
A UKF-based orientation estimator for the Atlas

platform

by

Jesse Linseman

A Thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Applied Science

Ottawa-Carleton Institute for

Mechanical and Aerospace Engineering

Department of Mechanical and Aerospace Engineering

Carleton University

Ottawa, Ontario, Canada

January 2010

Copyright c©

2010 - Jesse Linseman

Abstract

This dissertation presents a novel algorithm for real-time estimation of the orientation

of a six degree of freedom motion simulation platform using an unscented Kalman

filter (UKF). A low cost inertial sensor is more an instrument for higher frequencies

but performs poorly over time due to high drift and needs an absolute sensor such

as VOS to be corrected. Sensor fusion is used to obtain an improved estimate given

measurements from two sensors: an inertial orienting sensor (IOS), and a visual ori-

enting sensor (VOS). In order to overcome representational singularities associated

with an unbounded orientation workspace of the platform, quaternions have been

utilized within the unscented Kalman filter due to the characteristics of the Atlas

simulator motion. IOS stabilized measurements act as direct input to the UKF algo-

rithm and are further improved using statistical information about the gyro scaling

factors, misalignments and drift provided by the manufacturer specifications. These

errors are estimated and corrected using external absolute orientation measurements

provided by a digital camera. The VOS measures the absolute orientation of the

platform, processes the images, and obtains an estimated orientation quaternion, but

at a slower frequency of approximately 20 Hz, compared to the IOS which operates

at 76 Hz. Having concomitant orientation measurements sets up an opportunity to

improve the overall accuracy of the orientation measurement. As well, online sensor

calibration can be done to eliminate low frequency drift and other errors in the IOS

measurements using knowledge of the latency in the data. However, this requires a

ii

method to combine the measurements; enter the quaternion based indirect UKF for

sensor fusion with sensor error estimation and out of sequence measurement (OOSM)

handling developed herein. Simulation of the filter was conducted accounting for the

possibility of out of sequence measurements, measurement noise, and varying sensor

frequencies. Real IOS data was recorded and passed through the UKF to examine

the validity of the filter. Results of the simulation and experiments are detailed and

discussed. The UKF is able to estimate the orientation, while at the same time

compensate online for misalignments and drift caused by the IOS.

iii

I would like to dedicate this work to my fiancé Katherine Ingrey for her continual

belief in me and her loving care.

iv

Acknowledgments

I would like to acknowledge the following individuals for their aid and guidance:

2009 Carleton University M.A.Sc. graduate, Kyle Chisholm, who helped with my

understanding of utilizing a quaternion based UKF within Matlab. Particularly, your

Matlab coding skills far exceeded my initial understanding. Without this help I would

still be struggling.

Carleton mechanics Alex & Kevin for helping to construct the IMU testing bracket

for use in my true data testing.

2009 Carleton University M.A.Sc. graduate, Ali Morbi, who provided his time,

help and support using the encoded motor for acquiring synchronized recorded test

data while running Matlab.

CUSP students, years 2007-2009 for all their documented work. Brian Rasquinha,

your SSF code was well documented and easy to follow.

Finally, Carleton University, Professor Mojtaba Ahmadi & Professor M.John.D

Hayes, for your knowledge and support leading toward completion of each task.

