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Abstract: A method for determining the reachable workspace of
general planar three degree of freedom platforms with three legs
of arbitrary architecture is presented, where only the active joints
are in the presence of limits. A brief review of kinematic mapping
is given. The kinematic image of the workspace consists of solid
regions bounded by the intersection of minimum and maximum
joint input constraint surfaces, a pair for each platform leg. The
condition that the leg joining the moving platform to the fixed
base be connected with three independent one degree of free-
dom lower pair joints is employed. Because the procedure uses
position-level constraint surfaces in a kinematic image space, it
additionally allows for the analysis of some platforms containing
holonomic higher pairs.

1 Introduction

Research interest in parallel manipulators has grown steadily
over the last twenty-five years. This is partly due to their in-
herent advantages over serial manipulators where accuracy, stiff-
ness, load-to-weight-ratio and operating speeds are concerned
[1]. One major disadvantage of parallel manipulators in gen-
eral, compared to serial ones, is that their reachable workspace
is small and may contain a high density of interior singularities
[2, 3]. Although the workspace analysis of planar three-legged
manipulators is well established, see [4, 5, 6] for example, there
exists no unified approach that is architecture independent. This
gives the motivation for the work presented herein.

In this paper kinematic mapping is used to analyze the reach-
able workspace planar three-legged platforms of arbitrary ar-
chitecture in the presence of joints limits on only the actuated
joints. Such ageneral planar three-legged platform(GP3LP)
consists of a moving platform connected to a fixed base by three
kinematic chains. Each chain is connected by three indepen-
dent one degree-of-freedom (DOF) joints, one of which is ac-
tive, see [7, 8]. The method employed is based on that found

in [6], wherein platforms consisting of three revolute-prismatic-
revolute (RPR) legs, the actuated joint being theP -pair, are an-
alyzed. This approach can be generalized to all possible GP3LP
due to the results presented in [9] and [10]. It can also be adapted
for analysis of a sub-class of platforms with actuated holonomic
higher pairs [11].

For GP3LP with three DOF we consider the motions of the
platform by examining the motions of each leg separately. The
kinematic mapping transforms distinct planar displacements of a
reference frame rigidly attached to the platform to distinct points
in a three dimensional projective image space. When the joints
are restricted to lower-pairs,prismatic(P ) andrevolute(R) pairs,
then depending on the details of how the kinematic chain is ar-
ranged the image space point sets can be one of only two types:
1) if the constraint is linear (a point on the moving platform re-
mains on a fixed line, or the inversion of a line on the platform
moving on a fixed point) the corresponding image space point
set is an hyperbolic paraboloid; 2) if the constraint is circular (a
point on the moving platform remains on a fixed circle) the cor-
responding image space point set is an hyperboloid of one sheet
[9]. Because these quadric surfaces contain the images of the
constrained displacements, it is natural to call themconstraint
surfaces. Kinematic analysis of GP3LP reduces to intersection
problems between the constraint surfaces for each leg.

Because of the illustrative description of all possible posi-
tions of the end-effector system as a surface-bound solid region
in an image space, it is believed that this is a useful tool for de-
signers. Moreover, it facilitates computations when the reachable
workspace of more than one reference point in the end-effector
system has to be determined.

2 Classifying General Planar Three-Legged Platforms

A GP3LP with three DOF consists of a moving platform con-
nected to a fixed base by three simple kinematic chains. Each
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chain is connected by three independent one DOF joints, one of
which is active. Thus each chain provides the control of one of
three DOF of the moving platform. Since the displacements of
the platform are confined to the plane, onlyR- andP -pairs are
used. But, in certain cases a holonomic higher gear pair (G) can
replace a lowerR-, or P -pair (one such platform is considered
in Section 5.3. Platform motions are characterized by the motion
of reference frameE, attached to the moving platform, relative
to frameΣ, attached to the non-moving base, see Figure 1.

