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1. GENERAL PLANAR THREE-LEGGED
PLATFORMS

In this paper kinematic mapping is used for the
workspace analysis of a sub-class of planar three-legged
platform. We are working towards using kinematic
mapping to develop a procedure which can be applied
to the workspace problem of arbitrary three-legged ar-
chitecture. Such a general planar three-legged platform
(GP3LP) consists of a moving platform connected to
a fixed base by three kinematic chains. Each chain is
connected by three independent one degree-of-freedom
(DOF) joints, one of which is active, see [2]. From a ge-
ometric perspective a GP3LP consists of three arbitrary
points FA, FB , and FC in a fixed base reference frame,
Σ, and three arbitrary points MA, MB , and MC in a
moving platform reference frame, E, with each plat-
form point a specific distance from each base point (see
Fig. 1). These distances are determined by the variable
joint input parameters and the particular topology of
each of the three kinematic chains [4, 2].

Figure 1. A PPR-type platform.

In this paper we will deal only with lower kinematic
pair joints. Since the displacements of the platform are
confined to the plane, only revolute (R) and prismatic
(P ) pairs are considered. To construct a leg, there are
7, i.e. (23−1), possibilities. The PPP are excluded be-
cause three P -pairs represent three translations in the
plane, which can not be independent [4]. Since any of
the three joints in any of the seven characteristic chains
may be the active one, there are twenty-one possibili-
ties for each leg. When the active joint is locked, the
resulting two-jointed characteristic passive sub-chain is
one of four types. Legs possessing PP -type architecture
must be rejected as not useful [4], leaving eighteen pos-
sibilities per leg. If leg types can be counted more than
once, the possible combinations gives the total number
of GP3LP:

C(n, r) =
(n + r − 1)!

r!(n− 1)!
(1)

C(18, 3) = 1140. (2)

The method presented in this paper can be applied
to some PR-type architecturally symmetric platforms,
in particular, the PPR-type (the underscore indicates
the active joint). One similar to that analysed herein
is shown in Fig. 1.

2. KINEMATIC MAPPING

A general displacement of one rigid-body with respect
to another in the plane can be conveniently described
as the relative displacement of two coordinate reference
frames Σ and E. Without loss in generality, Σ may be
considered as fixed while E is free to move. The image
point of a displacement of E in Σ is given by [1]

(X1 : X2 : X3 : X4) = (a sin (φ/2)− b cos (φ/2) :

a cos (φ/2) + b sin (φ/2) : 2 sin (φ/2) : 2 cos (φ/2)), (3)

where (a, b) are the coordinates of the origin of frame
E in Σ, and φ is the orientation of E in Σ.

Using Eq. (3) we can transform the coordinates of
a point (x : y : z) in E to those of the same point
(X : Y : Z) in Σ:

X = (X2
4 −X2

3 )x− 2X3X4y + 2(X1X3 + X2X4)z

Y = 2X3X4x + (X2
4 −X2

3 )y + 2(X2X3 −X1X4)z

Z = (X2
4 + X2

3 )z. (4)

For the kinematic analysis, it is useful to consider
an individual PPR leg, together with the moving plat-
form, when the platform connections to the remaining
legs have been severed. Now, consider the motion of a
fixed point in E that is constrained to move on a fixed
circle in Σ,

K0(X2 + Y 2)− 2K1XZ − 2K2Y Z + K3Z2 = 0, (5)

where [K0 : K1 : K2 : K3] are the circle coordinates,
with K1 = Xc, K2 = Yc, K3 = X2

c + Y 2
c − r2, with

Xc and Yc being the coordinates of the circle centre of
radius r, and K0 is an arbitrary homogenising constant.
If K0 = 0 we obtain a line, which is a real degenerate
circle, with line coordinates determined by the relation
[L1 : L2 : L3] = [−2K1 : −2K2 : K3]. The circle
coordinates become:

K1 =
1

2
Fiz/Σ sin ι1/Σ, K2 = −1

2
Fiz/Σ cos ι1/Σ

K3 = (Fix/Σ + d2i cos ι2/Σ) sin ι1/Σ − (6)

(Fiy/Σ + d2i sin ι2/Σ) cos ι1/Σ,

with i for leg i ∈ {A,B, C}, ι for corresponding joint
angle ι ∈ {α, β, γ} and /Σ indicating with respect to
Σ. The length of the active P -pair is given by d2i . We
use this relation rather the standard form of the line
equation so we can use one relation to express both
circular and linear constraints. This will be important
for the generalised procedure.