v

Table of Contents

Abstract ii

Acknowledgments v

Table of Contents vi

Nomenclature xii

1 Introduction 1

1.1 Motivation . 1

1.1.1 The Atlas Simulation Platform 1

1.2 Background . 2

1.2.1 Atlas Sensors . 2

1.2.2 Inertial Orientation Sensor (IOS) 3

1.2.3 Vision Orientation Sensor (VOS) 5

1.2.4 Unscented Kalman Filtering 7

1.2.5 Developing An Algorithm for Attitude Estimation of the Atlas

Platform . 8

1.2.6 Direct vs. Indirect-Model of the Atlas Platform 11

1.2.7 Sensor Fusion within Atlas . 12

1.3 Objectives & Approach . 13

1.4 List of Contributions . 15

vi

1.5 Outline . 15

2 Quaternions 17

2.1 Quaternion Multiplication and Rotations 18

2.2 Quaternion from Axis-Angle . 19

2.3 Axis-Angle from Quaternion . 21

2.4 Rotation Matrix from Quaternion . 23

2.5 Quaternion from Rotation Matrix . 23

3 A Quaternion Based Indirect Unscented Kalman Filter with Sensor

Error Estimation for use in Atlas 26

3.1 Atlas UKF Preliminaries . 26

3.2 Atlas Indirect UKF with Sensor Error Estimation 28

3.2.1 Choosing the Augmented State Vector 29

3.2.2 A Breakdown of the Atlas IOS Process Design 31

3.3 Prediction . 35

3.4 Update . 38

3.4.1 Out of Sequence Measurement Handling in Atlas UKF 38

4 Using the IOS within Matlab for Atlas UKF testing 44

4.0.2 Operating the IOS within Matlab 46

5 Simulation Testing of the Atlas UKF and Measured Data Results 49

5.1 Simulation Tests . 49

5.1.1 Simulated Noise . 50

5.2 Dynamic Test of the UKF using measured IOS Data 53

5.2.1 Description of Tests . 54

5.2.2 Choosing an IOS Command 58

5.2.3 Data Synchronization . 62

vii

5.3 Secondary filters used for comparison 65

5.3.1 Simple Sensor Fusion (SSF) 65

5.3.2 UKF with No Sensor Error Compensation (UKF NoSE) . . . 66

5.4 Filtering Results . 67

5.4.1 30 second test results . 68

5.4.2 120 second test results . 73

6 Conclusions and Recommendations For Future Work 85

6.1 Conclusions . 85

6.1.1 Oriention Estimator . 85

6.1.2 Simulation . 86

6.1.3 Experimentation . 86

6.2 Future Recommendations . 88

List of References 90

Appendix A Finding the Mean Quaternion 94

A.1 The Intrinsic Gradient Decent Algorithm 94

Appendix B VOS & IOS Specifications 96

B.1 VOS Intrinsic Parameters . 96

B.2 VOS Extrinsic Parameters . 96

B.3 VOSParameters.m . 98

B.4 IOS Detailed Specifications . 101

B.5 IMUspecs.m . 101

B.6 Motor/IMU Test Setup Specifications 104

Appendix C Main Matlab Functions 106

C.1 RUN MAIN PROGRAM.m . 106

viii

C.2 UKF.m . 106

C.2.1 Estimate measurement z hat and covariance Pzz 112

C.2.2 For speed savings . 113

C.3 IOSprocess.m . 115

C.4 UKF2.m . 117

C.5 IOSprocess2.m . 118

C.6 senscomp.m . 120

C.7 VOSprocess.m . 122

C.8 3DMG operate.m . 127

C.9 Simple Sensor Fusion Function . 134

C.10 UKF No Sensor Error Estimation Function 137

C.11 TrueTraj.m . 146

C.12 getMotorAng.m . 147

C.13 Convertmotordata.m . 148

C.14 UKFsim.M . 160

Appendix D Smaller Matlab functions 176

D.1 meanqRotation.m . 176

D.2 aa2q.m . 178

D.3 q2aa.m . 179

D.4 qmultiply.m . 179

D.5 qerror.m . 180

D.6 R2q.m . 180

D.7 q2R.m . 182

D.8 sign mag.m function . 182

Appendix E VOS Process In Detail 184

E.0.1 The VOS Perspective Projection Camera Model 185

ix

E.0.2 VOS Process . 189

x

xi

Nomenclature

Symbol Description

[φ, θ, ψ] Roll, pitch, yaw Eulers (phi, theta, psi)

σφ,θ,ψ Incremental Euler rotations

Ω Atlas angular rate vector

Ω̇ Atlas angular acceleration vector

ωx,y,z IOS angular rates

qrot Rotation quaternion - used to find equivalent axis-angle

∆Θ Change in orientation

vRu Rotation matrix from ’u’-frame to ’v ’-frame

vTu Translation matrix from ’u’-frame to ’v ’-frame

nPx,y,z Sphere marker position wrt ‘n’-frame

px′,y′ Image plane point

pu,v Pixel point

sx,y VOS scale factors

fx,y VOS focal length factors

xii

Symbol Description

M VOS perspective projection matrix

rs Atlas sphere radius

xak ‘Augmented’(a) state vector

x̄ Sample mean

Pxx,k State covariance matrix at time step ‘k’

QIOS IOS process noise covariance matrix

Pa
xx,k ‘Augmented’(a) state covariance matrix at time step ‘k’

RV OS VOS Measurement noise covariance matrix

qk 4-component orientation quaternion

bg,k Bias gyro error terms

sfg,k Scale factor gyro error terms

mag,k Misalignment factor gyro error terms

ve,k Rotation vector noise

vbg,k Gyro bias noise

vsg,k Gyro scale factor noise

vmag,k Gyro misalignment factor noise

kg,sf Gyro scale factor error as function of true rate

kg,ma Gyro misalignment factor error as function of true rate

xiii

Symbol Description

Gg,k− 1
2

Interpolated ‘G ’-matrix of sensor error factors

∆tk IOS measurement timestep

χai ith State sigma point

Wi Weight associated with the ith state sigma point

κ UKF scaling parameter

Yai Transformed ‘augmented’(a) sigma points

f(.) IOS state process function

h(.) VOS observation function

x̄a−k ,P−xx,k ‘a-priori’ estimates

Φi, i = 1, ..., 2n axis-angle rotation vector errors

z̃k−N Lagged (k-N) innovation vector

Zi,k−N Latency delayed transformed observation sigma points

zV OS,k−N VOS measurement state vector

z̄−k−N ‘a-priori’ mean observation estimate

P−zz,k−N ‘a-priori’ observation covariance matrix

Pxkzk−N Cross-correlation-covariance-over-time matrix

Pvv,k−N Innovation covariance matrix

K̃k,N Kalman gain term

xiv

Symbol Description

q̃innov ,k−N Innovation quaternion

x̄+
k ‘a-posteriori’ state estimate

P+
x,k ‘a-posteriori’ state covariance matrix

xv

Acronym Description

CUSP Carleton University Simulation Project

UKF Unscented Kalman Filter (with Sensor Error Estimation)

