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In this paper the dynamic characteristics of a flexible beam are determined experimentally and compared
with those predicted by a simulation. A set of static experiments is first performed to validate the beam
parameters and the experimental measurement approach. Next, the beam is set into motion as the rocker link
of a planar four-bar crank-rocker linkage driven by a DC motor. Strain gauges, a potentiometer, and data
acquisition system are employed to obtain measurements of the beam position history and corresponding
strains during motion. From the signal analysis and data fit, the deflection and curvature of the flexible beam
are determined. The simulation is carried out in ADAMS by creating a model with the same configuration
and boundary conditions. The results of the experiment and simulation are closely matched. The long-term
goal of this work is to develop practical means for continuous measurement of beam curvature and associated
tip deflection and using that information to improve tip positioning control.

1 INTRODUCTION

Flexibility is an inherent property of structural
members. It becomes one of major concern when
mechanical systems are designed with tight shape
and dimension tolerances, required to be lighter
in weight, and to move at higher speeds. In ad-
dition there are many applications that use de-
formations, and corresponding strengths of struc-
tural members, to assemble machine components
and avoid interference among parts, for exam-
ple, selectively compliant assembly robot arms
(SCARA). The dynamic characteristics of flexible
beams, such as deflection under inertial loading,
are closely related to their material properties, ge-
ometry, and boundary conditions. Hence, a math-
ematical model and measurement system are re-
quired to experimentally determine characteristics
of interest.

In this paper, we investigate the dynamic per-
formance of flexible bodies using dynamic simu-
lation, wherein the beam has been suitably mod-
elled, and empirical data to confirm the simu-
lation. The experimental apparatus, illustrated
in Figure 1, consists of the following elements.
A commercially available long and slender alu-
minum beam is used as the flexible body. Strain
gauges, mounted in strategic locations parallel

to the longitudinal beam axis, are used to mea-
sure motion-induced strain. A motor driven four-
bar crank-rocker linkage provides oscillating ro-
tations for the beam. A precision potentiome-
ter is used to measure the rocker link orienta-
tion. The beam is rigidly clamped to the relatively
stiff rocker. The computer-controlled data acqui-
sition system is used to acquire simultaneous sig-
nals from four strain gauges and the potentiometer
when the beam is in motion. The simulation is de-
veloped using the ADAMS software package. The
same configurations and conditions for the experi-
ment are modelled and recreated in the simulation.
The data from the measurement system and simu-
lation are analyzed and compared. The curvature
of the beam as a function of distance along the
beam from the clamp is obtained. It is shown that
the simulation and empirical results are matched.

One application of these results is the ability
to predict beam curvature, at any location along
the beam, given the angular position and velocity
of the actuator. Another, perhaps more important
one is the ability to use the strain gauge and poten-
tiometer outputs as feedback control to the motor
for controlling the shape of the beam at specific
angular positions.
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2 STATIC ANALYSIS

2.1 Experiment

The long slender flexible beam is a commer-
cially available aluminum plate 3.175× 19.05×
914.4 mm. Four120Ω ±0.3% strain gauges were
bonded to the beam so their direction of sensitiv-
ity aligned with the longitudinal axis of the beam.
The flexible beam was cantilevered to the rocker
link of a planar crank-rocker mechanism such that
the beam was flexible in a plane parallel to the
floor (perpendicular to the gravity vector, to miti-
gate its effects). The potentiometer was attached
to the base-fixed revolute joint so as to measure
its angular position. The crank was driven by a
geared-down DC motor. The four strain gauges
were located at distances[5, 204, 403, 603] mm
along the beam measured from the end mounted
to the rocker. The effective length of the flexible
beam is 835 mm. The mechanism configuration
and strain gauge locations are shown pictorially
and schematically in Figures 1 and 2, respectively.

