) 0 2o |
a corresponding unique image point, the inverse mapping can be 0 0 (X +X7)
obtained from Equation (4): for a given point of the image space,
the displacement parameters are Clearly, by construction in Equation (4§ + X? = 2.
tan(@/2) = Xs/Xs, ) s 2.3 Planar Constraint Equations
a=2(XiXg+X2Xa) /(X3 + X5), Consider the case of an R-R joint dyad. A point BE
b = 2(XoXs — X1X4) /(X2 + X2). 5) moves on a circle offF, whose homogeneous equation may

be expressed by:

Equations (5) give correct results when eitiigror X4 is zero.
Caution is in order, however, because the mapping is injective, Co(X?+Y?) +2C1XZ+ 2C,Y Z+C3Z? = 0. (8)
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Figure 3. A HYPERBOLOID OF ONE SHEET. Figure 4. A HYPERBOLIC PARABOLOID.

hyperboloid then becomes

In Equation (8)Cy = k, an arbitrary constant, whil€; = 2 U2

—Xm, C2 = —Ym, the circle centre coordinates, aBd = X2 + (XL +X3) +(Co = X)X X + (C2 —y)XeXs

Y2 —r2 with r being the circle radius. F(C2+y)X1 £ (CL+ X)Xz £ (Cox—Cry) Xs
Expanding Equation (6) and substituting the expressions for +} (0% 4 y?) — 2Cyx — 2Coy + C3| X2

X, Y, andZ into Equation (8) produces a hyperboloid of one 1 4

sheet in the image space, see Figure 3. The hyperboloid takes +Z[(X2+y2) + 2C1x+ 2Coy+C3] = 0. (10)

the form:

When(x,y) are the coordinates of the moving point expressed in
EE with z= 1 theuppersigns apply. If the constraint is intended

CoZ’ (X +XG) + (—Cox+C12)2%1 X to express the inverse, a point 6@ bound to a circle irEE,
+(—Coy+C22)2%X3 + (—Coy — C22)2%4 X then thelower signs applyandx, y or z is substituted wherever
+(Cox+C12)2%X4 + (—Cry + CoX)zXeXs X, Y or Z appears. The situation of a circle moving on a point is
1 never required in problem formulation.
—i—Z[Co(XZ—i—yZ) — 2C1xz— 2Coyz+ C3Z] X5 However if a point is bound to a linée., in the case of a
1 prismatic joint, and if one desires to treat inversions, the line may
+2 [Co(X% +Y?) + 2C1xz+ 2Coyz+ CaZ | XZ = 0. 9) be either orfF F or EE. Equation (10) reduces to Equation (11) if
a pointis bound to a line ar@h = 0. This produces a hyperbolic
paraboloid in the image space, see Figure 4:
Recall that the coordinates of a point in the moving frame
EE are(x:y: z). The hyperboloid is specified when a reference 1C1X1X3 +CXXeF szlli CiXe + (Cx = Coy)Xs
point (x:y: z) is given together with the circle coordinat& : *Z[cher 2Cy — c3]x§ + 21[2(:1x4r 2Cy+Csl =0. (11)

C1:C,: C3). The points(X; : X : X3 : X4) represent all possible

displacements dE E relative toFF under the constraint that one : . .
o . . The above constraint surfaces completely describe the dis-

point in FF moves on a circle ifEE. . .

placements of all possible planar dyads constructed with lower
We can generalize the constraint hyperboloid by considering pairs.

the kinematic inversion: a point dfF bound to move on a circle

in EE. We thus expand Equation (5) and substitute the expres-

sions forx, y, andz into Equation (8) and make the following 3 The Five-Position Burmester Problem

simplifications. For the given circular constraint it is clear that The goal of the dimensional synthesis problem for rigid

Co =1 We may also set = X4 = 1. The general constraint  body guidance of a 4R planar mechanism is to findrttaing

4 Copyright 00 2002 by ASME



circle points M; and M, of the coupler, i.e., the revolute cen-
tres that move on fixed centred, fixed radii circles as a reference
coordinate systent E, attached to the coupler, passes through
the desired poses. Tliged centre pointfor each circle are the
fixed, or grounded revolute centrég,andF,, respectively. The
circle and centre points are illustrated with the four-bar mech-
anism shown in Figure 1. For these constraints, the synthesis
equations are determined using Equation (10).

What we set out to do here is to use the methods of planar
kinematic mapping outlined in (Zsombor-Murrast al, 2002)
and set up five simultaneous constraint equations, each of which
represents the image space constraint surface for a rigid body
moving freely in the plane except that one point is bound to the
circumference of a fixed circle. These equations are expressed in
terms of the following eight variables.

i. X1, X2, X3, X4 = 1, the dehomogenized coordinates of the
coupler pose in the image space.
. Cq, Cy, Cs, the coefficients of a circle equatioBy(= 1).
ii. X, y,z=1,the coordinates of the moving crank-pin revolute
centre, on the coupler, which moves on a circle.

Since X3, X, X3 are given for five desired coupler poses, one
may in principle solve for the remaining five variabl€} (C,,

Cs, X, ¥) . The geometric interpretation is, five given points in
space are common to, at most, four hyperboloids on one sheet.
Each hyperboloid represents a 2R dyad. If two real solutions oc-
cur then all 4R mechanism design information is available (there
are two circles in a feasible mechanism design result):

i. Circle centre is akKy = —Cq, Y= —Co.
ii. Circle radius is given by? = Cz — (X2 +Y2).
iii. Coupler length is given bi? = (x2 —x1)2 + (y2 — y1)2.

4 Analysis
4.1 Converting Pose to Image Space Coordinates
Examine Equations (4) and divide bBy.

(atan‘—zp — b))
~

(a+ btan%)

Xq = _ )

)

, X3:tani2p, Xgs=1.

The five given poses being specified(ashi, @), 1 € {1,...,5},

the planar coordinates of the moving point and the orientation
of a line on the moving rigid body, all with respect ¢9,0,0°)
expressed ifFF. Note that the location of the origin &fF is
arbitrary, it is only shown on the fixed revolute centre in Figure 1
for convenience.

4.2 Crank Angles
If the desired five poses can be realized with a planar
4R four-bar mechanism, then at least two real solutions in

5

i
7.

Figure 5. GENERATING THE FIVE DESIRED POSES.

(C1, Cy, Cs, X, y) will be obtained, defining two 2R dyads shar-
ing the coupler. To construct the mechanism in its five configu-
rations the crank angles must be determined. To obtain the crank
angles one just takdsi,y;) and(xz,y2) and performs the linear
transformation, expressed in image space coordinates, five times.

X 1-X2 —2X3 2% X3 +X2) ] [x
Y| =] 2% 1-X22(XoXz—X1) | |y
1 0 0 1+ X2 1

(X,Y) come in five pairs because five poses are specified.
These are the Cartesian coordinates of the moving revolute cen-
tres expressed iRF, and implicitly define the crank angles. For
a practical design one must check that the solution did not sepa-
rate crank pin coordinates in unconnected mechanism branches.

4.3 Pose Constraint Equation

Given the constraints imposed by four revolute joints, the
pose constraint equation (synthesis equation) is given by Equa-
tion (10) with the upper signs used. For each of the five poses we
obtain:

(X2 +X2) + (C1 — ) X1 X3 + (C2 — Y) X2 X3
—(C2+Y)X1+ (CL+x) %2 + (Cox—C1y) X3
+710¢ +y?) — 2C1x — 2Coy + C3]X2
+2[(x® +y?) + 2C1x + 2Coy +Cg] = 0.

(12)

Copyright 00 2002 by ASME
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Figure 6. THE FIVE DESIRED POSES.

5 Example and Verification

The kinematic mapping solution to the five-position
Burmester problem is illustrated with the following example
problem. In order to verify our synthesis results, we started with
Figure 5, wherein one sees a four-bar mechanism design repre-
sented by dotted crank pin circles and a cou@lBrwhich has
been placed in five feasible poses. Then an arbitrary goantd
orientation lineAB were specified. These were used to specify
the given five poses, listed in Table 2. The fixed revolute centres
and link lengths of the four-bar mechanism used to generate the
poses, which we can check for verification, are listed in Table 1,
all coordinates given relative oF. The coordinate information
obtained from these were inserted into the five synthesis equa-
tions. The results at the end constitute obvious confirmation con-
cerning the effectiveness of the kinematic mapping approach to
solving the Burmester problem.

Given the Cartesian coordinates of five positions of a refer-
ence point on a rigid body, together with five orientations of the
rigid body which correspond to the positions, all relative to an
arbitrary fixed reference framé&,F. The reference point is the
origin of a coordinate system, attached to the rigid body. In
Figure 6 the five poses are indicated by the positioA ahd the
orientation of a line in the directioxy axis. The coordinates and
orientations are listed in Table 2.