The possible combinations ofR- andP -pairs which connect
the moving platform to the fixed base and constrain the indepen-
dent open kinematic chains, consisting of successions of three
joints starting from the fixed base, in a GP3LP are [7]:

RRR, RPR, RRP, RPP, PRR, PPR, PRP, PPP.

We must, however, exclude thePPP chain because no combi-
nation of pure planar translations can cause a change in orien-
tation. Thus, there are seven possible kinematic chains, which
may be combined in either topologically symmetric or asymmet-
ric groups of three. Figure 2 illustrates topologically symmetric
platforms, each characterized by one of the seven allowable sim-
ple kinematic chains. For our working definitions of topological
symmetry and asymmetry, see the last paragraph in Section 2.1.

Figure 1: The moving frameE and fixed frameΣ for any com-
bination of legs from Table 1.

2.1 Passive Sub-chains

The active joint in a leg is identified with an underscore,RPR,
for example. Since any one of the three joints in any of the
seven allowable simple kinematic chains may be actuated there
are twenty-one possible leg architectures.

Figure 2: The seven possible leg topologies insymmetricplat-
forms. When the legs are not all the same, the platform isasym-
metric.

When the value of the activated joint coordinate in a leg is
specified, the joint is effectively locked and may be temporar-
ily removed from the chain. What remains is a kinematic chain
connected with two passive joints. Examining Figure 2, it is to
be seen that the resulting passive sub-chain is one of only four
types: eitherRR, PR, RP , or PP . For now we excludePP -
type legs from the enumeration since platforms containing two or
three such legs either move uncontrollably or are not assemblable
when the actuated joint variables are specified [7, 12]. Nonethe-
less, platforms containing onePP -type leg are feasible. They
are discussed in Section 4.4, but are not included in the enumer-
ation because the expression of their constraints in a way that
is compatible with the kinematic mapping remains an open, but
likely straightforward, problem. This reduces the number of pos-
sible leg architectures to eighteen. They are listed, according to
passive sub-chain, in Table 1.

The platform is considered to besymmetricwhen all three
legs are the same type, each possessing the same type of actu-
ated joint at the same location in the kinematic chain. The leg is
otherwise considered to beasymmetric.
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RR-type PR-type RP -type

RRR RPR RRP

RRR PRR RRP

RRR PRR RPR

PRR PPR PRP

RPR PPR RPP

RRP PRP RPP

Table 1: The 18 possible leg architectures.

2.2 Enumerating the GP3LP

How many distinct GP3LP with three DOF are there? This num-
ber is arrived at by considering that there are 18 possible kine-
matic chains to choose from for each leg. A selection ofr differ-
ent elements taken from a set ofn, without regard to order, is a
combination of then elements takenr at a time. If the elements
are allowed to be counted more than once the number of possible
combinations is given by

C(n, r) =
(n + r − 1)!
r!(n− 1)!

⇒ C(18, 3) = 1140. (1)

3 Planar Mapping

Consider the reference frameE which can undergo general pla-
nar displacements relative to reference frameΣ, as illustrated
in Figure 1. Let the homogeneous coordinates of points in the
moving frameE be the ratios(x : y : z), and homogeneous co-
ordinates of the same point, but expressed in the fixed frameΣ,
be the ratios(X : Y : Z). The homogeneous transformation that
maps points inE to Σ can be written as




X
Y
Z


 =




cos ϕ − sin ϕ a
sinϕ cos ϕ b

0 0 1







x
y
z


 . (2)

Equation (2) underscores the fact that a general planar displace-
ment is characterized by the three parametersa, b, andϕ, where
a andb are the(X, Y ) coordinates of the origin ofE expressed
in Σ andϕ is the orientation ofE relative toΣ, respectively.