UKF NoSE Unscented Kalman Filter (No Sensor Error Estimation)

SSF Simple Sensor Fusion

EKF Extended Kalman Filter

UT Unscented Transform

ADGC Attitude Determination and Gyro Calibration Filter

MARG Magnetic Angular Rate Gravity Sensor

MEMS Micro-Electrical Mechanical System

CMM Coordinate Measurement Machine

VOS Vision Orientation Sensor

IOS Inertial Orientation Sensor

IMU Inertial Measurement Unit

INS Inertial Navigation System

OOSM Out of Sequence Measurement

AWN Angular White Noise

ARW Angular Random Walk

RRW Rate Random Walk

xvi

Chapter 1

Introduction

1.1 Motivation

1.1.1 The Atlas Simulation Platform

Estimation of three-dimensional (3D) position and orientation in a real-time simula-

tion application necessitates an efficient means for gathering ‘noisy’ sensor measure-

ments and ‘filtering’ out the error. The Atlas simulator, being developed at Carleton

University as a fourth year project, is a unique platform that allows for unconstrained

rotational freedom as shown in Figure 1.1. It is expected that Atlas will be used as

an alternative for a flight simulator platform as compared to the industry standard

Stewart platform [1]. However, due to a much greater range of motion, obtaining

an optimal estimate of the orientation of the Atlas platform is not a simple matter.

Some very unique characteristics of the Atlas platform add to the overall complexity

in the design of an effective orientation estimation algorithm. The Atlas sphere is

manipulated using three dual row omnidirectional wheels which maintain continuous

contact with the sphere, but induce significant undesired vibrations which add to the

difficulty of estimating the motion [2]. Moreover, there can be slippage between the

contact point of the wheel and the sphere surface creating difficulty in measuring

1

2

Figure 1.1: The AtlasLite motion platform.

rotational displacement. Attitude estimation of the Atlas platform is a non-linear

problem that prevents the use of a classical Kalman filter. Add to this the inherent

singularity issues that are posed when using Euler angles and a formidable control

problem presents itself.

1.2 Background

1.2.1 Atlas Sensors

The Atlas simulator currently has a number of different sensors with the capability of

determining the attitude of the sphere. Each omnidirectional wheel has an encoder

which can directly measure the rotation angle of the wheel. However, the omnidi-

rectional wheels are known to slip and therefore this measurement can not be solely

3

relied upon. Future attempts utilizing a model of the slip may allow for encoder

measurements to be used in some manner to determine the sphere’s orientation, but

at this point they are not used for reliability reasons. During the undertaking of

this research, two different sensors were examined and deemed to be better suited for

determining the Atlas sphere attitude: the Inertial Orientation Sensor (IOS) and the

Vision Orientation Sensor (VOS).

1.2.2 Inertial Orientation Sensor (IOS)

The IOS, as it is referred to in Carleton University’s simulator project (CUSP) doc-

uments, consists of a Microstrain 3DM-GX1 Inertial Measurement Unit (IMU), as

shown in Figure 1.2a. It contains orthogonally mounted gyroscopes, accelerometers

and magnetometers, the signals from which are combined in a compensation algo-

rithm to stabilize the outputs. As a result the 3DM-GX1 can provide orientation

information, in either Euler angles, rotation matrix or quaternion representation, as

well as the angular rate and translational accelerations. The IMU is able to trans-

mit wireless data using a Sena ParaniSD-100 Bluetooth adapter. The IMU is in a

strapdown configuration, where all inertial sensors (gyros and accelerometers) are stiff

mounted (strapped down) inside the Atlas sphere, as shown in Figure 1.2b. Hence,

the IOS senses the Atlas sphere dynamic motions.

4

(a) The Microstrain 3DM-GX1 IMU.

(b) The 3DM-GX1 strapped-down inside the AtlasLite motion platform.

Figure 1.2: The 3DM-GX1 installed within the AtlasLite motion platform.

5

Figure 1.3: The AtlasLite technology demonstrator and digital camera setup.

1.2.3 Vision Orientation Sensor (VOS)

The IOS is able to sense the high frequency dynamics of the Atlas sphere but contains

low frequency drift and sensor errors. The VOS is a complementary filter, able to

correct the IOS measurement and compensate for this low frequency drift. As of

August 2009, the VOS comprised of a digital camera fixed to a mount which focused

the camera toward the Atlas sphere as shown in Figure 1.3 [3].

6

Using Carleton University’s coordinate measurement machine (Faro CMM), 32

uniquely coloured markers have been placed at precise known locations on the outside

of the AtlasLite sphere. Observing markers in an image, the camera software can

distinguish their colours from which to lookup their corresponding local sphere frame

coordinates. All 32 local sphere coordinate locations are recorded in a Matlab array

file that was created during their CMM placement. Figure 1.4 shows the AtlasLite

during the CMM marker placement process.