A static test and calculation were performed
to verify the setup. In order to compare mea-
sured and simulated results in the dynamic case,
a measurement approach using the strain gauges
to estimate the dynamic beam tip deflection is re-
quired. Consequently, a series of static tests were
performed to validate the measurement approach
and to compare its result based with alternative
methods for obtaining the tip deflection. For this
purpose, the beam was removed from the crank-
rocker mechanism and set up such that it would
bend in a vertical plane as the result of weights as-
sociated with masses of different size suspended
from the free end of the beam. The correspond-
ing strains and tip displacements were measured
under the effect of the applied loads.

Figure 1: Experimental apparatus

Figure 2: Schematic illustration of mechanism
configuration and strain gauge attachment points

2.2 Direct Measurement

For each of the three masses used, repeated read-
ing of a precision rule were used to directly mea-
sure the difference between the vertical position of
the beam tip prior to application of the tip weights
and the deflected positions once the weights were
attached and the system was allowed to settle to
equilibrium. The directly measured deflections
are provided in Table 1.

2.3 Theoretical Calculation

Knowing the material properties, geometry, and
applied tip loads, a simple beam bending calcula-
tion was performed to ensure consistency between
the beam parameters and the physical reality of
the system. The beam tip deflection was calcu-
lated for each of the three known tip weights using

δ =
1
3

PL3

EI
, (1)

whereE is Young’s modulus for the beam mate-
rial, I is the area moment of inertia of the beam,
δ is the deflection of the free end,P is the mag-
nitude of the applied force (weight), andL is the
distance between the force application point and
the beam cantilever point. The three calculated
tip deflection results are provided in Table 1.

2.4 Computational Estimate

Beam bending theory relates beam surface strain,
applied bending moment, and beam curvature
such that

d2y

dx2
=

ε

h
=

M

EI
, (2)

where
M = (l − x)P (3)

andy is the deflection of the beam along its length
x from the clamped end,ε is strain,h is the dis-
tance from the centreline to the surface of the
beam, andM is the bending moment present at
positionx along the beam.
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Table 1: Strains (micro) and deformations (mm) associated with tip mass (kg)
Strain 1 Strain 2 Strain 3 Strain 4 Deformation Mass

Measurement 191.00 143.00 96.00 52.00 26.99 0.05129
Calculation 186.63 141.34 96.05 50.53 26.84
Simulation 184.12 140.37 95.03 50.09 24.59
Prediction 190.69 143.35 96.76 50.71 27.226

Measurement 361.00 272.00 185.00 100.00 51.59375 0.09966
Calculation 362.64 274.64 186.63 98.18 52.14
Simulation 356.50 272.75 184.65 97.33 49.27
Prediction 360.35 273.04 185.76 98.08 51.86

Measurement 534.00 403.00 276.00 148.00 78.18 0.1478
Calculation 537.82 407.30 276.78 145.60 77.33
Simulation 530.57 404.49 273.85 144.34 73.84
Prediction 533.01 404.90 276.14 146.08 76.90

Consequently, using the known tip weights, it
is possible to integrate the beam curvature cal-
culated from Equation 2 to predict the shape of
the deflected beam and ultimately the tip deflec-
tion. While possible, this approach would not di-
rectly contribute to the required measurement ap-
proach as in the dynamic situation, the inertial
loading along the length of the beam will not be
known a priori. Consequently, instead, the mea-
sured strains at the four available locations were
used to calculate the beam curvature, this data was
then curve fitted along the length of the beam,
and integrated, using appropriate boundary con-
ditions, to obtain the beam deflected shape and tip
deflection. Results are presented in Table 1.

2.5 Transient Simulation

A dynamic flexible body simulation of the crank-
rocker mechanism and flexible beam was devel-
oped using the ADAMS multibody dynamics soft-
ware package. The flexible beam was meshed au-
tomatically using parabolic tetrahedral elements
ranging in size from 3 mm to 5 mm along their
edges. The six lowest-frequency deformation
modes were included in the modal superposition
solution approach used by ADAMS. To verify and
validate the dynamic simulation using the static
data, transient dynamic simulations were run for
each of the static loading cases and the result-
ing steady-state strains and tip deflections are pre-
sented in Table 1. Figure 3 shows a sample of the
deflected shape of the beam compared with the
undeflected beam configuration. Figure 4 shows
the corresponding levels of strain where, in this
case, x is measured inboard from the beam tip.

