
Proceedings of the ASME 2010 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2010
August 15-18, 2010, Montreal, Quebec, Canada

DETC2010/MECH-28673

THE KINEMATICS OF A-PAIR JOINTED SERIAL LINKAGES

James D. Robinson
Department of Mechanical and Aerospace Engineering

Carleton University
Ottawa, Ontario, Canada

Email: jrobins7@connect.carleton.ca

M. John D. Hayes∗
Department of Mechanical and Aerospace Engineering

Carleton University
Ottawa, Ontario, Canada

Email: jhayes@mae.carleton.ca

ABSTRACT
A new kinematic pair called an algebraic screw pair, or A-

pair, is introduced that utilizes the self-motions inherent to a spe-
cific configuration of Griffis-Duffy platform. Using the A-pair as
a joint in a hybrid parallel-serial kinematic chain results in a si-
nusoidal coupling of rotation and translation between adjacent
links. This motion affects both the direct and inverse kinematics
of such chains. Presented in this paper are the direct kinematics
of chains using A-pairs and an algorithm for the inverse kine-
matics of a 4A-pair chain.

INTRODUCTION
This paper introduces a novel kinematic pair that is intended

to be used as a joint in a serial kinematic chain. The kinematic
pair uses a specific configuration of a parallel manipulator called
a Griffis-Duffy platform (GDP) which is a special configuration
of Stewart-Gough platform (SGP) that, in most configurations, is
subject to self-motions regardless of the state of the actuated legs.
Self-motions represent situations where the end effector (EE) of
the manipulator can move in an uncontrolled manner without ac-
tuator input. The rationale behind proposing this new kinematic
pair, called an algebraic screw pair, or A-pair, is based on the hy-
pothesis that replacing the revolute of a serial manipulator with
this special configuration of parallel platform will enhance the
rigidity of the serial arm. At the time of this writing, an actu-
ated prototype 4A-chain is being designed and will be used to
investigate the hypothesis. Hence, the focus of this paper is on

∗Address all correspondence to this author.

the direct and inverse kinematics of short A-chains with one, two
and four joints.

This paper details the special configuration of GDP that is
used to construct the A-pair; presents the motion characteristics
of the A-pair and describes how it is used as a joint in a kinematic
chain; provides the direct kinematic equations of a serial chain
constructed using any number of A-pairs; and presents an algo-
rithm for solving the inverse kinematics problem for 4A-chains.

THE ALGEBRAIC SCREW PAIR
Before discussing the kinematics of A-chains, it is impor-

tant to understand the geometry and motion characteristics of the
individual A-pairs. This section describes the geometry of the
GDP; the specific configuration of GDP that is used to create the
A-pair; and how self-motions are utilized to turn the GDP into a
kinematic pair.

The Griffis-Duffy Platform
In 1993 Griffis and Duffy [1] introduced a novel configura-

tion of parallel manipulator called the Griffis-Duffy platform. A
special configuration of the Stewart-Gough platform (six legged,
six DOF parallel manipulator), the GDP is characterized by a
planar fixed base and planar moving platform each with six spe-
cially placed spherical joint anchor points for the six legs of the
manipulator. The six anchor points lie on the perimeter of a tri-
angle on each of the fixed base and moving platform and six of
the anchor points are located one on each of the vertices of the
two triangles and the remaining six anchor points being located
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FIGURE 1. Example of a GDP. The configuration shown is called the
midline-to-vertex configuration.

FIGURE 2. The height, h, of the congruent fixed base and moving
platform triangles is equal to the distance from the anchor point at the
midpoints of one of the sides of the triangle to the anchor point at the
opposite vertex.

one on each edge of the triangles such that each leg has one an-
chor point on the fixed base and one anchor point on the moving
platform. Fig. 1 shows one example of a GDP, many other con-
figurations exist. Griffis and Duffy proposed controlling the EE
of the manipulator (affixed to the moving platform) by control-
ling the length of each of the six legs. With this definition of
the GDP configuration there are many possible configurations,
however the work proposed here focuses on one particular con-
figuration called the midline-to-vertex configuration, illustrated
in Fig. 1, where a leg with an anchor point on the fixed base has
an anchor point on the midpoint of one of the edges of the trian-
gle on the moving platform and vice versa, maintaining the same
order of legs around the perimeter of the fixed base and moving
platform. Additionally the special GDP configuration used for
the remainder of this paper has the following constraints applied:
the fixed base and moving platform triangles are congruent equi-
lateral triangles; and the six legs are all of a fixed length, l, equal
to the height, h, of the triangles made by their anchor points (dis-
tance from the midpoint of one of the edges of the triangle to the
opposite vertex on the same triangle, as illustrated in Fig. 2).