The essential idea of the kinematic mapping, introduced si-
multaneously but independently by Blashke [13] and Grünwald
[14] in 1911, is to map the three homogeneous coordinates of the
pole of a planar displacement, in terms of(a, b, ϕ), to the points
of a three dimensional projective image space. The kinematic

mapping image coordinates are defined as:

X1 = a sin (ϕ/2)− b cos (ϕ/2)
X2 = a cos (ϕ/2) + b sin (ϕ/2)
X3 = 2 sin (ϕ/2)
X4 = 2 cos (ϕ/2). (3)

Since each distinct displacement described by(a, b, φ) has
a corresponding unique image point, the inverse mapping can be
obtained from Equation (3): for a given point of the image space,
the displacement parameters are

tan (ϕ/2) = X3/X4,

a = 2(X1X3 + X2X4)/(X2
3 + X2

4 ),
b = 2(X2X3 −X1X4)/(X2

3 + X2
4 ). (4)

Equations (4) give correct results when eitherX3 or X4 is zero.
Caution is in order, however, because the mapping is injective,
not bijective: there is at most one pre-image for each image
point. Thus, not every point in the image space represents a dis-
placement. It is easy to see that any image point on the real line
X3 = X4 = 0 has no pre-image and therefore does not cor-
respond to a real displacement ofEE. From Equation (4), this
condition rendersϕ indeterminate and placesa andb on the line
at infinity.

By virtue of the relationships expressed in Equation (3), the
transformation matrix from Equation (2) may be expressed in
terms of the homogeneous coordinates of the image space. This
yields a linear transformation to express a displacement ofE
with respect toΣ in terms of the image point [15]:




X
Y
Z


 = T




x
y
z


 , (5)

where

T =

24 X2
4 −X2

3 −2X3X4 2(X1X3 + X2X4)
2X3X4 X2

4 −X2
3 2(X2X3 −X1X4)

0 0 X2
3 + X2

4

35 .

The inverse transformation can be obtained with the inverse of
the matrix in Eq. (5) as follows.




x
y
z


 = T−1




X
Y
Z


 , (6)

with

T−1 =

24 X2
4 −X2

3 2X3X4 2(X1X3 −X2X4)
−2X3X4 X2

4 −X2
3 2(X2X3 + X1X4)

0 0 X2
3 + X2

4

35 .

Thus, the coordinates of a point(x, : y : z) in the (relatively)
moving frame has coordinates(X, : Y : Z) in the (relatively)
fixed frame:
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X = (X2
4 −X2

3 )x− (2X3X4)y + 2(X1X3 + X2X4)z,

Y = (2X3X4)x + (X2
4 −X2

3 )y + 2(X2X3 −X1X4)z,

Z = (X2
3 + X2

4 )z. (7)

While the inverse, coordinates of a point(X, : Y : Z) in the
(relatively) moving frame has coordinates(x, : y : z) in the (rel-
atively) fixed frame are given by:

x = (X2
4 −X2

3 )X + (2X3X4)Y + 2(X1X3 −X2X4)Z,

y = −(2X3X4)X + (X2
4 −X2

3 )Y + 2(X2X3 + X1X4)Z,

z = (X2
3 + X2

4 )Z. (8)

4 Constraint Surfaces

The lower-pair constraints on the motion of any particular leg in
an arbitrary GP3LP involve only one of the following.

1. A point with fixed coordinates in the moving frame moves
on a fixed circle of fixed radius in the fixed frame (RR-type
constraint).

2. A point with fixed coordinates in the moving frame moves
on a fixed line in the fixed frame (PR-type constraint).

3. A line with fixed coordinates in the moving frame moves on
a fixed point in the fixed frame (RP-type constraint).

The last two constraints are kinematically equivalent when con-
sidered inversions of each other. It may additionally be argued
that the circular constraint is the most general, since a line can
always be considered as a circle of infinite radius.

