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Abstract. Four link twist angles are the design parameters for spherical 4R linkages: changing
the magnitudes of the twist angles changes the motion characteristics of the linkage. A new quartic
algebraic input-output equation for spherical four-bar linkages, obtained in another paper, contains
four terms which each factor into pairs of distinct cubics in the link twist parameters. These eight
cubic factors possess a symmetry that suggest they combine to form a shape that, at least locally,
bears a remarkable resemblance to a pair of dual tetrahedra in the design parameter space of the link
twists. In this paper we show that the location of points relative to the eight distinct cubic surfaces
implies a complete classification scheme for all possible spherical 4R linkages. Moreover, we show
that the design parameter spaces of both the spherical and planar 4R linkages, with suitable scaling,
intersect in 12 lines which form the 12 edges of a pair of dual tetrahedra.
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1 Introduction

Over the millennia four-bar linkages have become ubiquitous, with applications
ranging from aircraft landing gear deployment systems to beer bottle cap clamps.
One might, however naı̈vely, be led to the conclusion that all is known. Nonethe-
less, commencing with the ground breaking work of Ferdinand Freudenstein in the
1950s [5], new discoveries and new insight continue to be obtained, often with sur-
prising results. See [10] for a comprehensive collection of detailed examples and
results offered by a vast array of investigators over the last 175 years.

The algebraic input-output (IO) equation for any planar four-bar linkage is a
polynomial equation in the variable input link (driver) and output link (follower)
angle parameters expressed in terms of the link lengths. Because the link lengths
impose mobility constraints on the input and output links, they are considered de-
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Table 1 Denavit-Hartenberg parameters for a planar 4R chain.

joint axis i link length ai link angle θi link offset di link twist τi

1 a1 θ1 0 0
2 a2 θ2 0 0
3 a3 θ3 0 0
4 a4 θ4 0 0

sign parameters. Since the coupler motion is embedded in the polynomial, the IO
equation is well suited to function generation synthesis. Moreover, it is an algebraic
equation so the theory of algebraic geometry [2] can be applied to reveal character-
istics of the IO relationship that may otherwise be occluded by trigonometry.

Individual link coordinate systems are assigned according to the original Denavit-
Hartenberg (DH) convention [4]. Link parameters of length, ai, joint angle, θi, link
offset, di, and link twist angle, τi, are all defined relative to these coordinate systems.
For a planar 4R linkage the design parameters are the four link lengths, a1, a2, a3,
and a4, see Fig. 1(a), because the relative lengths determine the mobility capability
of the linkage. The relative angles between the links θ1, θ2, θ3, and θ4, are variables
in the IO equation. The link offsets and twist angles are all identically zero, see Ta-
ble 1. Note that the base coordinate system illustrated in Fig. 1(a) is an artifact of the
method used to derive the algebraic IO equation, see [13] for the details. Regard-
less, only the coincident origins and directions of the z0/4-axes are fixed by the DH
convention while the direction of the coincident x0/4-axes are rotated by π radians
compared to the usual representation, and the y0/4-axes complete the two coincident
right-handed coordinate systems.

(a) (b)

Fig. 1 Planar 4R chain and associated design parameter tetrahedra.

The algebraic IO equation for a planar 4R linkage is a planar quartic curve in the
IO angle parameters v1 = tanθ1/2 and v4 = tanθ4/2 [6]. The design parameters are
embedded in four quadratic terms that are each comprised of two factors that are
linear sums and differences of link lengths. The algebraic IO equation, as derived
in [13], is



Design Parameter Space of Spherical Four-bar Linkages 3

Av2
1v2

4 +Bv2
1 +Cv2

4−8a1a3v1v4 +D = 0, (1)

where

A = (a1−a2 +a3−a4)(a1 +a2 +a3−a4) = A1A2,

B = (a1 +a2−a3−a4)(a1−a2−a3−a4) = B1B2,

C = (a1−a2−a3 +a4)(a1 +a2−a3 +a4) = C1C2,

D = (a1 +a2 +a3 +a4)(a1−a2 +a3 +a4) = D1D2.

