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1 Introduction essential for control, they yield no insight into theoretical issues,
uch as the size of the solution space, i.e., the number of possible

A mapping of planar kinematics was introduced independent]
.. . . ; - dssembly modes. Furthermore, many of these methods rely on an
by Blaschke[1] and Grnwald[2] in 1911. Upon inspection, this initial guess which must be fairly close to the solution in order to

planar kinematic mapping is a special case of Study’s more geq:-

eral mapping of spatial kinemati¢8]. In Study’s mapping, rigid (ﬂ)nverge[&lo].
body displacements in three dimensional Euclidean space L
transformed as points on a quadric surface, caliedly’s quadric

Many efforts have been made to provide some theoretical in-
[Sht by viewing the problem from a different perspective. It was
established by Hurltl1] that a planar three-legged platform with
R : J ; gtﬁ?eeRRR(or, when the middle joint is activated, the kinemati-
Injective, hence o_nIy th_e points on Study’s quadric havg Ior‘E'ally equivalenR PR* legs admit at most six real assembly con-
Images |n.three-d|men5|ona| Euchdean space that are d'Sp!aﬁSUrations for a given set of activated joint inputs. General solu-
ments. This means that feveryEuclidean displacement there isyjon hrocedures using elimination theory to derive a 6th degree
a unique image point on Study’s quadric. _ univariate polynomial, which leads to all assembly configurations,

Planar displacements are a subgroup of those in thr%ére developed by Gosselin and Sefripl®] and Wohlhar{12],

dimensional space. The planar kinematic mapping transforms it only for platforms with thredRRR or threeRPR legs, with

placements in the Euclidean plane into fundamental geometfigy nderscore indicating the active joint. The forward kinematic
elements(points in a higher dimensional projective space. Thesg,qpjem js solved for a subset of the permutations of three-legged
points must also lie on Study's quadric, though on a boundeghnar |ower-pair-jointed three-legged platforms in Mefl8].
portion of it. Be‘ca.use.the mapping is a linear tran.sforr.natl_on, thewever, because plane trigonometry is used to formulate the
geometry that it implies allows for conceptual visualization of,nstraint equations, distinct architectures require distinct sets of
complicated kinematic problems in parallel mechanism analysisations, which are further dependent on platform geometry. The
and synthesis. Such visualization leads to formulation of relatively,iyariate polynomial for platforms consisting of thrB@R legs
simple surface intersection problems. _ was again derived by Pennock and Kasgadi, but the work was

Transforming complicated algebraic problems into analogousytended to include an investigation of the worksaéa. Earlier
much simpler geometric ones is implicit in Klein's famdEdan-  work by Gosselinf16] provides a useful workspace optimization
gen Progran{4]. Klein summarized this conceff]: “Given any  scheme for planar, spherical and spatial platform-type parallel ma-
group of linear transformations in space which includes the priipulators. A detailed enumeration of assembly configurations of
cipal (Euclidean group as a sub-group, then the invariant theotrg?nar platforms can be found in Rooney and Eféle Synthesis
of this group gives a definite kind of geometry, and every possibigsues are addressed using a straightforward geometric approach
geometry can be obtained in this way.” Thus, the principles oy Shirkhodaie and Sorb], while Murray and Pierrof17] give
planar Euclidean kinematics are completely described by the gg extremely eleganb-position synthesis algorithm, based on
ometry of the image space. quaternions, for the design of planar platforms with thReER

The forward kinematicproblem for in-parallel-actuated ma-legs.
nipulators is a very complex problem: given the values of the What is lacking in the literature is a formulation of the kine-
inputs for the active joint in each leg, determine the position andatic geometry such that the metric trigonometric abstractions of
orientation of the end-effector. The key to a generalized kinema#cEuclidean geometric approach, leading to different representa-
formulation, independent from specific leg architecture and actu#ens of the constraints, can be unified in a single formulation that
tion, is the characterization of platform displacements. Variowbes not directly depend entirely on lengths, sines and cosines.
Euclidean formulations were first used. Due to the nature of tldanar kinematic mapping leads to such a formulation that can be
forward kinematic problem, much of the earlier research conceapplied to the kinematic analysis, in particular to solve the for-
trated on numerical solutioi§—9]. While numerical methods are ward and inverse kinemafiproblems, of any lower pair jointed
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Fig. 2 The seven possible leg topologies

Figure 2 illustrates the seven possible simple kinematic chains.
Proposed definitions of topological symmetry and asymmetry ap-
pear in the last paragraph in Section 2.1.

