
  PROOF COPY 013405JMD  

  PRO
O

F CO
PY 013405JM

D  

M. J. D. Hayes
Mem. ASME

Assistant Professor,
Carleton University, Department of Mechanical &

Aerospace Engineering,
Ottawa, Ontario, K1S 5B6, Canada

P. J. Zsombor-Murray
Mem. ASME

Associate Professor
McGill University, Dep’t. of Mech. Eng. & Center

for Intelligent Machines,
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Unified Kinematic Analysis of
General Planar Parallel
Manipulators
A kinematic mapping of planar displacements is used to derive generalized constraint
equations having the form of ruled quadric surfaces in the image space. The forward
kinematic problem for all three-legged, three-degree-of-freedom planar parallel manipu-
lators thus reduces to determining the points of intersection of three of these constraint
surfaces, one corresponding to each leg. The inverse kinematic solutions, though trivial,
are implicit in the formulation of the constraint surface equations. Herein the forward
kinematic solutions of planar parallel robots with arbitrary, mixed leg architecture are
exposed completely, and in a unified way, for the first time.@DOI: 10.1115/1.1767186#

1 Introduction
A mapping of planar kinematics was introduced independently

by Blaschke@1# and Grünwald @2# in 1911. Upon inspection, this
planar kinematic mapping is a special case of Study’s more gen-
eral mapping of spatial kinematics@3#. In Study’s mapping, rigid
body displacements in three dimensional Euclidean space are
transformed as points on a quadric surface, calledStudy’s quadric,
in a seven dimensional projective image space. The mapping is
injective, hence only the points on Study’s quadric have pre-
images in three-dimensional Euclidean space that are displace-
ments. This means that foreveryEuclidean displacement there is
a unique image point on Study’s quadric.

Planar displacements are a subgroup of those in three-
dimensional space. The planar kinematic mapping transforms dis-
placements in the Euclidean plane into fundamental geometric
elements~points! in a higher dimensional projective space. These
points must also lie on Study’s quadric, though on a bounded
portion of it. Because the mapping is a linear transformation, the
geometry that it implies allows for conceptual visualization of
complicated kinematic problems in parallel mechanism analysis
and synthesis. Such visualization leads to formulation of relatively
simple surface intersection problems.

Transforming complicated algebraic problems into analogous,
much simpler geometric ones is implicit in Klein’s famousErlan-
gen Program@4#. Klein summarized this concept@5#: ‘‘Given any
group of linear transformations in space which includes the prin-
cipal ~Euclidean! group as a sub-group, then the invariant theory
of this group gives a definite kind of geometry, and every possible
geometry can be obtained in this way.’’ Thus, the principles of
planar Euclidean kinematics are completely described by the ge-
ometry of the image space.

The forward kinematicproblem for in-parallel-actuated ma-
nipulators is a very complex problem: given the values of the
inputs for the active joint in each leg, determine the position and
orientation of the end-effector. The key to a generalized kinematic
formulation, independent from specific leg architecture and actua-
tion, is the characterization of platform displacements. Various
Euclidean formulations were first used. Due to the nature of the
forward kinematic problem, much of the earlier research concen-
trated on numerical solutions@6–9#. While numerical methods are

essential for control, they yield no insight into theoretical issues,
such as the size of the solution space, i.e., the number of possible
assembly modes. Furthermore, many of these methods rely on an
initial guess which must be fairly close to the solution in order to
converge@8,10#.

Many efforts have been made to provide some theoretical in-
sight by viewing the problem from a different perspective. It was
established by Hunt@11# that a planar three-legged platform with
threeRRR ~or, when the middle joint is activated, the kinemati-
cally equivalentRPR)1 legs admit at most six real assembly con-
figurations for a given set of activated joint inputs. General solu-
tion procedures using elimination theory to derive a 6th degree
univariate polynomial, which leads to all assembly configurations,
were developed by Gosselin and Sefrioui@10# and Wohlhart@12#,
but only for platforms with threeRRI R or threeRPI R legs, with
the underscore indicating the active joint. The forward kinematic
problem is solved for a subset of the permutations of three-legged
planar lower-pair-jointed three-legged platforms in Merlet@13#.
However, because plane trigonometry is used to formulate the
constraint equations, distinct architectures require distinct sets of
equations, which are further dependent on platform geometry. The
univariate polynomial for platforms consisting of threeRPI R legs
was again derived by Pennock and Kassner@14#, but the work was
extended to include an investigation of the workspace@15#. Earlier
work by Gosselin@16# provides a useful workspace optimization
scheme for planar, spherical and spatial platform-type parallel ma-
nipulators. A detailed enumeration of assembly configurations of
planar platforms can be found in Rooney and Earle@6#. Synthesis
issues are addressed using a straightforward geometric approach
by Shirkhodaie and Soni@9#, while Murray and Pierrot@17# give
an extremely elegantn-position synthesis algorithm, based on
quaternions, for the design of planar platforms with threeRPI R
legs.

What is lacking in the literature is a formulation of the kine-
matic geometry such that the metric trigonometric abstractions of
a Euclidean geometric approach, leading to different representa-
tions of the constraints, can be unified in a single formulation that
does not directly depend entirely on lengths, sines and cosines.
Planar kinematic mapping leads to such a formulation that can be
applied to the kinematic analysis, in particular to solve the for-
ward and inverse kinematic2 problems, of any lower pair jointed
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1R stands forrevolutejoint; P stands forprismatic joint.
2The inverse kinematic problem involves determining the required active joint

values to attain a specified end-effector position and orientation.
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three-legged platform with arbitrary leg architecture and actuation
scheme. We provide the aforementioned formulation building on
the work of Husty@18#, Hayes@19#, Chen @20#, and Zsombor-
Murray et al.@21#.

