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1. INTRODUCTION

In this paper classical analytic projective geometry is
used to provide an alternate approach to characteriz-
ing the velocity performance of parallel mechanisms in
the presence of actuation redundancy as reported in
[1]. Therein the aim is to determine the ellipse with
the largest area that inscribes an arbitrary polygon.
In this context, the area of the ellipse is proportional
to the kinematic isotropy of the mechanism, while the
polygon is defined by the reachable workspace of the
mechanism, as discussed in [1]. There, the approach is
a numerical maximization problem, essentially fitting
the largest area inscribing ellipse starting with a unit
circle.

A projective collineation is a transformation that
maps collinear points onto collinear points in the pro-
jective plane. We propose to determine the general
planar projective collineation that maps the unit circle
inscribing a symmetric convex polygon onto an ellipse
that inscribes the given convex polygon. The polygon
containing the unit circle is constructed such that it
has the same number of vertices, and hence edges, as
the generally non-symmetric, but convex, polygon rep-
resenting the workspace constraints of the mechanism.
We shall call this the boundary polygon. Given that
the coordinates of the vertices of both polygons are
known, it is a simple matter to compute the transfor-
mation that maps the vertices of the symmetric polygon
onto the boundary polygon. The same transformation
is used to map the homogeneous parametric equation
of the inscribing unit circle onto the corresponding el-
lipse that inscribes the boundary polygon. The unit
circle that inscribes the symmetric polygon is, clearly,
the largest inscribing ellipse. However, the transformed
ellipse that inscribes the boundary polygon is generally
not the one possessing the largest area. An additional
step is required. In this paper we describe a simple con-
struction for convex quadrilaterals that leads to this
last step. Future work will begin with the last step,
and aim towards a generalization for arbitrary convex
polygons.

2. BOUNDARY QUADRILATERALS

We start with the case where the boundary polygon is
a convex quadrilateral. When the boundary polygon
has more than four edges a numerical approach must
be employed. However, the numerical approach can
be based on the following. Two distinct sets of four
points in the projective plane P2 uniquely determine a
projective collineation if the points in the two sets are
distinct, and if no three points are on the same line.
Let the first set of four points have the coordinates
W (W0 : W1 : W2), X(X0 : X1 : X2), Y (Y0 : Y1 : Y2),
and Z(Z0 : Z1 : Z2). Let the second set of four points

have the coordinates w(w0 : w1 : w2), x(x0 : x1 : x2),
y(y0 : y1 : y2), and z(z0 : z1 : z2).

When expressed as a vector, the ratios implied by
the homogeneous coordinates can be expressed by an
arbitrary scaling factor:

[w0 : w1 : w2]T = µ[w0 : w1 : w2]T . (1)

The corresponding affine coordinates are

xw =
µw1

µw0
; yw =

µw2

µw0
. (2)

This is why different scalar multiples of a set of ho-
mogeneous coordinates represent the same point in the
projective plane.

The projective collineation may be viewed as a linear
transformation that maps the coordinates of a point de-
scribed in a particular coordinate system onto the coor-
dinates of a different point in the same coordinate sys-
tem. The geometry can be represented by the vector-
algebraic relationship

λ

[
W0

W1

W2

]
= µ

[
t11 t12 t13
t21 t22 t23
t31 t32 t33

][
w0

w1

w2

]
. (3)

Without loss in generality, we can set ρ = λ/µ and
express Equation (3) more compactly as

ρW = Tw. (4)

The elements of the linear transformation matrix de-
pend on the details of the mapping. As it represents
a general projective collineation there are no orthog-
onality conditions on the rows or columns of T. This
means that the elements can take on any numerical
value. Thus the mapping between two points in an ar-
bitrary collineation consists of 9 variables. If we wish to
determine the mapping given a point and its image then
T represents 9 unknowns, but, because of the use of ho-
mogenous coordinates, at most 8 are independent. Still,
to remain general the scaling factor ρ must be counted
among the unknowns because the given points come
from a Cartesian coordinate system while the mapping
is projective. The result is that the coordinates of four
points, along with those of their images, are enough to
uniquely define the eight independent elements of the
transformation matrix and the four independent scaling
factors, ρi, i ∈ {1, 2, 3, 4}.