4.1 Implicit Equation of General Constraint Surface

A clearer picture of the image space constraint surface that corre-
sponds to the kinematic constraints emerges when(X : Y : Z),
or (x : y : z) from Equations (7), or (8) are substituted into the
general equation of a circle, the form of the most general con-
straint:

K0(X2 + Y 2) + 2K1XZ + 2K2Y Z + K3Z
2 = 0, (9)

where [K0 : K1 : K2 : K3] are thecircle coordinates, with
K1 = −Xc, K2 = −Yc, K3 = X2

c + Y 2
c − r2, with Xc andYc

being the coordinates of the circle centre of radiusr, andK0 is
an arbitrary homogenising constant. One obtains the following
implicit equation of a constraint surface in the image space:

K0z
2(X2

1 + X2
2 ) + (−K0x + K1z)zX1X3

+(−K0y + K2z)zX2X3 ∓ (K0y + K2z)zX1X4

±(K0x + K1z)zX2X4 ∓ (K1y −K2x)zX3X4

+
1
4
[K0(x2 + y2)− 2z(K1x + K2y) + K3z

2]X2
3

+
1
4
[K0(x2 + y2) + 2z(K1x + K2y) + K3z

2]X2
4 = 0. (10)

If the kinematic constraint is a fixed point inE bound to a
circle (K0 = 1), or line (K0 = 0) in Σ, then(x : y : z) are the
coordinates of the platform reference point inE and the upper
signs apply. On the other hand, if the kinematic constraint is a
fixed point inΣ bound to a circle (K0 = 1), or line (K0 = 0) in
E, then(X : Y : Z) are substituted for(x : y : z), and the lower
signs apply.

The Ki are functions of the variable joint input parame-
ter. The constraint surfaces defined by the joint input are not
arranged arbitrarily in the image space. It turns out that the im-
age of the workspace for a particular leg is bounded by the two
constraint surfaces corresponding to the minimum and maximum
variable joint input parameters. Moreover, it can be shown that
the hyperboloid of one sheet and the hyperbolic paraboloid are
the only possible constraint surfaces for such planar three-legged
platforms [9].

4.2 Circle Constraints

When one setsK0 = 1, together withX4 = z = 1 in Eq. (10)
the result is the implicit equation of a hyperboloid of one sheet
in terms of the image space coordinates(X1, X2, X3)[9, 10]:

(X2
1 + X2

2 ) + (K1 − x)X1X3 + (K2 − y)X2X3

∓(K2 + y)X1 ± (K1 + x)X2 ± (K2x−K1y)X3

+
1
4
[(x2 + y2)− 2(K1x + K2y) + K3]X2

3

+
1
4
[(x2 + y2) + 2(K1x + K2y) + K3] = 0. (11)

This hyperboloid has the property that planes parallel toX3 = 0
intersect it in circles, though its axis is not necessarily perpendic-
ular toX3 = 0. For planar three-legged platforms, the inversion
of a fixed circle in the moving frame moving on a fixed point in
the fixed frame never arises.

All points on this constraint hyperboloid represent displace-
ments of the platform for the given input in the given leg when
the remaining two legs have been disconnected from the plat-
form. It can be easily parameterized [9], an example illustrated
in Figure 3 shows the minimum and maximum constraint hyper-
boloids for the three legs of a symmetricRPR platform, similar
to the one shown in Figure 9.

4.3 Line Constraints

If K0 = 0 in Eq. (9) we obtain a line, which is a real degen-
erate circle, withline coordinatesdetermined by the relation
[L1 : L2 : L3] = [2K1 : 2K2 : K3]. SettingK0 = 0, to-
gether withX4 = z = 1 in Eq. (10) one obtains the implicit
equation of a hyperbolic paraboloid in the image space [9, 10]:

K1X1X3 + K2X2X3 ∓K2X1 ±K1X2 ± (K2x−K1y)X3

−1

4
[2K1x + 2K2y −K3]X

2
3 +

1

4
[2K1x + 2K2y + K3] = 0. (12)

The kinematic inversion betweenPR- and RP -type legs,
unlike theRR case, is a concern here. Equation (12) is used to
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represent both. ForPR-type legs a point with fixed coordinates
in the moving frame moves on a fixed line in the fixed frame. In
this case the corresponding constraint equation is given by Equa-
tion (12) the upper signs are used. However, forRP -type legs,
where the constraint is a line with fixed coordinates in the mov-
ing frame moving on a fixed point in the fixed frame, the lower
signs are used andx, y, or z is substituted wheneverX, Y , or
Z are encountered. A parameterized example is illustrated in
Figure 5, showing the minimum and maximum constraint hyper-
bolic paraboloids for the three legs of a symmetricPPR, similar
to the one shown in Figure 4.