In this paper, we present a single set of constraint equations that
can be used to solve the inverse and forward kinematic problems
of all possible lower pair jointed three legged planar platforms
possessing three degrees of freedom~DOF!, regardless of indi-
vidual leg architecture and actuation. While the equations can be
used for kinematic analysis of platforms with legs containing a
serial chain combination ofR- and/orP-pairs, it also applies to
some architectures possessing holonomic, rolling higher pairs,
e.g., @22#. To start, we describe and enumerate the various designs
using elementary counting principles. We continue with a brief
review of planar kinematic mapping, then to derive and describe
the image space constraint surfaces. Various applications to kine-
matic analysis are illustrated. In particular, application of these
surfaces to the solution of forward kinematic problem is illus-
trated with three numerical examples. Finally, conclusions empha-
size the results of this research and point out ways in which these
might be fruitfully extended.

2 Classifying General Planar Three-Legged Platforms
A general planar three-legged platform with three DOF consists

of a moving platform connected to a fixed base by three simple
kinematic chains. Each chain is connected by three independent
one DOF joints, one of which is active. Since the displacements of
the platform are confined to the plane, onlyR- and P-pairs are
used. But, in certain cases a holonomic higher gear pair~G! can
replace a lowerR-, or P-pair @22#. Platform motions are charac-
terized by the motion of reference frameE, attached to the moving
platform, relative to frameS, attached to the nonmoving base
@23#, see Fig. 1.

The possible combinations ofR- andP-pairs which connect the
moving platform to the fixed base and constrain the independent
open kinematic chains, consisting of successions of three joints
starting from the fixed base, in a three-legged platform are@13#:

RRR,RPR,RRP,RPP,PRR,PPR,PRP,PPP.

We must, however, exclude thePPP chain because no combina-
tion of pure planar translations can cause a change in orientation,
such a leg would not possess three independent DOF. Thus, there
are seven possible kinematic chains, which may be combined in
either topologically symmetric or asymmetric groups of three.

Figure 2 illustrates the seven possible simple kinematic chains.
Proposed definitions of topological symmetry and asymmetry ap-
pear in the last paragraph in Section 2.1.

2.1 Passive Sub-Chains. The active joint in a leg is identi-
fied with an underscore,RPI R, for example. Since any one of the
three joints in any of the seven allowable simple kinematic chains
may be actuated there are twenty-one possible leg architectures.
When the value of the actuated joint input in a leg is specified, the
joint is effectively locked and may be conceptually removed, tem-
porarily, from the chain. What remains is a kinematic chain con-
nected with two passive joints. Examining Fig. 2, it is seen that
the resulting passive sub-chain is one of only four types: either
RR, PR, RP, or PP @13#. For the moment we excludePP-type
legs from the enumeration since platforms containing two or three
such legs either move uncontrollably or are not assemblable when
the actuated joint variables are specified@19#. Nonetheless, plat-
forms containing onePP-type leg are feasible. They are consid-
ered separately. This reduces the number of possible leg architec-
tures presently under consideration to eighteen. They are listed,
according to passive sub-chain, in Table 1.

The platform is considered to besymmetricwhen all three legs
are the same type, each possessing the same type of actuated joint
at the same location in the kinematic chain. The platform is oth-
erwise considered to beasymmetric.

2.2 Enumerating the General Planar Three-Legged Plat-
forms. How many distinct general planar three-legged platforms
with three DOF are there? This number is arrived at using elemen-
tary counting principles by first considering the 18 kinematic
chains in Table 1 as the set to choose from for each leg. A selec-
tion of r different elements taken from a set ofn, without regard to
order, is a combination of then elements takenr at a time. If the
elements are allowed to be counted more than once the number of
possible combinations is given by

C~n,r !5
~n1r 21!!

r ! ~n21!!
⇒C~18,3!51140. (1)

There are, in addition, three possiblePP-type legs: RI PP,
PRI P, and PPRI . However, a platform can only contain one

Fig. 1 The moving frame E and fixed frame S for any combi-
nation of legs from Table 1

Fig. 2 The seven possible leg topologies

Table 1 18 of 21 possible lower pair leg architectures

RR-type PR-type RP-type

RI RR RI PR RI RP
RRI R PRI R RRI P
RRRI PRRI RPRI
PI RR PI PR PI RP
RPI R PPI R RPI P
RRPI PRPI RPPI
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PP-type leg. This one leg can be combined with any of the 18
listed in Table 1. The total number of platforms containing a
singlePP-type leg can therefore be counted as

3~C~18,2!!5513. (2)

Combining the results of Eqs.~1! and ~2! gives the number of
all possible general planar three-legged platforms, jointed with
lower pairs, possessing three DOF: 1653. The kinematic analysis
of all 1653 different platforms is accomplished using the single
constraint formulation derived in what follows.