Figure 1.4: The marker placement on the exterior surface of the AtlasLite sphere
using CMM.

Using Matlab, Figure 1.5 is a 3D plot that displays the current 32 marker locations

7

surrounding the sphere’s centre (local sphere frame origin). These points are what

is currently available to test a UKF since at the time of the writing of this thesis,

the VOS was undergoing modifications to improve the marker colour recognition

capabilities for improved dynamic orientation measurements. Appendix E lists further

details of the VOS.

Figure 1.5: A Matlab representation of 32 local sphere marker positions (mm),
LPx,y,z.

1.2.4 Unscented Kalman Filtering

Unscented Kalman filtering is highly recognized as a useful estimation method when

non-linear relationships exist, as is the case for the Atlas simulator rotational motion.

A quaternion representation of the orientation is computationally effective and avoids

problems of representational singularities [4], however quaternions are not easily vi-

sualized owing to their abstract 4 dimensional characteristics. Proper mathematical

techniques for composing quaternions within the unscented Kalman filter must be

well understood or errors may ensue. Use of quaternions has been investigated and

8

shown to solve issues arising due to representational singularities, however, several ex-

tensions and adaptations to any straight forward UKF need to be recognized in order

to incorporate an estimator’s use within Atlas. Algorithmic procedures to properly

convert between quaternions and other useful forms of orientation representations

must be performed routinely to handle possible representational rotation singularity

issues that may arise due to the Atlas simulator platform’s unconstrained rotational

freedom.

1.2.5 Developing An Algorithm for Attitude Estimation of

the Atlas Platform

There have been many advances in Kalman filtering since it was first developed in

1961 by R.E. Kalman. An introduction to the basic Kalman filter can be found in

Maybeck [5]. A Kalman filter is an optimal estimator of linear processes. However,

if a process is non-linear, as in the case of the Atlas platform which can rotate about

any axis through any number of degrees, another filter is sought; either the extended

Kalman filter (EKF) or the unscented Kalman filter (UKF).

In 2007, Ahmadi proposed estimation of orientation of a rigid body using an

error-state EKF which utilizes quaternions measured from a magnetic, angular rate,

gravity (MARG) sensor [6]. Using a sampling time of 0.001 seconds a simulation was

performed for a time interval of 25 seconds using the accelerometer and magnetometer

as the aiding sensor measurements to correct the three orthogonal solid-state rate

gyros. The simulation results for simultaneous rotations about all three axes indicate

that EKF data fusion technique is feasible and better than integrating orientation

kinematics.

Seeking a method to formulate more precise estimates for non-linear systems

is what led to the unscented Kalman filter. Using the unscented transformation

9

(UT)(see Julier et al. [7], [8]), a set of sigma points are carefully chosen to encompass

the sample mean and sample covariance of a measurement. These sigma points can

then be propagated through any non-linear process, and the mean and covariance of

the probability density function recovered. This eliminates the cumbersome deriva-

tion and evaluation of Jacobian/Hessian matrices making it much easier to implement

than an EKF.

In 2003, Laviola performed comparison on unscented and extended Kalman filter-

ing for estimating quaternion motion [9]. He found that both UKF and EKF can be

used for virtual reality applications such as for human head motion tracking. Using

a UKF, however, with each added state there is added computational demands since

a larger covariance matrix is created and must be square rooted. Laviola found that

the UKF did not provide any additional benefit in this case due to the simplicity of

the Jacobian calculations for the process model. However, it was deemed the motion

dynamics would need to have the important characteristic of small angle deviation

and be sampled at relatively high rates to make use of the quasi-linear behaviour of

quaternion motion estimation. For the case of the Atlas platform, the small angle

deviation can not be assured since rotation is unlimited and can occur about any

rotational trajectory. It is also speculated that since Atlas may undergo rapid rota-

tions, and since the IOS has a maximum wireless sampling rate of 76 Hz, this may in

some cases cause an EKF to become divergent or unfeasible.

In 2003, Kraft proposed a quaternion formulation utilizing the UT [4] to estimate

the real-time change in orientation of a rigid body from measurements of its accelera-

tion, angular velocity and magnetic bearing. Kraft outlines several extensions to the

original UKF which are necessary to treat the inherent properties of unit quaternions,

which makes it a valuable tool for research.

In 2005, Yuanxin Wu et al. [10], outlined the basic difference between an aug-

mented and non-augmented UKF. The difference generally favours the augmented

10

UKF since sigma points only need to be produced once in a recursion. The general

mathematical form of this recursive method is further utilized within the Atlas filter.

Quang M. Lam et al. [11] illustrate the advantages of using an attitude determi-

nation and gyro calibration (ADGC) filter under rapidly changing dynamic operat-

ing conditions to reduce the performance degradation often associated with low cost

IMUs. In this 15 state filter, the effects of scale factors and misalignment factors are

estimated online rather than calibrated offline. Using estimates of gyro error sources

allows the filter to continue operating for short periods of time without the aiding

sensor. Following from this thesis, the formulation of a ‘G’ matrix was adapted herein

to estimate sensor error terms within the Atlas attitude UKF estimator.

