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Abstract. In this paper the generalised input-output (I-O) equation for planar
4R function generators is derived in a new way, leading to the algebraic form of
the well known Freudenstein equation. The long term goal is to develop a gener-
alised method to derive constraint based algebraic I-O equations that can be used
for continuous approximate synthesis, where the synthesis equations are inte-
grated between minimum and maximum input angle values resulting in a linkage
whose objective function has been optimised over every output angle. In this pa-
per we use a planar projection of Study’s soma and the Cartesian displacement
constraints for the dyads. These are mapped to the image space leading to four
constraint equations in terms of the image space coordinates and the sines and
cosines of the input and output angles. Using the tangent of the half angle sub-
stitution the trigonometric equations are converted to algebraic ones. Algebraic
methods are used to eliminate the image space coordinates, then the polynomial
resultants are found to obtain common roots leading to the desired equations.

Keywords: Function generators, continuous approximate synthesis, kinematic
mapping, polynomial resultants.

1 Introduction

A planar 4R function generator correlates
driver and follower angles in a functional re-
lationship. The mechanism essentially gen-
erates the function ϕ = f (ψ), or vice versa,
see Fig. 1. Design methods typically em-
ploy the Freudenstein synthesis equations
to identify link lengths required to generate
the function [2,4]. For over-determined sets
of prescribed input-output (I-O) angle pairs,
these equations are linear in the three un-
known Freudenstein parameters, which are Fig. 1. 4R function generator.

ratios of the link lengths, and can be solved for using any least squares method to min-
imise a specified performance error. To the best of the authors knowledge, there are
no alternative algebraic models of the function generator displacement equations in the
accessible literature.
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It has been observed [7,5] that as the cardinality of the prescribed discrete I-O data
set increases, the corresponding four-bar linkages that minimise the Euclidean norm of
the design and structural errors tend to converge to the same linkage. The important im-
plication is that minimising the Euclidean norm, or any p-norm, of the structural error
can be accomplished indirectly by minimising the same norm of the design error. In [5]
the trigonometric Freudenstein synthesis equations are integrated in the range between
minimum and maximum input values, thereby reposing the discrete approximate syn-
thesis problem as a continuous one whereby the objective function is optimised over
the entire I-O range. Hence, our long-term goal is to determine a general method to
derive motion constraint based algebraic I-O equations that may be used together with
the method of continuous approximate synthesis [5] to obtain the very best linkage that
can generate an arbitrary function. The goal of this paper is to develop one in the hope
of providing new insight into the continuous approximate synthesis of function genera-
tors, while mitigating numerical integration error. Of course, the same equation will be
obtained by making the tangent half-angle substitutions directly into the Freudenstein
equation then collecting terms after factoring, normalising, and eliminating non-zero
factors. But that must be the case since the geometric relations require that outcome,
however this is irrelevant because the goal is to generalise a method to develop con-
straint based algebraic I-O equations for continuous approximate synthesis of planar,
spherical, and spatial linkages. This paper represents the first step in that long journey.

2 Geometric and Algebraic Approach

The Freudenstein equation relating the input to the output angles of a planar 4R four-bar
mechanism, with link lengths as in Fig. 1, was first put forward in [3]. In the equation
the angle ψ is traditionally selected to be the input while ϕ is the output angle:

k1 + k2 cos(ϕi)− k3 cos(ψi) = cos(ψi−ϕi). (1)

Equation (1) is linear in the ki Freudenstein parameters, which are defined in terms of
the link length ratios as

k1 ≡
(a2 +b2 +d2− c2)

2ab
,

k2 ≡
d
a
,

k3 ≡
d
b
.


⇔



d = 1,

a =
1
k2
,

b =
1
k3
,

c = (a2 +b2 +d2−2abk1)
1/2.

The new idea starts the same as with the Freudenstein method, writing the displace-
ment constraints in terms of the I-O angles. Continuing with tradition, we select ψ to
be the input angle and ϕ to be the output angle. Let Σ be a non moving Cartesian co-
ordinate system with coordinates X and Y whose origin is located at the centre of the
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ground fixed link R-pair with length a. Let E be a coordinate system that moves with
the coupler of length c whose origin is at the centre of the distal R-pair of link a, having
basis directions x and y.