3 The Grünwald-Blaschke Mapping of Plane Kine-
matics

Consider the reference frameE which can undergo general pla-
nar displacements relative to reference frameS, as illustrated in
Fig. 1. Let the homogeneous coordinates of points in the moving
frame E be the ratios (x:y:z), and homogeneous coordinates of
the same point, but expressed in the fixed frameS, be the ratios
(X:Y:Z). The homogeneous transformation that maps the coordi-
nates of points inE to S, which can also be viewed as a displace-
ment ofE relative toS, can be written as

FX
Y
Z
G5F cosw 2sinw a

sinw cosw b

0 0 1
G F x

y
z
G . (3)

Equation~3! indicates that a general planar displacement is char-
acterized by the three parametersa, b, andw, wherea andb are
the (X/Z,Y/Z) coordinates of the origin ofE expressed inS, and
w is the orientation ofE relative toS, respectively.

Planar kinematic mapping@1,2# is described here briefly, but a
very thorough discussion may be found in@23#. The essential idea
is to map the three homogeneous coordinates of the pole of a
planar displacement, in terms of (a,b,w), to the points of a three-
dimensional projective image space. Hence, the kinematic map-
ping image coordinates are defined as:

X15a sin~w/2!2b cos~w/2!

X25a cos~w/2!1b sin~w/2!
(4)

X352 sin~w/2!

X452 cos~w/2!.

Since each distinct displacement described by (a,b,w) has a
corresponding unique image point, the inverse mapping can be
obtained from Eqs.~4!: for a given point of the image space, the
displacement parameters are

tan~w/2!5X3 /X4 ,

a52~X1X31X2X4!/~X3
21X4

2!, (5)

b52~X2X32X1X4!/~X3
21X4

2!.

Equations~5! give correct results when eitherX3 or X4 is zero.
Caution is in order, however, because the mapping is injective, not
bijective: there is at most one pre-image for each image point.
Thus, not every point in the image space represents a displace-
ment. It is easy to see that any image point on the real lineX3
5X450 has no preimage and therefore does not correspond to a
real displacement ofE. From Eqs.~5!, this condition rendersw
indeterminate and placesa and b on the line at infinity. We call
this thenonzero conditionand define it asX3

21X4
2Þ0. The exis-

tence of a pre-image depends on this condition being satisfied. It
represents exactly the portion of Study’s quadric corresponding to
rigid body displacements in the Euclidean plane.

By virtue of the relationships expressed by Eqs.~4!, the trans-
formation matrix from Eq.~3! may be expressed in terms of the

homogeneous coordinates of the image space. This yields a linear
transformation to express a displacement ofE with respect toS in
terms of the image point@23#:

lFX
Y
Z
G5TF x

y
z
G , (6)

wherel is some nonzero constant arising from the use of homo-
geneous coordinates and

T5F X4
22X3

2 22X3X4 2~X1X31X2X4!

2X3X4 X4
22X3

2 2~X2X32X1X4!

0 0 X3
21X4

2
G .

The inverse transformation can be obtained with the inverse of the
matrix in Eq.~6! as follows.

gF x
y
z
G5T21FX

Y
Z
G , (7)

with g being another nonzero constant arising from the use of
homogeneous coordinates and

T215F X4
22X3

2 2X3X4 2~X1X32X2X4!

22X3X4 X4
22X3

2 2~X2X31X1X4!

0 0 X3
21X4

2
G .

Thus, the coordinates of a point (x:y:z) in the~relatively! moving
frame has coordinates (X:Y:Z) in the ~relatively! fixed frame:

X5~X4
22X3

2!x2~2X3X4!y12~X1X31X2X4!z,

Y5~2X3X4!x1~X4
22X3

2!y12~X2X32X1X4!z, (8)

Z5~X3
21X4

2!z.

While the kinematic inversion requires the algebraic inverse, i.e.
coordinates of a point (X:Y:Z) in the ~relatively! moving frame
has coordinates (x:y:z) in the ~relatively! fixed frame which are
given by:

x5~X4
22X3

2!X1~2X3X4!Y12~X1X32X2X4!Z,

y52~2X3X4!X1~X4
22X3

2!Y12~X2X31X1X4!Z, (9)

z5~X3
21X4

2!Z.

4 Kinematic Constraints
The aim of this section is to identify all possible kinematic

constraints for general planar three-legged platforms correspond-
ing to all the different leg architectures. There is a specific type of
constrained motion corresponding to each of the passive sub-
chains:RR-type;PR-type;RP-type; andPP-type. Because a mo-
tion is a continuous set of displacements, and because a displace-
ment maps to a point, a constrained motion will map to a
continuous set of points in the image space. As shown in@24#, the
constraints imposed by the four different leg types are quadric
surfaces with special properties in the image space. To derive an
expression for the kinematic constraint surface for a particular leg
in the platform, we consider the individual leg, together with the
moving platform, when the platform connections to the remaining
legs have been severed. Now, consider the motion of a point with
fixed coordinates inE, asE moves relative toS.

The lower-pair constraints on the motion of any particular leg
in an arbitrary general planar three-legged platform involve only
one of the following:

1. RR-type circular constraint: a point with fixed coordinates in
the moving frame moves on a circle of fixed center and radius in
the fixed frame.

Journal of Mechanical Design SEPTEMBER 2004, Vol. 126 Õ 3
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2. PR-type linear constraint: a point with fixed point coordi-
nates in the moving frame moves on a line with fixed line coor-
dinates in the fixed frame.

3. RP-type linear constraint: a line with fixed line coordinates
in the moving frame moves on a point with fixed point coordi-
nates in the fixed frame.

4. PP-type planar constraint: a line with fixed line coordinates
in the moving frame moves in the direction of a line with fixed
line coordinates in the fixed frame~i.e., the distalP-pair moves in
the direction of the ground-fixedP-pair!.

