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Abstract— This paper describes a generalised algorithm that
can be applied to any single degree of freedom parallel
kinematic chain to determine the algebraic polynomial that
represents the input-output equation relating any pair of
distinct angles between any pair of links in the kinematic
chain. There are six such algebraic polynomials for an arbitrary
four-bar linkage. The algorithm consists of assigning standard
Denavit-Hartenberg coordinate systems and parameters to the
open kinematic chain. The open chain is conceptually closed
by equating the forward kinematic transformation that maps
coordinates of points in the “end-effector” coordinate system
to the relatively non-moving base coordinate system to the
identity matrix. The resulting transformation is mapped to
Study soma coordinates wherein the twist and joint angles have
been converted to tangent half-angle parameters. Elimination
theory is then applied to the soma coordinates revealing a single
algebraic polynomial in terms of the link lengths and the desired
angle pair. Example applications are discussed for continuous
approximate synthesis, mobility classification, and the design
parameter space.

I. INTRODUCTION

Parallel kinematic chains have fascinated kinematicians
for thousands of years [1]. Even the humble planar four-
bar kinematic chain has been the focus of intense research
for at least as long. Ever since humans had the ability to
formulate abstract thoughts, for countless thousands of years,
four-bar linkages, in their many forms, have been used to
perform a large variety of tasks everywhere there have been
human beings [2]. The science of mechanisms has evolved
such that now nearly every article of clothing you wear, the
vehicles you are transported by, the household devices you
use, even the streets you walk upon have all been touched
by at least one, or two, if not many thousands, of four-
bar linkages. The literature is rich with many recent results
investigating function and coupler curve generation together
with motion generation problems, differential kinematics,
and force and torque transfer. Results reported in [3], [4],
[5], [6], [7], [8] are a small, but broad sampling. Given such
current interest, we feel justified to continue identifying new
and useful methods for analysis and synthesis of parallel
kinematic chains in general, but of planar 4R linkages in
particular.
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In this paper we present a novel algorithm, built on tools
from algebraic-geometry, that derives the algebraic polyno-
mial which models the relative displacements of one of six
desired input-output angle pairs in an arbitrary single degree
of freedom 4R simple closed kinematic chain. First, the class
of planar 4R open kinematic chains is parameterised using
the well known notation for lower-pair kinematic chains of
arbitrary architecture, known as Denavit-Hartenberg (DH)
notation [9]. The resulting coordinate transformation matrix
describing the forward kinematics of the open chain is
equated to the identity matrix to conceptually close the
chain [9]. Measures of angle elements in the resulting matrix
are converted to their respective tangent half-angle param-
eters. This modified transformation matrix is then mapped
to the coordinates of the seven dimensional projective kine-
matic image space using the well known definitions of the
Study soma coordinates [10], [11], [12], [13]. Next, using
an appropriate subset of the soma coordinates, elimination
theory [14] is used to eliminate undesired variable angle
parameters leaving only the desired input-output (IO) angle
parameter pair algebraic equation. The first presentation of
a part of the algorithm can be found in [15]. However, in
that work we failed to understand how completely general
the algorithm is and this work will serve to correct that.
While we have successfully applied the algorithm to derive
the input-output angles for all planar, spherical, and some
spatial four-bar linkages [16], [17], we will present only the
results for the class of planar 4R linkages.

The motivation at the foundation of this work is to pro-
vide computational tools for mechanism design and analysis
that are less cumbersome to use than vector loop methods
based on trigonometry. Since our IO equations are algebraic
polynomials of degree 4 in two variables with rational
coefficients, the full power of the theory of planar algebraic
curves [18] can be applied to the six distinct IO degree
4 algebraic IO curves allowing for significantly more and
comparatively simple to obtain information regarding the
relative motions generated by the linkage.

