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Abstract: The use of three-dimensional (3D) scanning systems for acquiring
the external shape features of biological objects has recently been gaining
popularity in the biomedical field. A simple, low cost, 3D scanning system
is presented, which employs the laser light-sectioning technique for data
acquisition. A Direct Linear Transformation least squares algorithm is
used for camera calibration and Elliptical Fourier Descriptors (EFDs) are
used for data smoothing and planar section reconstruction. Results for an
experiment demonstrating the validity of the EFD approach are presented.
Overall, results presented for three objects scanned with the proposed system
demonstrate the validity of the chosen approach.
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1 Introduction

The use of three-dimensional (3D) scanning systems for acquiring 3D models of
objects has many applications in industry, computer graphics, and more recently,
medicine. Biomedical applications of 3D scanning include orthodontic treatment
planning (Hajeer et al., 2004), anatomical parts reconstruction (Tognola et al., 2003a),
cranial deformation research (Hennessey et al., 2005), cartilage morphology studies
(Trinh et al., 2006), and anthropometric data collection (Azouz et al., 2005). There
exists a variety of different techniques for acquiring 3D models of objects, all with a
wide range of hardware costs, and differing levels of achievable accuracy and detail in
the captured geometric models. Good reviews of 3Dmodel acquisition techniques and
the processing of scanner output into 3D models have been prepared by Bernardini
andRushmeier (2002) andCurless (1999). Inmedical applications, one typically thinks
of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) as modes
of acquiring 3D information; these are both extremely expensive to operate, and in the
case of CT, expose patients to harmful ionising radiation rendering it unsuitable for
routine procedures. For certain biomedical applications where only the external 3D
geometry of an object is desired, 3D laser scanners are becoming a viable and efficient
means of capturing 3D information.

Although there currently exist numerous commercial laser scanning systems,

“in order to apply surface scanners in medicine, one usually has to resort to
commercially produced systems originally designed for industrial use.” (Schwenzer-
Zimmerer et al., 2008, p.59)

Despite the fact that

“these devices can be considered as the state of the art of scanning technology for their
remarkable accuracy, resolution, and velocity, they may present some limitations
[when adopted for biomedical applications].” (Tognola et al., 2003b, p.295)

Possible sources of error in the clinical use of the scanning technology have to
be investigated; for example, the special characteristics of vital tissues (e.g., great
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variations in texture, tension, transparency, and reflectivity) which are rarely
encountered in artificial objects (Kovacs et al., 2006). Also, measurement errors due
to patient movement, even just from breathing, are inevitable. This implies that
the accuracy levels some scanners are capable of attaining (sometimes at a micron
level) are not realistically achieved in a medical scenario (Boehnen and Flynn, 2005).
As well, although they are relatively less expensive than CT or MRI, many scanners
are still prohibitively expensive for widespread use in medical institutions.

The objective set out for this research is to develop a simple, low cost, 3D scanning
system intended for biomedical purposes. We have decided to focus upon the accepted
technique of laser light-sectioning for this scanner. Since cost is often a major
roadblock in many healthcare institutions, this was a key constraint for this research.
By including more complexity in signal processing and analysis, the use of simple,
inexpensive, off-the-shelf components lends itself to a more economical design with
a straightforward setup. Automation of the acquisition process was done to help
reduce the need for user intervention. Finally, since the complexity (and cost) of many
commercial scanners increases in order to produce highly accurate data, and since noise
in measurement data is inevitable in many biomedical scenarios, we examined reliable
and robust data processing options which would address noise in the measurement
data and which would be particularly suited for biological objects.

2 Proposed approach

2.1 The laser light-sectioning technique

As mentioned in the introduction, we have decided to focus upon the accepted
technique of laser light-sectioning for this system. This technique involves measuring
the position of an object’s surface profile by recording where the profile intersects a
plane of laser light projected onto the object from different angles (Figure 1). A single
planar section of an object is obtained frommultiple profiles captured about the z-axis.
A 3D image of the object is formed by stacking multiple planar sections along the
z-axis.

Figure 1 Laser light-sectioning system diagram (see online version for colours)

Two main challenges exist when using this technique. First, since the camera used is
located at a fixed angle to the laser plane, the images contain perspective distortion
which must be compensated for. We refer to this as the calibration problem.
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Second, when employing the laser light-sectioning technique, only a portion of the
object’s profile can be captured from any given angle. Therefore the object model
must be reconstructed by aligning numerous segments of data into a complete planar
contour before stacking multiple contours to form the 3D representation. We refer to
this as the datamanipulation problem.Although there aremany other aspects involved
with this imaging technique (as will be discussed in Section 2.3), the work presented
here focuses on these two main challenges.