4.4 PP-Type Legs

The image space constraint surface corresponding to possible
displacements of aPP -type leg is a degenerate quadric that splits
into a real and an imaginary plane. This is because only curvilin-
ear motion of the platform can result when the other two platform
attachment joints are disconnected: once the angular input of the
activeR-pair is fixed no rotation of leg or platform is possible.
Still, the image of a two parameter family of displacements must
be a two parameter constraint manifold, but becauseϕ is con-
stant, the image space coordinatesX3 = f(ϕ) andX4 = g(ϕ)
must also be constant. Hence, the finite part of the two dimen-
sional constraint manifold is linear and must be a hyper-plane.

Moreover, all planes corresponding to possible displace-
ments of thePP -type leg are parallel toX3 = 0. If the platform
consists of two, or threePP -type legs, the constraint planes may
be distinct, but parallel thereby having no finite points in com-
mon; or the planes will be coincident, indicating infinite assem-
bly modes yielding uncontrollable self motions.

There is no practical design merit associated with platforms
containing two, or threePP -type legs. This, however, does not
preclude designs of topologically asymmetrical three legged pla-
nar platforms with at most onePP -type leg. On the other hand,
the self-motion property provides possibilities to design very stiff
one DOF planar platforms which are relatively easy to actuate.

5 Examples

5.1 Workspace ofRPR-Symmetric Platforms

The first use of kinematic mapping for workspace analysis of
planar three-legged platforms was in [6]. However, the particular
approach is suitable only forRPR-symmetric platforms, similar
to that found in Figure 9.

The first step is to parameterize Equation (11). One possi-
bility is [9]24 X1

X2

X3

35 =
1

2

24 [(K1 + x)t−K2 + y] + (ri

√
t2 + 1) cos ζ

[(K2 + y)t +K1 − x] + (ri

√
t2 + 1) sin ζ

2t

35 ,

ζ ∈ {0, . . . , 2π},
t ∈ {−∞, . . . ,∞},
imin ≤ i ≤ imax,

(13)
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0
2

4

X1

–4
–2

0
2

4

X2

–1

–0.5

0

0.5

1

X3

Figure 3: Workspace image of anRPR-symmetric platform.

whereK1 andK2 are two circle coordinates, as defined previ-
ously, x and y are the coordinates of the platform attachment
point expressed inE, ri is the length of the prismatic joint in the
ith leg, t is the tangent of half the orientation angle of the plat-
form, tan ϕ/2, andζ is an angular parameter arising from the
derivation of the parametric equation.

For each leg in theRPR platform, the activeP -pair has a
minimum and a maximum extention. Examining Equation (13)
one immediately sees this corresponds to a minimum and a max-
imum pair of coaxial hyperboloids.

The minimum and maximum constraint hyperboloids for
eachRPR leg must be determined. The image of the reach-
able workspace of a specific platform reference point is the solid
bounded by the six hyperboloids. To obtain the image of the
workspace we consider all positions of the reference point for
fixed platform orientations for each leg. This involves intersect-
ing the three surface bound solids with the planesX3 = constant.
The corresponding curves are three pairs of concentric circles.
The area common to the six circles, if any, is the image of the
reachable workspace of the reference point for the specific ori-
entation.

It is a simple matter to determine the pre-image, giving the
Cartesian workspace for the reference point. This is done by
selecting a reference point, (x : y : 1), then substituting the
expressions for the three sets of hyperboloid circles into Equation
(7). Again, the area common the the six pre-image curves, if any,
is the Cartesian reachable workspace of the reference point for
the given platform orientation. The entire Cartesian reachable
workspace is the union of all orientation layers. An example of
the workspace image is illustrated in Figure 3, while a detailed
example is given in [6].