II. DEFINING THE KINEMATIC GEOMETRY

We start with a generic 4R open kinematic chain and
assign the standard DH coordinate systems and parameters
according to [9], see Table I and Fig. 1 The four link lengths
are the ai, and the four joint angles are the θi, i ∈ {1, 2, 3}.
The transformation matrix implied by these parameters is
equated to the identity matrix thereby conceptually clos-
ing the kinematic chain. But, this process means that the
coordinate system that moves with link a4 aligns out of



phase by π radians with the x0 basis vector illustrated in
Fig. 1. The x0/4 - y0/4 coordinate system illustrated in Fig. 2
is therefore used for the relatively non-moving reference
coordinate system. The equations that follow are derived in
that coordinate system.

TABLE I
DH PARAMETERS FOR AN ARBITRARY OPEN 4R CHAIN.

axis i link length ai angle θi link offset di twist τi
1 a1 θ1 0 0
2 a2 θ2 0 0
3 a3 θ3 0 0
4 a4 θ4 0 0
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Fig. 1. Generic open 4R kinematic chain.

Using the definitions found in [15], the DH transformation
matrix is mapped to the soma array of eight coordinates

[x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3].

However, because we are only considering planar Euclidean
displacements, the same four soma coordinates always vanish
for the planar 4R and what remains are

[x0 : 0 : 0 : x3 : 0 : y1 : y2 : 0]. (1)

For a generic representation, however, we use the full Study
array here since the 0 elements are different for spherical
and spatial linkages [16], [17].

Let the input angle parameter be v1 and the output angle
parameter be v4. Applying two elimination steps to the three
equations represented by the soma coordinates x3, y1 and
y2 to eliminate the angle parameters v2 and v3 from the
equations yields the algebraic IO equation relating the v1 and
v4 angle parameters, which we call the v1-v4 IO equation.
It has the form

Av21v
2
4 +Bv21 + Cv24 − 8a1a3v1v4 +D = 0, (2)

where

A = A1A2 = (a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4),

B = B1B2 = (a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4),

C = C1C2 = (a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4),

D = D1D2 = (a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4),

v1 = tan θ1
2 ,

v4 = tan θ4
2 .

Fig. 2. Generic closed 4R kinematic chain.

This algebraic equation is of degree four in the v1 and v4
variable parameters, while the coefficients labelled A, B, C,
and D are products of bilinear factors which can be viewed
as eight distinct planes treating the four ai link lengths as
homogeneous coordinates.

The two elimination steps are two applications of the
Buchberger algorithm [19] using two different monomial
orders for multivariate polynomials. The first application
applies the graded reverse lexicographic order to the vari-
ables ordered as v3 < v2 < v1 < v4, and the second
application uses the pure lexicographic order such that v3 >
v2 > v1 > v4. This leads to a single Gröbner basis
equation in the link lengths a1, a2, a3, a4 and the joint angle
parameters v1 and v4, namely Eq. (2). Note that resultants
could also be employed using Sylvester’s matrix, but this
method frequently results in spurious factors.

The remaining five IO quartic algebraic equations
for the other distinct angle pairings all contain all
eight of the bilinear factors of the coefficients labelled
A1, A2, B1, B2, C1, C2, D1, and D2 but in different arrange-
ments. This means that the design parameter space, as
defined in [20], is the same for all six of these IO equations.

By applying the monomial term orderings to the variables
in the appropriate sequence, the v1-v2, v1-v3, v2-v3, v2-v4,
and v3-v4 IO equations are obtained and listed as follows.

A1B2v
2
1v

2
2+A2B1v

2
1+C1D2v

2
2−8a2a4v1v2+C2D1=0, (3)

A1B1v
2
1v

2
3 +A2B2v

2
1 + C2D2v

2
3 + C1D1 = 0, (4)

A1D2v
2
2v

2
3+B2C1v

2
2+B1C2v

2
3−8a1a3v2v3+A2D1=0, (5)

A1C1v
2
2v

2
4 +B2D2v

2
2 +A2C2v

2
4 +B1D1 = 0, (6)

A1C2v
2
3v

2
4+B1D2v

2
3+A2C1v

2
4+8a2a4v3v4+B2D1=0. (7)

Each of these six IO equations is of degree 4 in the two
variable angle parameters, thereby defining a curve of degree
4 in the plane spanned by the different vi-vj angle parameter
pairs. They also all have genus 1 allowing a maximum
number of two assembly modes. The similar form of Eqs (2),
(3), (5), and (7) arises because they relate adjacent angle
pairs, while Eqs (4) and (6) relate opposite angle pairs.