In 2004, Eun-Hwan Shin developed a quaternion based UKF for integration of GPS

and micro electrical mechanical systems (MEMS) inertial navigation system (INS) to

overcome some of the limitations of the EKF [12]. The state vector includes position,

velocity, attitude, and sensor biases, as well as scale factors with position informa-

tion from the differential GPS (DGPS) solution used as the measurement updates in

the UKF. Shin further demonstrates that with the UKF, error-prone Jacobian and

Hessian computations are avoided and varying error models can be unified under one

approach [13]. The added benefit of this approach is that large initial uncertainties

in roll, pitch and yaw can also be allowed. Shin details an augmented system process

model design with sensor error terms which has been further adapted for use with

the Atlas IOS in this thesis [14].

To solve the problem that the weighted mean computation for quaternions does

not produce an estimate in unit quaternion space, Yee-Jin Cheon et al. derived a

weighted mean computation method for averaging quaternions in rotational vector

space [15] for use in the KOMPSAT-1. The method showed that treating process

noise as a rotation vector is a more suitable modeling approach than representing it

as the vector part of a quaternion.

11

In order to compensate for OOSM, Julier et al. [7] offer solutions to optimally fuse

latent sensor data in both linear and general nonlinear systems. Suggestions from this

text have been utilized to modify the Atlas UKF developed herein.

Making full use of unit quaternions, the filter designed for the Atlas platform uses

an error state modeling (indirect) formulation that avoids the necessity to model the

dynamics of the simulator.

1.2.6 Direct vs. Indirect-Model of the Atlas Platform

It is important to recognize the difference between the total state space vs. error

state space formulation of the filtering problem (also known as direct vs. indirect

filtering) [5, 6]. In the total state space formulation the model for the filter is a set

of dynamic equations governing the state of the system. The states would include

orientation and the inputs to the filter would need to include both gyro and vision

measurements. Attempting to use a full dynamic (direct) modeling approach poses

serious drawbacks since the model would need to account for wheel slip, varying

torques, varying inertial masses, buffeting between omni-directional castor wheels

and vibration from the dual row omnidirectional wheels. The dynamic model would

require a very large number of states and the added complexity would not always

yield the expected results. As outlined in Ahmadi [6], dynamic modeling has the

following drawbacks in this case:

• Dynamic modeling would need to be redone for any modification made to the

simulator platform. i.e. a slightly different platform would require a new esti-

mator.

• Dynamic modeling would require a very large number of states, thus increasing

the computational burden.

12

• Dynamic modeling and the added complexity do not always produce the ex-

pected results.

• Precise modeling of the interaction of the platform and the environment is

sometimes impossible.

Difficulty arises to continually update items such as mass, and moments of inertia

for the ever changing platform. In the error state formulation, the Kalman filter

estimates the errors in the gyro information using the difference between gyro and

vision data as the measurements.

1.2.7 Sensor Fusion within Atlas

By utilizing an indirect formulation, dynamic modeling of the Atlas sphere is all

together avoided. Indirect (also referred to as the error-state) UKF formulation is

more commonly used in scenarios in which an external sensor is available to observe

a strapdown internal sensor such as a gyroscope. Often, due to inaccuracies of torque

models, the indirect filter is found to be more accurate [6, 16]. For this reason, in

order to circumvent these issues, most attitude estimation applications in aerospace

use gyros in a dynamic model replacement mode. The indirect modeling approach

can be used so long as there exists sufficient sensing of the high frequency angular

motion [16,17]. Because the Atlas sphere houses the IMU, the IMU gyros follow the

high frequency dynamics very accurately, and there is no need to model the dynam-

ics explicitly. This is commonly known as a ‘strapdown’ configuration with further

examples described in Titterton [18]. Changes to the platform mass, center of grav-

ity, possible wheel slip, and torques can all be ignored in a strapdown formulation.

Simply stated, with indirect modeling of the Atlas sphere, the dynamics of the sys-

tem are completely ignored and the system is treated as a black box. The error

state formulation is normally used for externally aided inertial navigation systems

13

because of its many benefits including relative simplicity and reduced computation

requirements. Treating the IOS in this manner eases future implementation into the

full scale platform since the IOS itself can be removed and re-positioned inside an

eventual full-scale platform. Sensor fusion is possible when two observations of the

same event are available. The indirect UKF algorithm proposed in this thesis uses

the IOS along with the VOS data to improve upon orientation quaternion estimates

from either sensor alone.

1.3 Objectives & Approach

Investigation into various versions of the unscented Kalman filter detail capabilities

which can handle some fundamentally challenging issues common to Atlas, such as

latency witnessed in the arrival of measurements from the VOS. In this thesis, the

attempt is to adapt each of these capabilities into one algorithm to allow proper

fusion of two sensor measurements allowing an accurate orientation estimate to be

maintained.

