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Abstract: Planar kinematic mapping
yields a highly compact general symbolic uni-
variate polynomial solution to direct kine-
matics problems for all three legged, three
degree of freedom planar parallel manipula-
tors. Direct kinematics solutions of planar
parallel robots with arbitrary mixed leg ar-
chitecture are exposed for the first time. Cir-
cle and line constraints in both the moving
frame as well as the fixed one are used as
required.

Résumé: Tracer cinématique planaire rap-
porte une solution polynôme univariable
symbolique générale fortement compacte aux
problèmes directs de cinématique pour cha-
cun des trois à jambes, trois degrés de ma-
nipulateurs parallèles planaires de liberté.
Des solutions directes de cinématique des
robots parallèles planaires avec l’architecture
mélangée arbitraire de jambe sont exposées
pour la première fois. Des contraintes de cer-
cle et de ligne dans tous les deux la trame
mobile aussi bien que la fixe sont utilisées
comme exigées.

Introduction: Planar kinematic mapping
was introduced independently by Blaschke
and Grünwald in 1911 (Blaschke, 1911;
Grünwald, 1911). But, their writings are
difficult. In North America Roth, De Sa,
Ravani (De Sa and Roth, 1981; Ravani and
Roth, 1983), as well as others, have made
contributions. However, we choose to build
upon interpretations by Husty (1995, 1994),

who used the accessible language of Bottema
and Roth (1990). Since Husty showed how to
solve direct kinematics of planar three legged
platform manipulators with kinematic map-
ping why do we reexamine what usually en-
tails putting each vertex of a given triangle
on one of three circles in the plane? There
are several reasons.

Firstly, Husty’s approach using arbitrary
real number platform design parameters and
joint variables, leads to numerical precision
requirements and computations ill suited to
real-time applications. Compact, manage-
able symbolic coefficient representation in
the sixth order planar univariate polynomial
is therefore required. Moreover, his approach
is limited to specific symmetric architectures
(the legs must be kinematically identical).

Secondly, Merlet (1996) addressed the di-
rect kinematics problem of all possible three
legged lower pair jointed planar platforms.
However, because plane trigonometry is used
to formulate the constraint equations, dis-
tinct architectures require distinct sets of
equations, which are further dependent of
platform geometry.

Thirdly, Hayes, Husty and Zsombor-
Murray (1999), presented a unified approach
to the direct kinematics of three legged plat-
forms, but the resulting univariate could
only be applied to those possessing topolog-
ical symmetry (three kinematically identical
legs).

Fourthly, although Hayes (1999) at-
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tempted to formulate a single univariate to
treat all symmetric and mixed leg planar ar-
chitectures, he omitted some cases with free
prismatic P-joints, one attached to end effec-
tor(EE), the other to base(FF). Furthermore
he overlooked an important opportunity, in
formulating the three constraint equations,
which leads to sixth order univariate co-
efficients, substantially more compact than
those of his reasonably-optimized computa-
tion.

In this paper, we present a single set of
constraint equations that can be used to
solve the direct kinematics problem of all
possible three legged planar platforms pos-
sessing three degrees of freedom. We de-
scribe in great detail certain pre- and post-
computational tasks, some tedious, and tab-
ulate a great many symbolic coefficient defi-
nitions. This is done in order to make formu-
lation and solution of constraint equations,
necessary to do direct kinematics for all
three-legged planar platform architectures,
convenient and attractive and to show that
the final symbolic univariate equation is com-
pact and practical for purposes of computa-
tion. Finally, it is shown how to set up a
typical one degree of freedom six-bar mech-
anism for input-output analysis. The three
points on three circles paradigm is employed
to demonstrate that kinematic mapping is an
efficient analytic tool, especially in the case
of elementary problems which are usually
treated with iterative computational meth-
ods.