2.2 System hardware setup

The system setup is illustrated in Figure 2. A Stockeryale (Montreal, PQ) Lasiris
SNF635S-5 Class IIIa Diode Laser fitted with line-generating optics creates a
horisontal light plane (i.e., parallel to the xy-plane). The trace of the light plane
is visible when projected onto the object of interest and is recorded with a JAI
Pulnix (San Jose, CA) TM-200 High Resolution (768 × 494) Charge-Coupled Device
(CCD) camera. Both are mounted to a platform; the camera is inclined at α = 30◦.
This angle was chosen to gain a larger measurement range in order to be able to scan
objects with larger variations in surface topography, even though resolution is slightly
reduced with a smaller angle (Lichtschnitt, 2004).

Figure 2 Prototype setup (see online version for colours)

The object to be scanned is placed on a turntable approximately 10 cm from the
camera. Images are captured with aNational Instruments (NI) (Austin, TX) PCI-1411
image acquisition device. Servo motors are used to move the camera/laser platform
vertically and to rotate the turntable in fixed increments. Motors are controlled with
the Lego NXT controller box (32-bit ARM7 microcontroller, 256 Kbytes FLASH,
64 Kbytes RAM), which interfaces to the computer (and Labview) via USB. A single
Labview (NI) program is used to control the entire system (i.e., the servo motors and
the image capture device). Matlab is used for offline processing of the images and
data. The computer used is a 3GHz Pentium 4 with 1GBRAM runningWindows XP
Professional.

Total estimated cost of the system (camera, laser, image acquisition device, motors
and mechanical setup) is approximately $2800 USD.
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2.3 Image acquisition and data processing

The general image acquisition and data processing steps for obtaining a reconstruction
of the exterior features of an object are:

• Calibration: The system must first undergo a calibration procedure to
determine a transformation matrix H which will compensate for the projective
distortion of the camera.

• Image acquisition: M views of the laser trace on the object are then captured,
separated by rotations of R = 360◦

M about the vertical z-axis. This process is
repeated for Nz planar cross-sections in vertical increments along the z-axis.

• Image processing: Images undergo processing in order to isolate the laser trace
segments within the image, and determine a set of point coordinates to represent
the trace.

• Data manipulation: Laser trace point coordinates are transformed using the
transformation matrix H obtained from the calibration procedure. Then the
segments are registered into a common coordinate system by rotating them to
their respective orientation and stacking them along the vertical z-axis. Curve
fitting is applied to the segments of each planar section to form entire 360◦

outlines of the external profile of the object, resulting in a 3D point cloud
representing the object’s surface.

• Object reconstruction: A 3D surface mesh is applied to the point cloud in order
to reconstruct the final 3D model.

Calibration: The result of projecting a plane of laser light onto an object is an
illuminated stripe where the plane intersects the object’s surface. This stripe is captured
in a 2D image by the camera. Since the camera used to capture images is located at a
fixed angle α to the laser plane, the basic goal of calibration is to eliminate the linear
portion of the resulting camera perspective distortion. In other words, we must find a
mapping between the illuminated pixel coordinates of the laser trace from the image
to the world coordinates of the corresponding object surface points in the xy-plane.
Figure 3(a) shows the image captured by the camera if a grid were to be superimposed
on the plane of the laser; the highlighted quadrilateral demonstrates the camera
perspective distortion. Figure 3(b) shows how a mapping from image coordinates to
real world coordinates would remove this distortion.

Figure 3 Diagram illustrating mapping between image and real world coordinates removing
perspective distortion (see online version for colours)
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Mathematically, this transformation is represented by equation (1):

p′
i = Hpi (1)

where H maps a point pi = (xi, yi, wi)T in the image to point p′
i = (x′

i, y
′
i, w

′
i)

T in
real world coordinates, effectively straightening the lines in Figure 3(a). Note the
distinction between the homogeneous coordinates of a point pi = (xi, yi, wi)T and
the inhomogeneous coordinates ( xi

wi
, yi

wi
)T ; wi in the homogeneous case represents a

scale factor and not the z-coordinate, and in the inhomogeneous case the coordinates
represent ratios of this factor. It should also be noted thatH is a homogeneous matrix,
which means that multiplying the matrix by an arbitrary non-zero scale factor will
not alter the projective transformation. Consequently there are eight independent
ratios amongst the nine elements of H ; hence, the transformation H is specified by
eight parameters. By superimposing a calibration grid on the plane of the laser as
shown in Figure 3, the unknown elements of H can be determined using linear algebra
and sets of corresponding control point pairs pi → p′

i; that is, points on the image of
the calibration grid and the known corresponding points in the real world coordinate
system according to the known grid dimensions.