It may be argued that theRR-type circular constraint is, in a
sense, the most general, since a line can always be considered as
a circle of infinite radius. ThePR- andRP-type linear constraints
are simply kinematic inversions. While thePP-type planar con-
straint is a special case.

4.1 Implicit Equation of the General Constraint Surface
A clearer picture of the image space constraint surface that corre-
sponds to the kinematic constraints described above emerges
when (X:Y:Z), or (x:y:z) from Eqs.~8!, or ~9! are substituted
into the general equation of a circle, the form of the most general
constraint:

K0~X21Y2!12K1XZ12K2YZ1K3Z250, (10)

where @K0 :K1 :K2 :K3# are the circle coefficients, with K15

2Xc , K252Yc , K35Xc
21Yc

22r 2, Xc andYc being the coordi-
nates of the circle center of radiusr, andK0 is an arbitrary ho-
mogenising constant. One obtains the following quartic inXi ,
which factors into two quadrics:

~K0z2~X1
21X2

2!1~2K0x1K1z!zX1X31~2K0y1K2z!zX2X3

7~K0y1K2z!zX1X46~K0x1K1z!zX2X47~K1y2K2x!

3zX3X41
1
4 @K0~x21y2!22z~K1x1K2y!1K3z2#X3

2

1
1
4 @K0~x21y2!12z~K1x1K2y!1K3z2#X4

2!

3~
1
4 ~X3

21X4
2!!50. (11)

The factor 1/4(X3
21X4

2) is exactly the nonzero condition of the
planar kinematic mapping, the planar analog to Study’s quadric,
which must be satisfied for a point to be the image of a real
displacement. Since only the images of real displacements are
considered, this factor must be nonzero and may be safely elimi-
nated. In other words, images of real displacements have image
space coordinates such thatX3 and X4 are not both zero, so we
may safely divide this first factor out of Eq.~11!. What remains is
a quadratic in theXi . The quantitiesx, y, z ~coordinates of leg-
platform attachment points which have fixed position inE! andKi
are all design constants. Hence, the first factor in Eq.~11! is the
point equation of a quadric surface in the three-dimensional pro-
jective image space. This quadric is the geometric image of the
kinematic constraint that a point with fixed point coordinates in
the moving reference frame moves on either a fixed circle, or a
fixed line, in the fixed reference frame depending on whetherK0
51, or K050, respectively. If the kinematic constraint is a point
with fixed coordinates inE bound to a circle (K051), or line
(K050) with fixed coordinates inS, then (x:y:z) are the coordi-
nates of the platform reference point inE and the upper signs
apply. Alternately, if the kinematic constraint is a point with fixed
coordinates inS bound to a circle (K051) with fixed circle co-
ordinates, or line (K050) with fixed line coordinates inE, then
(X:Y:Z) are substituted for (x:y:z), and the lower signs apply.

The first factor in Eq.~11! is greatly simplified under the fol-
lowing assumptions:

1. No platform of practical significance will have a point at
infinity, so it is safe to setz51.

2. Platform rotations ofw5p ~half-turns! have images in the
plane X450. Because theXi are implicitly defined by Eq.~4!,
settingw5p gives

~X1 :X2 :X3 :X4!5~a:b:2:0!. (12)

When we remove the one parameter family of image points for
platform orientations ofw5p we can, for convenience, normalize
the image space coordinates by settingX451. Conceptually, this
implies dividing theXi by X452 cosw/2 giving

X15
1
2 ~a tan~w/2!2b!

X25
1
2 ~a1b tan~w/2!!

(13)
X35tan~w/2!

X451.

Applying these assumptions to the first factor in Eq.~11! gives the
simplified constraint surface equation:

K0~X1
21X2

2!1~2K0x1K1!X1X31~2K0y1K2!X2X37~K0y

1K2!X16~K0x1K1!X27~K1y2K2x!X31
1
4 @K0~x21y2!

22~K1x1K2y!1K3#X3
21

1
4 @K0~x21y2!12~K1x1K2y!

1K3#50. (14)

The Ki in Eq. ~14! are functions of the variable joint input
parameter. As shown in@24#, the surface is an hyperboloid of one
sheet whenK051, and is an hyperbolic paraboloid whenK050.

4.2 RR-Type Circular Constraints. The ungrounded
R-pair in anRR-type leg is constrained to move on a circle with a
fixed radius and center coordinates. Meanwhile, the platform can
rotate about the movingR-pair when the platform connections of
the other two legs have been opened. This two parameter family
of displacements corresponds to a two parameter hyperboloid of
one sheet in the image space. An important property of the hyper-
boloid is that sections in planes parallel toX350 are circles
@23,24#. One of these image space circles represents possible plat-
form displacements with a fixed orientation. Thus the constraints
imposed byRR-type legs are calledcircular constraints. The ex-
act coefficients of the hyperboloid are determined by substituting
in Eq. ~14! the appropriate values for the kinematic parameters:

K051,

K152Xc ,
(15)

K252Yc ,

K35K1
21K2

22r 2,

where (Xc ,Yc) are the coordinates of the fixed circle center in the
fixed frame, andr is the circle radius. If the kinematic constraint is
a fixed point inE bound to fixed circle inS, then (x,y) are the
coordinates of the platform reference point inE, and the upper
signs in Equation~14! apply. If the kinematic constraint is a fixed
point in S bound to fixed circle inE, then the (X,Y) coordinates
of the platform reference point inS are substituted for (x,y), and
the lower signs in Eq.~14! apply.