The vertices of an arbitrary quadrilateral represent
four points W , X, Y , and Z. We consider the image of
these four points w, x, y, and z, to be the vertices of the
square, containing the unit circle, centred on the origin
of the coordinate system in which the quadrilateral is
defined. Now a set of equations must be written so
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that the elements of T can be computed in terms of
the point and image coordinates:

t11w0 + t12w1 + t13w2 − ρ1W0,
t21w0 + t22w1 + t23w2 − ρ1W1,
t31w0 + t32w1 + t33w2 − ρ1W2,
t11x0 + t12x1 + t13x2 − ρ2X0,

...
t31z0 + t32z1 + t33z2 − ρ4Z2.

(5)

Equations (5) represent 12 equations in 13 unknowns,
however we can set t11 = 1. It is a simple matter to
solve for the 12 unknowns, however we only require the
eight elements of T.

The ellipse possessing the largest area inscribing the
unit square is clearly the unit circle. This inscribing
ellipse can be transformed into an ellipse that inscribes
the boundary quadrilateral by mapping the parametric
equation for the unit circle using T. The matrix T is
a general projective transformation. It preserves the
properties of being a line and of being a conic (that
is points on lines are mapped onto points on lines, and
points on conics are mapped onto points on conics), but
it possesses no metric invariants. Thus, the property of
being the largest inscribing ellipse is annihilated.
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Figure 1. UNIT SQUARE AND BOUNDARY QUADRI-
LATERAL.

3. EXAMPLE

Consider the unit square and general quadrilateral
shown in Figure 1. The homogeneous coordinates of
the vertices of the boundary quadrilateral are W (1 :
14 : 12), X(1 : 11 : 2), Y (1 : 7 : 4), and Z(1 : 12 : 11),
while the image points, the square vertices, have ho-
mogeneous coordinates w(1 : 1 : 1), x(1 : 1 : −1),
y(1 : −1 : −1), and z(1 : −1 : 1). The projective
collineation defined by the vertices of the two quadri-
laterals is

T =
1

6445

[ 6445 1027 −1442
−29123 4447 −2468
−11035 −721 2054

]
. (6)

The unit circle, centred on the origin, inscribing the
unit square is the largest area inscribing ellipse. The
matrix T is used to transform its parametric equation.
But, because of how the problem has been posed, the
circle represents the image of the ellipse that inscribes
the boundary quadrilateral. To obtain the parametric

equation of the desired ellipse, the inverse of T pre-
multiplies the unit circle parametric equation:

e = T−1c, (7)

where c = [1 : cos(θ) : sin(θ)], and the resulting para-
metric ellipse equation is

e =

[ 8 cos(θ)− 29 sin(θ)− 55
20 cos(θ)− 433 sin(θ)− 651
50 cos(θ)− 438 sin(θ)− 524

]
. (8)
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Figure 2. TRANSFORMED INSCRIBING ELLIPSES.

4. CONCLUSIONS AND FUTURE WORK

It is immediately apparent that the projection in the
Cartesian plane of the collineation translates, rotates,
and dilatates the quadrilateral and its inscribing ellipse
such that it becomes the square centred on the origin
inscribed by the unit circle. The ellipse centre is on the
line defined by the midpoints of the quadrilateral diag-
onals, see Figure 2. In fact, all inscribing conics of the
quadrilateral have centres which lie on this line. The
conic is an ellipse if, and only if, the centre point lies be-
tween the diagonal midpoints. Hence, the largest area
inscribing ellipse centre point lies on this line between
the diagonals.

The general implicit equation of a conic section is
ax2 + by2 + cxy + dx + ey + f = 0. The coefficients
of the implicit equation of the family of inscribing el-
lipses can be determined in terms of the parameter t in
the parametric space of the diagonal midpoint line. Fi-
nally, determine the area function for the ellipse, which
depends on t: A(t) = A(a(t), b(t), . . . , f(t)). The local
extremum of A(t) yields the inscribing ellipse possess-
ing the largest area. The t that satisfies dA/dt = 0
yields the coordinates of the ellipse centre. This pa-
rameter, together with the four boundary quadrilateral
edges uniquely determines the elllipse.

After the analytical details of this last step are estab-
lished we shall proceed to the problem of approximat-
ing T in a least squares sense given boundary polygons
possessing greater than four vertices.
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