Clearly, when the joint input is locked, and the plat-
form connections to the other two legs are severed, the

To appear in Proc. CANCAM’01 1 c© CANCAM 2001



centre point of the R-pair still attached to the plat-
form moves on a line. The platform can rotate about
the R-pair centre. This two parameter motion maps
to an hyperbolic paraboloid (HP) in the image space.
This is verified by transforming the point coordinates
(X : Y : Z) in Eq. (5) with Eq. (4), giving the implicit
form of the constraint HP:

(K2−K1X3)X1−(K1+K2X3)X2+
1

4
[K3+2(K1x+K2y)] X2

3 +

(K1y −K2x)X3 +
1

4
[K3 − 2(K1x + K2y)] = 0.

Exploiting some geometric properties of this manifold,
we can derive the following parametric form:

[
X1

X2

X3

]
=

[
f(t) + s
g(t, s)

t

]
,
−∞ ≤ t ≤ ∞,
−∞ ≤ s ≤ ∞,

(7)

where

f(t) =
(K3+2K1x+2K2y)t2+(K1y−K2x)4t−2(K1x+K2y)+K3

4(K1t−K2)
,

g(t, s) =
(K2−K1t)s

K1+K2t

3. WORKSPACE ANALYSIS

For each leg in the PPR platform the active P -pair
has a minimum and a maximum extension. Examining
Eq. (7), one sees that the only changeable quantities
are the length of the P -pair, d2i

and the platform ref-
erence point coordinates, (x : y : z); all others are
design constants. Hence, for a selected platform ref-
erence point there is a minimum and a maximum HP
constraint surface corresponding to the minimum and
maximum length of d2i . It turns out that every pair of
HP’s in a given family have the same curve of intersec-
tion because terms dependent on d2i can be factored
out. This can be seen when the intersection curve is
projected into the planes X1 = 0, X2 = 0, X3 = 0 and
X4 = 0. Therefore, the whole set of HP’s in a family
forms a pencil of quadrics. The solid bounded by the
minimum and maximum HP in each leg is the kine-
matic image of the platform workspace when the other
two legs are disconnected.

The intersection of the three surface bounded solids
is the image of the reachable workspace of the entire
platform for the selected reference point. The Carte-
sian reachable workspace is the pre-image obtained by
substituting X1, X2, X3 from Eq. 7 into Eq. 4. Note,
the platform reference point is completely arbitrary.

For computations, we consider all positions of the
platform reference point for fixed platform orientations
for each leg. This involves intersecting the constraint
solids with the planes X3 = constant. The reach-
able workspace for this particular orientation and end-
effector reference point is obtained from Eq. 4. The
entire reachable workspace is the union of all layers.

4. EXAMPLE

A platform similar to the one shown in Fig. 1 has the
geometry listed in Table I. The end-effector reference
point is the centroid of the moving triangle. Fig. 2
shows the three constraint solids in the image space.
Fig. 3 shows different layers of the reachable Cartesian
workspace. There are 13 layers, each representing a 30◦
increment in the orientation angle. The top layer is for
a platform orientation of 180◦, the second from the bot-
tom is that of -180◦, while the shaded bottom layer is

Table I
PPR platform geometry.

i Fi/Σ Mi/E ι ι1/Σ ι2/1

A (0 : 0 : 1) (− 4
15

√
5 : − 2

15

√
5 : 1) α 0 90◦

B (3 : 0 : 1) ( 7
30

√
5 : − 2

15

√
5 : 1) β 90◦ 90◦

C (1 : 3 : 1) (
√

5
30

: 4
15

√
5 : 1) γ 225◦ 90◦

the union of all the layers. The platform has orientation
singularities between approximately 10◦ and 70◦, hence
the layers representing 30◦ and 60◦ are empty. While
this indicates the platform design is not good for 360◦
platform rotations, it is a successful demonstration of
the procedure.
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Figure 2. Workspace image. Figure 3. 3D Cartesian layers.

5. CONCLUSIONS AND FUTURE WORK

We have presented the workspace analysis for some
PR-type architecturally symmetric platforms, in par-
ticular, the PPR-type, with the aid of kinematic map-
ping. One of the benefits of the procedure lies in the
fact that the Cartesian reachable workspace is depen-
dent on the platform reference point (x, y), which we
are free to choose. This makes it easy to compute
the different Cartesian workspaces for different refer-
ence points. The procedures developed here and in [3],
can be combined with those in development to yield an
architecture independent procedure. That is, since we
are interested in the volume bound by the intersection
of solids in the image space, it doesn’t matter what
the solids look like, as long as we have a parametric
representation. Then any three families of any type of
constraint surfaces can be intersected. The general pro-
cedure would be a tremendous design tool for parallel
platforms.
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