Fig. 1 The moving frame E and fixed frame X for any combi- 2.1 Passive Sub-Chains. The active joint in a leg is identi-
nation of legs from Table 1 fied with an underscordk PR, for example. Since any one of the
three joints in any of the seven allowable simple kinematic chains
may be actuated there are twenty-one possible leg architectures.
three-legged platform with arbitrary leg architecture and actuatidithen the value of the actuated joint input in a leg is specified, the
scheme. We provide the aforementioned formulation building geint is effectively locked and may be conceptually removed, tem-
the work of Husty[18], Hayes[19], Chen[20], and Zsombor- porarily, from the chain. What remains is a kinematic chain con-
Murray et al.[21]. nected with two passive joints. Examining Fig. 2, it is seen that
In this paper, we present a single set of constraint equations tHa resulting passive sub-chain is one of only four types: either
can be used to solve the inverse and forward kinematic probleR&, PR, RP, or PP [13]. For the moment we excludeP-type
of all possible lower pair jointed three legged planar platformegs from the enumeration since platforms containing two or three
possessing three degrees of freedd®F), regardless of indi- such legs either move uncontrollably or are not assemblable when
vidual leg architecture and actuation. While the equations can tie actuated joint variables are specifl{@®]. Nonetheless, plat-
used for kinematic analysis of platforms with legs containing gorms containing ond® P-type leg are feasible. They are consid-
serial chain combination dR- and/or P-pairs, it also applies to ered separately. This reduces the number of possible leg architec-
some architectures possessing holonomic, rolling higher paitsyes presently under consideration to eighteen. They are listed,
e.g, [22]. To start, we describe and enumerate the various desigrrrording to passive sub-chain, in Table 1.
using elementary counting principles. We continue with a brief The platform is considered to l®ymmetriovhen all three legs
review of planar kinematic mapping, then to derive and descrilsge the same type, each possessing the same type of actuated joint
the image space constraint surfaces. Various applications to kia¢-the same location in the kinematic chain. The platform is oth-
matic analysis are illustrated. In particular, application of theswise considered to basymmetric
surfaces to the solution of forward kinematic problem is illus-
trated with three numerical examples. Finally, conclusions empha—z2 Enumerating the General Planar Three-Legged Plat-

size the resqlts of this research and point out ways in which thel% ms. How many distinct general planar three-legged platforms
might be fruitfully extended. with three DOF are there? This number is arrived at using elemen-
s tary counting principles by first considering the 18 kinematic
2 Classifying General Planar Three-Legged Platforms chains in Taglepl aspthe se{ to choose from ?or each leg. A selec-
A general planar three-legged platform with three DOF consiglion of r different elements taken from a setrgfwithout regard to
of a moving platform connected to a fixed base by three simmﬁjdel’, is a combination of the elements taken at a time. If the
kinematic chains. Each chain is connected by three independel&ments are allowed to be counted more than once the number of
one DOF joints, one of which is active. Since the displacementsp@ssible combinations is given by
the platform are confined to the plane, oty and P-pairs are _
! - D ; (n+r—21)!
used. But, in certain cases a holonomic higher gear (@ircan C(n,r)=
replace a loweR-, or P-pair [22]. Platform motions are charac- rt(n—1)!
terized by the motion of reference frarBieattached to the moving  There are, in addition, three possibRP-type legs: RPP,
Flaﬂform, relative to frameX, attached to the nonmoving baseprp, and PPR However, a platform can only contain one
23], see Fig. 1. - -
The possible combinations & andP-pairs which connect the
moving platform to the fixed base and constrain the independent
open kinematic chains, consisting of successions of three joints Table 1 18 of 21 possible lower pair leg architectures
starting from the fixed base, in a three-legged platform[ a8

=C(18,3 =1140. 1)

RR-type PR-type RP-type
RRRRPRRRPRPP,PRRPPRPRPPPP.

RRR PR RP
We must, however, exclude thi&P P chain because no combina- RRR PRR RRP
tion of pure planar translations can cause a change in orientation, ~ RRR PRR RPR

: PRR PPR PRP

such a leg would not possess three independent DOF. Thus, there  gpr PPR RPP
are seven possible kinematic chains, which may be combined in RRP PRP RPP
either topologically symmetric or asymmetric groups of three
2 /| Vol. 126, SEPTEMBER 2004 Transactions of the ASME
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P P-type leg. This one leg can be combined with any of the 1Bomogeneous coordinates of the image space. This yields a linear
listed in Table 1. The total number of platforms containing &ansformation to express a displacemenEafith respect ta in

single PP-type leg can therefore be counted as terms of the image poirf23]:
3(C(18,2)=513. 2 X X
Combining the results of Eq$l) and(2) gives the number of MY[=T|Y] 6
all possible general planar three-legged platforms, jointed with z z

lower pairs, possessing three DOF: 1653. The kinematic analygjfiere\ is some nonzero constant arising from the use of homo-
of all 1653 different platforms is accomplished using the smgl&eneous coordinates and

constraint formulation derived in what follows.
XZ—X3  —2XgXs 2(X1Xg+XpXg)
T=| 2XXa  XE=X3  2(XoXg—X1Xq)
Th runwald-Blaschke Mapping of Plane Kine-
:;aticse Grunwald-Blaschke Mapping of Plane e 0 0 X2+ X2

Consider the reference frankewhich can undergo general pla-
nar displacements relative to reference frameas illustrated in

The inverse transformation can be obtained with the inverse of the
matrix in Eq.(6) as follows.

