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1. INTRODUCTION

At the beginning of the 20th century the celebrated Ger-
man mathematical physicist Felix Klein (1849-1925)
presented a series of lectures to high-school math and
science teachers during the Christmas and Easter peri-
ods when there were no classes. The intent was to make
the teachers aware of the necessity for them to be famil-
iar with their subjects at the highest possible level of
authority and rigor so as to be able to explain the mate-
rial in the clearest, most effective way. His lecture notes
were later published as books and translated to English
[1, 2]. The two volumes are called “Elementary Math-
ematics from an Advanced Standpoint” and subtitled
“Geometry” and “Arithmetic, Algebra and Analysis”,
respectively. These continue to provide inspiration. It
is in this vein that the following simple example in pla-
nar kinematics is treated using the projective geometry
of point, line and conic and a common substitution to
convert trigonometric to algebraic functions.

2. INCLINED “SCOTCH YOKE”

Figure 1 shows a “Scotch yoke” mechanism wherein a
slotted slider is driven by crank-pin P which rotates
about centre O. The block which slides in the slot is at-
tached to the crank-pin with a revolute joint. Distance
OP is r. The crank angle is θ measured counterclock-
wise positive from a line o on O and in the direction
of slider displacement. The motion of P relative to
the slot is along line b inclined at angle β to o. This
mechanism can be described as an RRPP closed, single
loop chain; a four-bar mechanism variant. Consider the
following aspects of the kinematics of this device.

• What is the displacement b1 of point B = b ∩ o,
a convenient point attached to the reciprocating
slider? This will be taken relative to the crank
centre point O, as a function of the crank angle θ.

• What is the angular displacement θ as a function
of b1?

• What are the limits of b1?

The pertinent unifying kinematic geometry focuses on
the “fixed frame” FF defined by point O and line o and
the “end effector” EE defined by B and b. The point
P , although movable, becomes an “honourary member”
of FF by virtue of its known position in terms of joint
variable θ and design parameter r. The situation can be
summed up by the following line and point constraint
equations.

B = b ∩ o, b = P ∩ C, o = O ∩A

Note that A{0 : 1 : 0} and C{0 : cos β : sinβ} are the
respective points at infinity which close o and b while
P is {1 : r cos θ : r sin θ} and O is {1 : 0 : 0}. These are
given by their homogeneous coordinates.

Figure 1. Inclined Scotch Yoke.

3. DIRECT KINEMATICS

Point B can be obtained after defining lines o and b.

o :

∣∣∣∣∣∣

w x y
1 0 0
0 1 0

∣∣∣∣∣∣
= 0 ⇒ {0 : 0 : 1}

b :

∣∣∣∣∣∣

w x y
1 r cos θ r sin θ
0 cos β sinβ

∣∣∣∣∣∣
= 0

⇒ {r(sin β cos θ − cosβ sin θ) : − sin β : cos β}

B :

∣∣∣∣∣∣

W X Y
0 0 1

r(sinβ cos θ − cosβ sin θ) − sin β cos β

∣∣∣∣∣∣
= 0

⇒ {sin β : r(sinβ cos θ − cos β sin θ) : 0}
Now the displacement equation is obtained with B{b0 :
b1 : b2}, dehomogenized by dividing through by b0.

B{1 : r(cos θ − cot β sin θ) : 0}

Not surprisingly B, representing slider displacement, is
confined to move along o. Direct kinematic displace-
ment, b1, velocity, ḃ1, and acceleration, b̈1, are written
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below.

b1 = r(cos θ − cot β sin θ)

ḃ1 = −r(sin θ + cot β cos θ)θ̇

b̈1 = −r[(cos θ − cot β sin θ)θ̇2 + (sin θ + cot β cos θ)θ̈]

4. INVERSE KINEMATICS

What if one wishes to obtain θ(b1), etc.? Things
are much easier if sines and cosines are replaced by
tan(θ/2). Then

with u = tan
θ

2
, cos θ =

1− u2

1 + u2
and sin θ =

2u

1 + u2

so
r(1− u2 − 2 cot β u)− b1(1 + u2) = 0

This can be solved for u to produce two values of
tan(θ/2), hence θ, in terms of the nondimensionalized
displacement ratio ρ = b1/r.