It is easy to see computing the image for another reference
point is not difficult. Note, the platform reference point is com-
pletely arbitrary: the pre-image depends on the choice for the
platform reference point. Examples for theRRG and thePPR
symmetric platforms follow in the next sections.
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Figure 4: APPR-symmetric platform.

5.2 PPR-Symmetric Platforms

For each leg in thePPR platform the activeP -pair has a min-
imum and a maximum extension. The only variable quantities
are the length of theP -pair, and the platform reference point
coordinates,(x : y : z); all other quantities are design con-
stants. Hence, for a selected platform reference point there is a
minimum and a maximum hyperbolic paraboloid constraint sur-
face corresponding to the minimum and maximum length of the
P -pair. It turns out that every pair of hyperbolic paraboloids
in a given family have the same curve of intersection because
terms dependent on the length of theP -pair can be factored out.
This can be seen when the intersection curve is projected into the
planesX1 = 0, X2 = 0, X3 = 0 andX4 = 0. Therefore, the
whole set of hyperbolic paraboloids in a family forms a pencil
of quadrics. The solid bounded by the minimum and maximum
hyperbolic paraboloid in each leg is the kinematic image of the
platform workspace when the other two legs are disconnected.
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4

X1

–4

–2

0

2

4

X2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

X3

Figure 5: Workspace image; 3D view of workspace layers of a
PPR-symmetric platform.

Figure 6: AnRRG-symmetric platform.

The left-hand side of Figure 5 shows the minimum and a
maximum hyperbolic paraboloid constraint surfaces correspond-
ing to the minimum and maximum length of the activeP -pair in
each of the symmetricPPR platform legs. Exploiting some ge-
ometric properties of the constraint manifold, we can derive the
following parametric form [9]:




X1

X2

X3


 =




f(t) + s
g(t, s)

t


 ,

−∞ ≤ t ≤ ∞,
−∞ ≤ s ≤ ∞,

(14)

wheret ands are linear parameters and

f(t) = (K3+2K1x+2K2y)t2+(K1y−K2x)4t−2(K1x+K2y)+K3
4(K1t−K2)

,

g(t, s) = (K2−K1t)s
K1+K2t .

The right-hand side of Figure 5 shows different layers of the
reachable Cartesian reachable workspace. There are 13 layers,
each representing a30◦ increment inϕ. The top layer represents
a platform orientation of180◦, the second from the bottom is
that of−180◦, while the shaded bottom layer is the union of all
the layers. The platform has orientation singularities between
approximately10◦ and70◦, hence the layers representing30◦

and60◦ are empty.

5.3 RRG-Symmetric Platforms

Perhaps the most interesting, from a geometric perspective, is
a three-legged platform possessing an active higher-pair as the
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Figure 7: Workspace image of one leg of anRRG-symmetric
platform.

third joint in each kinematic chain. For this type of platform it
can be shown, see [16, 11], that the workspace image for each
leg consists of the solid bounded by an envelope of hyperboloids
of one sheet possessing identical shape parameters, but unique
axis. For every value of the higher pair input there corresponds
an hyperboloid axis, all belonging to a ruled surface. The solid
bounded by the envelope of these hyperboloids is the image of
the workspace for that leg when the other two have been discon-
nected from the pinion. The image of the workspace of the entire
platform is the solid region bounded by the intersection of these
three envelopes. For the example found in [11], the reachable
workspace image of one leg is shown in Figure 7.

The left-hand side of Figure 8 shows different layers of the
reachable Cartesian workspace for the reference point taken to be
the centre of the pinion. There are 13 layers, each representing
a 30◦ increment in the orientation of the pinion. In right-hand
side of Figure 8, the different layers are given different elevations
according to the pinion orientation. The top layer is the reachable
workspace for a pinion orientation of180◦ while the second layer
from the bottom is that of−180◦ orientation. The bottom is the
union of all the layers.