A significant issue with GDPs is self-motions. Self-motions

represent instances where a manipulator can move in an uncon-
trolled manner without actuator input. For a GDP this means
that the moving platform moves relative to the fixed base with-
out changing the length of the legs. Husty and Karger have
addressed the self-motions of Stewart-Gough platforms in gen-
eral in [2] and [3] and have focused specifically on GDPs in [4],
using the midline-to-vertex configuration as a detailed example.
Husty and Karger show that the midline-to-vertex configuration
of GDP, along with most other configurations of GDP, are always
subject to self-motions regardless of the lengths of the actuated
legs throughout the entire reachable workspace volume.

The GDP as a Kinematic Pair
Normally the existence of self-motions, especially through-

out the entire reachable workspace, is an undesirable character-
istic, thus the GDP is widely considered to be a failure as a par-
allel manipulator. An interesting characteristic of the midline-
to-vertex GDP self-motions, as shown in [4], is that they pos-
sess one well-defined, uncontrollable degree-of-freedom (DOF).
It turns out that the self-motions of the special GDP configura-
tion described previously couple rotation about an axis passing
through the geometric centres of both the fixed base and mov-
ing platform triangles with translation along that axis. The rela-
tionship between the rotation angle and the distance between the
fixed base and moving platform is a simple trigonometric func-
tion.

The work presented in this paper uses the following relation-
ship obtained by Husty and Karger [4] that describes the separa-
tion of the fixed base and moving platform, d, as a function of
the rotation angle, θ , about the Z-axis common to both the fixed
base and moving platform:

d = ρ sin
(

θ

2

)
, (1)

where ρ is a function of the geometry of the GDP. The current
work focuses on a GDP constructed such that the fixed base and
moving platform are congruent equilateral triangles with each
side of the triangles being of length a. The length of the legs
of the GDP, l, are held fixed and are equal to the height of the
triangle such that

l =
a
√

3
2

. (2)

The value of ρ obtained using this GDP geometry is

ρ =
a
√

6
3

. (3)
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When θ = 0◦ the GDP is said to be in its home position.
This is a theoretical position that can only be achieved if colli-
sions between the physical elements that constitute the GDP are
ignored, because in the home position d = 0 and the fixed base
and moving platform are coincident. The home position is not
physically accessable but is used as a reference position during
kinematic analysis. When the platform is fully extended, similar
to the pose shown in Fig. 1, θ = 180◦ and d = ρ . This fully
extended position, along with the geometry of the GDP, is used
to determine the value of the constant ρ .

It is proposed in [5] to utilize the well-defined one DOF self-
motion of this special GDP as a joint in a serial chain in place of
standard revolute joints (R-pairs). The motivation behind this is
that, beyond the rotation and translation about and along the joint
axis, the truss-like structure of the parallel platform makes it very
rigid in all other directions. This new type of joint, or kinematic
pair, is called and algebraic screw pair (A-pair) because it is like
a screw pair with the exception that the pitch of the screw can be
represented as an algebraic function of the rotation angle (tangent
of the half-angle substitution is used to represent the trigonomet-
ric function as an algebraic function).

The remainder of this paper presents the direct kinematics
of chains constructed using A-pairs (A-chains) and introduces
an algorithm for the inverse kinematics of A-chains with two and
four joints (i.e. 2A- and 4A-chains).

DIRECT KINEMATICS OF A-CHAINS
Solving the direct kinematics problem for a known manip-

ulator involves determining the position and orientation (pose)
of the manipulator EE for a given set of joint variables. This
section provides a solution to the direct kinematics problem by
adapting well established methods. First the Denavit-Hartenburg
(DH) parameters and a reference coordinate system are defined
for each link in the A-chain and then the standard matrix form
of the direct kinematics equations is adapted to account for the
coupled rotation and translation of the A-pair.

Description of Joints and Links
DH-parameters are commonly used when studying serial

manipulators to provide an unambiguous mathematical descrip-
tion of the kinematic chain. The interested reader is referred to
Denavit and Hartenberg [6], Craig [7], Shigley and Uicker [8] or
almost any reference on serial manipulator kinematics for a more
detailed description of DH-parameters.

Four DH-parameters are used to unambiguously describe the
kinematic geometry of each link in an n-link serial chain. For
link i, where i ∈ 1, . . . ,n, the DH-parameters are defined as:

• the link length, ai, is the length of the common normal
between adjacent joint axes;

FIGURE 3. The DH-parameters for a link in an A-chain with appro-
priate coordinate systems attached.

• the link twist, αi, is the angle between adjacent joint axes
about the line defining link i;
• the joint offset, di, is the offset along the joint axis of two
adjacent links;
• the joint angle, θi, is the angle between adjacent links
about the joint axis.