ALeast Squares (LS) approach involving theDirect Linear Transformation (DLT)
algorithm is used to find the transformationmatrixH . The details of the method are as
follows. Expressing equation (1) as a vector cross product p′

i × Hpi = 0 and isolating
the elements of the H matrix into a column vector results in the following:[

0 0 0 −w′
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w′
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i(xi, yi, wi)

]
h = 0, (2)

where h = (h1, h2, . . . , h9)T are the nine elements of the matrix H , and the third
equation has been removed as only the first two are linearly independent. The 2 × 9
matrix of equation (2) is denoted as Ai, and the whole expression is referred to as the
DLT matrix equations for the ith point correspondence.

For the specific case of laser light-sectioning calibration, an inhomogeneous case
of the DLT algorithm is used. This means, rather than solve for h directly as a
homogeneous vector, we can impose that one of the nine elements of H (say, H33
and thus h9) be 1, leaving eight independent ratios amongst the nine elements of
H to be found. The result is the inhomogeneous set of linear equations, given in
equation (3):[
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where h̃
T
is a 1 × 8 inhomogeneous vector consisting of the first eight components

of h. Furthermore, since the DLT equations hold for any homogeneous
representation (x′

i, y
′
i, w

′
i) of the point p′

i a further simplification in the laser
light-sectioning calibration case is to set w′

i = 1 and wi = 1; this means (x′
i, y

′
i) and

(xi, yi) are the 2D world coordinates and the 2D image coordinates, respectively.
Thus, equation (3) simplifies to:[

0 0 0 xi(1) yi(1) wi(1) −xiy
′
i −yiy

′
i

xi(1) yi(1) wi(1) 0 0 0 −xix
′
i −yix

′
i

]
h̃ =

(
y′

i

x′
i

)
. (4)
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Since each set of control point pairs gives two such equations, 2m equations are
obtained from m calibration point pairs. Concatenating the equations from m ≥ 4
correspondences then generates a matrix equation of the form: A2m×8h̃8×1 = b2m×8;
where A now has eight columns, h̃ is the column vector of H matrix parameters and b
is a 1 × 8 array of known calibration coordinates. If m > 4, such an over-determined
system can be solved for h̃ with least squares methods.

Previous work (Bradley et al., 2008) compared this approach with a purely
analytical technique, analysing the ability of each method to cope with noise in the
input data (i.e., the control points selected from the image of the calibration grid).
It was found that the DLT LS approach performed significantly better than
the analytical technique when more than 20 point correspondences are used for
computing H , and so it is the method used for this work.

Figure 4 shows a plot of average error vs. number of point correspondences used
in the DLTLSmethod at a noise level of σ2 = 2.25 (the expected level of noise in input
data for this calibration scenario). Clearly, as the number of points used with the DLT
LSmethod increases, average error decreases. The difference in average error obtained
when using 24 points compared to four points is 0.0925mm whereas the difference
in average error obtained when using 48 points compared to 24 is only 0.0239mm;
the improvement in error in the later case is almost four times less compared to the
first. While the amount of improvement in error reduces with each additional point,
the additional points do not add a significant amount of time to the entire calibration
process (DLT processing times < 2ms) and may be worth the benefit gained in terms
of error reduction.

Figure 4 Average error vs. number of points used with the DLT LS method (for σ2 = 2.25)
(see online version for colours)

Image acquisition: For image acquisition, M = 8 views of the laser trace are captured
by the CCD camera, separated by rotations of R = 45◦ about the vertical z-axis.
This is accomplished by placing the object on the turntable depicted in Figure 2.
After images for a complete planar section have been captured, the platform holding
the camera and laser is raised in increments of 2mm.

Image processing: The goal of the image processing stage is to determine a discrete
set of point coordinates to represent the laser trace. Unfortunately, the laser line
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in the image is in most cases diffuse and can span multiple pixels (Ofner et al.,
1999) determining a set of coordinates that best traverse this trace can thus result in
quantisation error.