The displacement constraints for the origin of E can be expressed as

X−acosψ = 0,
Y −asinψ = 0, (2)

while those for point F , located at the centre of the distal R-pair on the output link with
length b are

X−d−bcosϕ = 0,
Y −bsinϕ = 0. (3)

Next, we use a planar projection of Study’s soma coordinates [8] to establish the
I-O equation. Any displacement in Euclidean space, E3, can be mapped in terms of the
coordinates of a 7-dimensional projective image space using the transformation [1]

T =


x2

0+x2
1+x2

2+x2
3 0 0 0

2(−x0y1+x1y0−x2y3+x3y2) x2
0+x2

1−x2
2−x2

3 2(x1x2−x0x3) 2(x1x3+x0x2)

2(−x0y2+x1y3+x2y0−x3y1) 2(x1x2+x0x3) x2
0−x2

1+x2
2−x2

3 2(x2x3−x0x1)

2(−x0y3−x1y2+x2y1+x3y0) 2(x1x3−x0x2) 2(x2x3+x0x1) x2
0−x2

1−x2
2+x2

3

 . (4)

This transforms the coordinates of any point described in a moving 3D coordinate sys-
tem E to the coordinates of the same point in a relatively fixed 3D coordinate system Σ

(assuming that the two frames are initially coincident) after a given displacement of E
relative to Σ in terms of the coordinates of a point on the Study quadric, S2

6. In order for
a point in the image space to represent a real displacement, and therefore to be located
on S2

6, the non-zero condition of x2
0 + x2

1 + x2
2 + x2

3 6= 0 must be satisfied.
The transformation matrix T simplifies considerably when we consider displace-

ments that are restricted to the plane. Three degrees of freedom are lost and hence four
Study parameters vanish. The displacements may be restricted to any plane. Without
loss in generality, we may select one of the principal planes in Σ . Thus, we arbitrarily
select the plane Z = 0. Since E and Σ are assumed to be initially coincident, this means

W
X
Y
0

 = T


w
x
y
0

 , (5)

leaving us with the four soma coordinates

(x0 : x3 : y1 : y2). (6)

The non-zero condition is now x2
0 + x2

3 6= 0, and the fourth row and column of the re-
duced T contains only this condition as the last element with zeros elsewhere leading
to the trivial equation Z = z = 0. We can therefore eliminate the fourth row and column
and normalise the coordinates with the nonzero condition giving the planar mapping
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equation

T =
1

x2
0 + x2

3

 x2
0 + x2

3 0 0
2(−x0y1 + x3y2) x2

0− x2
3 −2x0x3

−2(x0y2 + x3y1) 2x0x3 x2
0− x2

3

 . (7)

We can now express a point in Σ in terms of the soma coordinates and the corresponding
point coordinates in E as 1

X
Y

= T

1
x
y

=
1

x2
0 + x2

3

 x2
0 + x2

3

2(−x0y1 + x3y2)+(x2
0− x2

3)x− (2x0x3)y
−2(x0y2 + x3y1)+(2x0x3)x+(x2

0− x2
3)y

 . (8)

The novelty of the approach begins with creating two Cartesian vector constraint
equations containing the nonhomogeneous coordinates in Equations (2) and (3), but
substituting the values in Equation (8) for (X ,Y ). These two vector equations are F1 = 0
and F2 = 0:

F1 =
1

x2
0 + x2

3

[
2(−x0y1 + x3y2)+(x2

0− x2
3)x−2x0x3y− (acosψ)(x2

0 + x2
3)

−2(x0y2 + x3y1)+2x0x3x+(x2
0− x2

3)y− (asinψ)(x2
0 + x2

3)

]
= 0;

F2 =
1

x2
0 + x2

3

[
2(−x0y1 + x3y2)+(x2

0− x2
3)x−2x0x3y− (bcosϕ +d)(x2

0 + x2
3)

−2(x0y2 + x3y1)+2x0x3x+(x2
0− x2

3)y− (bsinϕ)(x2
0 + x2

3)

]
= 0.