For A-pairs it is important to clarify the definitions of the
joint angle and joint offset. The joint angle must be broken into
two components, one fixed and one variable. The fixed compo-
nent, θ f i, refers the angle between adjacent links about the joint
axis when the A-pair is in its home position. The variable com-
ponent, θvi, is measured from the home position and it is this
variable component that is used in Eqn. (1) to determine the sep-
aration of the fixed base and moving platform of the A-pair. The
total joint angle is θi = θ f i + θvi. For the remainder of this pa-
per it has been assumed that θ f i = 0 and therefore θi = θvi. The
coupling of translation and rotation requires that the total joint
offset also be broken into fixed and variable components. When
working with A-pairs the parameter di refers to the the fixed com-
ponent, that is, the distance along the joint axis between adjacent
links when the joint is in the home position (θiv = 0). The vari-
able component of the joint offset is provided by Eqn. (1). The
DH-parameters of the A-chain are illustrated in Fig. 3.

In addition to DH-parameters each link is assigned one ref-
erence coordinate system, and the assignment of this coordinate
system depends on the two joint axes at the ends of the link. For
the purposes of this description, each link i, i = 1, . . . ,n describes
a rigid link that lies on the common normal between axes i and
i + 1, irrespective of the actual shape of the physical link in the
manipulator, which is irrelevant to the kinematic analysis. Let
coordinate system i be denoted Σi. The origin of Σi established
where link i intersects the joint axes i. The Zi-axis of Σi points
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along the i axis, the direction is arbitrary but, with experience, is
selected to ease future calculations. The Xi-axis points along the
common perpendicular towards the origin of Σi+1. If the axes i
and i+1 intersect, the axis Xi is parallel to the normal of to the in-
tersecting axes, the direction is again selected to ease future cal-
culations. The Yi-axis is assigned to complete the right-handed
coordinate system. This procedure works well for intermediate
links, however the base and EE coordinate systems, Σ0 and Σn re-
spectively, are often selected to simplify calculations by setting
as many DH-parameters to zero as possible. Fig. 3 shows the
placement of two coordinate systems in an A-chain.

A-Chain Direct Kinematic Equations
Using homogeneous coordinates, a point in the EE reference

frame,
[

1, x′, y′, z′
]T , can be transformed to the global reference

frame,
[

1, x, y, z
]T , using


1
x
y
z

= D


1
x′

y′

x′

 , (4)

where D is the matrix form of the direct kinematic equations ob-
tained from

D = M1G1 . . .MiGi . . .MnGn, (5)

where

Gi =


1 0 0 0
ai 1 0 0
0 0 cos(αi) −sin(αi)
di 0 sin(αi) cos(αi)

 , (6)

and

Mi =


1 0 0 0
0 cos(2θi) −sin(2θi) 0
0 sin(2θi) cos(2θi) 0

ρ sin(θi) 0 0 1

 , (7)

recalling the earlier assumption that θ f i = 0 for the work pre-
sented in this paper. Note that 2θi has been substituted for θi in
order to eliminate fractions. The matrix Gi contains the link and
joint parameters that do not change as the joint is actuated and
the matrix Mi contains the joint variables that change as the joint
moves.

Eqn. (5) is used to find the position and orientation of the
manipulator EE when provided with the DH-parameters at any
instant. This is a solution to the direct kinematics problem for
any serially connected A-chain comprising any number, n, of A-
pairs. The matrices used to obtain D are also used as part of the
algorithm used to solve the inverse kinematics problem.

INVERSE KINEMATICS OF A-CHAINS
Solving the inverse kinematics problem for a kinematic

chain involves determining the joint variables that place the EE
of the manipulator in a desired pose. A complete solution to
the inverse kinematics problem finds all sets of joint variables
that achieve the desired EE pose. The algorithm for the inverse
kinematics of A-chains is based on an algorithm for six-jointed
serial manipulators with revolute joints presented by Pfurner [9]
and Husty, Pfurner and Schröcker [10] that employs a technique
called kinematic mapping to map displacements in a three di-
mensional Euclidean space, E3, to a point in a homogeneous
seven dimensional projective space. This section provides an
overview of the kinematic mapping technique and shows how it
is used in the algorithm for solving the inverse kinematics prob-
lem for A-chains.

It is important to note that for the purposes of this paper
self-collisions have been ignored. Self-collisions occur when the
physical elements that make up the manipulator collide with one
another, preventing further motion. The self-collisions may oc-
cur between links in the chain or within the A-pair itself when
the legs of the A-pair collide with one another, preventing fur-
ther rotation (joint limits). When self-collisions are considered
some solutions to the inverse kinematics problem must be dis-
carded because they are not reachable by the actual manipulator.
The inclusion of self-collision checking and joint limits to the
inverse kinematics algorithm are topics for future research.