All images are converted to grayscale images; that is, pixel values represent
intensities from 0 to 255. A background eliminating algorithm is applied to the
images to help isolate the laser line traces. A Centre Of Gravity (COG) approach
(Ofner et al., 1999) is used to isolate the laser trace segments within the image, and
determine a set of point coordinates to represent the trace. A threshold value is chosen
using Otsu’s method (Otsu, 1979). Pixels below the threshold are not considered in
the COG algorithm and those above it are. Starting from the left side of the image,
each column of the image is considered sequentially. The threshold value is used
to scan each column; the portion of the column with intensities greater than the
threshold value represents the laser trace and is used in the calculation of the COG.
A one-dimensional moment, yc, is calculated for the sub-column of pixels exceeding
this threshold according to equation (5).

yc =

∑ye

y=ys
y · Ip(x, y)∑ye

y=ys
Ip(x, y)

, (5)

where x, y are coordinates in the image, I(x, y) is the intensity at (x, y), ys and ye

are the start and end indices for the column of pixels which exceed the threshold,
and p is a power factor. The power factor can be used to influence the weighting of
intensities; a value of p > 1 gives higher importance to high intensities, and p < 1
will emphasise pixels with lower intensities (Ofner et al., 1999). A power factor of
p = 1 is used here, meaning the moment calculated simply corresponds to the COG.
The existence of the power factor allows for extra flexibility in the formula and could
be changed if the intensity of the laser trace is not very high in an image due to poor
lighting conditions, etc. The point coordinate chosen to represent the centre of the
laser trace then becomes (x, yc), where x is the current column number.

The overall result of the image processing phase is that the laser traces from each
image are now represented by sets of (x, y) coordinates. By transitioning from images
to point coordinates, the amount of data has been substantially reduced, facilitating
further manipulation in order to create a final 3D model. The end regions of the
laser trace data segments tend to be plagued with noise, excessively steep slopes,
and frequent outliers. This is due to thepoorquality of the light signalwhere it intersects
the outermost edges of the object (Hayes et al., 2001). For this reason, the first and last
10% of data points are discarded for the remainder of the analysis.

Data manipulation: Data are registered into a common coordinate system. First, the
eight segments of each planar section are reassembled about a suitable longitudinal
axis. Planar sections are then ‘stacked’ along this axis in the z-direction by
simply introducing the appropriate increment level as the third dimension (i.e., the
z-coordinate). After aligning and stacking the data segments, ideally all individual
points would lie exactly on the surface of the reconstructed object. However, this is
not the case due to residual error from sources, such as: noise in the measurements,
inaccuracies in the camera calibration, the methodology used to obtain coordinate
point data for the imaged laser traces, and imprecision in the alignment process itself
(Bernardini and Rushmeier, 2002).
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There are various ways to account for this residual error. Preprocessing techniques
could involve removingoutliers from thedata, filtering thedata, or fitting the individual
data segments to polynomials or splines before aligning them into a seamless contour.
Another approach to deal with residual error is to define new estimates of actual
surface points by averaging samples from overlapping scans once they have been
aligned (Bernardini and Rushmeier, 2002). Different methods of achieving this are
discussed by Bernardini and Rushmeier (2002) and include techniques, such as:
modelling the measurement error locally and then optimally reconstructing the object
surface using the two overlapping sets of data as ‘estimations’ in a probabilistic
sense (Rutishauser et al., 1994), and computing surface values as weighted averages
of overlapping range data, where the weight used is proportional to the illuminance
received by the sensor (Soucy and Laurendeau, 1995). These methods assume range
input data and not necessarily data from planar laser light-sectioning.

We propose that Elliptical Fourier Descriptors (EFDs) (Khul and Giardina, 1982)
are an appropriate technique for this system, both for reducing noise in the individual
data segments and for fitting a single curve through the data segments. EFDs have
been shown to be particularly suited for biological objects, further supporting their
use for a biomedical scanner. This has been demonstrated by Jeong and Radke (2007),
where they are used to fit contours of the prostate from a series of CT scans in order
to construct a 3D model, and by Schmittbuhl et al. (2002), where they are used to
quantify the shape of human mandibles in order to analyse variability and sexual
dimorphism between individuals. A survey of many other biological applications of
EFDs is presented by Lestrel (1997). We assume that for biomedical applications,
surfaces being scanned will be smooth and the use of EFDs is thus appropriate.
The scanning of non-smooth surfaces is beyond the scope of this work.

First, a simple method of averaging overlapping segment data was implemented
whereby the section of overlapping segments is replaced by a new segmentwhose points
are the mid-points, radially, between the two overlapping segments. As suggested by
Bernardini and Rushmeier (2002), defining new estimates of actual surface points by
averaging samples fromoverlapping scans is an approach to dealingwith residual error
in the data.