Fig. 1. Let the homogeneous coordinates of points in the moving X X
frame E be the ratios X:y:z), and homogeneous coordinates of Yyl=T7"1Y], @
the same point, but expressed in the fixed fratnde the ratios 7 z

(X:Y:Z). The homogeneous transformation that maps the coordi- _ o
nates of points irE to 3, which can also be viewed as a displacewith y being another nonzero constant arising from the use of

ment of E relative to3, can be written as homogeneous coordinates and
x] [cose¢ —sing alry X2=X3  2X3Xs  2(XyX3—XoX4)
Y|=|sine cose bl|y]|. ©) T l=| —2X3X, X53—X35 2(XoX3+X1Xe)
z 0 o 1Lz 0 0 X2+ X2

Equation(3) indicates that a general planar displacement is charhus, the coordinates of a point:f/: z) in the (relatively) moving
acterized by the three parameteysh, and ¢, wherea andb are  frame has coordinatesX(Y:Z) in the (relatively) fixed frame:
the (X/Z,Y/Z) coordinates of the origin dE expressed ik, and 2 U2
¢ is the orientation of relative to3, respectively. X=(X5=X5)X—(2X3X,4)y +2(X1 X3+ X2X4) 2,
Planar kinematic mappinid,2] is described here briefly, but a _ 2 U2
very thorough discussion may be found #8]. The essential idea Y= (2XgXa) X+ (Xa=Xg)y + 2(XoX3 = X1X4) 2, (®)
is to map the three homogeneous coordinates of the pole of a Z=(X2+X3)z
. : ; 5+X3)z
planar displacement, in terms dd,p, ¢), to the points of a three-
dimensional projective image space. Hence, the kinematic maphile the kinematic inversion requires the algebraic inverse, i.e.

ping image coordinates are defined as: coordinates of a pointX:Y:Z) in the (relatively) moving frame
. has coordinatesx(y:z) in the (relatively) fixed frame which are
Xi=asin(¢/2) —b coq ¢/2) given by:
Xz=acog ¢/2) +bsin(¢/2) @ X= (X2— X2) X+ (2X35X4) Y +2(X1 X3~ X2X4) Z,
Xg=25sin¢l2) Y=~ (2XX)XF OGXYY +2(X Xt XiX)Z, ()
X,=2 cog¢/2). ZZ(X%-FX%)Z.

Since each distinct displacement described ayb(¢) has a ) ) )
corresponding unique image point, the inverse mapping can #e Kinematic Constraints

obtained from Eqs(4): for a given point of the image space, the he aim of this section is to identify all possible kinematic
displacement parameters are constraints for general planar three-legged platforms correspond-

tan( ¢/2) =X /X, ing to all the different leg architectures. There is a specific type of
constrained motion corresponding to each of the passive sub-
a=2(X Xzt XoXa)/(X3+X3), (5) chains:RR-type; PR-type; R P-type; andP P-type. Because a mo-
tion is a continuous set of displacements, and because a displace-
b=2(X,X3~X;Xa)/(X5+X3). ment maps to a point, a constrained motion will map to a

continuous set of points in the image space. As show24h the
r%)[nstraints imposed by the four different leg types are quadric

bijective: there is at most one pre-image for each image poin urfaces with special properties in the image space. To derive an

o ; ; pression for the kinematic constraint surface for a particular leg
;Zunsé’ mts eev:Sr;/ E)Og:emthtgf ;nmya?n?azgag%i;frggiigtiez&zgaﬁléthe platform, we consider the individual leg, together with the

=X,4=0 has no preimage and therefore does not correspond t{;ngwp]g plagform, whenéheNpIatform %onrlﬁctlonst.to thfe rem.altnln.?h
real displacement oE. From Egs.(5), this condition rendergy .c9> N@Ve been severed. Now, consider the motion of a point wi

indeterminate and placesandb on the line at infinity. We call fixed coordmate_s IE, asE_ moves relatlvg (. .

this thenonzer nditiorand define it a2+ X2+0. The exi The lower-pair constraints on the motion of any particular leg
s thenonzero conaitiora Eliné 1t axts™ A7 Y. e EXIS- i, an arbitrary general planar three-legged platform involve only

tence of a pre-image depends on this condition being satisfied

represents exactly the portion of Study’s quadric corresponding?oe of the following:

rigid body displacements in the Euclidean plane. 1. RR-type circular constraint: a point with fixed coordinates in
By virtue of the relationships expressed by E@, the trans- the moving frame moves on a circle of fixed center and radius in

formation matrix from Eq(3) may be expressed in terms of thethe fixed frame.

Equations(5) give correct results when eithet; or X, is zero.
Caution is in order, however, because the mapping is injective,
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2. PR-type linear constraint: a point with fixed point coordi- 2. Platform rotations ofp= (half-turng have images in the
nates in the moving frame moves on a line with fixed line cooplane X,=0. Because theX; are implicitly defined by Eq(4),
dinates in the fixed frame. setting o= gives

3. RP-type linear constraint: a line with fixed line coordinates > v . Al
in the moving frame moves on a point with fixed point coordi- (X1:Xz:X3:Xq) = (a:h:2:0). (12)
nates in the fixed frame. When we remove the one parameter family of image points for

4. PP-type planar constraint: a line with fixed line coordinateplatform orientations ofo=1 we can, for convenience, normalize
in the moving frame moves in the direction of a line with fixedhe image space coordinates by sett¥yg=1. Conceptually, this
line coordinates in the fixed franiee., the distaP-pair moves in implies dividing theX; by X,=2 cose/2 giving
the direction of the ground-fixeB-pair). |

X1=3(atan(¢/2)—b)

It may be argued that th&R-type circular constraint is, in a

sense, the most general, since a line can always be considered as X,= %(a+b tan( ¢/2))
a circle of infinite radius. Th@ R- andR P-type linear constraints

are simply kinematic inversions. While tHeP-type planar con- Xs=tan ¢/2)
straint is a special case. X,=1.