4.3 PR- and RP-Type Linear Constraints. Using geomet-
ric arguments similar to those for the circular constraints, the ki-
nematic constraints imposed byPR- andRP-type legs are called
linear constraints. If K050 then Eq.~10! becomes

Z~2K1X12K2Y1K3Z!50. (16)

Equation~16! represents two lines. The factorZ50 is the line at
infinity in the projective plane,P2 , while the factor in parentheses
is the equation of a line where the first twoline coordinatesare
multiplied by 2. The 2 can be treated as a proportionality factor
arising from the original circle formulation of the equation of
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constraint. The ratios (X:Y:Z) are homogeneous coordinates the
points on the line defined byK1 , K2 , andK3 . Dually, theK1 ,
K2 , andK3 are the homogeneous coordinates of the lines on the
point defined by (X:Y:Z). The trivial factorZ50 can be ignored
because only ordinary lines~nonideal lines! need be considered
for practical designs. Looking at Eq.~16! it is to be seen that

@K1 :K2 :K3#5@
1
2 L1 : 1

2 L2 :L3#, (17)

where theLi are line coordinates obtained by Grassmann expan-
sion of the determinant of two points on the line@5#.

An RI PR leg will be used for illustration. For these legs the line
coordinates are determined by the baseR-pair inputs and the cor-
responding center point of the ground fixedR-pair, Fi , i
P$A,B,C% ~see Fig. 1!. The direction of the line is given by the
baseR-pair input: the joint angle with respect to the fixed base
frameS, qS . The line equation inS for a given leg is obtained
from the Grassmann expansion:

U X Y Z

FX/S FY/S FZ/S

cosqS sinqS 0
U50, (18)

where the notationFX/S , FY/S , FZ/S , represent the homogeneous
coordinates, in reference frameS, of the revolute center that is
fixed relative toS. Expanding this determinant yields the equation
of the line:

2FZ/S sinqSX1FZ/S cosqSY1~FX/S sinqS2FY/S cosqS!Z

50. (19)

TheLi line coordinates are the respective coefficients ofX, Y, and
Z. Applying Eq. ~17! we obtain

@K1 :K2 :K3#5F2
FZ/S

2
sinqS :

FZ/S

2
cosqS :~FX/S sinqS

2FY/S cosqS!G . (20)

For a particular input angle of the actuated joint,qS , we obtain
the line coefficients@K1 :K2 :K3#. These, after settingK050,
along with the design values of the coordinates of the platform
reference point (x,y), expressed in reference frameE, are substi-
tuted into Eq.~14!. Using the upper signs reveals the image space
constraint surface for the given leg, input values, and kinematic
constraints. This surface is an hyperbolic paraboloid with one
regulus ruled by skew lines that are all parallel to the planeX3
50 @24#.

The kinematic inversion of theRI PR leg is theRPRI . In this
case the kinematic constraint can be described as a point with
fixed coordinates inS constrained to move on a line with fixed
line coordinates inE. We now replace (x,y) with (X,Y), the
coordinates of the point expressed inS ~after settingz5Z51),
and use the lower signs in Eq.~14!. Furthermore, the line equation
is defined as

U x y z

Mx/E M y/E Mz/E

cosqE sinqE 0
U50, (21)

where the notationMx/E , M y/E , Mz/E , represent the homoge-
neous coordinates (x:y:z), in reference frameE, of the revolute
center that is fixed relative toE. Applying Eq. ~17! we obtain

@K1 :K2 :K3#5F2
Mz/E

2
sinqE :

Mz/E

2
cosqE :~Mx/E sinqE

2M y/E cosqE!G . (22)

Similar simple arguments, based on the kinematic constraints
for the leg, reveal the pertinent line coordinates as in Eqs.~20! and
~22! for any PR- or RP-type leg, respectively.

4.4 PP-Type Planar Constraints. Recall thatPP-type legs
must contain an activeR-pair. The kinematic constraints imposed
by PP-type legs are calledplanar constraintsfor the following
reason. The image space constraint surface corresponding to pos-
sible displacements of aPP-type leg is a degenerate quadric that
splits into a real and an imaginary plane. This is because only
curvilinear motion of the platform can result when the other two
platform attachment joints are disconnected: once the angular in-
put of the activeR-pair is fixed no rotation of leg or platform is
possible. The image of a two parameter family of displacements
must be a two parameter constraint manifold, but becausew is
constant, the image space coordinatesX35 f (w) and X45g(w)
must also be constant. Hence, the finite part of the
two-dimensional constraint manifold is linear and must be a
hyper-plane.

All planes corresponding to possible displacements of the
PP-type leg are parallel toX350. if the platform consists of two
or threePP-type legs, the constraint planes may be distinct but
parallel, thereby having no finite points in common; or the planes
will be coincident, indicating infinite assembly modes yielding
uncontrollable self motions. There is no practical design merit
associated with platforms containing two, or threePP-type legs.
This, however, does not preclude designs of topologically asym-
metrical three legged planar platforms with at most onePP-type
leg. On the other hand, the self-motion property provides possi-
bilities to design very stiff one DOF planar platforms which are
relatively easy to actuate.