As it stands currently, the Atlas simulator has two sensors capable of accurately

estimating the orientation of the sphere in real-time. Understanding each unique sen-

sor is important for understanding how to properly fuse both measurements within an

estimation filter. Process models for each sensor are needed to properly characterize

the dynamic relationship that exists between each sensor’s output and the noise that

is associated with each in order to obtain an improved estimate of orientation using

both sensors. In this effort, it is important to understand sources of errors/noises

in each sensor, which corrupt each measurement, and their possible influence during

motion of the sphere.

In this thesis, in order to set one fusion filter apart from other versions, simulation

14

is used to characterize various fusion filters and determine their efficacy. The simula-

tion is versatile enough to handle various sensor frequencies and test varying rotation

rate profiles to properly assess each filter’s efficacy. By simultaneously following a

known rotation rate profile using an encoded motor while recording measurements

from the internal IOS, a measured data set is acquired that can also be used for

purposes of testing each filter.

Real-time implementation will require a fusion filter to be robust and efficient, in

particular immune to representational singularities. In summary, the major objectives

of this thesis are:

1. Adapt and prove the design of an unscented Kalman filter algorithm for use

within the Atlas simulator platform. The algorithm should be able to fuse in-

formation from the IOS and VOS sensors, handle specified dynamic rotational

motion typical within the Atlas platform, and ultimately improve upon either

sensor measurement by itself, within outlined specifications for the Atlas plat-

form [19]. The algorithm should also be robust during the entire process of

estimating any arbitrary 3D orientation with the ability to handle inertial drift

terms inherent to the IOS, and finally be able to handle known OOSM from the

VOS throughout any dynamic trajectory expected for the Atlas platform.

2. Create a simulation which can test the estimation algorithm for various nonlin-

ear trajectories to show the efficacy of the developed algorithm for eventual use

within the Atlas simulator platform.

3. Demonstrate through the use of simulation and experimentation that such an

algorithm would be more effective at estimating the Atlas platform’s dynamic

rotational motion compared to using either sensor by itself.

4. Provide an experimentation setup that would be useful to test the algorithm

15

for future implementation within the Atlas platform and detail the IOS (3DM-

GX1) optimal mode of operation for use within the Atlas platform.

1.4 List of Contributions

The following novel research contributions are presented in this thesis.

1. An adapted version of an unscented Kalman filter is introduced which satisfies

all the research objectives for the Atlas simulator. In doing so, a unique estima-

tion algorithm was developed which can now be implemented within the Atlas

simulator platform for improved orientation estimation using both the VOS and

IOS.

2. A Simulation program is developed in Matlab to verify the adapted unscented

Kalman filter for use within the Atlas platform showing that there is no diver-

gence within the operational range.

3. An experimental procedure and test setup is developed with all the required

software to communicate and process the IOS data in Matlab which can be

used to record a known dynamic rotational trajectory followed by the IOS.

Using this experimental setup, measured data is used to test the optimal mode of

operation of the IOS for use in the Atlas simulator and to validate the orientation

estimation algorithm. The code can be reused in the future real-time control of

the Atlas platform.

1.5 Outline

This section provides an overview of the remaining chapters within this thesis.

16

Chapter 2: Quaternions This chapter outlines the quaternion algebra used

throughout the thesis. The equations in this chapter are continually referred to

for guidance to the reader.

Chapter 3: The Atlas Quaternion Based Indirect UKF with Sensor Error Estimation

This chapter outlines the portions that have been adapted to create the Atlas

unscented Kalman filter, highlighting the prediction and update steps.

Chapter 4: Operation of the IOS within Matlab for the Atlas UKF Testing

This section details the Matlab code developed for communicating with the

IOS and recording measurements. It also details the IOS modes of operation

again referencing code listed in appendices.

Chapter 5: Simulation Testing of the Atlas UKF and Measured Data Results

This chapter discusses the results from numerous verification experiments

with comparison made to two other filter versions. The results validate the

estimation algorithm developed as a method for determining the attitude of

the Atlas platform by fusing VOS and IOS.

Chapter 6: Conclusions and Recommendations This chapter summarizes the

research findings and discusses possible improvements and future steps for im-

plementation.

Chapter 2

Quaternions

The Atlas simulator attitude (orientation), is represented by a four-element quater-

nion which has the ability to represent any 3-D orientation. First developed by Sir

Rowan Hamilton in 1853 [20], with ideas from both vector and matrix algebra, the

quaternion q may be viewed as a linear combination of a scalar q0 and a spatial vector

~q. A quaternion, q, can be defined as a complex number

q = q0 + q1i + q2j + q3k, (2.1)

with (q0, q1, q2, q3) ∈ R and where i, j,andk are three orthogonal unit spatial vectors.

The quaternion used for representing a rotation in the Atlas simulator is reduced

from four to three degrees of freedom, as it satisfies a single normalization constraint

given by

qTq = 1, (2.2)

where

i2 = j2 = k2 = ijk = −1.

Quaternions offer a representational singularity-free description (as opposed to

17

18

Euler angles). Rotations are computed more effectively as compared to rotation

matrices [4]. A few important quaternion operations are outlined in the following

sub-sections which will be adhered to for the remainder of this text.