(13)

Applying these assumptions to the first factor in El) gives the
4.1 Implicit Equation of the General Constraint Surface simplified constraint surface equation:
A clearer picture of the image space constraint surface that corre- _, , _
sponds to the kinematic constraints described above emerde® X1t X2)+ (—Kox+Kq)X;Xa+ (= Koy +K2)XoXs+ (Koy
when (X:Y:Z), or (x:y:z) from Egs.(8), or (9) are substituted

= _ 1 2.,,2
into the general equation of a circle, the form of the most general T K2)X1 = (Kox+ K1) X T (K1y = Kx)Xa+ 2[Ko(X"+y)

constraint:
—2(Kax+Kay) +Ka] X3+ 1[Ko(x?+y?) +2(Kix+Kyy)
Ko(X2+Y?)+ 2K XZ+ 2K,Y Z+ K3Z?=0, (10) 1 Ky]=0 (14)
3 - .
where [Kq:K;:K;:K3] are thecircle coefficients with K;= The K; in Eq. (14) are functions of the variable joint input

—Xe, Ko==Y¢, K3=XZ+Yz—r2 X; andY, being the coordi- parameter. As shown i{24], the surface is an hyperboloid of one
nates of the circle center of radiusandK, is an arbitrary ho- sheet wherk,=1, and is an hyperbolic paraboloid whigg=0.

mogenising constant. One obtains the following quarticXin ) .
which factors into two quadrics: 4.2 RR-Type Circular Constraints. The ungrounded

R-pair in anRR-type leg is constrained to move on a circle with a
2/y2 2 _ _ i i i i
0
(KoZ2(XT+X3) + (— Kox+ K12) 2% X3+ (— Koy + K»2) 2 X, X5 fixed radius and center coo_rdlnates. Meanwhile, the pIaFform can
rotate about the moving-pair when the platform connections of

+ (Koy +K32)ZX, X3 = (KX + K12) ZXo X4+ (K 1y — Kox) the other two legs have been opened. This two parameter family
1 0 12 of displacements corresponds to a two parameter hyperboloid of
XZXgX4t+ F[Ko(X“+y%) = 22(Kyx+ Kay) + K3z7]X3 one sheet in the image space. An important property of the hyper-
N boloid is that sections in planes parallel ¥5=0 are circles
+ 3 [Ko(x+y?) +22(Kix+Koy) + K3z |X5) [23,24. One of these image space circles represents possible plat-
form displacements with a fixed orientation. Thus the constraints
X (7 (X3+X3))=0. (11) imposed byRR-type legs are calledircular constraints The ex-

act coefficients of the hyperboloid are determined by substituting
The factor 1/4K3+ X3) is exactly the nonzero condition of thein Eq. (14) the appropriate values for the kinematic parameters:
planar kinematic mapping, the planar analog to Study’s quadric,

which must be satisfied for a point to be the image of a real Ko=1,

displacement. Since only the images of real displacements are K,=—X

considered, this factor must be nonzero and may be safely elimi- ! ¢ (15)
nated. In other words, images of real displacements have image Ky=-=Y,,

space coordinates such th& and X, are not both zero, so we 2 L2 o

may safely divide this first factor out of E(L1). What remains is Ke=KitKz—r%

a quadratic in theX;. The quantities;, y, z (coordinates of leg- \yhere X, ,Y.) are the coordinates of the fixed circle center in the
platform attachment points which have fixed positiofElrandK;  fixed frame, and is the circle radius. If the kinematic constraint is
are all design constants. Hence, the first factor in @) is the 4 fixed point inE bound to fixed circle irS, then ,y) are the
point equation of a quadric surface in the three-dimensional prgaordinates of the platform reference pointEn and the upper
jective image space. This quadric is the geometric image of tigyns in Equatiori14) apply. If the kinematic constraint is a fixed
kinematic constraint that a point with fixed point coordinates iBoint in' S bound to fixed circle irE, then the K,Y) coordinates

the moving reference frame moves on either a fixed circle, or@ the platform reference point i are substituted forx,y), and
fixed line, in the fixed reference frame depending on wheker the jower signs in Eq(14) apply.
t

=1, orKy=0, respectively. If the kinematic constraint is a poin

with fixed coordinates irE bound to a circle K,=1), or line 4.3 PR-and RP-Type Linear Constraints. Using geomet-

(Ko=0) with fixed coordinates i, then (:y:z) are the coordi- ric arguments similar to those for the circular constraints, the ki-

nates of the platform reference point Bhand the upper signs nematic constraints imposed IBR- and RP-type legs are called

apply. Alternately, if the kinematic constraint is a point with fixedinear constraints If K,=0 then Eq.(10) becomes

coordinates in% bound to a circle Ky=1) with fixed circle co- _

ordinates, or line Ko=0) with fixed line coordinates ifE, then Z(2K X+ 2K,Y+K42)=0. (16)