The given five poses are mapped to five sets of coordinates in
the image space. Using a computer algebra software package, we
substitute the corresponding values Xar Xz, X3, together with
X4 = linto Equation (12) yields the following five quadratics in

6

Parameter| Value
F (-8,0)
P (8,0)
FF 16
F.C 8
CD 10
DR, 14

Table 1. THE GENERATING MECHANISM

it PoseA; H a ‘ b ‘ ¢ (deg)
1 -3.339 | 1.360 | 150.94
2 -2.975| 7.063 | 114.94
3 -3.405| 9.102 | 100.22
4 -7.435| 11.561| 74.07
5 -9.171 | 11.219| 68.65

Table 2. FIVE RIGID BODY POSES IN FF.

C1, Gy, Cg, X, andy:

51.62713350- 26.5234789C, + 28.43187273%

+3.43990957§+ 10.80321398, + 3.97176982¢>

+3.971769828% — 6.943539656, X+ 3.9717698283 —
6.94353965ky — 3.8583778081y + 3.8583778082x = 0

50.78111719- 5.144112496; + 13.24300208
— 485305009+ 1221272826, + .864556722¢
+.8645567222 — 7291134440, X+ .864556722C;

—.729113444G,y — 1.567873366,y + 1.567873366,x = 0

57.40558942- 4.139456678, + 11.6241882%
+2.11048243§+ 11.0652965E, + .607849731¢
+.60784973182 — .2156994636,x -+ .60784973165

— 2156994636,y — 1.196410852,y + 1.196410852,x = 0

74.12376162-5.8338307781 + 7.12174669%

+8.099525068 + 9.071273378; +.392322177¢°

+.392322177% + 215355645 X+ .39232217783
+.215355645C,y — .7545122328,y + .7545122328,x =

76.96602922- 6.72329085C€; +5.212549019

+9.25621093Y + 8.224686518;, + .366551676§

+.3665516768° +.2668966466, X+ .36655167663
+.2668966466,y — .6827933120,y + .682793312Cx = 0

(13

(14)

(15)

(16)

an
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Solving the system of Equations (13)-(17) yields four sets of
values forCy, Cy, Cs, X, andy, two being real, and the remaining
two being complex conjugates. The two real sets of hyperboloid
coefficients are listed in Table 3. The corresponding synthesized
four-bar fixed revolute centres and link lengths are listed in Ta-

algorithmic implementation should retaify = 2cog@/2) and
contain features to repla€ = 1withC;,C orCz3=1andz=1
with x ory = 1 should results whenre—y — o withCo=z=1
occur.

ble 4, rounded to same three decimal places as the graphically7 Conclusions

determined generating mechanism listed in Table 1.

Coefficient Solution 1 Solution 2
C -7.983138944 7.997107716
C -.027859304 | -.000953257
Cs -131.4773813 -.022545268
X 2.932070052| -3.579426217
y -8.023883728 -.435620093

Table 3. THE HYPEBOLOID COEFFICIENTS

Parameter Value
F1 (-7.997,0.001)
5 (7.983,-0.023)
F1F 15.980
F.C 7.999
CD 10.003
DR, 13.972

Table 4. THE SYNTHESIZED MECHANISM

While the synthesized mechanism link lengths and centre
coordinates are affected by the numerical resolution of the graph-
ical construction of the generating mechanism, we believe this
example demonstrates the utility of kinematic mapping to solv-
ing the five-position Burmester problem.

6 Computational Pathology

Notice that feasible slider-crank solutions were implicitly
excluded by choosing to s€y = z= 1 rather than, sayC; =
y=1. This is similar to excluding half-tur& E orientations by
settingXy = 1 rather than, say{z = 1. It is recommended that

7

We have used kinematic mapping to solve the five position
planar Burmester problem. Five rigid body poses are mapped
to points in a three dimensional projective image space and are
used directly as inputs to generate five quadratic constraint sur-
face equations in that space. The solutions, when they exist,
give the coefficients of the hyperboloids having the five points
in common. Each hyperboloid yields a fixed revolute centre,
link lengths, crank angles, and coupler attachment points. This
method is elegant in that the design task for any composition of
R and P joints (open RR, PR, and RP chains) can be treated with
a single formulation with no special cases.
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Quadric Surface Fitting Applications to Approximate Dimensional Synthesis
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Abstract— An approximate synthesis method is pre-
sented that takes a given set of n desired poses of the cou-
pler of a four-bar planar mechanism and finds the “best”
mechanism that can achieve them. This is accomplished by
solving an equivalent unconstrained non-linear minimiza-
tion problem. The hyperboloids of one sheet or hyperbolic
paraboloids that minimize the distance between the given
n poses in the kinematic mapping image space and n cor-
responding points that belong to the quadric surfaces, rep-
resent the “best” mechanism that can achieve the desired
poses. The procedure is tested successfully on an RRRR
mechanism.

Keywords: kinematic mapping; quadric surface fitting; approxi-
mate dimensional synthesis.

I. Introduction

Kinematic synthesis of planar four-bar mechanisms for
rigid body guidance was first proposed by Burmester [1].
Burmester theory states that five finitely separated poses
(positions and orientations) of a rigid body define a pla-
nar four-bar mechanism that can guide a rigid body exactly
through those five poses. Burmester showed that the prob-
lem leads to at most four dyads that, when paired, determine
at most six different four-bar mechanisms that can guide the
rigid body exactly through the poses.

Although the solution to the five-pose Burmester prob-
lem yields mechanisms that have no deviation from the pre-
scribed poses, a major disadvantage is that only five posi-
tions and associated orientations may be prescribed. The
designer has no control over how the mechanism behaves
for any intermediate pose. This can be a difficult challenge
in confined and crowded operating spaces. To gain a mea-
sure of control over the intermediate poses it is necessary
to have a means by which to synthesize a mechanism that
guides a rigid body through n prescribed poses, with n > 5.
In general, an exact solution does not exist to this problem.
The problem is known as approximate synthesis, where the
mechanism determined to be the solution will guide a rigid-
body through the prescribed poses with the smallest error,
typically in a least-squares sense. The approximate solu-
tion will be unique up to the error minimization criteria.
The literature is rich with a large variety of numerical ap-
proaches to pure approximate kinematic synthesis of this

*jhayes @mae.carleton.ca
Tsrrusu@connect.carleton.ca

type, see [2], [3], [4], [S] for example.

A possibly much more intuitive approach is to build the
approximation algorithm in the kinematic mapping image
space introduced simultaneously, but independently in 1911
in [6] and [7]. In this paper, a novel approach to approxi-
mate kinematic synthesis for rigid body guidance is pre-
sented that uses the geometry of the image space to fit a set
of points, representing desired positions and orientations,
to quadric surfaces representing mechanism dyads. It is
important to note that the optimization considers only kine-
matics. Dynamics and static force issues such as transmis-
sion angle and mechanical advantage are not considered.
Such a restriction still applies to a vast array of planar four
bar mechanism applications [8]. A very detailed summary
of the geometry on the kinematic mapping image space can
be found in [9], but a brief description of properties ger-
mane to algorithm presented in this paper is presented be-
low.

II. Kinematic Mapping

One can consider the relative displacement of two rigid-
bodies in the plane as the displacement of a Cartesian ref-
erence coordinate frame FE attached to one of the bodies
with respect to a Cartesian reference coordinate frame X
attached to the other. Without loss of generality, > may be
considered fixed with E free to move.

The homogeneous coordinates of points represented in £/
are given by the ratios (x : y : z). Those of the same points
represented in X are given by the ratios (X : Y : Z). The
position of a point (X : Y : Z) in E in terms of the basis
of X can be expressed compactly as

X cosp —sing a T
Y | = | sinp cosp b v, @)
Z 0 0 1 z

where the pair (a, b) are the (X/Z,Y/Z) Cartesian coordi-
nates of the origin of F expressed in X, and ¢ is the orien-
tation of E relative to 3, respectively.

The essential idea of kinematic mapping is to map the
three homogeneous coordinates of the pole of a planar dis-
placement, in terms of (a, b, ¢), to the points of a three di-
mensional projective image space. The image space coor-
dinates are defined as:
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X1 =asin(p/2) — bceos (¢/2);
X2 = acos (p/2) + bsin (¢/2);

X3 =2sin(p/2)
X4 =2cos(¢/2). (2)

The mapping is injective, not bijective: there is at most
one pre-image for each image point. Any image point on
the real line /, defined by the intersection of the coordinate
planes X3 = X4 = 0, has no pre-image and therefore does
not correspond to a real displacement of F. See [9], for a
detailed analysis of the geometry of the image space.