Kinematic Mapping
The algorithm for the inverse kinematics of serial chains

used in this paper requires an understanding of the concept of
the kinematic mapping of displacements. Kinematic mapping is
the mapping of distinct rigid body displacements in E3 to distinct
points in a seven-dimensional projective space called the kine-
matic image space, P7. Points in the image space are described
by eight homogeneous coordinates (x0,x1,x2,x3,y0,y1,y2,y3)
called Study parameters [11–15]. Though every displacement in
Euclidean space can be represented by a unique point in P7 the
opposite, that each unique point in P7 represents a displacement,
is not true. In order to represent a real displacement in Euclidean
space the set of Study parameters must lie on the seven dimen-
sional quadric

x0y0 + x1y1 + x2y2 + x3y3 = 0, (8)
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which is called the Study Quadric. Additionally, any set of Study
parameters containing the generator space x0 = x1 = x2 = x3 = 0
satisfies Eqn. (8) but does not represent a real displacement be-
cause all of the Euler parameters that represent orientation would
be zero, a situation with no physical meaning. This special gen-
erator space is called the exceptional generator. 1

A displacement in E3 can be described by a transformation
matrix, T, of the form

T =


1 0 0 0
d1 a11 a12 a13
d2 a21 a22 a31
d3 a31 a32 a33

 , (9)

where the vector
[

d1 d2 d3
]T describes the position of the origin

of the transformed coordinate system in the fixed reference coor-
dinate system and the lower right 3×3 sub-matrix containing ai j
terms is a proper orthogonal matrix describing the orientation of
the transformed coordinate system with respect to the fixed ref-
erence coordinate system. To transform the Euclidean displace-
ment to a point in P7 the first four Study parameters are obtained
by one of the following ratios (using the elements of the matrix
in Eqn. (9)):

x0 : x1 : x2 : x3 = 1+a11 +a22 +a33 : a32−a23
: a13−a31 : a21−a12

= a32−a23 : 1+a11−a22−a33
: a12 +a21 : a31 +a13

= a13−a31 : a12 +a21
: 1−a11 +a22−a33 : a23 +a32

= a21−a12 : a31 +a13
: a23 +a32 : 1−a11−a22 +a33.

(10)
For some orientations one or more, but not all, of the preced-

ing ratios will produce [0 : 0 : 0 : 0]. The ratios containing non-
zero terms will all be equivalent and any of these non-zero ratios
may be used [9]. The remaining Study parameters are found by

y0 = 1
2 (d1x1 +d2x2 +d3x3),

y1 = 1
2 (−d1x0 +d3x2−d2x3),

y2 = 1
2 (−d2x0−d3x1 +d1x3),

y3 = 1
2 (−d3x0 +d2x1−d1x2),

(11)

where the di terms are defined in Eqn. (9).

1In E3 a generator of a quadric is a line of which all points on that line also lie
on the quadric [16, 17]. The equivalent in P7 is a hyperspace (a 3-plane [14, 15])
of which all points in the hyperspace also lie on the quadric. The exceptional
generator is a generator space of the Study Quadric that does not represent a real
displacement while all other generators do, hence the name exceptional generator.

It is possible to obtain the transformation matrix, T, corre-
sponding to a set of Study parameters by substituting the Study
parameters into the matrix

T = ∆−1


∆ 0
l x2

0 + x2
1− x2

2− x2
3

m 2(x1x2 + x0x3)
n 2(x1x3− x0x2)

0 0
2(x1x2− x0x3) 2(x1x3 + x0x2)

x2
0− x2

1 + x2
2− x2

3 2(x2x3− x0x1)
2(x2x3 + x0x1) x2

0− x2
1x2

2 + x2
3

 ,

(12)

where ∆ = x2
0 + x2

1 + x2
2 + x2

3 and

l = 2(y0x1− y3x2 + y2x3− y1x0),
m = 2(y3x1 + y0x2− y1x3− y2x0),
n = 2(−y2x1 + y1x2 + y0x3− y3x0).

A displacement in E3 in a particular coordinate system is
represented by a point in P7. If the coordinate system is moved or
transformed then the representation of the displacement changes
in both E3 and P7. Pfurner [9] shows that the two important trans-
formations are those in the base coordinate system, which results
in a change of the fixed coordinate system, and in the moving co-
ordinate system, which results in a change of the EE coordinate
system. Each type of transformation has a different influence on
the the Study parameters in P7 and must be examined separately.