(X:Y:Z) are substituted forx(y:z), and the lower signs apply. Equation(16) represents two lines. The factdr=0 is the line at
The first factor in Eq(11) is greatly simplified under the fol- infinity in the projective planeR,, while the factor in parentheses

lowing assumptions: is the equation of a line where the first tline coordinatesare

1. No platform of practical significance will have a point aimultiplied by 2. The 2 can be treated as a proportionality factor
infinity, so it is safe to sex=1. arising from the original circle formulation of the equation of
4 | Vol. 126, SEPTEMBER 2004 Transactions of the ASME
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constraint. The ratiosX:Y:Z) are homogeneous coordinates the Similar simple arguments, based on the kinematic constraints
points on the line defined bi{,, K,, andK;. Dually, theK;, forthe leg, reveal the pertinent line coordinates as in E2f$.and

K,, andK; are the homogeneous coordinates of the lines on tf22) for any PR- or RP-type leg, respectively.

point defined by X:Y:Z). Thetrivial factorZ=0 can be ignored
because only ordinary line@onideal lines need be considered
for practical designs. Looking at E(L6) it is to be seen that

4.4 PP-Type Planar Constraints. Recall thatP P-type legs
must contain an activB-pair. The kinematic constraints imposed
by PP-type legs are calleglanar constraintsfor the following

KoK T=T1; 1, . reason. The image space constraint surface corresponding to pos-
[Ki:KaiKs]=[zLs zLaiksl, 7 sible displacements of BP-type leg is a degenerate quadric that
where thel; are line coordinates obtained by Grassmann expa#plits into a real and an imaginary plane. This is because only
sion of the determinant of two points on the ||E‘B§ curvilinear motion of the platform can result when the other tWO

An RPR leg will be used for illustration. For these legs the ling?latform attachment joints are disconnected: once the angular in-
coordinates are determined by the b&sgair inputs and the cor- Put of the activeR-pair is fixed no rotation of leg or platform is
responding center point of the ground fixd@.pair’ Fi L pOSSIbIe. The Image of a two para_meter famlly of dlsplacgments
e{A,B,C} (see Fig. L The direction of the line is given by the must be a two parameter constraint manifold, but because
baseR-pair input: the joint angle with respect to the fixed basgonstant, the image space coordinaes=f(¢) and X,=g(¢)
frame3, 95 . The line equation ir¥ for a given leg is obtained Must also be constant. Hence, the finite part of the

from the Grassmann expansion: two-dimensional constraint manifold is linear and must be a
hyper-plane.
X Y Z All planes corresponding to possible displacements of the
P P-type leg are parallel t&X;=0. if the platform consists of two
Fxs  Fys  Fzs|=0, (18) ype eg are p 3 b

or threeP P-type legs, the constraint planes may be distinct but
cosdy sindy O parallel, thereby having no finite points in common; or the planes
will be coincident, indicating infinite assembly modes yielding
Suncontrollable self motions. There is no practical design merit
associated with platforms containing two, or thieB-type legs.
%his, however, does not preclude designs of topologically asym-
metrical three legged planar platforms with at most &ftype

_ i ; _ leg. On the other hand, the self-motion property provides possi-

Fzs sin¥sX+Fzs cosds Y+ (Fys sindy —Fys cosdy)Z bilities to design very stiff one DOF planar platforms which are

=0. (19) relatively easy to actuate.

Regardless, in this paper we are only interested in general pla-
nar three-legged platforms possessing three DOF, thus only one of
the three legs can beRaP-type for the platform to be assemblable
and have three DOF. When the actR¢oint in the P P-type leg is
cosdy :(Fys sinds locked, points on the distd-pair are constrained to move on a

2 plane. The kinematic mapping image of this constraint maps to the

finite portion of the plane in the image space. The plane is com-
. (20) pletely determined by the platform orientation, which is implicitly
determined by the activB-pair input to theP P-type leg. When
the image space is normalized by settig= 1, the platform ori-
entation is proportional tXs:

where the notatiofr y/s , Fy/s , Fz/s , represent the homogeneou
coordinates, in reference frands of the revolute center that is
fixed relative tox. Expanding this determinant yields the equatio
of the line:

Thel,; line coordinates are the respective coefficientX,of, and
Z. Applying Eqg.(17) we obtain

F F
[Kl:KZ:Kg]z[—%/Esinﬁz:i/2

—Fys cosdy)

For a particular input angle of the actuated joifit;, we obtain

the line coefficients[K;:K,:K3]. These, after settind,=0,

along with the design values of the coordinates of the platform X3=tan ¢/2). (23)

reference pointX,y), expressed in reference frarBeare substi-

tuted inpo Eq.(14). Using the_upper sig_ns reveals the imag_e SPaGe The Inverse Kinematic Problem

constraint surface for the given leg, input values, and kinematfic

constraints. This surface is an hyperbolic paraboloid with one The inverse kinematic problem may be stated as: given the

regulus ruled by skew lines that are all parallel to the plXge position and orientation of the platform frante determine the

=0 [24]. variable joint inputs and corresponding assembly modes required
The kinematic inversion of th&PR leg is theRPR In this for the moving platform to attain the desired pose. Establishing

case the kinematic constraint can be described as a point wifi¢ inverse kinematics is essential for the position control of par-

fixed coordinates ir®, constrained to move on a line with fixedallel manipulators. Fortunately, the inverse kinematics are trivial,

line coordinates inE. We now replace X,y) with (X,Y), the and closed form algebraic solutions can usually be found.