Planar Mapping: As regards the plane,
recall the general homogeneous transforma-
tion of a point {x : y : z} in the moving, end
effector EE frame measured as {X : Y : Z}
in the fixed reference frame FF expressed in
terms of the kinematic mapping image space
coordinates (Bottema and Roth, 1990).
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Figure 1. POLE POSITION.

where

T =

[
X2

4 −X2
3 −2X3X4 2(X1X3 + X2X4)

2X3X4 X2
4 −X2

3 2(X2X3 −X1X4)
0 0 X2

3 + X2
4

]

The inverse transformation can be ob-
tained with the inverse of the 3×3 matrix in
Eq. (1) as follows.
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where the product of these matrices is not a
unit matrix but yields

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(X2
3 + X2

4 )2 0 0
0 (X2

3 + X2
4 )2 0

0 0 (X2
3 + X2

4 )2


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However this is a diagonal matrix with iden-
tical elements and homogeneous coordinates
may be multiplied by any value X2

3 +X2
4 6= 0

while preserving the unique point they rep-
resent. This argument also provides the nec-
essary non-zero condition. Furthermore λ,
above and below, is some non-zero constant.

Planar Image Coordinates and Pole
Position: The kinematic mapping image
coordinates are defined, with respect to P ,
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the pole of a general displacement in the
plane shown in Fig. 1, as follows.

{X1 :X2 :X3 :X4}={a sin
φ
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− b cos
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2
}

The pole position is invariant with respect
to EE and FF, i.e., XP = xP and YP =
yP . Thus using homogeneous coordinates
P{XP : YP : ZP} ≡ P{xP : yP : zP}. This
means

P{−b sin φ− a(cos φ− 1) : −b(cos φ− 1)

+a sin φ : −2(cos φ− 1)}
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Dividing by 4 cos sin φ
2

produces
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Figure 2. FIXED FRAME FF AND END EFFECTOR
EE.

Or homogeneously

P{X1 : X2 : X3}
Armed with Eqs. (3) and 4 any solution in
terms of X1, X2, X3, X4 can be conveniently
converted to the required displacement of
EE.

Univariate Polynomials

Legs, Circles and Points: Consider a
common platform architecture with three R-
R-R jointed legs as shown in Fig. 2. Re-
gardless of which joint is actuated, there is
always an unactuated R-R joint serial dyad
which renders a point on EE free to move on
the circumference of a circle in FF.

The Fixed Frame FF: In Fig. 3 one sees
the three possible actuator locations on any
given leg.

1. In Fig. 3 -i-, since θA is known, the fixed
circle on FF is centred on D and has ra-
dius rD, the link length spanning D → G
where G is the moving point on EE.

2. In Fig. 3 -ii-, since θD is known, the fixed
circle on FF is centred on A and has ra-
dius

rAG =
√

(rA + rD cos θD)2 + (rD sin θD)2

the length spanning A → G where G is
the moving point on EE. rA is the link
length A → D.
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3. In Fig. 3 -iii-, since θG is known, the fixed
circle on FF is again centred on A and
has radius rAD.

In order to invoke the ideal frames refered
to in Section the FF origin must be placed
on D for base actuated legs like -i- above
but remain on A with intermediate or plat-
form joint actuation like -ii- and -iii-. For
the example shown in Fig. 2, the centre E
of the second circle in FF would have to be
rotated onto the X-axis and the centre F of
the third rotated by the same angle ψ so as
to yield circle centre coordinates in FF. Then
with A(0, 0), B(12,−1), C(13, 9), as shown
in Fig. 2, we get

D(0, 0), E(XE, 0), F (XF , YF )

where

XE = [(12 + rBE cos θB − rAD cos θA)2 −
(−1 + rBE sin θB − rAD sin θA)2]−

1
2

XF = (13 + rCF cos θC − rAD cos θA) cos ψ

YF = (9 + rCF sin θC − rAD sin θA) sin ψ

tan ψ =
9 + rCF sin θC − rAD sin θA

13 + rCF cos θC − rAD cos θA

This procedure applies if all legs are base (FF
-i-) actuated but requires only minor modifi-
cation to accommodate intermediate (-ii-) or
platform (EE -iii-) actuation.

The Moving End Effector Frame EE:
The three EE point coordinates (x, y) for FF
(-i-) and intermediate joint (-ii-) actuated
legs are available by inspection of Fig. 2.