III. APPLICATIONS

Aside from position analysis, we will consider several
important applications that these algebraic polynomials nat-
urally and easily lend themselves to which are otherwise
not generally possible using traditional vector loops and
trigonometry.

A. Continuous Approximate Dimensional Synthesis

Because we have expressions for the six distinct angular
relationships between the four quadrangle edges of the planar
4R, we can generate six distinct functions. It may also be
that we can synthesise a linkage to generate more than one
function between different links. Imagine a manufacturing
and assembly operation where a single four-bar can perform
multiple tasks over different angular ranges as the linkage
moves. However, here we will restrict ourselves to dimen-
sional synthesis generating a single desired function using
the continuous approximate algorithm in [21]. This algorithm
integrates the desired function between the lower and upper
angular range limits thereby generating a continuous infinite
set of input and output angular pairs.

The v1-v3 IO equation essentially relates the input angle
parameter to a measure of the transmission angle. We begin
by squaring Eq. (4) to eliminate the residual error values that
are equal in magnitude yet opposite in sense. We partition
the result into a 9x1 array of angle parameters and a 9x1
array of associated link length coefficients. The Euclidean
inner products of these two arrays leads to the square of
Eq. (4). The array of angle parameters is used to generate
the synthesis equations.

sv1,v3 = [v41v
4
3 , v

4
1v

2
3 , v

4
1 , v

2
1v

4
3 , v

2
1v

2
3 , v

2
1 , v

4
3 , v

2
3 , 1]

T , (8)

while the array of link lengths has the following 9 elements,
which are scaled by the v1-v3 elements

a4
4 − 4a1a3

4 + (6a2
1 − 2a2

2 + 4a2a3 − 2a2
3)a2

4−

4a1a4(a1 + a2 − a3)(a1 − a2 + a3) + (a1 + a2 − a3)2(a1 − a2 + a3)2, (9)

2a4
4 − 8a1a3

4 + (12a2
1 − 4a2

2 − 4a2
3)a2

4 − 8a1a4(a2
1 − a2

2 − a2
3)+

2(a1 − a2 + a3)(a1 + a2 + a3)(a1 − a2 − a3)(a1 + a2 − a3), (10)

a4
4 − 4a1a3

4 + (6a2
1 − 2a2

2 − 4a2a3 − 2a2
3)a2

4−

4a1a4(a1 + a2 + a3)(a1 − a2 − a3) + (a1 + a2 + a3)2(a1 − a2 − a3)2, (11)

2a4
4 + (−4a2

1 − 4a2
2 + 8a2a3 − 4a2

3)a2
4+

2(a1 + a2 − a3)2(a1 − a2 + a3)2, (12)

4a4
4 + (−8a2

1 − 8a2
2 − 8a2

3)a2
4+

4(a1 − a2 + a3)(a1 + a2 + a3)(a1 − a2 − a3)(a1 + a2 − a3), (13)

2a4
4 + (−4a2

1 − 4a2
2 − 8a2a3 − 4a2

3)a2
4+

2(a1 + a2 + a3)2(a1 − a2 − a3)2, (14)

a4
4 + 4a1a3

4 + (6a2
1 − 2a2

2 + 4a2a3 − 2a2
3)a2

4+

4a1(a1 + a2 − a3)(a1 − a2 + a3)a4 + (a1 + a2 − a3)2(a1 − a2 + a3)2, (15)