To be practical, we can remove the one parameter fam-
ily of image points for coupler orientations of ¢ = 7, and
normalize the image space coordinates by setting X, =
1. Conceptually, this implies dividing the X; by X, =
2 cos (¢/2) giving

Xy =g (atan(p/2)~b); Xy =tan(o/2)

Xy = & (a+ btan (/2)):

5 X, = 1. A3)

Since each distinct displacement described by (a, b, )
has a corresponding unique image point, the inverse map-

ping can be obtained from Eqs. (3): for a given point of the
image space, the displacement parameters are

tan(¢/2) = Xj,
a = 2(X1X3+ Xo)/(X5 +1),
b = 2(XoX3—X1)/(X3+1). &

By virtue of the relationships expressed in Egs. (3), the
transformation matrix from Eq. (1) may be expressed in
terms of the homogeneous coordinates of the image space.
After setting z = 1, which is done because no practical
coupler will have a point at infinity, one obtains a linear
transformation to express a displacement of E with respect
to X in terms of the coordinates of the image point:

X 1-X2 -2X3 2(X1Xs3+X2) x
Y | = 2X3  1-X2 2(X2X3-— X1) y |-
1

0 0 X3+1

A. Planar Constraint Equations

Corresponding to the kinematic constraints imposed by
RR- and PR-dyads are quadric constraint surfaces in the
image space. A general equation is obtained when (X : Y :
Z) from Egs. (5) are substituted into the general equation
of a circle, the form of the most general constraint, [10]:

Ko(X?2+ Y 4+ 2K1XZ+2KYZ + K3Z%2 = 0. (6)

The result is that the constraint surfaces corresponding to
RR, and P R-dyads can be represented by one equation (see
[10], for how to include RP- and P P-dyads as well). After
re-arranging in terms of the constraint surface shape param-
eters Ko, K1, Ko, K3, x, and y, treating the image space
coordinates X7, X5, and X3 as constants yields Eq. (7).

[L(XZ +1)2? + (X2 — X1 Xs)z + 3(X3 + 1)y~
(X1 + X2 X3)y + X3 + X{] Ko+
(21— X2)z — X3y + X1 X3 + Xo] K1+
[(Xsz 4+ 5(1 - X3)y — X1 + XoX3] Ko+
1(XF+ 1)Kz =0. 7

For a particular dyad the associated [Ky : K7 : K» : K3],
along with the design values of the coordinates of the cou-
pler attachment point (z,y), expressed in reference frame
E, are substituted into Eq. (7) revealing the image space
constraint surface for the given dyad. The K; in Egs. (6)
and (7) depend on the constraints imposed by the dyad.

For RR-dyads Ky = 1 and the surface is a hyperboloid
of one sheet, when projected into the hyperplane X, = 1,
that intersects planes parallel to X3 = 0 in circles, [11].
The K; are termed circular coefficients and are defined as:

[Ko:Ki:Ko:K3)l=[1:—Xc:-Ye: (K2 +KZ—-72)], (8

where the ungrounded R-pair in an RR-dyad is constrained
to move on a circle of constant radius, 7, and fixed centre
coordinates in X, (X, Yz).

Linear constraints result when P R-dyads are employed.
In this case Ky = 0 and the constraint surface is an hy-
perbolic paraboloid, when projected into the hyperplane
X, = 1, with one regulus ruled by skew lines that are all
parallel to the plane X3 = 0, [11]. The linear coefficients
are defined as

[Ko:Ki:Kp:Ks|=[0:5L1: 5Ly La], ©)

where the L; are line coordinates obtained by Grassmann
expansion of the determinant of any two distinct points on
the line, [12]. We obtain

[Ko: K1:Ka: K3|=
[0: —%sinﬂg : %cosﬂg 1 Fx/ssinds — Fy s cosV¥s]| (10)

where ¥y, is the angle the direction of translation makes
with respect to the X-axis, expressed in 3, Fx/s, Fy/s,
represent the homogeneous coordinates (X : Y : 1), ex-
pressed in reference frame 3, of a point on the line that is
fixed relative to X.
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II1. Fitting Displacements (Image Space Points) to Con-
straint Surfaces

To use kinematic mapping for approximate synthesis re-
quires the best approximation, in a least squares sense, of
the constraint surface coefficients K, K1, Ko, K3, x, and
y given a suitably over constrained set of image space co-
ordinates X7, X2, X3, and X4 which represent the desired
set of positions and orientations of the coupler. The given
image space points are on some space curve. The points
on this curve must be projected onto the best fourth order
curve of intersection of two constraint surfaces correspond-
ing to two possible dyads from which a mechanism can be
constructed which possesses motion characteristics closest
to those specified. The solution to this problem is the solu-
tion to the approximate synthesis problem using kinematic
mapping for rigid body guidance.

We may begin the search for a solution by generating a
set of image space points that satisfy a known image space
constraint hyperboloid. If the cardinality of the set of points
is much larger than the number of constants required to de-
fine the hyperboloid then we should be able to fit the points
to the surface. In other words, identify the equation, in a
least squares sense, that the points satisfy.

One possibility is to identify the implicit quadric surface
equations in the nullspace of the set of equations. That is, an
arbitrary quadric surface has the following implicit second
order equation:

o XF+ X7 + X3 + es X3 + caXi Xp + 5 X X5+
06X3X1 + C7X1X4 + CSX2X4 + CgX3X4 =0. (11)

Given a sufficiently large set of points, one may be able to
identify the 10 coefficients ¢y . . . cg that define the quadric
surface that is closest, in some sense, to the given points.
But, two surfaces are required, one for each of the two
dyads comprising the mechanism.

0.5

&

o
i

o

Fig. 1. Intersection curve of two RR hyperboloids of one sheet.

) 2] L)

5]

)
|

2 b ap

Fig. 2. Intersection curve of one RR hyperboloid of one sheet and one
RP hyperbolic paraboloid.

The best four bar mechanism will be composed of RR,
PR or RP-dyads. Due to their motion constraints, RR-
dyads map to hyperboloids of one sheet, while PR and
RP-dyads map to hyperbolic paraboloids in the image
space [9], [11]. The two constraint surfaces that intersect in
the curve closest to the reference curve will yield the best
mechanism for the given set of desired poses in some sense.
The curve of intersection of the quadric surfaces of the dyad
pairs for RRRR, RRRP and PRRP mechanisms are il-
lustrated in Figures 1, 2, and 3. Considering that the curve
closest, in the least squares sense, to the reference curve
must be the intersection of two quadric surfaces as shown
above, it is obvious that the curve belongs to each of those

Fig. 3. Intersection curve of two PR hyperbolic paraboloids.
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two quadric surfaces. Thus the solution to the approximate
synthesis problem is finding the best two quadric surfaces
(hyperboloid of one sheet or hyperbolic paraboloid) that
contain a curve that is closest to the reference curve, in a
least squares sense.

Image space points

25 R

15 2
1 ) : : -3.5
05 -4
X2 0 -45 1
Fig. 4. Points on 4"-order curve of intersection of two image space
quadric constraint hyperboloids.

Fig. 5. The mechanism used to generate the poses.

IV. Example

The way the algorithm will be described is through an
example. To generate a set of points that lie exactly on
one of these constraint surfaces a parametric equation of
the surface is required. It is a simple matter to parametrize
Eq. (7), see [11]. Note the typo in this paper in Eq. (7):

the — signs should be replaced by + signs so that it
reads Ko(X2 +Y?) + 2K, XZ +2K,Y Z + K3Z2. The
parametrization is

X3 ([r — K1Jt + Ko 4+ y) + (rvVt2 + 1) cos ¢
Xo | =3 | (ly— Kalt — K1 —2) + (/2 + 1)sin¢ |,
X3 2t

¢eA{0,...,2n}, (12

t € {—o0,...,00},

where = and y are the coordinates of the moving revolute
centre expressed in the moving frame F, K7 and K are
the coordinates of the fixed revolute centre expressed in X
multiplied by —1 (i.e., K1 = —X. and Ky = —Y,), ris
the length between the moving and fixed revolute centres,
while ¢ and ¢ are free parameters. To simplify the coef-
ficients begin with the surface having the following shape
parameters: Ko = Xy =2=1, K1 =Ko =2 =y =0,
r =2, K3 = —4 (recall that K3 = K + K3 — r?). A set
of 40 image space points, shown in Figure 4 was generated
by the linkage geometry, illustrated in Figure 5

Using the general quadric surface equation, Eq. (11), the
image space coordinates of the 40 poses generate a set of 40
synthesis equations in terms of the 10 surface shape param-
eters {co, c1,- - -, co }. The two quadric surfaces that best fit
the given points lie in the null space of the synthesis ma-
trix A, whose same numbered elements in each row are the
terms of the X;,i € {1,2, 3,4} scaled by the surface shape
parameters, ¢;,i € {0,1,---,9}. The two surfaces clos-
est, in a least squares sense, to the null space of A can be
identified using singular value decomposition (SVD). Ap-
plying SVD to the overconstrained set of synthesis equa-
tions Ac = 0 reveals that the matrix A is rank deficient by
two. That is, two of its singular values are zero, or compu-
tationally close to zero. In this case the two smallest sin-
gular values are 1.0 x 107!, and 3.0 x 10~!°. Hence,
the two smallest singular values may be considered to be
effectively zero, and near the numerical resolution of the
computer. The next smallest singular value is 6.5 x 1072,
which is five orders of magnitude smaller than the largest
singular value of 88.8. It is a simple matter to identify the
array of surface shape parameters, c, that correspond to the
two smallest singular values of the synthesis matrix A [13].
The coefficients are listed as Surfaces M, N and O in Ta-
ble I, with M corresponding to the smallest, NV the second
smallest, and O the third smallest singular value.