u =
− cot β ±

√
cot2 β + 1− ρ2

1 + ρ

The inverse velocity is produced immediately by taking
time derivatives of both sides of the inverse displace-
ment equation above.
(

sec2 θ
2

2

)
θ̇ =

(
∓ ρ

(1 + ρ)
√

cot2 β + 1− ρ2

+
cot β ∓

√
cot2 β + 1− ρ2

(1 + ρ)2

)
ρ̇

After defining two often repeated dimensionless groups

ρ1 ≡ (1 + ρ) and ρ2 ≡
√

cot2 β + 1− ρ2

inverse acceleration is written as follows.
(

tan θ
2 sec2 θ

2

2

)
θ̇2 +

(
sec2 θ

2

2

)
θ̈ =

(
2
− cot β ± ρ2

ρ3
1

± 2
ρ

ρ2
1ρ2

∓ ρ2

ρ1ρ3
2

∓ 1
ρ1ρ2

)
ρ̇2

(
∓ ρ

ρ1ρ2
+

cot β ∓ ρ2

ρ2
1

)
ρ̈

So given r, β, b1, ḃ1 and b̈1, then θ, θ̇ and θ̈ can be
computed in a straightforward manner while keeping
the result pairings properly matched.

5. POLARITY AND DISPLACEMENT LIMITS

It is shown in Figure 1 that the limits of slider displace-
ment b1 are established where line b is tangent to the
circle traced by the motion of crank-pin P . One could
simply intersect a line n, on O and normal to b, with
the circle and define where the two parallel lines b′ and
b′′ intersect o. However if the locus of P were a general
conic, instead of an origin centred circle of given radius,
then the method outlined below would be quite useful

to obtain n. This makes use of the so-called conic po-
larity relationship which defines the planar line polar
to any point in the plane and with respect to a conic
at hand. Conics may be defined with quadratic point
forms on a homogeneous symmetric 3× 3 matrix, viz.,

[p0 p1 p2]




a00 a01 a02

a01 a11 a12

a02 a12 a22







p0

p1

p2


 = 0

or

a00p
2
0+2a01p0p1+2a02p0p2+a11p

2
1+2a12p1p2+a22p

2
2 =0

If the matrix [aij ] is given along with a point, say
C{c0 : c1 : c2} then a linear equation in coordinates
pj is obtained and its coefficients

n{N0 : N1 : N2} ≡ {c0(a01 + a01 + a02) :

c0(a01 + a11 + a12) : c0(a02 + a12 + a22)}
are the homogeneous coordinates of the line n sub-
tended by the tangents from C and intersecting the
conic on the points of tangency. With C{0 : cos β :
sin β} and the circle radius r one gets

[p0 p1 p2]



−r2 0 0
0 1 0
0 0 1







0
cos θ
sin θ


 = 0

0p0 + cos θ p1 + sin θ p2 = 0
This linear equation is solved simultaneously with that
of the conic to yield tangent points P ′ and P ′′, which,
when paired with C, produce b′ and b′′, respectively.
These intersect o on B′ and B′′, the required limiting
excursions of B.

6. CONCLUSION

The three topics introduced here in the context of a
simple kinematic analysis, viz., projective geometry,
trigonometric to algebraic conversion and the theory
of conics, were not the easiest way to solve the prob-
lem posed. Nevertheless by introducing these meth-
ods along with an easy-to-follow example it is hoped
that the reader sees how to use them to formulate ro-
bust constraint equations which lead to clear solutions
amenable to efficient computation and unambiguous re-
sults in other, more complicated situations. Although
not treated herein, design problems lurk in the back-
ground. I.e., how to choose r and β to fulfill specified
kinematic performance? This mechanism admits two
design variables. What opportunities does this present
to the designer?
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