2a4
4 + 8a1a3

4 + (12a2
1 − 4a2

2 − 4a2
3)a2

4 + 8a1(a2
1 − a2

2 − a2
3)a4+

2(a1 − a2 + a3)(a1 + a2 + a3)(a1 − a2 − a3)(a1 + a2 − a3), (16)

a4
4 + 4a1a3

4 + (6a2
1 − 2a2

2 − 4a2a3 − 2a2
3)a2

4+

4a1a4(a1 + a2 + a3)(a1 − a2 − a3) + (a1 + a2 + a3)2(a1 − a2 − a3)2. (17)

Now we can make the input angle generate a desired
function with a measure of the transmission angle, v3 =
f(v1). We arbitrarily choose this function to be

v3 = 2 + tan

(
v21

v21 + 1

)
, (18)

and we arbitrarily choose a symmetric angle parameter range
of

−2 ≤ v1 ≤ 2,

which corresponds approximately to the angular bounds

−127◦ ≤ θ1 ≤ 127◦.

The next step is childishly simple, but remarkably elegant:
integrate the function array as∫ v1max

v1min

sv1,f(v1). (19)

The synthesis equations are obtained using two Euclidean
inner products. Let the link length array be defined as

av1,v3 , (20)

whose nine elements are the nine Equations (9-17). The only
synthesis equation required is revealed with the numerical
minimisation of Euclidean inner product

min
(a1,a2,a3,a4)∈R

(
av1,v3 ·

∫ v1max

v1min

sv1,f(v1)

)
. (21)

Because the least-squares optimiser used in Maple 2021
is sensitive to the quality of initial guesses, we identify the
link lengths that are obtained with exact synthesis where the
input angle parameters were selected as v1 = -2, 0, 2, and
the three synthesis equations generated with Eq. (4) led to
the surprising result with link lengths according to a1 is a
function of a3 and a4, a2 is a different function of a3 and
a4, while a3 and a4 are arbitrary:

a1 = f(a3, a4);
a2 = g(a3, a4);
a3 = a3;
a4 = a4.

 (22)

For values of a3 = a4 = 1 we obtain a1 = 0.1878149423
and a2 = 1.478438966. Substituting these link lengths as
initial guesses into the optimiser led to:

a1 = 0.0905138698274517;
a2 = 1.39186927669424;
a3 = 0.563170358913259;
a4 = 1.04879305299696.

 (23)

These link lengths are remarkably different from the initial
guess, which is not surprising, but the arbitrariness of a3
and a4 is lost in the continuous approximate synthesis.
Substituting these lengths into the v1-v3 IO equation gives

0.4307407243v21v
2
3 − 5.483015140v21+

1.182000492v23 − 4.731755372.
(24)

Fig. 3 illustrates the desired function, Eq. (18), and the one
generated by the linkage implied by Eq. (24). The residual
error between the desired and generated functions is

r = 0.00467. (25)

According to an observation made in [22], since the cardi-
nality of the IO data set is infinite, this linkage possesses the
least design and structural errors for generating the desired
function over the desired range.



Fig. 3. Desired and generated functions v3 = f(v1).

B. Mobility Classification

Treating each pair vi-vj to be coordinate axes in the plane
spanned by the two, then each IO equation contains two
double points at infinity on the vi and vj axes. The double
points at infinity belonging to each of the four distinct vi
coordinate axes together with the type of points at vi = 0
completely define the mobility limits, if they exist, between
each vi-vj angle parameter pair. Physically speaking, the
nature of these two points determine if extreme orientations
exist that are implied by the vi where the two links can align.
Hence, the examination of these two points is sufficient to
determine whether a particular joint enables a crank, a rocker,
a π-rocker, or a 0-rocker link motion [20].

One possibility to determine the type of double point,
i.e., whether it is a crunode, acnode, or cusp, is to evaluate
whether the double point has a pair of real, or complex
conjugate tangents. If the double point has two real distinct
tangents, it is a crunode; if it has two real coincident tangents,
it is a cusp; and if the tangents are both complex conju-
gates, the double point is an acnode [13], [23]. Thus, after
homogenising each vi-vj angle pair IO equation using the
homogenising coordinate w, leading to IOh, the following
discriminant yields information on the double point at infinity
on the vj axis:

∆ =

(
∂2IOh

∂vi∂w

)2

− ∂2IOh

∂v2i

∂2IOh

∂w2

 > 0 ⇒ crunode;
= 0 ⇒ cusp;
< 0 ⇒ acnode.