The quadric surface type information is embedded in its
coefficients. The implicit equation of the quadric surface
can be classified according certain invariants of its discrimi-
nant and quadratic form [14]. Written in discriminant form,
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Surface Co C1 Co C3 Cs Ceg Cr Cs Cog
M 1.0000 | 0.1380 | 0.0738 | -0.3967 | -0.0962 | 0.1201 | 0.0473 | 0.8249 | -0.3372 | -0.2950
N 1.0000 | 0.2603 | 0.5297 | 2.1392 | 0.0424 | -0.0456 | 0.0145 | 0.7035 | -1.0782 | 3.9373
0 1.0000 | -0.3583 | -0.3583 | -0.0271 | 0.0000 | -0.4448 | 0.1494 | -0.9881 | 0.1732 | 0.0509

TABLE I. The surface shape parameters identified with SVD.

Surface || rank(D) | rank(Q) | sign of det(Q) | sign of T} | sign of T3 Quadric surface
M 4 3 + + - Hyperboloid of one sheet
N 4 3 - + + Hyperboloid of two sheets
0] 3 3 + - + Hyperboloid of one sheet
TABLE II. Quadric constraint surface type.
Eq. (11) becomes: sense, are two hyperboloids of one sheet. Despite the fact
. that the second RR-dyad constraint surface is far removed
X4 c1 %04 %CG %07 X3 from the null space of the synthesis matrix, it nevertheless
Xo Loy e 5C5 ?Cs Xo | (13) indicates that an RR R R mechanism will best approximate
X3 ?CG %cs, c3  3C9 X3 the desired coupler poses.
Xy 307 303 iCy Qo Xy
XTDX. A. Minimization
Points on a hyperboloid of one sheet can be obtained us-
The associated quadratic form is: ing Eq. (12), where K, Ky, K3, x, and y are the con-
1 1 straint surface shape parameters described in Section II-A.
o2 9¢% The approximate synthesis problem can be solved using an
Q = 2¢a L2 36 |- (14) equivalent unconstrained non-linear minimization problem.

1
53¢ 35C5 C3

Both the discriminant, D, and the quadratic form, Q,
are square symmetric matrices. It can be shown [14] that
quadric surfaces can be classified by conditions on the rank
of the discriminant, rank(D), the rank of the quadriatic
form, rank(Q), the sign of the determinant of the discrim-
inant, det(D), the sign of the product of det(Q) with the
trace of Q (indicated by 77), and the sign of the sum of the
two-rowed principal minors of Q (indicated by 75). This
last invariant is more precisely defined as

3
i=1,j=2

where the ¢;; are the elements of Q.

A quadric surface is an hyperboloid of one sheet if
rank(D) = 4, rank(Q) = 3, det(D) > 0, and either
T5 < 0,orboth 7T} < 0and 75 > 0. A quadric surface is an
hyperboloid of two sheets if all the above conditions on the
invariants are met, with the exception that det(D) < 0. A
quadric surface is an hyperbolic paraboloid if rank(D) = 4
and rank(Q) = 2. The values of these parameters for each
of Surfaces M, N, and O are listed in Table II.

Surfaces M and O are two hyperboloids of one sheet,
while Surface N is a hyperboloid of two sheets. Since a
hyperboloid of two sheets does not represent a planar dyad
constraint surface, the conclusion is that the quadric sur-
faces that best fit the reference curve, in the least squares

Qi Qij

T =
? G 4

; (15)

1i<J

This problem can be stated in the following way: find the
set of surface shape parameters (Ki, Ko, K3, z, y) that
minimize the total spacing between all 40 points on the ref-
erence curve and 40 points that lie on the surface of a hy-

perboloid of one sheet where t = X3 = X3 _,:

40
d= Z \/(Xlrefq - Xli)2 + (X2T€fi - X2¢)2- (16)
i=1

The two sets of parameters that minimize d represent the
two best constraint surfaces that intersect closest to the ref-
erence curve. Therefore, they represent the best dyad pair
that approximate the desired 40 poses. This formulation
results from the fact that ¢ = X3 is a free parameter in
the parametric equation for the hyperboloid of one sheet,
Eq. (12). Thus, for any hyperboloid of one sheet there exist
40 points with the same ¢t = X3 coordinates as the 40 points
on the reference curve. Furthermore X; and X5 have the
same form in Eq. (12), so the distance between each point
on the reference curve and each corresponding point on the
quadric surface in the hyperplane ¢ = X3 can be simply
measured on the X; X5 hyperplane. Hence, d can be de-
fined.

The second free parameter, ¢, in Eq. (12) is found by a
minimization sub routine, which runs for each correspond-
ing point generated on the quadric surface with the same
t = X3 coordinate as a point on the reference curve. This
simply implies that for a constraint hyperboloid of one sheet
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cut by a plane corresponding to ¢ = X3 there is only one
point on the circular trace of the hyperboloid of one sheet
in that hyperplane that is closest to the corresponding point
on the reference curve and that the (X7, X5) coordinates
of the closest point are only a function of . Another im-
plication is that the distance between the point generated
with coordinates (X7, X5) and the corresponding point on
the reference curve is only dependent on the surface shape
parameters K, Ko, K3, z, and y.

B. Initial Guesses

In order for the algorithm to converge to the solution that
minimizes d, decent initial guess for the shape parameters
are required. While initial guesses may be good or bad, the
minimization algorithm above allows for each of them to
converge to the best solution and to quantify the deviation
of the poses generated by the identified mechanism. Out of
the 40 points on the reference curve five points spaced rel-
atively widely apart are arbitrarily chosen giving five equa-
tions in the five unknown surface shape parameters, after
setting Ko = 1 in Eq. (7), knowing that the surface should
be a hyperboloid of one sheet. Seven initial guesses are
tabulated in Table III.

The idea behind this technique is that the curve that is
closest to the reference curve is by definition also closest to
the points on the reference curve and thus a curve that ex-
actly passes through five of the points may also be relatively
close to the best curve being sought. The minimization
algorithm will iteratively jump to the closest curve from
curves that may be close to the reference curve by mini-
mizing d. Furthermore, the initial guess procedure could
be repeated for a different set of points on the reference
curve and more initial guesses can be found. Statistics and
heuristics could be used to actually narrow down the initial
guesses. For the sake of testing this approximate synthesis
method, this is not done, and all initial guesses are consid-
ered equal and all resulting solutions are evaluated.

C. Minimization Results

Non-linear unconstrained programming methods such as
the Nelder-Mead simplex method [15] and the Hookes-
Jeeves method [16] have been used with similar outcomes.
The results of the minimization corresponding to each ini-
tial guess can be observed in Figures 6-12.

In each figure, the solid dots represent the desired 40
poses in the projection of the kinematic mapping image
space into the hyperplane X4, = 1. These 40 reference
points lie on the solid reference curve. The small circles are
the corresponding 40 points generated by the mechanism
identified from the minimization algorithm. These points
lie on the surface of a constraint hyperboloid of one sheet
that the algorithm converged to starting from the particular
initial guess. The results can now be visually compared. In
each figure, the images on the left are the results and refer-
ence curve projected onto the plane X3 = 0.

45 4 35 3 25
X1

Fig. 6. Graphical results for Initial Guess 1.

45 ] 35 3 25
X1

Fig. 7. Graphical results for Initial Guess 2.

Fig. 8. Graphical results for Initial Guess 3.

a
45 4 35 3 25
*

Fig. 9. Graphical results for Initial Guess 4.
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Guess Ky K5 K3 T Y
1 -73.59218 | -21.00890 | 5467.99420 | 23.99357 | 56.20798
2 -7.08742 -5.53320 46.84468 -1.58544 | -3.19723
3 9.75170 5.29780 27.84599 -2.29188 | -7.86290
4 -5.00000 0.00000 21.00000 3.00000 | -2.00000
5 1.00000 -1.00000 -23.00000 | -1.00000 | -2.00000
6 -20.98570 | -14.15501 | 297.79812 | -1.28879 | 0.56361
7 -3.05304 -6.54866 48.44514 -3.82887 | -1.05131
TABLE III. Initial Guesses.

Parameter Guess 1 | Guess 2 Guess 3 Guess 4 | Guess 5 | Guess 6 | Guess 7
K -97.720 | -18.202 888.914 -5.000 1.000 -25.445 | -1.398
Ky -57.463 | -12.363 432.395 0.000 -1.000 | -17.073 | -6.191
K3 1491.757 | 261.650 | -2374.375 | 21.000 | -23.000 | 390.531 | 36.554

T -1.133 -1.287 -0.894 3.000 -1.000 -1.309 -4.388

Y 0.534 0.889 -5.375 -2.000 -2.000 1.030 -2.361
Iterations 450 623 718 101 176 745 436

d 1.1132 1.9333 6.726 0.0004 | 0.0010 1.5746 | 4.8138

TABLE IV. Results.

A7-561

| :
45 4 35 3 25 0 45
1 2 bl

0 &
45 -4 35 3 25 0 45
X x2 x

Fig. 12. Graphical results for Initial Guess 7.