Regardless, in this paper we are only interested in general pla-
nar three-legged platforms possessing three DOF, thus only one of
the three legs can be aPP-type for the platform to be assemblable
and have three DOF. When the activeR joint in thePP-type leg is
locked, points on the distalP-pair are constrained to move on a
plane. The kinematic mapping image of this constraint maps to the
finite portion of the plane in the image space. The plane is com-
pletely determined by the platform orientation, which is implicitly
determined by the activeR-pair input to thePP-type leg. When
the image space is normalized by settingX451, the platform ori-
entation is proportional toX3 :

X35tan~w/2!. (23)

5 The Inverse Kinematic Problem
The inverse kinematic problem may be stated as: given the

position and orientation of the platform frameE, determine the
variable joint inputs and corresponding assembly modes required
for the moving platform to attain the desired pose. Establishing
the inverse kinematics is essential for the position control of par-
allel manipulators. Fortunately, the inverse kinematics are trivial,
and closed form algebraic solutions can usually be found.

To begin, one observes that the forward kinematic problem re-
duces to determining the intersection points of three constraint
surfaces in the projective image space. Each point of intersection
represents a platform pose. It follows that the inverse kinematic
problem can be solved by working in the opposite direction: start
with a given point in the image space which represents a feasible
platform pose and extract a set of active joint inputs from the
corresponding pre-image. Because the mapping is not bijective
there is at most one pre-image for every point in the image space.

With the use of kinematic mapping it is a simple matter to
determine all inverse kinematic solutions by considering the gen-
eral constraint surface for each leg of the platform in question.
Each leg of the platform can be considered separately because the
solutions are decoupled from leg-to-leg@16#. Hence, the inverse
kinematic problem of every lower pair jointed three-legged planar
platform with three DOF can be solved by determining the joint
input value from the image point satisfying the associated con-
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straint surface equation. Moreover, the inverse kinematic problem
for RRGI -type platforms are also easily determined, which is not
possible with conventional Cartesian approaches due to the ambi-
guities introduced by the relative rolling between each gear pair
@25,26#.

5.1 Circular Constraints. For all RR-type legs the joint in-
put in the ith leg can always be characterized as the distance
between the fixed base point,Fi , and the moving platform point,
Mi , regardless of the active joint type. This distance is the radius
r of the constraint circle, all other quantities being constants. After
substitutingK35K1

21K2
22r 2 into Eq. ~14! then expanding and

collecting in terms ofr yields a quadratic having the form:

Ar21Br1C50, (24)

where

A52z2~X3
41X4

4!,

B50,

C54z2~X1
21X2

2!1~z2~K1
21K2

2!22z~K1x1K2y!1x21y2!X3
2

1~z2~K1
21K2

2!12z~K1x1K2y!1x21y2!X4
214z@~K1z

2x!X1X37~K21y!X1X41~K2z2y!X2X36~K1z1x!X2X4

6~K2x2K1y!X3X4#.

While this result means that there are two real solutions, only
one is acceptable since the quantity represents the radius of a
circle, which is, by convention, a positive nonzero number. Thus,
there is but one solution for a givenRR-type platform leg:

r 5UA2AC

A
U. (25)

The fact that there is but one value forr does not, in general, mean
that there is but one solution to the inverse kinematic problem.
Only theRPI R-type leg has a unique solution, all otherRR-types
haveelbow-upandelbow-downsolutions.

5.2 Linear Constraints. Inverse kinematic solutions for
PR- andRP-type sub-chains is accomplished by solving the gen-
eral constraint equation for a single variable: the unknown direc-
tion of the line joining theFi and the correspondingMi . Here the
planar line coordinates are defined as:

K050,

K152
1
2 Z sini,

K25
1
2 Z cosi,

K35R5X sini2Y cosi,

where the (X:Y:Z) are the homogeneous coordinates of the fixed
base point, and the unknown isi, the angle the line makes with the
X-axis. Making the appropriate substitutions in Eq.~14! gives an
equation linear in the sines and cosines ofi. Solving for i gives:

i5atan 2~N,D !, (26)

where

N52zZ~X1X42X2X3!22xZX3X41~yZ1zY!X3
21~zY2yZ!X4

2

D522zZ~X1X31X2X4!12yZX3X41~xZ1zX!X3
21~zX

2xZ!X4
2

The input parameter for eachPR- or RP-type leg required to
attain the given pose is easily obtained from the calculated value
of i using plane trigonometry and known design parameters. As
for theRR-type legs, there is but one solution for this equation per

PR- or RP-type leg, but not in general to the inverse kinematic
problem which can have as many as 2358 real solutions.

5.3 Planar Constraints. In the case of aPP-type leg the
inverse kinematics depends entirely upon the orientation of the
end-effector. The inputR-pair value is then found simply by sum-
ming the appropriate angles.

6 The Forward Kinematic Problem: Examples
For in-parallel actuated manipulators the forward kinematic

problem is not as elementary as the inverse kinematics. It consists
of determining the pose of the moving platform, described by the
position and orientation of reference frameE relative to reference
frameS given the values for the inputs of the active joints in each
of the three legs. The following three examples illustrate the ap-
plications of the constraint surface formulation to solve the for-
ward kinematic problem.

6.1 SymmetricRPO R Platform. The classic example of the
forward kinematic problem for planar manipulators involves three
architecturally symmetricRR-type legs @10,12,18#. These ex-
amples use either three identicalRPI R, or kinematically equiva-
lent RRI R legs. The platform shown in Fig. 3 can be used to
illustrate both symmetric and asymmetric platforms, depending on
which joint in each leg is active.