The dextrous workspace of a manipulator is usually defined
as the set of all points within the reachable workspace that the
end-effector can reach with any orientation. Examining the left-
hand side of Figure 8, the boundary of the dextrous workspace
is seen to be the shaded region that is common to all layers. An
area computation reveals that the dextrous workspace comprises
31.71% of the reachable workspace. Moreover, the reachable
and dextrous workspace contain no holes; a remarkable result
when compared with lower pair jointed three-legged platforms,
see [2, 17], or [6], for example.

Figure 8: Overlay of workspace layers; 3D view of workspace
layers.

5.4 RPR Platform: Different Active Joint in Each Leg

The general case of a three-legged platform can be demonstrated
using a platform possessing threeRPR legs where the active
joint is different in each of the three legs: leg A is RR-type, leg
B is PR-type, leg C is RP-type. This platform is illustrated in
Figure 9.

5.4.1 FK Example

Here we use the general FK procedure [10] to solve the FK prob-
lem of a platform with one each ofRPR, RPR, andRPR legs,
shown in Figure 9. The relevant kinematic mapping parameters,
listed in Table 2, are the fixed base points(X : Y : Z) expressed
in Σ, the relatively moving platform points(x : y : z) expressed
in E, the variable joint inputs (the subscripts onβ andγ indicate
the frame in which the angle is measured counter-clock-wise rel-
ative to theX or x axis, respectively), and the corresponding
circle coordinates for the platform illustrated in Figure 9.

i (X : Y : Z) (x : y : z) Input
A (0 : 0 : 1) (0 : 0 : 1) d = 2.5

B (6 : 0 : 1) (2 : 0 : 1) βΣ = 135◦

C (3 : 6 : 1) (1 : 2 : 1) γE = 45◦

i (K0 : K1 : K2 : K3)

A (1 : 0 : 0 : −4)

B (0 : −√2/4 : −√2/4 : 3
√

2)

C (0 : −√2/4 : −√2/4 : −√2/2)

Table 2: Kinematic mapping parameters.

The corresponding three constraint surfaces are a hyper-
boloid of one sheet for theRPR leg A, a hyperbolic paraboloid
for theRPR leg B, and an inversion hyperbolic paraboloid for
theRPR leg C. The univariate inX3 (see Eq. 15) is computed
together with corresponding values ofX1 andX2 for the real
roots of the univariate, which in this case is5th order:

45X5
3 − 77X4

3 + 56X3
3 + 120X2

3 − 53X3 + 5. (15)

The solutions must be carefully inspected. There are three
real and one pair of complex conjugate roots. One root,X3 =
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Figure 9: A platform with one each ofRPR, RPR, and RPRlegs.

−1, represents a line that is a common generator between the
two hyperbolic paraboloids, but that does not intersect the hyper-
boloid in any finite points.

The two real roots that lead to solutions are listed in Ta-
ble 3. The kinematic mapping image of the two solutions can
be seen as the two points common to the three surfaces in Fig-
ure 10, while the corresponding configurations are illustrated in
Figure 11. Note that the common line bewteen the two hyper-
bolic paraboloids is visible in the same figure.

Solution a b ϕ (deg)
1 2.2993 0.9814 29.0303
2 1.5837 1.9344 16.3404

Table 3: The two real Cartesian solutions.

–4–202 X1

–10
–5

0X2

–1.2
–1

–0.8
–0.6
–0.4
–0.2

0
0.2
0.4

X3

Figure 10: The image of the two real FK solutions.

5.4.2 Workspace

The strategy for determining the kinematic image of the reach-
able workspace for arbitrary mixed-leg platforms is an extension
of the approach to solving the FK. For each leg we determine
the constraint surfaces corresponding to the minimum and maxi-
mum variable joint inputs. ForRR-type legs, the constraint sur-

Figure 11: The two real FK solutions.