coordinates of the point expressed3n(after settingz=Z=1), To begin, one observes that the forward kinematic problem re-
and use the lower signs in E@.4). Furthermore, the line equationduces to determining the intersection points of three constraint
is defined as surfaces in the projective image space. Each point of intersection
represents a platform pose. It follows that the inverse kinematic

X y z problem can be solved by working in the opposite direction: start

with a given point in the image space which represents a feasible
Mye  Mye Mae) =0, (1) platforrgl posg and extract agsetpof active joinF; inputs from the
cosdg sindg 0 corresponding pre-image. Because the mapping is not bijective
there is at most one pre-image for every point in the image space.
With the use of kinematic mapping it is a simple matter to

etermine all inverse kinematic solutions by considering the gen-
eral constraint surface for each leg of the platform in question.

where the notatiorM,;e, My, My e, represent the homoge-
neous coordinatesx(y:z), in reference framé&, of the revolute d
center that is fixed relative tB. Applying Eq.(17) we obtain

M e M e Each_ leg of the platform can be considered separately pecause the
[Ki:Ks5:Kz]=| — Tsin ﬁE:TcosﬁE:(MX/E sin g solutions are decoupled from leg-to-Igf6]. Hence, the inverse
kinematic problem of every lower pair jointed three-legged planar
platform with three DOF can be solved by determining the joint
—Myg cosde) |. (22) input value from the image point satisfying the associated con-
Journal of Mechanical Design SEPTEMBER 2004, Vol. 126 / 5
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straint surface equation. Moreover, the inverse kinematic problem
for RRGtype platforms are also easily determined, which is not
possible with conventional Cartesian approaches due to the ambi-
guities introduced by the relative rolling between each gear pair
[25,26.

5.1 Circular Constraints. For all RR-type legs the joint in-
put in theith leg can always be characterized as the distance
between the fixed base poifft,, and the moving platform point,
M; , regardless of the active joint type. This distance is the radius
r of the constraint circle, all other quantities being constants. After
substitutingK;=K2+K3—r? into Eq. (14) then expanding and
collecting in terms of yields a quadratic having the form:

Ar?+Br+C=0, (24)

M

where

A=—Z2(X3+X2),
B=0,

Fig. 3 A platform with three RPR legs

C=4Z2(X5+X5) + (ZA(KT+K5) —2Z(K x+Koy) + X2 +y?) X3

+(Z2(K2+ K3+ 22(K x+ Koy) + X2+ y2) X3+ 47 (K z PR- or RP-type leg, but not in general to the inverse kinematic

XX T (Kot y) Xy Xat (K oz y) XoXam (K 24 %) XpXa problem which can have as many a5=8 real solutions.
5.3 Planar Constraints. In the case of & P-type leg the

= (Kx—Kypy)X3X4]. inverse kinematics depends entirely upon the orientation of the

While this result means that there are two real solutions, onfjid-effector. The inpuR-pair value is then found simply by sum-
one is acceptable since the quantity represents the radius of"@g the appropriate angles.
circle, which is, by convention, a positive nonzero number. Thus,

there is but one solution for a givéRR-type platform leg: 6 The Forward Kinematic Problem: Examples
For in-parallel actuated manipulators the forward kinematic
—AC p p

(25) problem is not as elementary as the inverse kinematics. It consists

of determining the pose of the moving platform, described by the
position and orientation of reference frafeelative to reference
frameX given the values for the inputs of the active joints in each
'f the three legs. The following three examples illustrate the ap-
plications of the constraint surface formulation to solve the for-
ward kinematic problem.

r=

A

The fact that there is but one value fodoes not, in general, mean
that there is but one solution to the inverse kinematic proble
Only the RPR-type leg has a unique solution, all otfRR-types
haveelbow-upand elbow-downsolutions.

5.2 Linear Constraints. Inverse kinematic solutions for 6.1 SymmetricRPR Platform. The classic example of the
PR- andRP-type sub-chains is _accompl!sheo! by solving the 9€5rward kinematic problem for planar manipulators involves three
eral constraint equation for a single variable: the unknown d'regfchitecturally symmetricRRtype legs [10,12,18. These ex-
tion of the fine joining the"; and the corresponding; . Here the amples use either three identidPR, or kir;err;atically equiva-

planar line coordinates are defined as: lent RRR legs. The platform shown in Fig. 3 can be used to

Ko=0, illustrate both symmetric and asymmetric platforms, depending on
which joint in each leg is active.
Ky=— %Z sine, To simplify the form of the constraint surfaces, it is convenient
to assign reference framé&sands as in Fig. 3. To describe the
K,=1Zcost, platform, the three legs are identified AsB, and C. The fixed
reference points, where each leg is attached to a rigid, nonmoving
K;=R=Xsint—Y cos, frame, areF;, i e{A,B,C}. The movingreference points, where

each leg is connected to the platform, Me, i e{A,B,C}. The

where the K:Y:Z) are the homogeneous coordinates of the ﬁxe&igin of 3, Oy, is onF,. Homogeneous coordinates ¥ are
base point, and the unknowndsthe angle the line makes with the gescriped by the triples of ratioX(Y:Z). The fixed reference