(26)
Proceeding with the double point analysis of all six vi-vj

equations at infinity on both axes results in 12 discriminants.
However, as the vi-vj equations are all dependent on each
other, only four are distinct. Each one describes the nature
of the double point at infinity of each vi for i ∈ {1...4}:

∆v1 = −4(a1 + a2 − a3 − a4)(a1 + a2 + a3 − a4)

(a1 − a2 + a3 − a4)(a1 − a2 − a3 − a4);

∆v2 = −4(a1 − a2 − a3 + a4)(a1 − a2 + a3 + a4)

(a1 − a2 + a3 − a4)(a1 − a2 − a3 − a4);

∆v3 = −4(a1 − a2 + a3 + a4)(a1 + a2 − a3 + a4)

(a1 + a2 − a3 − a4)(a1 − a2 + a3 − a4);

∆v4 = −4(a1 + a2 − a3 + a4)(a1 − a2 − a3 + a4)

(a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4).

Using the bilinear factors defined by Eq. (2) these discrimi-
nants can be rewritten compactly as

∆v1 = −4 A1A2B1B2, (27)
∆v2 = −4 A1B2C1D2, (28)
∆v3 = −4 A1B1C2D2, (29)
∆v4 = −4 A1A2C1C2. (30)

From these conditions we can extract the following infor-
mation. If ∆v1 ≥ 0, then the double point at v1 = ∞ is either
a crunode or a cusp. Knowing that v1 = ∞ corresponds to
θ1 = 180◦, this implies that the link a1 can physically reach
the extreme position where a1 aligns with and overlays the
previous link a4. Similarly, if ∆v1 < 0, then the double point
at v1 = ∞ is an acnode which in turn indicates that a1 can
not physically reach the extreme position where a1 aligns
with and overlays a4. Analogous conclusions can be drawn
from Equations (28), (29), and (30).

As previously mentioned, to fully understand the mobility
of every link, it equally requires the analysis of whether the
other extremes where the link under investigation aligns with
the previous link. We need to investigate whether the linkage
is assemblable at vi = 0. Clearly, one possibility to obtain a
condition with this information can be derived using the six
vi-vj equations by substituting vi = 0 and solving for vj .
Again, due to the equations’ dependencies, we obtain four
distinct conditions, one for each vi:

Ωv1 = [−(a1 − a2 − a3 + a4)(a1 − a2 + a3 + a4)

(a1 + a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv2 = [−(a1 + a2 − a3 − a4)(a1 + a2 + a3 − a4)

(a1 + a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv3 = [−(a1 + a2 + a3 − a4)(a1 − a2 − a3 − a4)

(a1 − a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv4 = [−(a1 − a2 − a3 − a4)(a1 + a2 − a3 − a4)

(a1 − a2 + a3 + a4)(a1 + a2 + a3 + a4)]
1
2 .

Again using the bilinear factors from Eq. 2 these expressions
can be rewritten compactly as:

Ωv1 =
√

−C1C2D1D2; (31)

Ωv2 =
√

−A2B1C2D1; (32)

Ωv3 =
√

−A2B2C1D1; (33)

Ωv4 =
√

−B1B2D1D2. (34)



With this information we can establish a completely
generic classification scheme to determine the relative mobil-
ities of every link in the simple closed kinematic chain. Using
the bilinear factors the classification can be constructed
according to Tables II-V. The beauty of this classification
scheme lies in its completely generic nature, covering both
positive and negative values for the ai. This result requires
the ai to be considered as directed line segments. For
example a1 > 0 means that it is directed from the join with
a4 to a2, a1 < 0 means a1 points in the opposite direction.
Moreover, the classification scheme is directly linked to the
algebraic IO equations. We are now able to explain the
different spatial sections that are spanned by the linear factors
in the design parameter space reported in [20].