Figure 3: Deformed beam shape predicted by
ADAMS simulation

Figure 4: Surface strain versus position for the
static load cases where x is measured positive
moving inboard from the beam tip
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2.6 Static Results

Inspection of the summary results presented in Ta-
ble 1 shows excellent agreement between the mea-
sured, calculated, predicted, and simulated strains
for the three static load cases considered. In gen-
eral, the simulated results produced the lowest tip
deflections and those farthest from the directly
measured values, though the difference was lim-
ited to 4.5% to 9% based on the measured val-
ues. The general agreement between the predicted
and measured values validates the use of the mea-
sured strains as an effective means for measuring
the beam deformation along the length and the in-
stantaneous tip deflection.

3 DYNAMIC ANALYSIS

3.1 Test Conditions

As described previously, for the dynamic testing,
the beam was mounted to the follower link of the
four-bar linkage using a rigid hub. A precision po-
tentiometer was used to continuously measure the
orientation of the follower link. A data acquisi-
tion system was configured to sample the follower
orientation and the strains at each of the four loca-
tions. The sampling rate was set to 400 Hz; and a
Butterworth filter was used with the pass band set
to 150 Hz and the stop band set at 200 Hz. While
the apparatus allows the mechanism to be oper-
ated over a range of speeds, the data presented
herein corresponds to an excitation frequency of
the mechanism crank of 0.924 Hz. A set of
recorded time history data from the potentiome-
ter and four strain gauges is shown in Figure 5.
The frequency spectrum of the strain measured
at strain gauge 1 is shown in Figure 6. The two
largest peaks in the spectrum correspond to the
rotation frequency of 0.924 Hz (largest peak) and
the first natural frequency of the beam at 3.56 Hz
(second-largest peak). Peaks at frequencies in the
area of the second and higher natural vibration fre-
quencies for the beam are very small.

Inspection of Figure 5 reveals the expected re-
sults that the strain amplitude cycles are in phase
with the angular excitation of the system and that
the strain amplitudes decrease for locations fur-
ther away from the cantilever point. It is also ap-
parent from the similar shapes of the strain traces,
as well as from the FFT plot (Figure 6), that the
motion is dominated by the first vibration mode.
This provides opportunity for a simplified method
for estimating the strains and deformations along
the length of the beam.

Figure 5: Recorded rotation angle and strains ver-
sus time
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Figure 6: FFT of strain measured at location 1

Figure 7: Strain ratio as a function of position
along the beam

Figure 8: Ratio of the beam tip deflection to the
strain measured at location 1

3.2 Computational Estimate

Quantitative analysis of the time histories of the
strains confirm that the strain amplitudes at each
of the four strain locations are essentially scaled
representations of the strains at the location of
strain gauge 1. Consequently, strain ratios are de-
fined such that the amplitudes of strains at loca-
tions 2 through 4 are normalized against the am-
plitude of the strain at location 1. The correspond-
ing values, obtained from least squares analysis,
are provided in Table 2. The resulting strain ra-
tios are shown as points in Figure 7. The point
at the beam tip is assigned a value of zero as it is
known that the end point cannot support a bend-
ing moment. Further, the strain ratios are curve
fitted using a quadratic polynomial thereby pro-
viding an analytical expression for the strains at
all locations along the length of the beam.

Table 2: Strain scaling ratios as a function of lo-
cation

Strain Location, mm Ratio
1 13 1.00000
2 212 0.65789
3 411 0.28409
4 611 0.12658

end 843 0.00000

The actual strains along the length of the beam
are considered to be composed of two parts such
that

ε = f(x)s(t) (4)

wheref(x) is an expression of the scalar strain ra-
tios that are only a function of the point of interest
along the length of the beam, ands(t) is the refer-
ence strain recorded at the location of strain gauge
1 and is only a function of time.