2.1 Quaternion Multiplication and Rotations

Multiplication in quaternion vector space plays a crucial role in orientation kinemat-

ics and is defined differently from arithmetic multiplication [4], [21]. For two unit

quaternions qa and qb, the quaternion multiplication is defined as

qa ⊗ qb =



qa0 −qa1 −qa2 −qa3

qa1 qa0 −qa3 qa2

qa2 qa3 qa0 −qa1

qa3 −qa2 qa1 qa0





qb0

qb1

qb2

qb3


,

(2.3)

where

qa =

[
qa0 qa1 qa2 qa3

]
; qb =

[
qb0 qb1 qb2 qb3

]
.

Note: Quaternion multiplication is non-commutative: that is qa ⊗ qb 6= qb ⊗ qa.

Quaternion multiplication is used to perform successive rotations. The rotation

quaternion qab which fulfills rotating from quaternion orientation qa to quaternion

orientation qb using

qb = qab ⊗ qa (2.4)

19

is simply given by

qab = qb ⊗ q−1
a , (2.5)

where

q−1
a =

q0 − q1i− q2j− q3k

q2
0 + q2

1 + q2
2 + q2

3

. (2.6)

Note: Since pure rotations can be represented by unit quaternions, often q−1
a is simply

the conjugate since the above denominator is 1. That is, qa is a normalized unit

quaternion.

2.2 Quaternion from Axis-Angle

Axis-angle is used to parameterize a rotation by two values: A unit vector pointing

from the origin to a point positioned an absolute distance of 1 unit away as illustrated

in Figure 2.1, and an angle describing the magnitude of the rotation about the axis.

The rotation occurs in the sense prescribed by the right hand rule.

This representation evolves from Euler’s rotation theorem, which implies that

any rotation or sequence of rotations of a rigid body in a three-dimensional space is

equivalent to a pure rotation about a single fixed axis [23].

The axis-angle representation is equivalent to the more concise rotation vector

representation. In this case, both the axis and the angle are represented by a non-

normalized 3 component vector codirectional with the axis whose magnitude is the ro-

tation angle. This 3 component rotation vector is used to represent the IMU/Aircraft

orientation (phi φ, theta θ, psi ψ) corresponding to the current roll, pitch and yaw an-

gular positions of the IMU away from initial rest respectively as illustrated in Figure

2.2.

20

Figure 2.1: A unit vector depiction along the [1,1,1] axis, [22]

Figure 2.2: Local IMU/Aircraft Coordinate System, [22]

21

The concise axis-angle rotation vector representation, Θ, can be transformed into

a quaternion rotation using

qrot =


cos

(∥∥Θ

∥∥
2

)
0.5 ∗ sin

(∥∥Θ

∥∥
2

)
∗Θ

 , (2.7)

where ∥∥Θ
∥∥ =

√
σ2
φ + σ2

θ + σ2
ψ,

and σφ,σθ, and σψ are the variables which handle integration. They are obtained by

integrating the IMU angular rate data from the local frame (2.8) using

Θ = σφ,θ,ψ =

∫ tk+1

tk

ωx,y,zdt, (2.8)

which for a given short incremental IMU time interval ∆t can be discretized using

Θ̃ = σφ,θ,ψ = ωx,y,z ∗∆t. (2.9)

2.3 Axis-Angle from Quaternion

Axis-angle representation is only one possible way to represent the rotation of a solid

3D object. Simply stated, axis-angle is a rotation represented by a unit vector and

an angle of revolution about that vector.

Contrary to quaternions, axis-angle is easy to visualize and very intuitive for 3D

rotations of the Atlas sphere attitude. However, two axis-angle representations of

rotations can not be directly combined to give an equivalent total rotation. For this

we need to use matrices or quaternions. Since a rotation quaternion is related to

axis-angle, it is easy to convert between them as explained in the last section.

22

When converting back to axis-angle representation care must be taken, however,

since 3D rotations can be counterintuitive in some ways. There are two singularities

at 0◦ and 180◦ where the axis can jump suddenly for a small change in input. The

axis-angle representation, therefore, has two singularities at angle 0◦ and angle 180◦.

It is good practice to check to make sure the formula works in these cases for the

Atlas platform implementation. At 0◦, the rotation is said to be zero since the axis

is arbitrary (any axis will produce the same result). Also at 180◦ rotation between

two subsequent orientation quaternions would only be a concern if the Atlas sphere

was able to rotate 180◦ before the IMU took a measurement. Since the IMU operates

at at a frequency of 76 Hz, for logical reasons this will never be the case, thus, the

rotation calculation for this case is also treated to be zero.

The process for obtaining the unit axis-angle representation involves using the

equivalent rotation quaternion. From Equation 2.6, the rotation angle, α, which

turns one orientation quaternion into the other is found between two quaternion

orientations using

qrot = qb ⊗ q−1
a

=



qb0 qb1 qb2 qb3

−qb1 qb0 −qb3 qb2

−qb2 qb3 qb0 −qb1

−qb3 −qb2 qb1 qb0





qa0

qa1

qa2

qa3


.