Secondly, for the curve fitting step of the data manipulation stage, EFDs
are used to fit a smooth curve through the segments of each planar section.
Khul and Giardina (1982) were the first to introduce the concepts of Elliptical
Fourier Functions (EFFs) and EFDs. They proposed that a 2D continuous closed
contour can be represented, parametrically, as a function of time, V (t). Projections
of this vector function on the x- and y-axes, represented by x(t) and y(t), are
periodic with period T , where T is the time required to trace the entire contour
at a constant speed. These projections can be represented by Fourier trigonometric
series. Different levels of approximation to the closed contour represented by
x(t) and y(t) can be obtained by truncating the EFFs after different numbers of
harmonics as given by equations (6) and (7), where n equals the harmonic number
and N equals the maximum harmonic number before truncation. Complex object
profiles are thus represented with higher order harmonics.

xN (t) = A0 +
N∑

n=1

an cos
2πnt

T
+

N∑
n=1

bn sin
2πnt

T
, (6)
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yN (t) = C0 +
N∑

n=1

cn cos
2πnt

T
+

N∑
n=1

dn sin
2πnt

T
. (7)

Khul and Giardina (1982) also developed formulae for the coefficients A0, C0, an,
bn, cn and dn which do not require the evaluation of integrals; these are given in
equations (8)–(10).

A0 =
1
T

K∑
p=1

∆xp

2∆tp
(t2p − t2p−1) + ξp(tp − tp−1), (8)

an =
T

2π2n2

K∑
p=1

∆xp

∆tp

[
cos

2πntp
T

− cos
2πntp−1

T

]
, (9)

bn =
T

2π2n2

K∑
p=1

∆xp

∆tp

[
sin

2πntp
T

− sin
2πntp−1

T

]
, (10)

where

ξp =
p−1∑
j=1

∆xj − ∆xp

∆tp

p−1∑
j=1

∆tj . (11)

Similar expressions can be derived for C0, cn, and dn. EFDs are broadly defined
as the ‘output’ from the Fourier curve fit (Lestrel, 1997) and numerically describe
the contour boundary information. With these descriptors, an approximation to the
original contour can be re-created at any time in the absence of the original data.

Work has been done to develop a preprocessing technique that will automatically
identify an appropriate number of harmonics to use for a given set of data segments.
A unique harmonic number HN is found for each planar section of data segments
and is based on two parameters: the perimeter/area ratio PA for that section and a
roundness factor RF . The perimeter pm for a given section is determined from the set
of point coordinates for that contour by adding the distances between adjacent points.
The area a is found by computing the area of the polygon formed by the set of point
coordinates. PA is simply the ratio of the perimeter pm and area a. RF is a simple
metric between 0 and 1, which indicates how ‘round’ the contour is (equation (12)).
For a perfect circle, RF is 1.

RF =
4πa

pm2 . (12)

The harmonic number calculation for the kth section is given in equation (13) and
would be rounded to the nearest integer.

HNk =
1

PAk × RFk
. (13)

Figure 5 demonstrates how this harmonic calculation works for simulated data of a
square, pentagon, octagon, and arbitrary blob object. The HN values calculated for
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these data sets were 6, 5, 5, and 18 respectively. Because the pentagon and octagon
are more ‘round’ than the square, they required fewer harmonics. A larger number
of harmonics is expected for the blob object given its complexity in shape. While this
algorithmappears toprovide a reasonable harmonic number, it is not robust for objects
with sharp corners; however, since the target application for this scannerwill be smooth
objects, it is assumed that the HN metric is sufficient for harmonic calculation in this
work.

Figure 5 EFD fit using calculated HN for: (a) square; (b) pentagon; (c) octagon and
(d) arbitrary blob object (see online version for colours)

The result of the data manipulation stage is a point cloud of data representing planar
section outlines of the object. This point cloud can be fit with a surface to produce a
final 3D model.

Object reconstruction: Meshlab (2008) (Pisa, Italy), an “open source, portable, and
extensible system for the processing and editing of unstructured 3D triangularmeshes”,
was chosen as the surface reconstruction software for this scanner. Meshlab is capable
of exporting the final 3D model into many different file formats making the final
3D model versatile and open to many different applications. For converting point
clouds into triangulated 3D surface reconstructions, Meshlab implements the efficient
ball-pivoting algorithm described by Bernardini et al. (1999). It should be noted that
object reconstruction is not the main focus of this works. Consequently, the choice of
using Meshlab may be sub-optimal, but was made for completeness with convenience
in mind.
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3 Methods

This section describes the methods for two experiments, which validate the proposed
design. The first evaluates the effectiveness of EFDs for curve fitting at the
data manipulation phase and also provides a quantitative assessment of system
performance for a scanned cylinder of known dimensions. For the second experiment,
two other objects were scanned with the system to provide more qualitative results;
3Dmodels for these objects, as well as the cylinder from the previous experiment, were
generated.