The numerical results are tabulated in Table IV. The val-
ues of d that resulted from the minimization algorithm can
now be compared. These values indicate how close the par-
ticular hyperboloid of one sheet obtained is to the reference
curve. It is evident that Initial Guesses 4 and 5 generate the
best hyperboloids of one sheet that intersect closest to the
40 points on the reference curve. The geometry of the best
generating RRRR mechanism can now be extracted using
this pair of R R-dyads and their surface shape parameters.

Fig. 13. Curve of intersection of best hyperboloids of one sheet.

It is to be noted that these are exactly the R R-dyads that
were originally used to construct the initial given 40 poses,
and hence the approximate synthesis was indeed successful.
It should also be noted that the initial guess values for the
shape parameters listed in Table III are completely different
from the shape parameters that resulted from the minimiza-
tion algorithm with the corresponding initial guess with the
exception of Initial Guesses 4 and 5. This is not the case
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for the other initial guesses because, even though the cor-
responding hyperboloid of one sheet fit the five arbitrarily
chosen points on the reference curve well, the quadric sur-
faces very poorly fit the 40 points on the reference curve
and the algorithm converged to a different, better solution.
The curve of intersection of the best hyperboloids of one
sheet corresponding to Initial Guesses 4 and 5 can be seen
in Figure 13.

D. What Happens When Specified Poses are Not Perfect?

Arguably the example was contrived to be successful, but
is also very illustrative of the importance of good initial
guesses. The specified 40 poses lie exactly on the curve of
intersection of two constraint hyperboloids of one sheet. To
introduce poses that do not lie perfectly on such a 4‘" order
curve which lies exactly on two constraint hyperboloids of
one sheet, the initial specified 40 poses were truncated to 2
decimal places to introduce error, and the approximate syn-
thesis algorithm was rerun. The results obtained are listed
in Table V.

Parameter || Truncated Guess 4 | Truncated Guess 4
K, -5.01374158 1.00543179
K> 0.00000497 -0.99534789
K3 21.12526403 22.98658405

T 3.00653176 -1.00047287

Y -1.98696494 -2.01010896
Iterations 134 329

d 0.1194434 0.0740493

TABLE V. Truncated Results.

It is to be seen that the fit is worse than that for the mech-
anism identified from the results in Table IV, still the min-
imization converged to similar results in terms of the best
RR-dyad pair.

V. Conclusions

Kinematic mapping of distinct displacement poles to dis-
tinct points in a 3D projective image space was successfully
used for approximate kinematic synthesis for rigid body
guidance. A new approximate synthesis method was devel-
oped and successfully tested, and could have a wide range
of applications as it has been presented in a general way
which can be further expanded or simplified.

For the case of a mechanism containing a P R-dyad, the
same method can be used with the exception that the con-
ditions on the identified quadratic form of the quadric that
best satisfied the specified poses will indicate that the spec-
ified image space points best fit a constraint hyperbolic
paraboloid. No heuristics are necessary and given the ini-
tial desired poses, the entire approximate synthesis can be
carried out using software to return a list of the best gen-
erating mechanisms ranked according to d, their closeness

to the given poses. The unconstrained non-linear program-
ming problem developed has only five variables and is eas-
ily solved by several methods. A minimization algorithm
could actually be further customized to “jump” from lo-
cal minima to other local minima depending on the desired
closeness to the given poses. Furthermore some relation-
ships between the variables could be built in to the algo-
rithm so it recognizes undesirable solutions from the per-
spective of surface shape parameters and avoids iterations
in those directions.

The method developed drives the solution mechanism to
achieve exactly the desired poses but not necessarily a line
of best fit through the poses. This may be desirable for
a mechanism designer who wants a point on the coupler
to go through exactly some specified poses but does not
care about the path in between them. If this is not satisfac-
tory then the designer can simply specify more points where
the path is not well defined and the approximate synthesis
method will yield a more desirable solution.
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In this paper kinematic mapping is used to take the first steps towards development of a general algorithm
combining both type and dimensional synthesis of planar mechanisms for rigid body guidance. In the present
work we develop an algorithm that can size link lengths, locate joint axes, and using heuristics decide between
RR- and P R-dyads that, when combined, can guide a rigid body exactly through five specified positions and
orientations, i.e., the five-position Burmester problem. An example is given providing proof-of-concept.

1 Introduction anism synthesis algorithm that integrates biyhe
and dimensionalsynthesis for five-position exact
The determination of a planar four-bar mechanismsynthesis. It was shown in [8] how kinematic map-
that can guide a rigid body through five finitely ping can be used for exact dimensional synthesis.
separateghoseg(position and orientation) is known We employ the Blashke-@Gnwald mapping of
as thefive-position Burmester problemit may be  planar kinematics [5, 6] to regard the problem from
stated as follows: given five positions of a point on aa projective geometric perspective, thereby obtain-
moving rigid body and the corresponding five orien- ing a system of five non-linear equations in five un-
tations of some line on that body, design a four-barknowns expressed in terms of a sixtbmogenizing
mechanism whose coupler is the moving body andor influence coefficientThe value of the sixth un-
is assemblable upon these five poses. The coupleknown determinetype The six unknowns represent
must assume the five required poses, even thougbne dyad. The solutions of the system of equations
it may be that not all five lie in the same assembly leads to, at most, four dyads, thereby agreeing with
branch. Burmester showed that the problem leads toBurmester theory.
at most, four dyads that can be taken two at a time: It is convenient to characterize rigid body dis-
there can be as many as six different four-bar mechplacements by a coordinate systdinthat moves
anisms that can guide a rigid body exactly throughrelative to a fixed coordinate systei see Figure 1.
five specified poses [1]. General planar displacements are then the transfor

From time to time dimensional synthesis for the mation of points described iff to the coordinates of
Burmester problem has been revisited, see for exthe same points describedh The constraints on
ample [2]. More recently, classical finite position linkages imposed by different joint types can then be
synthesis has been reviewed in [3]. An algebraic ap-described geometrically.
proach to this exact problem based on quaternionsis Planar linkages contain either revolufe-pairs),
to be found in [4]. Instead, we use planar kinematicor prismatic (°-pairs). These kinematic pairs per-
mapping whose geometry is analogous to quatermit rotations about one axis, or translations parallel
nions. The planar kinematic mapping was intro- to one direction, respectively. In the kinematic map-
duced independently by Blaschke andi@®wvald in  ping image space aRR-dyad (three binary links
1911 [5, 6], and is summarized in [7]. jointed end to end by twadR-pairs) constraint in-

In general, dimensional synthesis for rigid body volving a point with fixed coordinates i forced
guidance assumes a mechanigpe i.e., planar to move on a circle with fixed radius and centre in
4R; slider-crank; crank-slider; trammel, etc.. Our ¥ is a hyperboloid of one sheet. RR-dyad (three
aim is to develop a completely general planar mech-binary links jointed in series by B-pair and ank-
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pair) imposes the constraint where a point with fixedments are characterized by the three parameters
coordinates ir¥ is restricted to move on a line with b, andy, where the paird, b) are the(X/Z,Y/Z)
fixed line coordinates ik. This constraint mapstoa Cartesian coordinates of the origin &f expressed
hyperbolic paraboloid in the image space. The- in 3, andy is the orientation o relative to3, re-
dyad is the kinematic inversion of tHeR-dyad. It's  spectively.
constraints also map to hyperbolic paraboloids. The All general planar displacementise(, any com-
P P-dyad constraints map to a plane in the imagebination of translations and rotations) may be rep-
space. These are the four possible lower pair dyadsesented by a single rotation through a finite angle
for planar mechanisms. about a fixed axis normal to the plane of the dis-

The algorithm that performs both type and di- placement. Even a pure translation may be consid-
mensional synthesis for rigid body guidance mustered a rotation through an infinitesimal angle about
identify the constraint surfaces that intersect in thethe point at infinity in the direction normal to the
curve specified by the image space points of the fivdranslation. The coordinates of the piercing point of
given poses. The way the constraints are formulatedthe rotation axis with the plane of the displacement
the influence coefficient, mentioned earlier, can havedescribe thepole of the displacement. The coordi-
either the value 1 or 0, indicating either &R- or  nates of the pole are invariant under the associated
P R-dyad, respectively. transformation described by Equation (1).