Figure 12: Three hyperbolic paraboloid for three input angles in
anRPR leg, andaxis.

faces are hyperboloids of one sheet all sharing the same axis.
For RP - and PR-type legs the constraint surfaces are hyper-
bolic paraboloids, however, the relationship between the mini-
mum and maximum surfaces depends on the type of active joint
in the kinematic chain.

When the active joint is anR-pair, pairs of hyperbolic
paraboloids in a family still intersect in the same type of de-
generate quadratic: a real and imaginary line pair. Figure 12
illustrates three hyperbolic paraboloid constraint surfaces for an
RPR leg for three distinct input angles. They all share the line
shown in the figure, in a sense theaxisof the family of hyperbolic
paraboloids. The working conjecture is that the the real image
space line is finite. Figure 13 shows the hyperboloid family for
leg A and the lines of intersection of the hyperbolic paraboloid
families belonging to legs B and C.

Summarizing the discussion in Section 5.2, if the active joint
is a P -pair, its reach is limited by its minimum and maximum
extention. Hence, for a selected platform reference point there
is a minimum and a maximum hyperbolic paraboloid constraint
surface corresponding to the minimum and maximum length of
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1
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Figure 13: The concentric hyperboloids for leg A and hyperbolic
paraboloid axes for legs B and C.

the activeP -pair. Every pair of hyperbolic paraboloids in a given
family have the same curve of intersection, which degenerates
to a real and imaginary line pair. Therefore, the whole set of
hyperbolic paraboloids in a family forms a pencil of quadrics.
The current working conjecture is that the real line is on the plane
at infinity, thus no two hyperbolic paraboloids in one family have
finite image points in common, recall the left-hand side of Figure
5. The solid bounded by the minimum and maximum hyperbolic
paraboloid in each leg is the kinematic image of the platform
workspace when the other two legs are disconnected.

The Cartesian reachable workspace, not shown here, is the
pre-image obtained by substitutingX1, X2, X3 from either para-
metric Equations (13), or (14) into either Equations (5), or (6),
depending upon the nature of the constraint. The general rules
are as follows:

1. RR-type: substituteX1, X2, X3 from Equation (13) into
Equation (5).

2. PR-type: substituteX1, X2, X3 from Equation (14) into
Equation (5).

3. RP -type: substituteX1, X2, X3 from Equation (14) into
Equation (6), being careful to define the coefficients as de-
scribed in the discussionin Section 4.

6 Conclusions and Future Work

A unified method for determining the reachable workspace of
GP3LP, including a sub-class of three-legged platforms with ac-
tuated holonomic higher pairs, has been presented. The current
state of the determination allows for only the joint limits on the
active pairs. In order to be a truly useful tool for designers the
passive joint limits must be included in the constraint equations.
We are now working with some formulations that could provide
this crucial missing component.PP -type leg constraints must
also be formulated so as to complete the generalization.
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verkn̈upft”. Sitzber. Ak. Wiss. Wien, vol. 120: pages 677–
741, 1911.

[15] O. Bottema and B. Roth.Theoretical Kinematics. Dover
Publications, Inc., New York, N.Y., U.S.A., 1990.

[16] M.J.D. Hayes, M.L. Husty, and P.J. Zsombor-Murray.
“Solving the Forward Kinematics of a Planar 3-legged Plat-
form With Holonomic Higher Pairs”.ASME, Journal of
Mechanical Design, vol. 121, no. 2: pages 212–219, 1999.

[17] J. Sefrioui and C.M. Gosselin. “On the Quadric Nature of
the Singularity Curves of Planar Three-Degree-of-Freedom
Parallel Manipulators”.Mech. Mach. Theory, vol. 30, no.
4: pages 533–551, 1995.

[18] M.J.D. Hayes, M.L. Husty, and P.J. Zsombor-Murray. “To-
wards Workspace Analysis of Platforms with Three Ar-
bitrary Legs”. Proc. 18th Canadian Congress of Applied
Mechanics (CANCAM),St. John’s NF. Canada, pages 355–
356, 2001.

10