3.1 EFD analysis

To demonstrate the validity of our approach to curve fitting described in Section 2.3,
a simulation was conducted whereby EFDs were used to fit a set of ideal input
data with Additive White Gaussian Noise (AWGN). This would demonstrate the
effectiveness of EFDs for reducing random noise in the absence of systemic noise.
Random white Gaussian noise with zero mean and a variance of σ2 = 3.9 × 10−3 was
added to circle data with an ideal radius of r = 9.525mm ( 38 in). The chosen variance
is an estimate of the variance in the random noise observed in the data of previous
experiments.

To demonstrate the effectiveness of using EFDs with data obtained from this
system, an experiment was conducted to reconstruct a small portion of a cylinder test
object.First, theDLTLScalibrationproceduredescribed inSection2.3wasperformed;
40 point correspondences were used to findH . Then, images forNz = 4 planar sections
of the test cylinder object with radius r = 9.525mm ( 38 in) were captured. For each
plane, M = 8 images of the laser trace on the object were captured in rotational
increments of R = 45◦. Planar sections were captured at 2mm increments in the
positive z-axis direction. In total, 32 images of laser trace segments were captured for
reconstructing the four planar sections. For data processing, the procedure outlined in
Section 2.3 was followed. In this case, only one harmonic was required to accurately
fit the test cylinder object.

The final object contours were stacked along the reconstruction z-axis. RootMean
Squared (RMS) error in point location along the section outline for each planar section
was calculated, where the error is the difference between the ideal radius and the
distance to each point on the section’s outline from the section centre. Error was
calculated using the sections’ respective centroids as the centre as well as the mean
centroid location as the centre. This is to be able to asses the individual dimensional
accuracy of sections (i.e., how close is each section to the ideal radius), as well as
accuracy in the vertical direction (i.e., if sections are translated to a mean centroid
location, how close is each section to the ideal radius).

3.2 Final 3D models

In addition to the test cylinder described in Section 3.1, 3D models were created for
two other objects: an oval cap and a miniature arm model. Since the cap and arm
were imaged during a different session, they required a new calibration; 42 point
correspondences were used in this case for findingH . Images forNz = 10 andNz = 20
planar sections were captured for the cap and arm object, respectively. For each plane,
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M = 8 images of the laser trace were captured in rotational increments of R = 45◦.
Planar sections were captured at 2mm increments in the positive z-axis direction.
For data processing, the procedure outlined in Section 2.3 was followed; the number of
harmonics used for eachof theEFDcontourswas computed according to equation (13)
and the EFD reconstructions, consisting of 100 data points per contour, were stacked
along the z-axis. 3D models of each object were generated from the resulting point
clouds using Meshlab. Scan acquisition time and data processing time were recorded
for each object.

Table 1 summarises the acquisition parameters for all the objects: namely, the
approximate object volume, the number of calibration points used for computing H ,
the vertical resolution used for the scan, the number of sections captured and the
number of points used for the EFD outlines.

Table 1 Summary of acquisition methods

Approx. No. No. points in
volume calibration Vertical No. of EFD outline

Shape scanned (mm3) points resolution (mm) sections (per section)

Cylinder 9.5 × 9.5 × 8 40 2 4 500
Oval cap 13 × 20 × 20 42 2 10 100
Model arm 20 × 25 × 40 42 2 20 100

4 Results

4.1 EFD analysis

Figure 6 shows the EFD fit for the simulated ideal circle data with AWGN.
Figure 7 is a plot of the radii obtained from the reconstruction process of the test
cylinder, both before and after the contour was fit with a smooth curve using the
EFD technique. Only the first planar section is shown; however, results were similar
for all four layers that were reconstructed for this experiment. As indicated, the
ideal radius in this case was r = 9.525mm ( 38 in). Table 2 shows the RMS error
for all sections of the test cylinder when the radius of the section is calculated
from both the sections’ respective centroids and from the mean centroid. Figure 8
shows the four planar sections of the test cylinder, fitted using EFDs and scaled
appropriately.