To simplify the form of the constraint surfaces, it is convenient
to assign reference framesE andS as in Fig. 3. To describe the
platform, the three legs are identified asA, B, and C. The fixed
reference points, where each leg is attached to a rigid, nonmoving
frame, areFi , i P$A,B,C%. The movingreference points, where
each leg is connected to the platform, areMi , i P$A,B,C%. The
origin of S, OS , is on FA . Homogeneous coordinates inS are
described by the triples of ratios (X:Y:Z). The fixed reference
point on legB, FB , is on the positiveX-axis. The origin ofE, OE ,
is on MA . Homogeneous coordinates inE are described by the
triples of ratios (x:y:z). The moving reference point in legB,
MB , is on the positivex-axis. The classic forward kinematic prob-
lem requires placing the vertices of the moving triangle on the
three circles defined by the fixed triangle and given leg lengths.

This example is taken from@18#. The base and platform geom-
etry, and variable joint inputs are listed in Table 2. The homoge-
neous coordinates (X:Y:Z) of the circle centers, expressed inS,
are indicated by theFi /S . The homogeneous coordinates (x:y:z)
of the platform reference points, expressed inE, bound to the
respective circles are indicated by theMi /E . The radii of the re-
spective circles, determined by the lengths of the three active
prismatic joints are given byr i . The circle coefficients,Ki , are
determined according to Eqs.~15!.

Fig. 3 A platform with three RPR legs
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The relevant quantities in Table 2 are substituted into Eq.~14!,

yielding three constraint hyperboloids in the image space. The
points of intersection of all three quadrics~there can be at most six
finite real ones! are the images of the forward kinematic solutions.
Figure 4 shows the three quadrics projected on the hyperplane
X451. The three constraint equations are easily reduced to the
following univariate inX3 :

4249X3
621244X3

521097X3
41200X3

3265X3
214X31150.

(27)

This equation has six distinct roots, yielding the possible orienta-
tions of E relative to S ~the orientation of the platform for the
three given inputs!:

X3520.5120,20.0858,0.1608,0.6345,0.047610.2241i ,0.0476

20.2241i . (28)

Back-substitution is used to determine the values ofX1 and X2
corresponding to each real root of Eq.~27!. The pre-image of each
set of Xi is determined by repeated application of Eqs.~5!. The
four real poses of the platform resulting from the specific inputs
are listed in Table 3. The resulting platform assembly modes are
illustrated in Fig. 5, where each platform point is on the appropri-
ate fixed centred circle.

6.2 AsymmetricRPO R, RO PR, RPRO Platform. The general
case of a three-legged platform can be demonstrated using a plat-
form possessing threeRPR legs where the active joint is different
in each of the three legs: leg A isRR-type, leg B isPR-type, leg
C is RP-type. This platform is also illustrated by Fig. 3. The
relevant kinematic mapping parameters are listed in Table 4. The
fixed base reference points (X:Y:Z) are expressed byFi /S . The
movingplatform points (x:y:z) are expressed byMi /S . The cor-
responding circle and line coefficients for the platform are deter-
mined by Eqs.~15!, ~20!, and~22!, respectively. The activeP-pair
input for legA is specified byr A52.5. The activeR-pair input for
legB is specified by the angle the passiveP-pair makes with the

X-axis, expressed inS. It is specified bybS5135°. The active
R-pair input for legC is specified by the angle the passiveP-pair
makes with the x-axis, expressed inE. It is specified by
gE545°.

The corresponding three constraint surfaces are an hyperboloid
of one sheet forRPI R legA, an hyperbolic paraboloid for
RI PR legB, and a kinematically inverted hyperbolic paraboloid
for RPRI legC, see Fig. 6. The univariate inX3 is computed to-
gether with corresponding real values ofX1 and X2 for the real
roots of the univariate, which in this case is 5th order:

45X3
5277X3

4156X3
31120X3

2253X315. (29)

The solutions must be carefully inspected. There are three real
and one pair of complex conjugate roots. One root,X3521, rep-
resents a line that is a common generator between the two hyper-
bolic paraboloids, but that does not intersect the hyperboloid in
any finite points, see Fig. 6.

The two remaining real roots that lead to forward kinematic
solutions are listed in Table 5. The kinematic mapping image of

Table 2 RPO R geometry, joint inputs and circle coefficients

i Fi /S :(X:Y:Z) Mi /E :(x:y:z) r i (K0i
:K1i

:K2i
:K3i

)

A ~0:0:1! ~0:0:1! 1 ~1:0:0:21!
B ~3:0:1! ~2:0:1! 2 ~1:23:0:5!
C ~1:3:1! ~1:2:1! 2 ~1:21:23:6!

Fig. 4 The three constraint hyperboloids projected into the hy-
perplane X4Ä1

Table 3 The four real RPO R platform solutions

Solution a b w ~deg.!

1 20.0690 0.9976 254.2255
2 20.6290 20.7773 29.8079
3 20.8916 20.4529 18.2719
4 0.9829 20.1841 64.7929

Fig. 5 The four real FK solutions for the symmetric RPO R
platform

Table 4 Kinematic mapping parameters of the asymmetric
RPR platform

i Fi /S :(X:Y:Z) Mi /E :(x:y:z) Input (K0 :K1 :K2 :K3)

A ~0:0:1! ~0:0:1! r 52.5 ~1:0:0:225/4!
B ~6:0:1! ~2:0:1! bS5135° ~0:2&/4:2&/4:3&!
C ~3:6:1! ~1:2:1! gE545° ~0:2&/4:&/4:2&/2!