G(0, 0), H(j, 0), J(xJ , yJ),

xJ = h2−g2+j2

2j
, yJ =

√
h2 − x2

J

But all platform actuated joints move EE tri-
angle vertices to their corresponding inter-
mediate joint. In the example below we see
three platform actuators and the EE triangle
GHJ is replaced by DEF .

xD = rD cos θG, yD = rD sin θG,

xE = j + rE cos θH , yE = rE sin θH ,

xF = xj + rE cos θJ , yF = yj + rE sin θJ ,

d =
√

(xF − xE)2 + (yF − yE)2,

e =
√

(xD − xF )2 + (yD − yF )2,

f =
√

(xE − xD)2 + (yE − yD)2

Planar Constraint Equations: Consider
the case where the manipulator’s three leg
chains all contain unactuated R-R joint
dyads. Therefore three points on EE move
on three circles on FF. Substituting the three
equations Xi = Xi(x, y, z) implied by Eq. (1)
into the circle equation C0(X

2+Y 2)+2C1X+
2C2Y +C3 = 0 produces a hyperboloid of one
sheet in the image space, see Fig. 4.

C0z
2(X2

1 + X2
2 ) + (−C0x + C1z)zX1X3

+(−C0y + C2z)zX2X3 + (−C0y − C2z)zX1X4

+(C0x + C1z)zX2X4 + (−C1y + C2x)zX3X4

+
1

4
[C0(x

2 + y2)− 2C1xz − 2C2yz + C3z
2]X2

3

+
1

4
[C0(x

2 + y2) + 2C1xz + 2C2yz + C3z
2]X2

4 = 0 (5)

Note that setting C0 = z = X4 = 1 while
C1 = −Xm, C2 = −Ym, C3 = X2

m +Y 2
m− r2,

the circle centre coordinates and its radius,
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Figure 4. A HYPERBOLOID OF ONE SHEET.

produces

(X2
1 + X2

2 ) + (C1 − x)X1X3 + (C2 − y)X2X3

∓(C2 + y)X1 ± (C1 + x)X2 ± (C2x− C1y)X3

+
1

4
[(x2 + y2)− 2C1x− 2C2y + C3]X

2
3

+
1

4
[(x2 + y2) + 2C1x + 2C2y + C3] = 0 (6)

where (x, y) are the coordinates of the mov-
ing point on EE with z = 1 and the upper
signs apply. If the constraint is intended to
express the inverse, a point on FF bound to a
circle in EE, then the lower signs apply and
x, y or z is substituted wherever X, Y or
Z appears. The inverse situation of a circle
moving on a point is never required in prob-
lem formulation. However if a point is bound
to a line, i.e., in the case of a free prismatic
leg joint and if one desires to treat all mixed
leg configurations, the line may be either on
FF or EE. Eq. (6) reduces to Eq. (7) if a point
is bound to a line and C0 = 0. This produces
a hyperbolic paraboloid in the image space,
see Fig. 5.

C1X1X3 + C2X2X3 ∓ C2X1

±C1X2 ± (C2x− C1y)X3

−1

4
[2C1x + 2C2y − C3]X

2
3

+
1

4
[2C1x + 2C2y + C3] = 0 (7)
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Figure 5. A HYPERBOLIC PARABOLOID.

It has been shown by Hayes and Husty
(2001) that the hyperboloid of one sheet and
the hyperbolic paraboloid are the only pos-
sible kinematic mapping image space con-
straint surfaces for all possible planar three-
legged platforms.

Simplified Planar Image Space Con-
straints: Ideal frames are used to repre-
sent fixed circles on FF and moving points on
EE. The first circle is centred on the origin in
FF and the second on the X-axis. The first
moving point is on the origin in EE and the
second on the x-axis. Therefore three hyper-
boloids in the kinematic map are represented
by three equations of the form of Eq. (6), as
follows.

X2
1 + X2

2 + a6X
2
3 + a7 = 0

X2
1 + X2

2 + b1X1X3 + b4X2 + b6X
2
3 + b7 = 0

X2
1 + X2

2 + c1X1X3 + c2X2X3 + c3X1

+c4X2 + c5X3 + c6X
2
3 + c7 = 0

Eliminating X2
1 + X2

2 from the last two and
X2

3 from the third of this set reduces it to the
following which is solved for X3.