The planarRRRP four-bar linkage shown in The pole coordinates for a particular displace-
Figure 1 can be decomposed intoRAR- and aP R- ment come from the eigenvector corresponding to

dyad. TheRR-dyad is composed of the grounded the one real eigenv_alue of Equation (1). Denoting
R-pair centred at the base-fixed poift and the theém by the subscript, the homogeneous pole co-
moving R-pair centred at the point/,. The PR- ordinates, which are the same in bdrandy:, are:

dyad is composed of the sliding-pair and theRz- Xp= =z, = asin(p/2)—bcos(p/2),
pair connected to it with centre af,. In the PR- Y, = yp= acos(¢/2)+bsin(p/2),
dyad, theP-pair slides on a line with fixed position
and direction relative to the base-fixétdpair cen-
tred atFy. This RRRP linkage is used to gener- Note that the value of the homogenizing coordi-
ate the five specified poses. Clearly, the algorithmnate is arbitrary. Without loss in generality it is set
must identify the constraint surfaces correspondingZ, = z, = 2sin¢/2.

to the givenRR- and PR-dyads. Using heuristics, The essential idea of kinematic mapping is to
we succeed in identifying these dyads, together withmap the three homogeneous coordinates of the pole
two additional RR-dyads, thereby agreeing with of a planar displacement, in terms of three parame-
Burmester theory. These are the first steps towardgers that characterize ita, b, ¢), to the points of a

Zpy= 2zp= 2sinp/2.

the general algorithm. three dimensional projective image space. The kine-
matic mapping image coordinates are defined as:
2 Kinematic Mapping X, = asin(p/2) —beos(¢/2)
X2 = acos(p/2)+ bsin(¢/2)

The motion of the coupler in a four-bar mechanism
can be described by the motion of a reference frame
E that moves with the coupler, relative to a ground- Xy = 2cos(p/2). 2)

fixed non moving reference frame. The RRRP Since each distinct displacement described by
linkage shown in Figure 1 illustrates these two co- (a,b, ) has a corresponding unique image point,
ordinate reference frames. The homogeneous coothe inverse mapping can be obtained from Equa-
dinates of points represented ihare given by the tion (2): for a given point of the image space, the
ratios(z : y : z). Those of points representedih  displacement parameters are
are given by the ratio§X : Y : 7).

The homogeneous transformation that maps the

X3 = 2sin(p/2)

tan (¢/2) = X3/ X4,

coordinates of points it to 32, which also describes a=2(X1X3 + X2X4) /(X3 + X3),

the displacement aF relative toX, can be written: b=2(X2Xs — X1X4)/(X2 + X3). ()
); | cose msing Z v L By virtue of the relationships expressed by
7 N SHSSO Cog v 1 Z @) Equations (2), the transformation matrix from Equa-

tion (1) may be expressed in terms of the homoge-
Equation (1) indicates that general planar displaceneous coordinates of the image space. This yields a

CSME 2004 Forum



)

Figure 1: RRRP linkage used to generate the five poses for the example.

linear transformation to express a displacemerif of RR-type; PR-type; RP-type; andPP-type. Be-
with respect td” in terms of the image point [7]: cause a motion is a continuous set of displacements,
and because a displacement maps to a point, a con-

X x strained motion will map to a continuous set of
A }Z/ =T | vy |, (4) points in the image space. As shown in [9], the con-
z

straints imposed by the four different dyad types are
where)\ is some non-zero constant arising from thequadric surfaces with special properties in the image

use of homogeneous coordinates and space. , _ _
A clearer picture of the image space constraint
X7 - X7 —2X3X, 2(X:1X3+ X2X4) surface that corresponds to the possible kinematic
T=| 2X3X4s Xi-X37 2(X2Xs—X1X4) |. constraints emerges whéX : Y : Z), or (x : y :
0 0 X3+ X3 z) from Equations (4), or (5) are substituted into the

general equation of a circle, the form of the most
The inverse transformation can be obtained with thegeneral constraint [10]:

inverse of the matrix in Equation (4) as follows. Ko(X*4Y?) 12K X Z42K,Y Z+ K322 = 0. (6)

x X The K; in Equation (6) depend on the constraint im-
yly |=T"|Y [, (5)  posed by the dyad. The result is that the constraint
z Z surfaces corresponding R, PR, and RP-dyads

can be represented lmne equation [10]. It is ob-
tained by substituting the results from Equations (4),
or (5) into Equation (6). However, the expression is

with v being another non-zero constant arising from
the use of homogeneous coordinates and

Xi-X3 2X3Xs 2(X1X3—X2X4) greatly simplified under the following assumptions:
T '=| —2X3X, X7-X2 2XoX3+X1Xy) |. . . N .
0 0 X2 4+ X2 1. No mechanism of practical significance will have

a point at infinity, so it is safe to set= 1.

2. Coupler rotations op = = (half-turns) have im-
2.1 Kinematic Constraints ages in the plan&, = 0. Because théX; are im-

There is a specific type of constrained motion cor—pIICItIy defined by Equation (2), setting =  gives

responding to each type of planar lower-pair dyad: (X1:Xo:X3:Xy)=(a:b:2:0). @)
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When we remove the one parameter family of im-  In what follows only RR- and P R-dyads will
age points for coupler orientationspf= = we can, be considered to provide some degreeudof-of-
for convenience, normalise the image space coordieoncept Development, refinement, and generaliza-
nates by setting(y, = 1. Conceptually, this implies tion of this approach will come in subsequent publi-

dividing the X; by X4 = 2 cos /2 giving cations.
1
X1 = (atan(p/2) =) 2.2 RR-type Circular Constraints
X, = 1(a+btan(@/2)) The ungroundedR-pair in an RR-dyad is con-
2 strained to move on a circle with a fixed centre.
X; = tan(p/2) Meanwhile, the coupler can rotate about the mov-
X, = 1. (8) ing R-pair when the coupler connection to the other

dyad has been removed. This two parameter fam-

Applying these assumptions to Equations (4), orily of displacements corresponds to a two parameter
(5) gives the simplified constraint surface equationhyperboloid of one sheet in the image space. Anim-

upon substitution in Equation (6): portant property of the hyperboloid is that sections
in planes parallel toX; = 0 are circles [9]. Each
Ko(X{ 4+ X3) + (—Koz + K1) X1 X3 one of these image space circles represents possible
+(—Koy + K2) X2 X3 F (Koy + K2) X1 cr(])upler displacgementsc\j/vg;cfjixeg orientatlilor(;: Thus
the constraints impose -dyads are calledir-
) i(KOf + 12(1)X2 T (Kuy — Kaz) Xy ) cular constraints The exact coefficients of the hy-
+i[Ko(z” +y7) — 2(Kiz + Ka2y) + K3] X3 perboloid are determined by substituting in Equa-
+1[Ko(2® +y°) + 2(Kiz + Kay) + K3] = 0. (9)  tion (9) the appropriate values for the kinematic pa-
rameters:
The X; are the image space coordinates that rep-
resent a displacement df relative to¥. The x Ko = 1,
andy, after setting: = 1, are the Cartesian coor- K1 = -X.
dinates of the coupler attachment pointih For Ko = -V,

both the RR- and P R-dyads the coupler and base-
fixed link are joined by arRk-pair, hence these co-
ordinates are conveniently selected to be the rota-where( X.,Y,.) are the Cartesian coordinates of the
tion centre of thek-pair. The constraint surfaces for fixed circle centre in the reference frame that is con-
these dyads are obtained by usingtippersigns in  sidered to be non-moving, andis the circle ra-
Equation (9). Note that foR P-dyads the kinematic dius. If the kinematic constraint is a fixed point in
constraint is inverted: instead of di-pair centre  E bound to fixed circle inZ, then (z,y) are the
constrained to move along a fixed line yielding a Cartesian coordinates of the coupler reference point
fixed range of points, we have a movable line con-in E, and the upper signs apply. If the kinematic
strained to move on a fixed point yielding a planar constraint is a fixed point i& bound to fixed circle
pencil of lines on the fixed point. For this case wein £, then(X,Y) are substituted fofz, ) as the
use the alternate form of Equation (9) where the cocoordinates of the coupler reference pointinand
ordinates X : Y : 1) of the fixed R-pair centre are  the lower signs apply.

used in place ofz : y : 1), and thelower signs are

used. See [10] for a detailed explanation. . .

P P-dyads represent a special case. The imagez'3 PR-type Linear Constraints
space constraint surface corresponding to possibleinear constraints result wheRR- and R P-dyads
displacements of a PP-dyad is a degenerate quadriare employed. The linear coefficients are defined as
that splits into a real and an imaginary plane. This is 1 1
because only curvilinear motion of the coupler can [Ko: Ky: Ko : K] =[0: gLi: 5L2: Ls),  (11)
result. Because is constant, the image space co-
ordinatesXs = f(y) and X, = g(y) must also be
cpnstant. Heqce, the_finitg pgrt of the two dimen-,[inct points on the line [11].
sional constraint manifold is linear and must be a ¢ these in the present work we consider only

hyper-plane. The plane is completely determined byp _gyads. The direction of the line is a design con-
the coupler orientation. When the image space isstant, described by the angle it makes with respect to
normalised by setting(, = 1, the surface equation the fixed base framg, indicated byJs.. The point

is simply X3 = tan (p/2). at infinity contained on the line is determined by the

Ks = K!4+KZ-—r% (10)

where theL; are line coordinates obtained by Grass-
mann expansion of the determinant of any two dis-