Table 5 The two real Cartesian solutions for the asymmetric
RPR platform

Solution a b w ~deg!

1 2.2993 0.9814 29.0303
2 1.5837 1.9344 16.3404
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the two solutions can be seen as the two points common to all
three surfaces in Fig. 6, while the corresponding configurations
are illustrated in Fig. 7.

6.3 Asymmetric Platform With One PP-Type Leg. The
final example is included for completeness. Regardless of actua-
tion topology, thePP-type leg input joint variable determines the
platform orientation. Moreover, since no leg may be composed of
threeP-pairs, the third joint must be anR-pair. The platform in
this example is composed of anRPI R legA, anRI PR legB, and an
RI PP legC. As shown in Fig. 8, the knee-bend in legC is 90°,
which means that the platform orientation~the orientation ofE
with respect toS! is given explicitly by

w5gS2180°. (30)

Thus, the image space coordinateX35tan(w/2), is defined by the
input of legC. The remaining image space coordinates are deter-
mined by the intersection of the plane defined byX35tan(w/2)
with the other two constraint surfaces, which in this case are an
hyperboloid and an hyperbolic paraboloid.

The platform geometry along with the three variable joint val-
ues which are listed in Table 6, yield the constraint surfaces
shown in Fig. 9. Using these values, then settingX35tan(10/2)
after determiningw from Eq.~30!, the following two equations are
obtained, see Fig. 10:

X1
21X2

221.007750, (31)

0.2281A2X120.2719A2X210.3380A250. (32)

The first, Eq.~31!, is a circle and the second, Eq.~32!, a line in
the planeX35tan(10/2) so as to yield the following:

X1520.8554,20.3687

X250.5253,0.9336

X350.0875.

The form of these two curves of surface intersection, shown in
Fig. 10, follows from the properties of the constraint surfaces
@24#: hyperboloid sections in planesX35constant are always
circles; one of the reguli of the hyperbolic paraboloid consists
entirely of lines parallel to the planesX35constant. Clearly, there
are at most two solutions, which are listed in Table 7, and illus-
trated in Fig. 11. An interesting result to note is the symmetry in
the Cartesian solution. While the symmetry seems reasonablepost
hoc ~the joint anglesb andg along with the prismatic lengthr A
must be the same in both solutions!, it is not a priori obvious. A
forward kinematic computational advantage to such a platform is
that only one solution branch needs to be determined.

7 Conclusions and Future Work
It was shown that there are 1653 distinct planar three DOF

three-legged platform design layouts, jointed exclusively with
lower pairs. The kinematics of all 1653 can be analyzed using the
kinematic mapping based constraint formulation presented herein.
For forward kinematic purposes the individual legs can be classi-
fied with only six distinct types of binary, passive joint combina-

Fig. 6 The image of the two real FK solutions for the asym-
metric RPR platform

Fig. 7 The two real FK solutions for the asymmetric RPR
platform

Fig. 8 PP-type leg C

Table 6 The asymmetric platform with one PP-type leg

Leg Type Fi /S Mi /S Input (K0 :K1 :K2 :K3)

A RPI R ~0:0:1! ~0:0:1! r A52 ~1:0:0:24!
B RI PR ~5:0:1! ~2:0:1! bS5135° (deg) ~0:2&/4:2&/4:5&/2!
C RI PP ~5:5:1! ~1:2:1! gS5190° (deg) X35tan(10/2)

Fig. 9 The three constraint surfaces for the one PP-type leg
platform
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tion. The platform could be composed of threeRR-type legs; any
combination of threePR- or RP-type legs; twoRR-type and one
PR- or RP-type leg; oneRR-type and any combination of two
PR- or RP-type legs; twoRR-type legs and onePP-type leg; one
RR-type leg, onePP-type leg, and onePR- or RP-type leg.
These are summarized in Table 8.

The forward kinematic problem reduces to determining the in-
tersections among three constraint surfaces, one corresponding to
each leg. For anRR-type leg the image space constraint surface is
an hyperboloid of one sheet that contains circles in planes parallel
to X350. For both thePR- and RP-type legs the image space
constraint surface is an hyperbolic paraboloid where one regulus
contains lines parallel toX350. Both of these quadrics are com-
pletely described by Eq.~14!. The image space constraint surface
for a PP-type leg is a plane parallel toX350. The plane is deter-

mined by the tangent of one-half of the orientation angle of the
platform, controlled by the activeR-pair in thePP-type leg.

The most important contribution of this work is that the forward
kinematic problem of any planar three legged platform can be
determined with a uniform procedure. Moreover, all solutions are
always found. The solutions to inverse kinematic problems are
found by solving individual constraint surface equations for the
single unknown parameter given a platform pose which defines an
image space point coordinate. This is done mostly so as to provide
a readily understood relationship, in a simple context, between
image space constructs and conventional Euclidean representation
of kinematic concepts.

Future work includes derivation of an univariate with optimally
reduced coefficients particularly applicable to real-time control of
arbitrary planar three-legged platforms. Coefficients in the leg
constraints will have to be preconditioned. Then an approach to
back-substitution will be developed to ensure that each real solu-
tion to the univariate is deterministically matched with the corre-
sponding pair of remaining image space coordinates in the for-
ward kinematic solution. The kinematic constraint formulation
will also be applied to develop unified workspace and singularity
visualization schemes for such platforms.
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