X-axis. Making the appropriate substitutions in Et4) gives an point on legB, Fg, is on the positivék-axis. The origin of, O,
equation linear in the sines and cosines.dbolving for. gives: g g M,. Homogeneous coordinates Ehare described by the
_ triples of ratios &:y:z). The moving reference point in ldg
v=atanN,D), (26) Mg, is on the positive-axis. The classic forward kinematic prob-
where lem requires placing the vertices of the moving triangle on the
) , three circles defined by the fixed triangle and given leg lengths.
N=22Z(X1X4=X5X3) = 2XZX3X4+ (Y Z+2ZY) X3+ (2Y—yZ) X} This example is taken froffL8]. The base and platform geom-
etry, and variable joint inputs are listed in Table 2. The homoge-
D= —ZzZ(X1X3+X2X4)+2yZX3X4+(xZ+zX)X§+(zX neous coordinatesx(Y:Z) of the circle centers, expressedin
—xZ)Xi are indicated by th&;,x . The homogeneous coordinatesy(:z)
of the platform reference points, expressedEnbound to the
The input parameter for eadPR- or RP-type leg required to respective circles are indicated by thg,c . The radii of the re-
attain the given pose is easily obtained from the calculated valspective circles, determined by the lengths of the three active
of ¢« using plane trigonometry and known design parameters. fsismatic joints are given by, . The circle coefficientsK;, are
for theRR-type legs, there is but one solution for this equation patetermined according to Eq&l5).
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Table 2 RPR geometry, joint inputs and circle coefficients

Fis 1(X:Y:2) Mie:(xy:2) ri (Ko‘:Kl‘:KZI:K%)

A (0:0:1 (0:0:1) 1 (1:0:0:-1)
B (3:0:1) (2:0: 2 (1:—3:0:5
C (1:3:1 (1:2:1 2 (1:-1:—-3:6)

The relevant quantities in Table 2 are substituted into(E4),
yielding three constraint hyperboloids in the image space. TI
points of intersection of all three quadrighere can be at most six
finite real onepare the images of the forward kinematic solutions
Figure 4 shows the three quadrics projected on the hyperple
X,=1. The three constraint equations are easily reduced to 1
following univariate inX3:

42495~ 1244X5— 1097X5+ 200X3 — 65X35+ 4X5+1=0.

@27) /f
This equation has six distinct roots, yielding the possible orient (
tions of E relative to> (the orientation of the platform for the
three given inputs
X3=—0.5120;-0.0858,0.1608,0.6345,0.04¥®.2241,0.0476 @
(

—0.2241. (28) |2 :
3) (4)

Back-substitution is used to determine the valuesKpfand X,
corresponding to each real root of Eg7). The pre-image of each
set of X; is determined by repeated application of E®. The Fig. 5 The four real FK solutions for the symmetric RPR
four real poses of the platform resulting from the specific inpugatform

are listed in Table 3. The resulting platform assembly modes are

illustrated in Fig. 5, where each platform point is on the appropri-

ate fixed centred circle.

. X-axis, expressed i. It is specified byBs=135°. The active

6.2 AsymmetricRPR, RPR, RPR Platform. The general  nairinput for legC is specified by the aﬁgle the passReair
case of a three-legged platform can be demonstrated using a kes with thex-axis, expressed irE. It is specified by
form possessing thrde P Rlegs where the active joint is different £=45°, '
in each of the three legs: leg ARRtype, leg B isPR-type, leg  The corresponding three constraint surfaces are an hyperboloid
C is RP-type. This platform is also illustrated by Fig. 3. Thegf one sheet forRPRIegA, an hyperbolic paraboloid for
r_elevant kinematic mapping parameters are listed in Table 4. TR‘PRIegB, and a kinematically inverted hyperbolic paraboloid
fixedbase reference pointX(Y:Z) are expressed bl;;s . The for RPRIegC, see Fig. 6. The univariate X is computed to-
movingplatform points k:y:z) are expressed byl;;s . The cor- gether with corresponding real values Xf and X, for the real
responding circle and line coefficients for the platform are detefpots of the univariate, which in this case is 5th order:
mined by Eqs(15), (20), and(22), respectively. The activE-pair
input for legA is specified byr 4= 2.5. The activeR-pair input for A5X5— T7X53+56X3+ 120X5— 53X5+ 5. (29)
legB is specified by the angle the passieair makes with the i .
The solutions must be carefully inspected. There are three real

and one pair of complex conjugate roots. One reat — 1, rep-
resents a line that is a common generator between the two hyper-
bolic paraboloids, but that does not intersect the hyperboloid in
any finite points, see Fig. 6.