Now we determine equations for the coupler. The coordinate system that moves with
the coupler has its origin, point E, on the centre of the R-pair, as in Fig. 1, having
coordinates (x,y) = (0,0), while point F is on the R-pair centre on the other end having
coordinates (x,y) = (c,0). One more vector equation, H1 is obtained by substituting
(x,y) = (0,0) in F1, and another, H2 is obtained by substituting (x,y) = (c,0) in F2.
Next H1 and H2, two rational expressions, are converted to factored normal form. This
is the form where the numerator and denominator are relatively prime polynomials with
integer coefficients. The denominators for both H1 and H2 are the nonzero condition
x2

0 + x2
3, which can safely be factored out of each equation leaving the following two

vector equations with polynomial elements:

H1 =

[
−acosψ(x2

0 + x2
3)+2(−x0y1 + x3y2)

−asinψ(x2
0 + x2

3)−2(x0y1 + x3y2)

]
= 0; (9)

H2 =

[
−(bcosϕ +d)(x2

0 + x2
3)+ c(x2

0− x2
3)+2(−x0y1 + x3y2)

−bsinϕ(x2
0 + x2

3)+2c(x0x3)−2(x0y2 + x3y1)

]
= 0. (10)

The system of four displacement constraints on the I-O equations are H1 = 0 and
H2 = 0. However, these are trigonometric equations. We convert them to algebraic ones
using the tangent of the half-angle substitutions

u = tan
ψ

2
, v = tan

ϕ

2
,
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and

cosψ =
1−u2

1+u2 , sinψ =
2u

1+u2 ,

cosϕ =
1− v2

1+ v2 , sinϕ =
2v

1+ v2 .

The usual constraint equations in the kinematic mapping image space are obtained
by considering H1 and H2 with the tangent of the half-angles, giving four new algebraic
polynomials when considering the individual elements converted to factored normal
form. The denominators are u2 +1 and v2 +1 which can safely be factored out because
they are always non-vanishing. The resulting four algebraic equations are expressed in
terms of the elements of K1 = 0 and K2 = 0:

K1 =

 (au2−a)(x2
0 + x2

3)+2u2(−x0y1 + x3y2)+2(−x0y2 + x3y1)

−2au(x2
0 + x2

3)−2(1+u2)(−x0y2 + x3y1)

= 0; (11)

K2 =


(v2(b−d)+b−d)(x2

0 + x2
3)+(cv2 + c)(x2

0− x2
3)+

2(1+ v2)(−x0y1 + x3y2)

2(v2 +1)(cx0x3− x0y2− x3y1)−2bv(x2
0 + x2

3)

= 0. (12)

Factoring the resultant of the first and second elements of K1 = 0 with respect to u,
as well as the first and second elements of K2 = 0 with respect to v yields the two
displacement constraint equations in the image space:

a2(x2
0 + x2

3)−4(y2
1 + y2

2) = 0,

(b2− c2−d2)(x2
0 + x2

3)+2cd(x2
0− x2

3)+4c(x0y1 + x3y2)+

4d(−x0y1 + x3y2)−4(y2
1 + y2

2) = 0.

Inspection of the quadratic forms of these two equations reveals that they are two hy-
perboloids of one sheet, which is exactly what is expected for two RR dyads [6]. But
these are not the constraints we are looking for. We want to eliminate the image space
coordinates using K1 = 0 and K2 = 0 to obtain an algebraic polynomial with the tangent
half angles u and v as variables and link lengths as coefficients.

To obtain this algebraic polynomial we start by setting the homogenising coordinate
x0 = 1, which can safely be done since we are only concerned with real finite displace-
ments. Next, observe that the two equations represented by the components of K1 = 0
(Equation (11)) have a simpler form than those of K2 = 0 (Equation (12)), and are linear
in y1 and y2. Solving these two equations for y1 and y2 reveals that

y1 =
1
2

a(u2−2ux3−1)
u2 +1

, (13)

y2 =
1
2

a(u2x3 +2u− x3)

u2 +1
. (14)
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Equations (13) and (14) reveal the common denominator of u2+1, which can never
be less than 1, and hence may be factored out. Now we back-substitute these expressions
for y1 and y2 into the array components of Equation (12), thereby eliminating these
image space coordinates, and factor the resultant with respect to x3 which yields four
factors. The first three are

4c2, (u2 +1)3, (v2 +1)3.

None of these three factors can ever be zero and at the same time represent a real dis-
placement constraint, hence they are eliminated. The remaining factor is a polynomial
with only u and v as variables and link lengths a, b, c, and d, as coefficients. This is
exactly the constraint equation we desire. It is factored, and the terms collected then
distributed over u and v revealing

(a−b+ c+d)(a−b− c+d)u2v2 +(a+b− c+d)(a+b+ c+d)u2+
(a+b− c−d)(a+b+ c−d)v2−8abuv+(a−b+ c−d)(a−b− c−d) = 0.