The coordinate transformation is conveniently described
by a matrix, T, with the corresponding Study parameters
(t0, t1, t2, t3, t4, t5, t6, t7)T and the displacement being transformed
(for example, the displacement from the manipulator base to
the EE) is represented by matrix A and Study parameters a =
(a0,a1,a2,a3,a4,a5,a6,a7)T . If the transformation occurs in the
fixed coordinate system, such as moving the entire manipulator
relative to the fixed base coordinate system, then the transformed
Study parameters are given by Tba, where Tb is the 8×8 matrix

Tb =



t0 −t1 −t2 −t3 0 0 0 0
t1 t0 −t3 −t2 0 0 0 0
t2 t3 t0 −t1 0 0 0 0
t3 −t2 t1 t0 0 0 0 0
t4 −t5 −t6 −t7 t0 −t1 −t2 −t3
t5 t4 −t7 t6 t1 t0 −t3 t2
t6 t7 t4 −t5 t2 t3 t0 −t1
t7 −t6 t5 t4 t3 −t2 t1 t0


. (13)

If the transformation takes place in the moving coordinate
system then the transformed Study parameters are given by Tma,
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where Tm is the 8×8 matrix

Tm =



t0 −t1 −t2 −t3 0 0 0 0
t1 t0 t3 −t2 0 0 0 0
t2 −t3 t0 t1 0 0 0 0
t3 t2 −t1 t0 0 0 0 0
t4 −t5 −t6 −t7 t0 −t1 −t2 −t3
t5 t4 t7 −t6 t1 t0 t3 −t2
t6 −t7 t4 t5 t2 −t3 t0 t1
t7 t6 −t5 t4 t3 t2 −t1 t0


. (14)

To build Tb or Tm for a displacement described by a 4× 4
matrix, for example Mi, the form Tb(Mi) is used, meaning the
Tb matrix is populated by the Study parameters associated with
the matrix Mi.

Kinematic mapping enables the use of powerful algebraic
geometry tools for analysis. One such tool is the constraint vari-
ety [18].

Constraint Varieties of A-Chains
The constraint variety of a manipulator defines the set of all

points in P7 (all possible sets of Study parameters) that are reach-
able by the manipulator EE. The constraint variety of a manipu-
lator may be visualized as a subset of points on the Study Quadric
in the kinematic image space. In the work presented here the con-
straint variety is represented algebraically by a set of polynomi-
als, though in several cases in literature, such as [3,9,10,19,20],
it is represented by the intersection of some geometric entity with
the Study quadric. The set of all solutions to a system of poly-
nomials is called a variety and hence the set of all points in P7

obtainable by a manipulator is called a constraint variety. The
constraint variety can be said to be the variety defined by the set
of polynomials that result from the mechanical constraints. For
the inverse kinematics algorithm presented in this paper the con-
straint varieties of 1A- and 2A-chains are required.

Analysis of mechanical systems that possess design or mo-
tion parameters described by angles involves equations contain-
ing trigonometric functions. Computer algebra systems are gen-
erally more efficient with algebraic equations than those contain-
ing trigonometric functions, therefore the method of tangent of
the half-angle substitution is used. Tangent of the half-angle sub-
stitution is based on the trigonometric identities

sinφ =
2tan( φ

2 )

1+ tan2( φ

2 )
, cosφ =

1− tan2( φ

2 )

1+ tan2( φ

2 )
,

where φ 6= (2k + 1)π and k ∈ {0,1, . . .}. Substitution of a new
variable

u = tan
(

φ

2

)
(15)

into the identities provides the following identities

sinφ =
2u

1+u2 , cosφ =
1−u2

1+u2 . (16)

As noted by Pfurner [9] these identities define a mapping of the
points of a unit circle parameterized by φ to the set of real num-
bers. The inverse mapping is given by

φ = 2tan−1(u). (17)

From these mappings it can be seen that when u = 0 then φ = 0,
when u = 1 then φ = π

2 and as u goes to infinity φ approaches π .
The Study parameters of matrix Mi in Eqn. (7) are found

using Eqn. (10) and Eqn. (11) and, after using trigonometric
identities to eliminate the 2θi terms and tangent of the half-angle
substitution to remove the trigonometric terms, can be simplified
to



x0
x1
x2
x3
y0
y1
y2
y3


=



1−u4
i

0
0

2ui(1+u2
i )

2ρu2
i

0
0

ρui(u2
i −ui)


, (18)

where ui = tan(θi/2). In the seven dimensional space P7 with
one joint variable the constraint variety is represented by six in-
dependent equations which are obtained by eliminating ui from
Eqn. (18). The intersection of the six equations in the follow-
ing set describes the constraint variety of a single A-pair in the
kinematic image space:

1 : x0y0 + x1y1 + x2y2 + x3y3 = 0,
2 : x1 = 0,
3 : x2 = 0,
4 : y1 = 0,
5 : y2 = 0,
6 : x2

3−4ρ−2y2
0−4ρ−2y2

3 = 0.