Interpolation and curve fitting of the strain ra-
tios results in the expression

f(x) = +1.042207206−(.2248874035×10−2)x

+(.1200056880× 10−5x2 (5)

wherex is the position of interest measured out-
ward along the beam.

To obtain curvatures along the length of the
beam during its motion, Equation 2 is again used.
This results in a continuous expression for the
beam curvatures along the length. Double inte-
gration with the appropriate boundary conditions

dy

dx
= 0
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at the free endx = 834 and

y = 0

at the cantilever point of the beam atx = 8 mm
allows this to be further processed to produce an
expression for the beam deflection along its length
Y (x) relative to the measured strain

Y (x) = (1/1.875){(.1000047400× 10−6)x4

− (.3748123393× 10−3)x3

+ (.5211036030)x2 − (319.1428336)x
+ 2.519983532506307× 103}

(6)
Using Equation 6 evaluated at the end point of

the beam and the measured strain at location 1 it
is possible to determine the beam tip deflection. A
plot of the ratio of beam tip deflection to the strain
measured at location 1 is presented in Figure 8.

3.3 Dynamic Simulation

The ADAMS simulation model of the four-bar
linkage and flexible beam was again run, this time
for the dynamic conditions that prevailed during
the dynamic experiment. The simulated strains at
each of the strain gauge locations as well as the tip
deflections were output such that they are avail-
able for comparison with the directly measured
strains and the estimated beam tip deflections.

3.4 Dynamic Results

The measured strains at the location of strain
gauge 1, that is used as the reference strain,
are compared with the strains predicted by the
ADAMS simulation in Figure 9. The strains are
compared for a period spanning five cycles in
the upper plot and two cycles in the enlarged
lower plot. The startup transient exists for roughly
the first two cycles of motion. From the re-
sults it is evident that the measured and simulated
strains are in general agreement. It is however
observed that the simulated values introduce nu-
merical damping into the solution. Further, since
the simulated results include relatively few vibra-
tion modes compared with the experiment and due
to the higher level of damping present, the sim-
ulated results appear smoother than the directly
measured results.

Next, the estimation approach described in this
paper was used to estimate the beam tip deflection
as a function of time exclusively from the strain
measured at strain gauge location 1. The esti-
mated tip deflection is presented in Figure 10 and
the corresponding tip deflection obtained from the
simulation is presented in Figure 11. The peak

Figure 9: Comparison of measured and simulated
strains at location 1 (upper) and corresponding en-
larged version (lower)

tip deflections predicted by the simulation are ap-
proximately 45 mm whereas the peak estimated
values reach approximately 50 mm. The oscilla-
tion periods are the same in both sets of results.
However, the most notable difference is the exag-
gerated asymmetry resulting from the simulated
results compared with the estimated values. As
with the strain plots, higher damping in the simu-
lated results is also apparent.

Figure 10: Measured dynamic tip deflection

4 CONCLUSION AND DISCUSSION

The dynamic performance of a flexible beam ex-
periencing reciprocating rotational motion was in-
vestigated through experimentation and simula-
tion. The results show that measured strain can
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Figure 11: Simulated dynamic tip deflection

be used to estimate the dynamic behaviour along
the length of the flexible beam and to predict the
tip deflection. Interpolation of the strains lead to
an expression for the curvatures of the beam dur-
ing its motion. This, in turn, could be integrated
to obtain the beam deflection profile.

With this method, the dynamic properties of
the flexible body could be conveniently predicted,
thereby providing the opportunity for the flexi-
ble body motion to be actively controlled to pro-
duce required curvatures of the beam or limiting
the tip deflection. Currently, the results presented
are limited by the linear assumption of the flexi-
ble body and the fact that the excitation primarily
affects the first vibration mode of the beam. Pre-
liminary analysis of data corresponding to higher
motors speeds demonstrates that a more sophisti-
cated estimation technique is required when more
vibration modes are involved in the deformation
and when the amplitude of the flexible body de-
formation is significantly larger.
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