TABLE II
MOBILITY OF a1 RELATIVE TO a4 .

A1A2B1B2 C1C2D1D2 mobility of a1
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

TABLE III
MOBILITY OF a2 RELATIVE TO a1 .

A1B2C1D2 A2B1C2D1 mobility of a2
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

TABLE IV
MOBILITY OF a3 RELATIVE TO a2 .

A1B1C2D2 A2B2C1D1 mobility of a3
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

TABLE V
MOBILITY OF a4 RELATIVE TO a3 .

A1A2C1C2 B1B2D1D2 mobility of a4
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

C. Design Parameter Space

The literature provides several geometric mobility inter-
pretations for planar four bar linkages in different design pa-
rameter spaces. For example, Gosselin and Angeles defined
mobility regions in a 3D space spanned by the Freudenstein
parameters [24]. A solution space spanned by the link length
ratios of λ1 = a4/a1, λ3 = a2/a1 and λ4 = a3/a1 in which
Grashof and non-Grashof linkages are identified is described
in [25].

We will, however, build upon the design parameter rep-
resentation from [20] which considers the bilinear factors

from Eq. (2) in the parameter space spanned by a1, a2 and
a3 whose points represent normalised four bar linkages with
base lengths of a4 = 1. Considered as planes, the eight
bilinear factors intersect in the edges of a uniform double
tetrahedron and completely represents the input and output
mobility of planar four bar linkages, see Fig. 4 (a). The spher-
ical 4R IO equations contain eight bi-cubic surfaces which,
together, contain 12 real lines containing segments that are
the edges of a topologically identical double tetrahedron [16],
see Fig. 5.

(a)

a1a2

a3

(b)

a1a2

a3

Fig. 4. Design parameter space surfaces: (a) planar 4R; (b) spherical 4R.

(b)(a)

a1a2

a3 a3

a1a2

Fig. 5. 12 distinct lines, three on each of eight cubics: (a) zoomed out;
(b) zoomed in.

With the six algebraic vi-vj equations, and the previously
identified mobility classification using double points and dis-
criminants, it becomes evident that the planes containing the
faces of the double tetrahedron contain even more mobility
information than stated in [20], namely, information on the
mobility of every link in the chain! In fact, the double
tetrahedron face planes segment the design parameter space
into distinct regions which each describes the mobility of
a1, a2, a3 and a4. Since a complete analysis of the design
parameter space would go beyond the scope of this paper,
we will limit the discussion herein to one short example as
follows.

Consider the intersection traces of the bilinear factors in
the parameter plane a1 = 0.5 spanned by a2 and a3 in the
design parameter space. Here the bilinear factors are parallel
and orthogonal lines. Together with Tables II-V, the mobility
of all a2 and a3 of any length can now be identified, resulting



Fig. 6. Intersection of the double tetrahedron in the design parameter space
with the plane a1 = 0.5.

in Fig. 6 where r indicates that the corresponding link is a
rocker, c a crank, π a π-rocker, and 0 a 0-rocker, while NA
indicates not assemblable. This analysis can be conducted
for every area separated by the bilinear factors in the design
parameter space, resulting in a complete geometric mobility
classification of planar four bar linkages which is directly
linked to the six algebraic vi-vj equations.

IV. CONCLUSIONS

The importance of the work is nicely summarised by the
example applications to mobility classification, the design
parameter space, and continuous approximate synthesis. The
obvious extension to this work is to identify a way to perform
optimal dimensional synthesis to specify more than one
function for a planar 4R linkage to generate between different
angle pairs. Because the location of a linkage in the design
parameter space determines the mobility of the particular
linkage and determines the six distinct functions vj = f(vi),
it may be possible to specify six desired functions and then
to identify the link lengths that generate all six with the least
residual error.
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