(19)

The constraint variety of a single A-pair is the intersection of
the four hyperplanes x1 = x2 = y1 = y2 = 0, the quadric x2

3 −
4ρ−2y2

0−4ρ−2y2
3 = 0 and the Study quadric.

There are multiple ways to obtain the Study parameters of a
2A-chain. One could obtain the matrix D from Eqn. (5) with i =
2, obtain the Study parameters in terms of the two joint variables
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u1 and u2 and eliminate them to obtain the set of five indepen-
dent equations whose intersection represents the 2A-chain con-
straint variety. Another method uses the matrix in Eqn. (14) to
transform the Study parameters in Eqn.s (19). The transformed
equations are obtained by substituting x′ for x into the equa-
tions of the constraint variety for the single A-joint where x′ =
Tm(Gi)x and the vectors x and x′ are

[
x0 x1 x2 x3 y0 y1 y2 y3

]
and

[
x′0 x′1 x′2 x′3 y′0 y′1 y′2 y′3

]
respectively. The second A-pair

is introduced into the model using the matrix Mi+1. The set of
equations parameterized in terms of the ui+1 describing the con-
straint variety of the 2A-chain are found by substituting x′′ for
x′ into the equations of the previous step (with link i already ac-
counted for), where x′′ = Tm(Mi+1)x′. Elimination of the ui+1
term yields the set of five equations whose intersection is the 2A-
chain constraint variety. Five equations are required to describe
the constraint variety of a 2A-chain in P7. The set of five equa-
tions, whose intersection is the 2A-chain constraint variety, are:

1 : x0y0 + x1y1 + x2y2 + x3y3 = 0,
2 : a1x2

1 +a1x2
2 +2al1x1y1 +2al1x2y2 = 0,

3 : al2
1x2

0− x2
1− x2

2 +al2
1x2

3 = 0,
4 : ρ−2 (4x1y2y3−4x2y1y3−2al1a1x1x3y2

+2al1a1x2x3y1)−al1x0x2x3 = 0,
5 : ρ−2

(
2al3

1a1y2
0 +2al1a1y2

1 +2al1a1y2
2

+2al3
1a1y2

3 +
(
al4

1a2
1 +a2

1
)

x1y1
+
(
al4

1a2
1 +a2

1
)

x2y2
)
+2al2

1x1y1
+2al2

1x2y2 +al2
1a1x0x1 = 0.

(20)

In Eqn.s (20), ali describes the DH-parameter αi after tangent
of the half-angle substitution is used to transform trigonometric
terms. The constraint variety is the intersection of three quadrics
and one cubic with the Study quadric. The constraint variety of
the 2A-chain is essential to the algorithm for solving the inverse
kinematics problem for 4A-chains.

Algorithm for the Inverse Kinematics of 4A-Chains
The algorithm for the inverse kinematics of 4A-chains pre-

sented in this section is adapted from an algorithm for the inverse
kinematics of 6R-chains by Pfurner [9, 10, 19].

In Pfurner’s algorithm for the 6R-chain inverse kinematics
algorithm one knows where the base coordinate system of the
manipulator is located as well as the position and orientation of
the EE (assuming the selected EE is in the workspace of the ma-
nipulator). The serial chain is theoretically broken into two sub-
chains: the left chain which includes the original base of the full
chain and a virtual end effector, EEL, at the theoretical break
where the third link meets the fourth joint; and the right chain
which contains the original chain’s EE and a virtual end effector,
EER, at the theoretical break. The labeling of the chains as left
and right comes from [9] and [10] because the figures showing
the sub-chains show the base sub-chain being on the left hand

side of the image and the EE sub-chain being on the right hand
side. The EE of the original unbroken chain is modelled as the
base of the right chain and it is placed in the desired EE pose. The
algorithm now determines the sets of joint variables (θi values)
that maintain the original, continuous serial chain (keeps EEL
and EER coincident) by computing the intersection of the con-
straint varieties of the left and right 3R-chains in the kinematic
image space.

The algorithm for the inverse kinematics of 4A-chains par-
allels that of 6R-chains, however the manipulator is theoreti-
cally broken into two-jointed chains as opposed to three-jointed
chains. The remainder of this section outlines the algorithm in
more detail.