CSME 2004 Foruna



direction of the line, and hence can be specified a®f the planesX; = 0 and X, = 0. This real line
(cosdy : sindy : 0). Additionally, the location of a  is the axis of a pencil of planes that includes the
fixed point on the line, also expresseddinis given  complex conjugate planel, and Vs, defined by:

a given PR-dyad is obtained from the Grassmann 4 tangent planes, though not necessarily, and

expansion: I
X Y Z The hyperbolic paraboloids, corresponding to
Fx/;s  Fy;s  Fzs = 0, (12)  PR-andRP-dyads, contaithas a generator. There-
cosvs sindy 0 fore all constraint hyperbolic paraboloids contdin

) andJ,, moreoverl; andV; are the tangent planes
where the notatiol'y /s, Fy s, Fz/s, representthe 4t these two points. Thus every constraint surface
homogeneous coordinateX” : Y : Z), expressed for RR- PR-, and R P-dyads have these four con-

in reference fram&, of a fixed point on the line that - yions in common, reducing the number of indepen-
is fixed relative toX. Applying Equations (11) and dent parameters t(; five

12) we obtain . .
(12) Our approach is to leav&, as an unspecified
Ko = 0, variable homogenizing coordinate and solve the syn-

K = _Fys sin Vs thesis equations in terms dfy. In general, the
2 ’ constantskK, K-, and K3 will depend onKj. If
K — Fz/s cos O these multipliers become very large (on the order of
2 ' 10) indicating a very large crank radius then we set

Ky = Fxmsinds — Fyyncosds.  (13) g, = 0 and use line coordinate definitions féf,,
K5, and K3 in Equation 13 giving & R-dyad. Oth-
The direction of the translation permitted by the €TWiS€,Ko = 1, and the circle coordinate definitions
P-pair is specified by the angle the line makes ex-of &1, K2, andK3 in Equation 10 are used yielding
pressed i, ¥s.. When the coordinates of a fixed &nff-dyad.
point on the line are known, we obtain the line co-
efficients [y : K; : Ko : Ks]. These, along
with the design values of the coordinates of the cou-3 Example
pler attachment pointz, y), expressed in reference
frame E, substituted into Equation (9) reveals the The mechanism illustrated in Figure 1 was used to
image space constraint surface for the giveR-  generate the five poses listed in Table 1 and dis-
dyad. This surface is an hyperbolic paraboloid [9] played in Figure 2. For this generating mechanism,
with one regulus ruled by skew lines that are all par-the origin of reference framg, Og, is on the centre
allel to the planeX; = 0. of the R-pair on the coupler poini/,. Homoge-
neous coordinates iR’ are described by the triples
2.4 The Burmester Problem in the Im- of ratios(z : y : z). The coupler reference points
M, and M, define the direction of the-axis. The
age Space positivey-axis is as shown in Figures 1 and 2. Frame
Each specified pose df determines a poin{,X; : ¥ is as shown in the same two figures. Reference
X5 : X3 : X4), in the image space. If the displace- frame E' moves with the coupler. The fixeR-pair
ments are feasible, the five points lie on the curvecenter is located on poirff;. The geometry of the
of intersection of the dyad constraint surfaces. Thegenerating mechanism is listed in the right hand side
five points are enough to determine the intersectingof Table 1.
guadrics. Recall that, in general, nine points are re- The given five poses are mapped to the coor-
quired to specify a quadric. The special nature ofdinates of five points in the image space. Using a
the constraint surfaces represent four constraints ooomputer algebra software package, we substitute
these quadrics. the corresponding values fdf;, X5, X3, together
The hyperboloids, corresponding oR-dyads, with X, = 1 andz = 1 into Equation (9), effec-
intersect planes parallel t§; = 0 in circles. Thus, tively projecting the points onto the embedded Eu-
all constraint hyperboloids contain the image spaceclidean Space. This produces the following five non-
equivalent of themaginary circular points J; and  linear equations in terms df,, K, K», K3, x, and
Jo: (1 : £i : 0 : 0). The pointsJ; and J, are  y, which are quadratic wheH, is considered con-
imaginary points on the real ling, of intersection stant:
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Figure 2: The five poses.

pose a b v (deg) parameter value
1 5.24080746 4.36781272 43.883482f8 F; (X:Y:Z)=(15:2:1)
2  5.05087057 4.03883237 57.45578356 M, (x:y:2)=(-2:0:1)
3 476358093 3.54123213 66.99534998 M, (x:y:2)=(0:0:1)
4 443453496 2.97130779 72.10014317 M;M- =2
5 4.10748142 2.40483444 72.30529428 FyM; r=2.5
P-pair angle Jx = 60 (deg)

Table 1: Five poses of thR RR P mechanism; Geometry of theRR P generating mechanism.

(13.52428430 + 3.9547029762 — 0.281732470y + 0.2905708072x2 + 0.2905708072y2) Ko+
(3.045651308 + 0.4188583855x — 0.4028439264y) K1+
(2.538317736 + 0.4028439264x + 0.4188583855y) Ko + 0.2905708072K5;

(13.59714292 + 3.980465638z — 1.355748810y + 0.325108032422 + 0.3251080324y2) Ko+
(3.284157186 + 0.3497839351x — 0.5481168944y) K1+
(2.626113690 + 0.3497839351y + 0.5481168944x) K5 + 0.3251080324 K5;

(12.66604850 + 3.682213684x — 2.157608235y + 0.359503812822 + 0.3595038128y?) Ko+
(3.425051014 + 0.2809923744x — 0.6618272064y) K1+
(2.546172905 + 0.6618272064x + 0.2809923744y) K5 + 0.3595038128 K3;

(10.89749412 + 3.205294435x — 2.529259406y + 0.38245181342% + 0.3824518134y%) Ko+
(3.391991875 + 0.2350963732x — 0.7278785984y) K1+
(2.272764106 + 0.7278785984x + 0.2350963732y) K2 + 0.3824518134 K5;

(8.686958330 + 2.714462017z — 2.440453512y + 0.3834517468x2 + 0.3834517468y2) Ko+
(3.150041851 + 0.23309650652 — 0.7306209600y) K1+
(41.844275934 + 0.7306209600x + 0.2330965065y) Ko + 0.3834517468 K3;

(14)

(15)

(16)

17

(18)
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Parameter Surface 1 Surface 2 Surface 3 Surface 4

K —1.500K¢ —4.2909 x 10K, —15.6041K, —8.3011Ky
Ky —2.0000K 2.4773 x 106Ky 3.4362K —5.0837K
K3 —2.5801 x 107Ky 2.3334 x 107K, 107.3652Ky  93.4290K,
T —2.0000 8.1749 x 1077 0.2281 3.7705
Y 3.4329 x 1077 —1.3214 x 1076 —0.7845 —2.0319

Table 2: The identified constraint surface coefficients.

Parameter Relation Value
F (=K1, —K>,) (1.500, 2.000)
M, (z1,11) (—2.000,3.4329 x 1077)
M, (2, 12) (8.1749 x 1077, —1.3214 x 1079)
In arctan (}gil ) 60.0°

Table 3: Geometry of one of six synthesized mechanisms that is a good approximation of the generating
RRRP linkage in Figure 1.

Solving the system of Equarions (14-18) for the cients for Surface 2, relative to the other three, have
unknowns K, K., Ks, z, andy in terms of K a rotation centre whose location approaches infinity,
yields the set of four solutions listed in Table 2. Sub- (4.2909 x 105, —2.4773 x 10°) with a crank radius
stituting these values into Equation (9) gives four of 4.9547 x 108, also approaching infinity, while the
distinct constraint surfaces in the image space, irrelative values ofr andy indicate this attachment
terms of the homogenizing circle, or line coordinate, point is onOg. This surface should clearly be re-
Ky. computed as an hyperbolic paraboloid revealing the

) o corresponding® R-dyad. Recall the line coordinate
At the present time, heuristics must be usedyefinition with K left unspecified:

to select an appropriate value féf, by compar-

ing the relative magnitudes ok; and K,. Re- Ky, = Ky,

call that the circle coordinates are defined to be Fys .