The overall scale of the linkage is irrelevant since we are dealing with function gen-
erators. Without loss in generality, we can normalise the four link lengths by a4, the
distance between the centres of the two ground fixed R-pairs, thereby setting a4 = 1.
Projected into this hyperplane, the remaining three lengths can be used to establish
three mutually orthogonal basis vectors. The eight symmetric linear factors, having
the form (a1±a2±a3±1), can be considered as eight planes in the ai for the eight
permutations in sign. These eight planes intersect in the 12 edges of a pair of dual
regular tetrahedra [7] while the plane segments bounded by the 12 edges are the
tetrahedra faces, see Fig. 1(b).

These two tetrahedra belong to the only uniform polyhedral compound, called
the stellated octahedron, which has order 48 octahedral symmetry [3]. This double
tetrahedron has a regular octahedron at its core and shares its eight vertices with the
cube [3]. Distinct points in this design parameter space represent distinct function
generators and the locations of the points relative to the eight planes containing
the faces of the double tetrahedron completely determine the mobility of the input
and output links. There are 27 types of mobility conditions, determined using the
techniques found in [7, 11], which depend on the signs of the sums of lengths in the
three terms A1, B1, and C1 from Eq. (1).

The focus of this paper is the design parameter space corresponding to spherical
4R linkages. Thus, the quartic algebraic IO equation for spherical 4R mechanisms,
as derived in [13], is manipulated to examine the design parameter space implied by
the magnitudes of the link twist angle parameters defined as αi = tan(τi/2), where
τi specifies the twist angles according to the original Denavit-Hartenberg conven-
tion [4]. For a spherical 4R the design parameters are therefore the four link twist
angle parameters, αi, while the relative link angles are the four variable θi. The link
lengths and offsets are identically zero, see Table 2. In comparison with the design
parameter space of planar 4R mechanisms [7] we see some startling similarities. But
first, the spherical 4R algebraic IO equation requires some discussion.

Table 2 DH parameters a spherical 4R chain.

joint axis i link length ai link angle θi link offset di link twist τi

1 0 θ1 0 τ1
2 0 θ2 0 τ2
3 0 θ3 0 τ3
4 0 θ4 0 τ4
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2 The Spherical 4R Algebraic IO Equation

The R-pair axes of a spherical 4R mechanism all intersect at the centre of the sphere.
Those of a planar 4R mechanism are all parallel; they can be thought of as intersect-
ing in a common point at infinity of the projective extension of the Euclidean plane
of the planar 4R. As shown in [9, 13], this means that the planar 4R mechanism is a
special case of the spherical 4R. In the limit, as the radius of the sphere tends towards
infinity, the algebraic IO equations of the spherical and planar 4R mechanisms are
projectively equivalent. This suggests that there should be some similarities between
the respective design parameter spaces.

A new and general method for deriving an algebraic form of the spherical 4R
mechanism IO equation is presented in [13]. This method, using Study’s kinematic
mapping [1, 15], can also be used to derive the algebraic IO equation for planar 4R
mechanisms, and we are working towards applying it to spatial linkages. Regardless,
the algebraic IO equation for spherical 4R’s has the form

Av2
1v2

4 +Bv2
1 +Cv2

4 +8α1α3
(
α2

4 +1
)(

α2
2 +1

)
v1v4 +D = 0, (2)

where

A = (α1α2α3−α1α2α4 +α1α3α4−α2α3α4 +α1−α2 +α3−α4)

(α1α2α3−α1α2α4−α1α3α4−α2α3α4−α1−α2−α3 +α4) ,

B = (α1α2α3 +α1α2α4−α1α3α4−α2α3α4 +α1 +α2−α3−α4)

(α1α2α3 +α1α2α4 +α1α3α4−α2α3α4−α1 +α2 +α3 +α4) ,

C = (α1α2α3−α1α2α4−α1α3α4 +α2α3α4−α1 +α2 +α3−α4)

(α1α2α3−α1α2α4 +α1α3α4 +α2α3α4 +α1 +α2−α3 +α4) ,

D = (α1α2α3 +α1α2α4 +α1α3α4 +α2α3α4−α1−α2−α3−α4)

(α1α2α3 +α1α2α4−α1α3α4 +α2α3α4 +α1−α2 +α3 +α4) .