Breaking the Chain. The inverse kinematics problem
for a 4A-manipulator involves finding all sets of joint variables
(u1, u2, u3, u4, after tangent of the half-angle substitution) that
place the EE in a desired pose. For a real solution to exist the
target pose, Σtarget , represented by matrix EET , must be within
the reachable workspace of the manipulator. The first step of
the algorithm is to theoretically break the 4A-manipulator, illus-
trated in Fig. 4, into two 2A-chains. The break may be made
anywhere on link 2 of the 4A-manipulator, however it is conve-
nient to make the break at the ‘fixed’ base of the third joint in
the 4A-manipulator, at the origin of coordinate system Σ2 of the
full chain. The 2A-chain containing the base of the original 4A-
manipulator is called the left chain and the EE of the left chain,
ΣL, is established at the break in the chain. The 2A-chain con-
taining the EE of the original 4A-manipulator is called the right
chain and the EE of the right chain, ΣR, is established at the break
in the chain. When the 4A-manipulator is unbroken ΣL and ΣR
are coincident with Σ2. The left chain contains Links and Joints
1 and 2. The base of the left chain, Σ0L, remains the same as the
base of the original 4A-manipulator, Σ0. The right chain contains
Links and Joints 3 and 4. The base of the right chain, Σ0R, is es-
tablished as Σtarget which is known and fixed relative to Σ0. The
order of the joints in the right serial 2A-chain is Joint 4 followed
by Joint 3 of the original chain.

By modifying the constraint variety of the 2A-chain, rep-
resented by Eqn.s (20), the constraint varieties for the left and
right chains are obtained. For the purposes of this paper the as-
sumption has been made that Σ0 is coincident with the universal
coordinate system. If this not the case, the offset from the univer-
sal reference frame must be accounted for by a transformation in
the base coordinate system. That being said, the constraint va-
riety for the left chain is obtained by accounting for the second
link in the 2A-chain constraint variety. This is done by substi-
tuting x′ for x into Eqn.s (20), where x′ = Tm(G2)x. The primes
are merely used for bookkeeping and can be eliminated once the
substitutions are complete. The left 2A-chain constraint variety
is represented by the intersection of the resulting five equations.
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FIGURE 4. 4A-manipulator showing the theoretical break between the left and right 2A-chains.

Obtaining the constraint variety of the right chain is similar
to the left chain, however a few additional steps are required.
Comparing the right chain with the 2A-chain used to obtain the
constraint variety represented by Eqn.s (20) it can be seen that the
DH-parameters are obtained in the opposite directions relative to
the coordinate frames attached to the links, therefore −a3 and
−al3 must be substituted for a1 and al1 respectively. Unlike the
left chain, it is not possible to assume Σ0R coincides with Σ0 and
this must be accounted for by transforming from Σtarget to Σ0 in
the fixed coordinate system using the target pose matrix EET and
the fact that Σ0R is not at the base of the first A-pair, but at the end
of the the last link in the 4A-chain. The geometry of the last link
is defined by the matrix G4. To get from the Σ0 to the base of the
right 2A-chain the matrix A is used such that A = EET G−1

4 . The
inverse of G4 is used because the link is approached from the
opposite direction compared to how it is defined for the direct
kinematics of the full 4A-chain.

The Study parameters of the matrix A are obtained from
Eqn. (10) and Eqn. (11) and the transformed equations of the
constraint variety are obtained by substituting x′ for x into in
Eqn.s (20), where x′ = Tb(A)x. Notice that the transformation
occurs in the base coordinate system. The fixed offset of the third
joint has not yet been accounted for. This is done by substitut-
ing x′′ for x′ into the set of equations obtained in the previous
step, where x′′ is found from x′′ = Tm(G′3)x

′ and G′3 is obtained
using Eqn. (6) with ai = αi = 0 and di = −d3. The primes can
now be removed from the resulting set of equations and the inter-
section of the five equations is the constraint variety of the right

2A-chain. The constraint variety of the right 2A-chain is de-
pendent on the target EE pose for the 4A-manipulator, whereas
the left 2A-chain constraint variety is unchanged if the Σtarget is
changed.

Intersecting the Constraint Varieties. The goal of
the inverse kinematics algorithm is to find all sets of joint vari-
ables that keep ΣL and ΣR coincident and therefore maintain an
unbroken 4A-manipulator with the EE in the target pose. This is
modelled as the intersection of the constraint varieties of the left
and right 2A-chains.

The Study quadric is common to both constraint varieties
and therefore the intersection of the two constraint varieties can
be viewed as the intersection of eight equations with the Study
quadric. The unknowns in the set of nine equations are the eight
Study parameters. The equations are normalized by dividing all
of the equations by one of the equations (normalize using the
equation for the Study parameter that has been set to unity i.e. if
using x0 = 1. This can safely be done because the exceptional
generator has been excluded. This yields an over determined
set of nine equations in seven unknowns. In general there are
no solutions to this over determined system, but because of the
method of obtaining this set of equations there is at least one real
solution for a target pose within the 4A-manipulator workspace.

Obtaining a general solution to the intersection problem
proves to be difficult due to the size and degree of the equations.
There exist many possible algebraic and numerical methods to
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solve the intersection problem, however the effectiveness of the
techniques may vary depending on the speed, accuracy and preci-
sion required, as well as the manipulator configuration and target
EE pose. The method employed for specific numerical exam-
ples herein involves systematically eliminating variables until a
univariate polynomial is obtained. Some equations are linear in
terms of certain Study parameters or become linear when com-
bined with other equations.