The two remaining real roots that lead to forward kinematic
solutions are listed in Table 5. The kinematic mapping image of

Table 4 Kinematic mapping parameters of the asymmetric
RPR platform

44 i Fis :(X:Y:Z) Me:(xy:2) Input (Ko:K1:K5:K3)
A (0:0:1 (0:0:1 r=25 (1:0:0—25/4)
Fig. 4 The three constraint hyperboloids projected into the hy- B (6:0:1) (2:0:1 Bs=135° (0:~V2/4:~v2]4:3/2)
perp|ane X4=1 C (361) (121) ’}/E=45 (0—\/?/4\/2/4—\/2/2)

Table 3 The four real RPR platform solutions ) ) )
Table 5 The two real Cartesian solutions for the asymmetric

Solution a b ¢ (deg) RPR platform
1 —0.0690 0.9976 —54.2255 Solution a b @ (de@
2 —0.6290 —-0.7773 —9.8079
3 —0.8916 —0.4529 18.2719 1 2.2993 0.9814 29.0303
4 0.9829 —0.1841 64.7929 2 1.5837 1.9344 16.3404
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Fig. 6 The image of the two real FK solutions for the asym-
metric RPR platform

Fig. 8 PP-typeleg C

the two solutions can be seen as the two points common to all
three surfaces in Fig. 6, while the corresponding configurations

are illustrated in Fig. 7. X,=0.5253,0.9336

6.3 Asymmetric Platform With One PP-Type Leg. The X.=0.0875
final example is included for completeness. Regardless of actua- 3T )
tion topology, theP P-type leg input joint variable determines theThe form of these two curves of surface intersection, shown in
platform orientation. Moreover, since no leg may be composed Bfg. 10, follows from the properties of the constraint surfaces
three P-pairs, the third joint must be aR-pair. The platform in [24]: hyperboloid sections in planeX;=constant are always
this example is composed of & PR legA, anRPRIegB, and an circles; one of the reguli of the hyperbolic paraboloid consists
RPPlegC. As shown in Fig. 8, the knee-bend in I€gis 90°, entirely of lines parallel to the plane&= constant. Clearly, there
which means that the platform orientatidthe orientation ofE are at most two solutions, which are listed in Table 7, and illus-
with respect ta%) is given explicitly by trated in Fig. 11. An interesting result to note is the symmetry in
_ o the Cartesian solution. While the symmetry seems reasopabte
¢=vy—180°. (30) hoc (the joint angles3 and y along with the prismatic length,
Thus, the image space coordinatg=tan(e/2), is defined by the must be the same in both solutiong is nota priori obvious. A
input of legC. The remaining image space coordinates are detéorward kinematic computational advantage to such a platform is
mined by the intersection of the plane defined Xy=tan(/2) that only one solution branch needs to be determined.
with the other two constraint surfaces, which in this case are an ]
hyperboloid and an hyperbolic paraboloid. 7 Conclusions and Future Work

The platform geometry along with the three variable joint val- |t was shown that there are 1653 distinct planar three DOF
ues which are listed in Table 6, yield the constraint surfacggree-legged platform design layouts, jointed exclusively with
shown in Fig. 9. Using these values, then settifig=tan(10/2) |ower pairs. The kinematics of all 1653 can be analyzed using the
after determiningp from Eq.(30), the following two equations are kinematic mapping based constraint formulation presented herein.

obtained, see Fig. 10: For forward kinematic purposes the individual legs can be classi-
X2+ X2—1.0077=0, (31) fied with only six distinct types of binary, passive joint combina-
0.2281,/2X1—0.2719/2X2+0.3380,/2=0. (32)
) . . o Table 6 The asymmetric platform with one  PP-type leg
The first, Eq.(31), is a circle and the second, E®2), a line in
the planeX;=tan(10/2) so as to yield the following: Leg Type Fix  Ms Input (Ko:K1:K5:K3)

RPR (0:0:1) (0:0:1 ra=2 (1:0:0-4)
RPR (5:0:1) (2:0:1) pBs=135°(deqg) (0:—v2/4:—v2/4:5/2/2)
RPP (5:5:1) (1:2:) yx=190° (deg) X;=tan(10/2)

X;,=—0.8554;-0.3687

Ow>

Fig. 7 The two real FK solutions for the asymmetric RPR Fig. 9 The three constraint surfaces for the one PP-type leg
platform platform
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F mined by the tangent of one-half of the orientation angle of the
[ platform, controlled by the activB-pair in the P P-type leg.

The most important contribution of this work is that the forward
kinematic problem of any planar three legged platform can be
determined with a uniform procedure. Moreover, all solutions are
always found. The solutions to inverse kinematic problems are
found by solving individual constraint surface equations for the
single unknown parameter given a platform pose which defines an
image space point coordinate. This is done mostly so as to provide
a readily understood relationship, in a simple context, between
image space constructs and conventional Euclidean representation
of kinematic concepts.

Future work includes derivation of an univariate with optimally
reduced coefficients particularly applicable to real-time control of
arbitrary planar three-legged platforms. Coefficients in the leg
constraints will have to be preconditioned. Then an approach to
back-substitution will be developed to ensure that each real solu-
tion to the univariate is deterministically matched with the corre-
sponding pair of remaining image space coordinates in the for-
ward kinematic solution. The kinematic constraint formulation
tion. The platform could be composed of thiR&-type legs; any will also be applied to develop unified workspace and singularity
combination of thred®R- or RP-type legs; twoRR-type and one visualization schemes for such platforms.

PR- or RP-type leg; oneRR-type and any combination of two

PR- or RP-type legs; twaRR-type legs and on€ P-type leg; one

RR-type leg, onePP-type leg, and onePR- or RP-type leg.

These are summarized in Table 8. References
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