4.2 Final 3D models

It is difficult to quantify system accuracy for these objects without ground
truth information; however, qualitative assessment is possible by examining the
resultant 3D images. Figures 9–11 show images of the original objects, plots of the
EFD planar section point clouds, and their 3D surface reconstructions, including
the test cylinder discussed above. Table 3 summarises other results of interest
for these objects: namely, the scan acquisition time, the number of harmonics
calculated for the EFD fit, the number of vertices in the EFD point cloud, the
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data processing time, and the number of faces in the final surface reconstruction.
Scan time refers to the total time required for acquiring image data, including the
time to rotate the object and increment the camera/laser platform. Data processing
time refers to the CPU time for the computation of the EFD point cloud of planar

Figure 6 Profile of simulation data (circle with r = 9.525mm). Radius shown as a function
of theta from 0 to 2π for the noisy data before the EFD fit and after the EFD fit
(see online version for colours)

Figure 7 Profile of test object (cylinder with r = 9.525mm). Radius shown as a function
of theta from 0 to 2π for the raw data before the EFD fit (constructed from eight
segments, S1–S8) and after the EFD fit (see online version for colours)
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sections from the scan images, and does not include the surface mesh reconstruction
in Meshlab. The system takes about 40 s to capture the eight images required for
one planar section, the majority of which is mechanical rotation time of the object.
Actual image acquisition with Labview takes between 500ms and 600ms per image,
meaning that actual image acquisition time is only about 10% of the total scan
time.

Table 2 RMS error for each planar section of the cylinder object before and after translating
to the mean centroid

RMS error (mm)

Section Relative to section centroid Relative to mean centroid

1 0.0666 0.1235
2 0.2222 0.2245
3 0.0716 0.1076
4 0.0674 0.0861

Mean 0.1069 0.1354

Figure 8 Four reconstructed planar sections of a test cylinder fitted with EFDs (see online
version for colours)

Figure 9 3D reconstruction of cylinder test object (see online version for colours)



50 B.D. Bradley et al.

Figure 10 3D reconstruction of oval cap (see online version for colours)

Figure 11 3D reconstruction of miniature arm model (see online version for colours)

Table 3 Summary of scanned object results

No. of No. of Data No. of
Shape Scan time harmonics (range) vertices processing time (s) faces

Cylinder 2mins 40 s 1 404 10.41 600
Oval cap 6mins 40 s 5–6 1010 20.28 1894
Model arm 13mins 20 s 5–8 2020 27.48 2053

5 Discussion

5.1 EFD analysis

For the simulated scenario shown in Figure 6 the noise is strictly random. The
EFD fit provides a marked improvement over the noisy data; error does not exceed
0.1mm in this case. A sinusoidal shape exists, which means the EFD fit is slightly
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offset from the origin. The origin of the EFD is determined by the coefficients A0
and C0 which are essentially the mean of all the input data points (i.e., the centroid of
input points). Therefore, any result other than (0, 0) for the centroid will result in A0
and C0 not equal to zero, and hence a slightly shifted fit. Although the added noise
had zero mean in theory, it is unlikely that the mean of all points was exactly zero for
this simulation. Overall, this offset is very small.

As shown in Figure 7, the registered and averaged segments for the given planar
section of the test cylinder appear to produce a fairly good result, even before a
curve was fit to the data with the EFD technique. Errors do not exceed 0.25mm.
Although sub-mm accuracy is achieved overall, there is observable noise in the
error plot (Figure 7). This noise appears to be made up of mostly random noise.
This random error could be due to noise inherent in the measurement system
and noise in the resulting point coordinates obtained from the COG algorithm.
The subsequent EFD contour for this first layer shows a fairly close fitting through
the points using only one harmonic. Random noise is clearly attenuated in the EFD
fit, and overall error is also reduced. RMS error for this section is 0.1235mm from
the mean centroid location. The sinusoidal shape observed in Figure 6 is also present
in Figure 7, both before and after the data are fit with EFDs. As with the simulation
results, reasons for this offset are due to the A0 and C0 terms of the EFD outlines
being the mean of input data, thus centering the EFD contour at this mean. Since
the mean of input data is not necessarily equal to the centroid of the resulting EFD
fit, calculating the radius from this point would result in a slight offset and hence
the sinusoidal shape.