X2
1 + X2

2 + a6X
2
3 + a7 = 0

b1X1X3 + b4X2 + e6X
2
3 + e7 = 0

f1X1X3 + f2X2X3 + f3X1 + f5X3 + f7

= 0 (8)
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Notice that

e6 = b6 − a6, e7 = b7 − a7, e8 = c6 − a6,

e9 = c7 − a7, f1 = c1e6 − b1e8, f2 = c2e6,

f3 = c3e6, f4 = c4e6 − b4e8, f5 = c5e6,

f7 = e6e9 − e7e8

Planar Sixth Order Univariate: Sym-
bolic algebra software produces a Gröbner
basis which contains a sixth order factor in
X3 only. It can be abbreviated as

∑
AiX

i
3, i = 0, . . . , 6 (9)

wherein the coefficients are given as

A6 = e2
6(f2

1 + f2
2 ) + a6b21f2

2

A5 = 2[a6b1f2(b1f4 − b4f1)− b1e6f1f5

+e2
6(f1f3 + f2f4)]

A4 = a6(b21f2
4 + b24f2

1 ) + b21(a7f2
2 + f2

5 ) + e2
6(f2

3 + f2
4 )

−2{a6b1b4(f1f4 + f2f3)

+e6[b1(f1f7 + f3f5) + b4f2f5 − e7(f2
1 + f2

2 )]}
A3 = 2{b4[a6f3(b4f1 − b1f4)− e6(f2f7 + f4f5)]

−b1[f1(e7f5 + a7b4f2) + e6f3f7

−b1(f5f7 + a7f2f4)] + 2e6e7(f1f3 + f2f4)}
A2 = b24(a7f2

1 + f2
5 + a6f2

3 ) + b21(f2
7 + a7f2

4 )

+e72(f2
1 + f2

2 ) + 2{e6e7(f2
3 + f2

4 )

−b4[a7b1(f1f4 + f2f3) + (e6f4f7 + e7f2f5)]

−b1e7(f1f7 + f3f5)}
A1 = 2{e2

7(f1f3 + f2f4)− b1f3(e7f7 + a7b4f4)

+b4[b4(f5f7 + a7f1f3)− e7(f2f7 + f4f5)]}
A0 = (e7f4 − b4f7)2 + f2

3 (e2
7 + a7b24) (10)

Backsubstitution: Once the six values
of X3 are available by numerically solving
Eq. (9) one must ensure that each is matched
with a unique pair of X1 and X2.

Planar Direct Kinematic Backsubstitu-
tion: The system of three constraint equa-
tions in the image space appears in Eqs. (8).
Having solved Eq. (9), using coefficients ob-
tained with Eqs. (10), X1 and X2 are found
for each value of X3 with the last two of
Eqs. (8) which are now linear because X3 has
been absorbed into the coefficients. These
become

a11X1 + a12X2 + a13 = 0,

a21X1 + a22X2 + a23 = 0

where

a11 = b1X3, a12 = b4, a13e6X
2
3 + e7

a21 = f1X1 + f3, a22f2X3 + f4,

a23 = f5X3 + f7

General Backsubstitution: One is not
always so lucky. There is no immediately ob-
vious path to linear backsubstitution when
dealing with a general system of three si-
multaneous quadrics with two remaining un-
knowns. For this reason it is worthwhile
to examine a simple elimination procedure
which leads to desired results. Here is the
system in X1 and X2 with some value of X3

absorbed in the coefficients.

aij




X2
1

X2
2

X1X2

X1

X2

1




=




0
0
0
0
0




or

a11X
2
1 + a12X

2
2 + a13X1X2

+a14X1 + a15X2 + a16 = 0 (11)

a21X
2
1 + a22X

2
2 + a23X1X2

+a24X1 + a25X2 + a26 = 0 (12)

a31X
2
1 + a32X

2
2 + a33X1X2

+a34X1 + a35X2 + a36 = 0 (13)

First a21, a31, a32 are eliminated from
Eqs. 12 and 13 to produce Eqs. 14 and 15.

b22X
2
2 + b23X1X2 + b24X1

+b25X2 + b26 = 0 (14)

c33X1X2 + c34X1 + c35X2

+c36 = 0 (15)

where

b2j = a21a1j − a11a2j, j = 2, . . . , 6

c3j = b32b2j − b22b3j, j = 3, . . . , 6

b3j = a31a1j − a11a3j, j = 2, . . . , 6
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Substituting for X1 in Eqs. 11 and 14 with
results from Eq. 15 yields a quartic, Eq. 16,
and a cubic, Eq. 17, univariate in X2.