(15)

Equation (15) is an algebraic polynomial of degree four which represents the I-O
equation for any planar 4R mechanism. It has two singular points at infinity, namely
those of the X- and Y -axes. These two singular points are either double points, or acn-
odes, i.e. isolated, or hermit points in the solution set of a polynomial equation in two
real variables. When both are double points the mechanism is a double crank, when
both are acnodes the mechanism is a double rocker. In the event the mechanism is a
folding four-bar then the degree of Equation (15) is less than four.

Freudenstein’s equation [4] is linear in the ratios of the link lengths and therefore is
ideally suited to identifying link lengths that minimise some mechanism performance
error in a least squares sense for approximate synthesis. The corresponding algebraic
form of Freudenstein’s equation is Equation (15), which is quadratic in the link lengths
a, b, c, and d, but still lends itself to linear least squares error minimisation subject
to quadratic constraints, and the method presented in [5]. However, in the following
example we shall use exact synthesis, using only three of the prescribed sets on I-O
pairs, and leave the approximate case to future work.

3 Example

This example serves to demonstrate that Equation (15) can be used to identify link
lengths to create a 4R mechanism to generate an arbitrary function. Here, the function
is specified in terms of the tangent of the half angle parameters v = f (u) as

v = 2+ tan
(

u
u2 +1

)
. (16)

Eight I-O pairs [u,v] were specified as, using Fig. 1 for reference,

[0,2],
[

1
4
,

30055
13419

]
,

[
1
2
,

49597
20471

]
,

[
3
4
,

48857
19383

]
,

[
1,

64699
25409

]
,

[
5
4
,

25536
10091

]
,

[
3
2
,

110471
44235

]
,

[
2,

49597
20471

]
.
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Since a function generator is scalable, and hence only the ratios of the link lengths
are needed, we set d = 1 and solve for the remaining three using the first, fourth, and
eighth I-O pairs, giving, in generic units of length, a =−0.23, b = 1.43, and c = 1.20.
Another linkage was identified using the second, fourth, and seventh I-O pairs giving
nearly identical link lengths. Note that it is not uncommon in computational methods to
obtain negative link lengths. These lengths are directed distances, and a =−0.23 means
that the distance is directed from the distal R-pair in link a to the origin, instead of the
other way around, as in [9].

In Fig. 2 the prescribed I-O function is plotted as the dashed curve, and the I-O
function generated by the two identified linkages are plotted as the solid curves. The
generated function shows good fidelity relative to the prescribed function over a rea-
sonable range of I-O angles.

Fig. 2. Graphical representation of results.

4 Conclusions

In this paper a new method for deriving the I-O equations of planar 4R function genera-
tors was presented. The Cartesian displacement constraints of the two dyads comprising
a planar 4R mechanism are expressed in terms of lengths and angles. This set of general
constraint equations is mapped to a planar projection of Study’s soma coordinates. The
reason for using this unconventional form of planar kinematic mapping is to be able to
apply these methods to spherical and spatial function generators in future work, where
all eight soma coordinates will be needed. The result of this step is two arrays in terms
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of the I-O angles, link lengths, and soma coordinates. The equations are converted from
trigonometric expressions to algebraic ones with the tangent of the half angle substi-
tutions. These equations are used to eliminate the soma coordinates. What remains is
factored using resultants, and all non-zero factors are eliminated, ultimately leaving an
algebraic polynomial that is of degree four in the tangent of the half angle parameters,
and quadratic in the link lengths.

The I-O equation derived in this paper is an algebraic, however nonlinear, polyno-
mial in terms of the link lengths. Regardless, this algebraic formulation will signifi-
cantly mitigate the effect of round-off errors observed in the numerical integration of
the trigonometric Freudenstein synthesis equations [5]. While the very same I-O equa-
tion is, necessarily, obtained starting from the Freudenstein equation, the point of the
presented material is to generalise the derivation of function generator I-O equations.
The ultimate goal is to use continuous I-O data sets to synthesise the very best linkage
to generate an arbitrary planar, spherical, or spatial function. Derivation of the planar
algebraic I-O equation is one of the first steps towards this goal.
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