In this equation the joint angle parameters are vi = tanθi/2, where the IO an-
gle parameter pair are v1 and v4, while the four link twist angle parameters are
αi = tanτi/2. The link twist angles, τi, are defined using the original Denavit-
Hartenberg assignment convention [4]. It can be shown that Eq. (2) is identical to
the corresponding trigonometric IO equation for spherical four-bar linkages found
in [11].

2.1 Interpreting the Spherical 4R Algebraic IO Equation

Analysing Eq. (2) using the theory of planar algebraic curves [12] one can see that
it has characteristics which are independent of the constant design parameters αi.
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Clearly, Eq. (2) is of degree n = 4 in variables v1 and v4. It is also of interest to
determine the planar curve’s double, or singular, points: locations where the curve
self-intersects. To identify the double points of Eq. (2) it must first be homogenised.
We arbitrarily select w to be the homogenising coordinate, which gives

kh : Av2
1v2

4 +Bv2
1w2 +Cv2

4w2 +8α1α3(α
2
4 +1)(α2

2 +1)v1v4w2 +Dw4 = 0. (3)

The double points are revealed by the locations where the Jacobian ideal van-
ishes [12]. This ideal is generated by〈

∂kh

∂v1
,

∂kh

∂v4
,

∂kh

∂w

〉
. (4)

Solving the system of four equations implied by Eq.s (3, 4) for v1, v4, and w reveals
two double points located at infinity along the v1- and v4-axes, which exactly mirrors
the results reported in [8] for planar 4R mechanisms:

(v1 : v4 : w) = (1 : 0 : 0) ; (0 : 1 : 0) . (5)

These two double points are common to all algebraic IO curves for every spherical
4R four-bar mechanism. Each of these double points can have real or complex tan-
gents depending on the values of the four constant link twist parameters, αi, which
in turn determines the nature of the mobility of the input and output links.

The discriminant of Eq. (3), evaluated at a double point, reveals whether that
double point has a pair of real or complex conjugate tangents [2] in turn yielding
information about the topology of the mechanism [8]. The discriminant and the
meaning of its value are [2]

∆ =

(
∂ 2kh

∂vi∂w

)2

− ∂ 2kh

∂v2
i

∂ 2kh

∂w2


> 0⇒ two real distinct tangents (crunode),

= 0⇒ two real coincident tangents (cusp),

< 0⇒ two complex conjugate tangents (acnode).

For the homogeneous IO equation of an arbitrary spherical 4R linkage, Eq. (3), the
discriminant of the point at infinity (v1 : v4 : w) = (1 : 0 : 0) on the v1-axis is obtained
by setting i = 4 in the discriminant equation, i.e. ∂v4, while the discriminant of the
other point at infinity on the v4-axis is obtained by setting i = 1 in the discriminant
equation, i.e. ∂v1, giving

∆v1 =−4AB, ∆v4 =−4AC. (6)

Since the signed numerical values of Eq. (6) depend on the products and sums of
link twist angle parameters their values may be either greater than, less than, or
identically equal to zero. Certainly, the classification of the mobility of the input
and output links is determined by these values.

Finally, because an equation of degree n= 4 can have a maximum of three double
points, the algebraic IO equation possesses genus 1 since it has only two. Because of
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this, it cannot be parameterised by rational functions, and is defined to be an elliptic
curve [12]. Moreover, since the curve has genus 1 for every spherical 4R linkage,
there are, at most, two assembly modes roughly corresponding to the “elbow-up”
and “elbow-down” configurations [8].