d4X
4
2 + d3X

3
2 + d2X

2
2 + d1X2 + d0 = 0 (16)

e3X
3
2 + e2X

2
2 + e1X2 + e0 = 0 (17)

where

d4 = a12c
2
33,

d3 = (2a12c34 − a13c35 + a15c33)c33

d2 = (a16c33 − ac + 2a15c34)c33 +

(a12c34 − a13c35)c34 + a11c
2
35

d1 = (a15c34 − ac + 2a16c33)c34 +

(2a11a35 − a14c33)c36

d0 = (a11c36 − a14c34)c36 + a16c
2
34,

ac = a14c35 + a13c36

e3 = b22c33,

e2 = b22c34 − b23c35 + b25c33

e1 = b25c34 + b26c33 − b23c36 − b24c35,

e0 = b26c34 − b24c36

Raising Eq. 17 to a quartic and and form-
ing the difference with Eq. 16 gives another
cubic.

f3X
3
2 + f2X

2
2 + f1X2 + f0 = 0 (18)

where

f3 = e3d3 − d4e2, f2 = e3d2 − d4e1,

f1 = e3d1 − d4e0, f0 = e3d0

The difference between Eqs. 17 and 18 elim-
inates X3

2 in Eq. 19.

g2X
2
2 + g1X2 + g0 = 0 (19)

where

g2 = f3e2 − e3f2, g1 = f3e1 − e3f1,

g0 = f3e0 − e3f0

Then X3
2 is eliminated by raising Eq. 19 to a

cubic and forming the appropriate difference
with Eq. 18.

h2X
2
2 + h1X2 + h0 = 0 (20)

where

h2 = g2f2−f3g1, h1 = g2f1−f3g0, h0 = g2f0

Finally the required equation, Eq. 21, is ob-
tained with the difference between Eqs. 19
and 20.

(h2g1 − g2h1)X2 + (h2g0 − g2h0) = 0 (21)

The last remaining step is to get X1 with
Eq. 15. This guarantees that evaluating a
unique pair X1 and X2 will cost no more than
141 FLOPS.

Conclusion: Rather than extol the virtues
of kinematic mapping and the contributions
claimed to have been made herein, an ap-
plication exercise, which may be appreciated
and understood by all, is described instead.
Consider Fig. 6 which shows a four-bar
planar mechanism driven through a five-bar
loop with an input angle given as θ. Further-
more all link length parameters are specified
too. The problem is to find the pose of the
coupler GHJ . One may immediately rec-
ognize this as planar three-leg manipulator
where the platform points, G, H and J , all
in a line in this case, move on circles of radius
8, 12 and 16, respectively. For the first circle
we have

C1 = 0, C2 = 0, C3 = −82, x = 0, y = 0

For the second,

C1 = −20, C2 = 0, C3 = 202 − 122,

x = 14, y = 0

Then the third circle parameters are

C1 = 6− 5 cos 58.33◦,
C2 = −14− 5 sin 58.33◦,
C3 = C2

1 + C2
2 − 162, x = 6, y = 0

With Eq. (6) we compute the a-, b- and c-
coefficients. Then with the expressions below
Eq. (8) the d- and e-coefficients are obtained.
Finally, Eqs. (10) produce the seven coeffi-
cients of the sextic univariate of Eq (9) which
is solved numerically for X3. Section gives
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Figure 6. A ONE DEGREE OF FREEDOM MECHA-
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the means to get X1 and X2. Eqs. (3), 4 are
all that is necessary to provide the means to
move the coupler, from its “home” position,
which is horizontal, G on O and H to the
right, to its desired assembly mode(s). It is
hoped that with this simple example, which
many of us have tediously solved in class by
plotting the trajectory of point J , under the
motion of coupler GH, and intersecting it
with the third circle, we have managed to
expose the value of a kinematic mapping ap-
proach.

An example solving the direct kinematics
of a two degree of freedom device is illus-
trated in Fig. 7. The mechanism’s assemblies
can be solved with the three-legged platform
direct kinematics using image space kine-
matic mapping. It has been set up in ideal
EE(ox) and FF(OX) frames.
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