As shown in Table 2, mean RMS error across all sections is 0.1354 mm. Although
each radius profile is quite close to the ideal value, there are some slight issues of scale
across sections, particularly for Section 2 which has the highest RMS error (∼0.2mm)
of all sections captured. Possible sources for this could be due to the apparatus setup.
Although the camera and laser are fixed to a platform, and ideally fixed relative to
each other, slight deviations in the horizontal alignment of the laser plane with respect
to the xy-plane would change the laser profile on the object, and would thus propagate
through the data processing as an error in overall scale. Instability of the platform
could be the cause of the scaling issues. Visual inspection of the reconstructed planar
sections of the test cylinder (Figure 8) reveals that the proposed approach can produce
a planar section model, which is reasonably complete in desired external detail.

In summary, the data presented shows the advantage of using EFDs for fitting a
contour through the segment data obtained from the laser light-sectioning technique.
Although the EFD technique does not provide a substantial improvement in overall
accuracy, random error is attenuated considerably, resulting in a smooth curve that
closely matches the dimensions of the object of interest.

5.2 Final 3D models

Although no exact value of accuracy can be provided for the other objects scanned,
visually, the EFD planar section models and their respective 3D models (Figures 10
and 11) are reasonably complete in external detail. There still exists slight variation
in scale across sections, as shown by the bumpiness in the rendered 3D models;
however, these objects are quite small and these errors are still within an acceptable
tolerance for this system. The miniature arm model lacks detail in the hand region.



52 B.D. Bradley et al.

This ismostly attributed to the limitedvertical resolutionof the scan (2mmincrements),
resulting in triangulation which spans across gaps existing on the real model. This also
accounts for the flat surface on top; the next highest planar section image contained
no light reflections. The system does have the capability of scanning with finer vertical
resolution; however, this has yet to be tested.

Since it takes a fixed amount of time to capture a section, scan time increases when
moreplanar sections are captured, regardless of object complexity.With improvements
in the overall mechanical design, scan time can be reduced significantly; it is
currently limited by the mechanical movements of the apparatus, not acquisition
speed.

Given these results, the method for choosing an appropriate number of harmonics
appears to be promising; however, more work is needed to properly validate and
quantitatively assess the approach. Overall, these results are considered to be quite
good considering the low-cost components which have been used for this setup.

Current limitations of the system lie mostly with the mechanical setup, and
include servo motor rotation accuracy, structural stability, overall scan time, and the
general need to rotate the object rather than rotate the camera/laser about the object.
The volume of objects which can be scanned is currently quite small, a limitation
which can be rectified with a different zoom setting on the camera. Also, although the
collection of raw data for objects with discontinuous profiles (i.e., the finger area of
an open hand or an object with a hole through it) is possible with the current system
(because images are captured from many different views), additional data processing
would be required to represent such surfaces with EFDs.Aswith all systems employing
the laser light-sectioning technique, both the camera and the laser require a direct line
of sight to the object’s surface in order to capture surface data. This poses a limitation
when it comes to objects with concavities or hollow interiors. Improving these aspects
of the current design are topics for future work.

6 Conclusion

The accuracy results presented for the test cylinder object are considered to be well
within the realm of acceptability for biomedical applications. The sub-mm accuracy
achieved compares well with laser light-sectioning systems in the literature, as well as
some commercial systems.Given the low cost components used and current limitations
of the mechanical setup, increased accuracy is anticipated with future refinements in
the system.

As the system exists now, potential applications would be scanning of inanimate,
but still anatomical-like objects, which can be placed on a turntable and scanned,
such as a hearing aid shell or dental model. This was demonstrated by the arm model
experiment, which had anatomical-like features. A desired feature of the proposed
system will be the ability of the camera and laser system to rotate about an object
with the required number of degrees of freedom making it flexible for numerous
applications. This is particularly important for biomedical applications where the
apparatus would ideally rotate about a patient and not vice versa. This, along with an
improved mechanical setup, are topics for future work.

Overall, by including more complexity in signal processing and analysis,
we were able to use simple, inexpensive, off-the-shelf components in a straight-forward
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setup avoiding complex optical schemes. Specifically, the calibration process chosen
avoids the need to explicitly calculate extrinsic or intrinsic camera parameters or
precise component orientations. Imperfections in alignment will be quantified and
compensated for by the transformation matrix H found through the calibration
procedure. Automation of the image acquisition process is also an important feature
of the design, to help reduce the need for user intervention. The straightforward
data collection setup allows for the segments to be easily registered into the
proper coordinate system based on object rotations and camera/laser increments.
The applicability of EFDs for curve fitting has been demonstrated; by choosing this
approachwe are specifically addressing noise in themeasurement datawith a technique
particularly suited for modelling biological objects.
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