3 Spherical 4R Design Parameter Space

The eight factors in the four coefficients A, B, C, and D in Eq. (2) are cubics in the
αi design constant twist angle parameters and have an intoxicating symmetric struc-
ture. When α1, α2, and α3 are projected into the hyperplane α4 = 1 for a spherical
4R function generator, we can treat the three twist angle parameters α1, α2, and α3
as mutually orthogonal basis vector directions. Figs. 2(a) and (b) illustrate the eight
factors in each of the planar and spherical 4R algebraic IO equations where the sur-
faces are plotted in the ranges ai = ±1 and αi = ±1 in the respective projections
a4 = α4 = 1. The planar 4R surface is a regular double tetrahedron with the special
property of being the only uniform polyhedral compound [3]. The eight spherical
4R cubic surfaces have the appearance of being a double tetrahedron in the range of
αi =±1 , but they are not planar and therefore are not tetrahedron faces.

(a)

a1a2

a3

(b)

a1a2

a3

Fig. 2 Design parameter space surfaces: (a) planar 4R; (b) spherical 4R.

Cubic surfaces have fascinated mathematicians for several centuries. Clearly, the
eight cubic factors in Eq. (2) possess some special properties. The first cubic factor
in coefficient A from Eq. (2), which we will name A1, after normalising with α4, can
be homogenised with coordinate w to reveal

A1,h : α1α2α3−α1α2w+α1α3w−α2α3w+α1w2−α2w2 +α3w2−w3. (7)
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The double points for this cubic are revealed by the locations of where the Jacobian
ideal generated by 〈

∂A1,h

∂α1
,

∂A1,h

∂α2
,

∂A1,h

∂α3
,

∂A1,h

∂w

〉
(8)

vanishes. It turns out that all eight cubics share the same three double points, namely

(α1 : α2 : α3 : w) = (1 : 0 : 0 : 0) ; (0 : 1 : 0 : 0) ; (0 : 0 : 1 : 0) . (9)

The discriminant evaluated at each of the three double points, common to all eight
cubics, is ∆ = 4 for each double point. Since this discriminant is always greater
than zero, the double points are all ordinary, or crunodes [2], because there are two
distinct, real tangents at each double point. Alternately, we observe that each cubic
surface meets the plane at infinity in the three lines α1 = α2 = α3 = 0. The double
points are the vertices of this triangle. It can be shown that the two lines through
each vertex are in the tangent singular cone at the vertex, and because the Hessian
of A1,h is non-zero at each vertex then each one is an ordinary double point.

It is well known that cubic surfaces can contain as many as 27 lines [14]. It is also
shown in [14] that a cubic surface possessing three ordinary double points can have,
at most, 12 lines. The procedure for determining the lines is not particularly germane
to this paper, nonetheless it can be shown that of these 12 lines six are complex and
six are real. Of the six real lines three are at infinity. The remaining three lines on
each surface intersect each other in an equilateral triangle. Moreover, different pairs
of the cubics share a line, meaning that there are only 12 distinct finite lines among
the eight cubics. The set of 12 distinct lines on each of the eight surfaces intersect to
form the 12 edges of a double tetrahedron! This double tetrahedron can be regarded
as the intersection of the planar and spherical 4R design parameter spaces. Treating
the αi as directed distances, each distinct point in this space determines a unique
function generator, as well as the mobility of it’s input, and output links.

(b)(a)

a1a2

a3 a3

a1a2

Fig. 3 12 distinct lines, three on each of eight cubics: (a) zoomed out; (b) zoomed in.



8 M.J.D. Hayes, M. Rotzoll, C. Ingalls, and M. Pfurner

4 Conclusions

In this paper we have shown that there is a profound relationship between the de-
sign parameter spaces of planar and spherical 4R linkages. Indeed, if we ignore the
difference between units of length for the ai and measures of angle for the αi and
simply consider the magnitudes, we see that the design parameter spaces of pla-
nar and spherical 4R linkages intersect in the edges of the only uniform polyhedral
compound. It is called the stellated octahedron, which has order 48 octahedral sym-
metry: a regular double tetrahedron that intersects itself in a regular octahedron. We
believe that there is something of remarkable beauty in this new and elegant result:
the design parameter spaces of these two classes of mechanism intersect along the
edges of the only uniform polyhedral compound in the universe of polyhedra!
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