K, = —X,, andK, = —Y,, the Cartesian coor- Ky = - sin Uy,

dinates of the fixed revolute centres, multiplied by Fy/s

-1, expressed irE. The crank radius is given by Ky, = B) cos Uy,

r = +K?— (K?+ K32). The coefficients for Ks = Fy/ssinds — Fy/scosds. (19)

Surfaces 1, 3, and 4 represétRk-dyads with finite
rotation centres whei; = 1. However, the coeffi- The angle of the direction of translation of tlie

Solution  Dyad surface pairing
1 Dyad 1 - Dyad 2
Dyad 2 - Dyad 3
Dyad 2 - Dyad 4
Dyad 1 - Dyad 3
Dyad 1 - Dyad 4
Dyad 3 - Dyad 4

o O~ WODN

Table 4: Dyad pairings yielding the six synthesized mechanisms.
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Solution 1 Solution 2 5

Solution 4 ¥,

Solution & 3

Figure 3: The six synthesized mechanisms.

pair relative to theX-axis of ¥ is ¢s;. The transla- ticular surface). The six possible mechanisms are
tion direction of aP R-dyad that could be combined the combinations of the four dyads taken two at a

with any of the three? R-dyads is thus time. These are listed in Table 4 and are illustrated
in Figure 3.
-K
Iy = arctan( K21>

_ 4.2909 x 109K 4 Conclusions

= arctan | ——————=—
2.4773 x 106K,

= 60.0°. (20) The example presented herein illustrates that the

general image space constraint surface equation,
Employing plane trigonometry, it is simple to leaving K, unspecified, can be used for general

extract the link lengths and joint locations of the type and dimensional synthesis for planar mecha-
dyad associated with each of the four constraint surnisms. For a set of five poses generated by a par-
faces. The generating mechanism is reproducedicular slider-crank, we synthesized six mechanisms,
when the dyads corresponding to Surfaces 1 and #hcluding the one that generated the poses, that can
are paired. We obtain the geometry listed in Ta-guide the coupler through the five poses. Three of
ble 3 (note, the second subscript refers to the parthe six synthesized linkages are slider-cranks while
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the remaining three artR mechanisms. The cou- [3] J.M. McCarthy. Geometric Design of Link-
pler point is the centre of th&-pair connecting the ages  Springer-Verlag, New York, N.Y.,
coupler to theP-pair. This coupler point is clearly U.S.A., 2000.

bound to a line in theRRRP linkages, but not in

the case of the R’s. This approach to planar four- [4] A.P. Murray and J.M. McCarthy. “Constraint

bar mechanisms stands to offer the desigilepos- Manifold Synthesis of Planar LinkagesPro-

sible linkages that can attain the desired poses, not  ceedings of ASME DETC: Mechanisms Con-

just 4R’s and not just slider-cranks, bail feasi- ference, Irvine CA.1996.

ble four-bar linkage architectures along with their

dimensions. [5] W. Blaschke. “Euklidische Kinematik und
Outstanding issues involve the following. The Nichteuklidische Geometrie”"Zeitschr. Math.

heuristics must be rethought so that an algorithm Phys, vol. 60: pages 61-91 and 203-204,
for type selection can be developed. Moreover, the 1911.

problem formulation must be reconsidered in such a

way that bothP R- and R P-dyads can be typed, and [6] J. Grinwald. “Ein Abbildungsprinzip, welches

extracted from the solutions. The geometric reason- die ebene Geometrie und Kinematik mit der
ing explaining why five image space points are suf- raumlichen Geometrie verkipft”. Sitzber. Ak.
ficient to define four unique quadrics must be for- Wiss. Wienvol. 120: pages 677-741, 1911.

malized. Additionally, the geometric interpretation
of Ky must be investigated. How, for example, are [7] O. Bottema and B. Rothlheoretical Kinemat-
the constraint hyperbolic paraboloids parameterized ics. Dover Publications, Inc., New York, N.Y.,
in the image space without settidg, = 0? U.S.A., 1990.

Finally, methods to apply this technique to ap-
proximate synthesis should be investigated. The [8] M.J.D. Hayes and P.J. Zsombor-Murray.

resulting problem would involve fitting a suitable “Solving the Burmester Problem Using Kine-
number of points to surfaces in the image space. matic Mapping”. Proc. of the ASME Design
More specifically, fitting points to the curve of inter- Engineering Technical Conferences: Mecha-
section of constraint surfaces. To do this some form nisms Conferencevlontréal, QC, Canada, on
of least-squares error minimization would have to CD, Sept. 2002.

be employed. The outcome would be a single dyad
pair: the one corresponding to the two constraint [9] M.J.D. Hayes and M.L. Husty. “On the Kine-
surfaces whose intersection best approximates the  matic Constraint Surfaces of General Three-
given set of desired poses Legged Planar Robot PlatformsMechanism
and Machine Theoryvol. 38, no. 5: pages
379-394, 2003.
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Integrated Type And Dimensional Synthesis of
Planar Four-Bar Mechanisms

Tim J. Luu and M. John D. Hayes

Abstract A novel approach to integrated type and approximate dimensional synthe-
sis of planar four-bar mechanisms (i.e. linkages comprised of any two of RR, PR,
RP, and PP dyads) for rigid-body guidance is proposed. The essence is to corre-
late coordinates of the coupler attachment points in two different coordinate frames,
thereby reducing the number of independent variables defining a suitable dyad for
the desired rigid-body motion from five to two. After applying these geometric con-
straints, numerical methods are used to size link lengths, locate joint axes, and de-
cide between RR, PR, RP and PP dyads that, when combined, guide a rigid body
through the best approximation, in a least-squares sense, of n specified positions
and orientations, where n > 5. No initial guesses of type or dimension are required.
An example is presented illustrating the effectiveness and robustness of this new
approach.

Key words: Approximate type and dimensional synthesis; planar four-bar mecha-
nisms; rigid body guidance; singular value decomposition.

1 Introduction

Planar linkages contain either revolute (R-pairs), or prismatic (P-pairs). These kine-
matic pairs permit rotations about one axis, or translations parallel to one direction,
respectively. In general, dimensional synthesis for rigid body guidance assumes a
mechanism fype: i.e., planar 4R; slider-crank; crank-slider; trammel, etc.. Our aim
is to develop a completely general planar mechanism synthesis algorithm that in-
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Carleton University, Deptartment of Mechanical and Aerospace Engineering e-mail:
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2 Tim J. Luu and M. John D. Hayes

tegrates both type and dimensional synthesis for n-position approximate synthe-
sis for rigid body guidance. The pairing of the two types leads to four possible
dyads: revolute-revolute (RR), prismatic-revolute (PR), revolute-prismatic (RP), and
prismatic-prismatic (PP).

There is an extensive body of literature reporting research on approximate di-
mensional kinematic synthesis of planar four-bar mechanisms for rigid-body guid-
ance, see for example [12, 1, 6, 5, 4, 9]. However, there are no methods reported in
the substantial body of literature that successfully integrate both type and approxi-
mate dimensional synthesis of planar four-bar mechanisms for rigid body guidance,
without a priori knowledge or initial guesses with the exception of two special cases
reported in [3, 2]. In this paper a method for doing so is presented for the first time.

The minimization criteria of the algorithm presented in this paper is purely math-
ematical: the condition number of the synthesis matrix. The algorithm will be en-
hanced when the transmission angle is incorporated as an optimization objective.
It would be additionally beneficial to examine the order and branch defect prob-
lems. It may be that advances made in [10] can be incorporated into the integrated
type-dimensional synthesis algorithm to address these issues. These issues notwith-
standing, the algorithm presented in this paper is a robust foundation upon which to
build. The algorithm is being adapted for synthesis of spatial motion platforms.

2 Kinematic Constraints: Circular and Linear

The motion of the coupler link in a four-bar planar mechanism is determined by the
relative displacements of all links in the kinematic chain. The relative displacement
of two rigid bodies in the plane can be considered as the displacement of a Cartesian
reference coordinate frame E attached to one of the bodies with respect to a Carte-
sian reference coordinate frame X attached to the other. Without loss of generality,
X~ may be considered fixed with E free to move, see Figure 2. The homogeneous
coordinates of points represented in E are given by the ratios (x : y : z). Those of
the same points represented in X are given by the ratios (X : Y : Z). The mapping
between the coordinates of points expressed in the two reference frames is given by
the homogeneous coordinate transformation

X cosB —sinf a X
Y| =|sin@ cos® b| |y], (D
VA z

0 0 1
where (a,b) are the ( %, %) Cartesian coordinates of the origin of E with respect to
X, and 0 is the orientation of E relative to X. Any point (x: y: z) in E can be mapped
to (X : Y : Z) in X using this transformation. For rigid body guidance, each pose is
defined by the position and orientation of E with respect to X, which is specified
by the ordered triple (a,b,0). Dyads are connected through the coupler link at the
coupler attachment points M, and M;, see Figure 1.
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There is a specific type of constrained mo-
tion corresponding to each one of the four
types of planar lower-pair dyad. The un-
grounded R pair in an RR dyad is constrained
to move on a circle with a fixed centre. Be-
cause of this they are denoted circular con-
straints. Linear constraints result when PR
and RP dyads are employed because the R
pair attachment point is constrained to move
on a line defined by the P pair translation di-
rection. The PP dyad represents a planar con-
straint: the line of one P pair direction is con-

strained to translate on the direction line of the
other. Fig. 1. Planar RRRP linkage.

It can be shown [2] that the model representing both circular and linear con-
straints for n Cartesian point coordinate pairs can be expressed in matrix form as

Ck=[X7+Y]2X;2¥; 1] =0, (2)

where C is an n x 4 dimensional array with j € {1,2,...,n}, with X and Y being
the Cartesian coordinates of points on either a circle or line, and the K; are constant
shape parameters determined by the constraint imposed by the dyad [2].

For circular constraints the K; are defined as

Ko=1, Ki = —X., Ky =Y., K3 =K} +K3 1, 3)

where (X,,Y.) are the Cartesian coordinates of the circle centre expressed in X and
r is the circle radius.

Linear constraints require Ky = 0 and the remaining K; are proportional to line
coordinates defined by

1 1
K = _EFZ/Z SiIlez7 K>, = EFZ/ZCOSGE, K3 :FX/E 