Seven of the nine equations are used to eliminate variables
until a univariate polynomial is obtained. From this univariate
polynomial several roots are obtained and back substitution is
used to reveal the sets of Study parameters that satisfy the seven
equations. Each set of Study parameters is tested in the remain-
ing two equations and those which satisfy all nine equations rep-
resent the displacement from Σ0 to the coincident ΣL and ΣR. In
the numerical examples tested exactly one solution was obtained
for the inverse kinematics problem for all 4A-manipulators. It
has not been generally proven that there is only one solution
to the 4A-manipulator inverse kinematics problem, however the
fact that the general 4R-manipulator has only one solution [21]
suggests it may be true.

Obtaining the Joint Variables. The sets of Study pa-
rameters obtained from the intersection of the left and right con-
straint varieties describe the pose of the coincident ΣL and ΣR
with respect to Σ0. In order to obtain the four joint variables of
the 4A-manipulator the inverse kinematic problem for the two
2A-chains must be solved.

For the left 2A-chain the pose of ΣL is described by EEL =
M1G1M2G2. Obtaining the Study parameters of EEL yields a
set of eight equations in the two unknown joint variables u1 and
u2. The equations are now set equal to the set of Study param-
eters obtained in the intersection problem resulting in a set of
seven equations in two unknowns (u1 and u2). Once again, in
general there is no solution because the system of equations is
over determined, but due to the nature of the problem at least one
real solution exists if a real solution was obtained when intersect-
ing the constraint varieties (i.e. the target EE pose is within the
manipulator workspace). Solving two of the equations provides
many solutions which are tested in the remaining five equations.
The sets of joint variables that satisfy all seven equations are the
solutions. It is believed that like 2R-chains there is in general
only one solution.

The procedure for obtaining u3 and u4 from the right 2A-
chain is similar to that for obtaining the first two joint variables,
after some initial pre-processing. Substituting the Study param-
eters obtained from the constraint variety intersection problem
into the matrix of Eqn. (12) provides a transformation matrix,
TEER , describing ΣR relative to Σ0. It is desired to find a matrix,
EET−relative, that describes Σtarget relative to ΣR. This is achieved
by EET−relative = T−1

EER
EET . The transformation from ΣR to ΣEE

given by TR = M3G3M4G4 is a function of u3 and u4. Obtain-
ing the Study parameters of EET−relative and TR using Eqn. (10)
and Eqn. (11) and normalizing produces a set of seven equations
and two unknowns that can be solved in a similar manner to left
2A-chain yielding the joint variables u3 and u4.

With the joint variables obtained for every intersection point
between the left and right constraint varieties, the solution to the
inverse kinematic problem is complete. The joint variables can
be converted to angles using Eqn. (17) if desired.

CONCLUSIONS AND FUTURE WORK
This paper introduced a novel kinematic pair, the A-pair, us-

ing a specific configuration of the GDP. The self-motions inher-
ent to the GDP throughout its entire workspace make it a failure
as a parallel platform, however the well-defined one degree-of-
freedom nature of the self-motions mean it can be utilized as a
kinematic pair. Introducing this coupled motion into the joints
of serial chains requires an investigation of the kinematics of A-
chains and this paper has presented algorithms for solving both
the direct and inverse kinematics problems.

The direct kinematic equations of A-chains are obtained by
adapting well-known techniques to account for the coupling of
translation and rotation in the A-pair. An algorithm for the in-
verse kinematics of 6R-chains is used as a template for solving
the inverse kinematics problem of a 4A-chain. The mapping of
Euclidean displacements to points in the kinematic image space
is utilized to obtain the constraint varieties of 2A-chains. The
inverse kinematics problem of a 4A-chain is solved by theoreti-
cally breaking the chain into two 2A-chains and intersecting the
constraint varieties of the two shorter chains. This allows for
the derivation of all sets of joint variables that place the EE in a
desired pose.

The research presented focuses primarily upon the kinemat-
ics of A-chains and represents the begining of the investigation
of this novel kinematic pair. Some topics for future research in-
clude: examining the kinematics of chains with different num-
bers of joints with the inverse kinematics of a 6A-manipulator
being a major goal; investigating the rigidity of A-pairs relative
to R-pairs; determining the limits of the self-motions of the A-
pair by introducing self-collisions into the analysis; developing
a method of actuating and controlling the self-motions of the A-
pair; comparing the the reachable and dextrous workspaces of
R-chains and A-chains; and investigating the forces and dynam-
ics of A-manipulators. This list is by no means exhaustive but
represents a good starting point for further research in the area of
A-pairs and A-chains.
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