(2.10)

Distinguishing the scalar part, q0, and vector parts, q1,2,3, of the rotation quater-

nion, qrot, the unit axis-angle representation of the Atlas sphere rotation is found

23

using

Θφ,θ,ψ =
α · q1,2,3

s
, (2.11)

where

α = 2 ∗ arccos(q0)

s =
√

1− (q0)2.

Note: When α = 0 or s becomes imaginary, axis-angle Θφ,θ,ψ = [0, 0, 0].

2.4 Rotation Matrix from Quaternion

The equivalent axis-angle rotation matrix R can be constructed from a quaternion q

using

RXY Z(γ,β,α) =


1− 2(q2)2 − 2(q3)2 2q1q2 − 2q3q0 2q1q3 + 2q2q0

2 ∗ q1q2 + 2q3q0 1− 2(q1)2 − 2(q3)2 2q2q3 − 2q1q0

2q1q3 − 2q2q0 2q2q3 + 2q1q0 1− 2(q1)2 − 2(q2)2


. (2.12)

2.5 Quaternion from Rotation Matrix

An orientation quaternion q is composed from an orthogonal rotation matrix R using

• Calculate the Trace (the sum of the diagonal terms) of the rotation matrix, R,

24

and add 1.

Trace {R}+ 1.

• If the trace of the rotation matrix plus 1 is greater than zero, ie.(Trace {R} +

1) > 0, the orientation quaternion is calculated with

q0 =

√
1 +R11 +R22 +R33

2
,

q1 =
R32 −R23

4q0

,

q2 =
R13 −R31

4q0

,

q3 =
R21 −R12

4q0

. (2.13)

Otherwise, if the trace of the matrix is less than or equal to zero, ie.(Trace {R}+1) ≤

0, then identify which major diagonal element has the greatest value.

• If R11 has the greatest value

q0 =
R32 −R23

4q0

,

q1 =

√
1 +R11 +R22 +R33

2
,

q2 =
R21 +R12

4q0

,

q3 =
R13 +R31

4q0

.

(2.14)

25

• If R22 has the greatest value

q0 =
R13 −R31

4q0

,

q1 =
R21 +R12

4q0

,

q2 =

√
1 +R11 +R22 +R33

2
,

q3 =
R32 +R23

4q0

.

(2.15)

• Otherwise

q0 =
R21 −R12

4q0

,

q1 =
R13 +R31

4q0

,

q2 =
R32 +R23

4q0

,

q3 =

√
1 +R11 +R22 +R33

2
.

(2.16)

Chapter 3

A Quaternion Based Indirect Unscented

Kalman Filter with Sensor Error

Estimation for use in Atlas

3.1 Atlas UKF Preliminaries

Similar to the Kalman filter, the UKF is a recursive process which involves prediction

and update steps to continually make available, by estimation, the chosen states.

In general, as per Julier [8], an unscented transform can be used for forming

a Gaussian approximation to a joint distribution of random variables x and z of a

nonlinear discrete time system defined, with non-linear state equations using

xk+1 = f[xk; uk; vk; k],

zk = h[xk; uk; k] + wk, (3.1)

where xk is the n-dimensional state of the system at a dynamic time-step ‘k’, uk is the

input vector, vk is the q-dimensional state noise process vector due to disturbances

and modeling errors, zk is the measurement vector and wk is the measurement noise.

As per Julier, the n-dimensional random variable xk with mean x̄k and state

26

27

covariance Pxx,k is approximated by 2n + 1 weighted ’sigma’ points. These sigma

points are chosen to propagate and accurately yield the covariance and mean of the

probability distributions, given information about the noises associated to each state.

The sigma points are not found at random but instead they are systematically chosen,

eliminating the need to obtain the Jacobian or Hessian Matrices as in the extended

Kalman filter [7].

Theoretically, taking a full set of sigma points and propagating them through

both the IOS system process model and the VOS measurement model, the resulting

estimate of the mean and covariance will often be more accurate when compared with

an EKF [8,24].

Realizing the UKF capabilities, a non-linear state equation for the determination

of the Atlas orientation is surmised to take on a similar form to Equation (3.1). Since

the IOS and VOS are both able to sense the Atlas simulator orientation with some

amount of error, by using the faster IOS sensor measurements as the actual state to

be estimated, the slower, more accurate, VOS measurements can be used to correct

for drift, and in some way can be used to estimate the errors associated to the IOS

measurement. A pair of sigma points are created for each of the states to be estimated,

by using statistics on the expected noise. In this case, after considering the IOS and

literature from [11] and [25], aside from the obvious estimation of the orientation

quaternion, in order to correct for the most prominent noise sources, extra state

terms were chosen to be estimated based on the Microstrain 3DM-GX1 manufacturer’s

specification sheet [26]. Appendix B.4 lists the Microstrain specifications. Further

details of the choices are found in the next section.

28

3.2 Atlas Indirect UKF with Sensor Error Estima-

tion

The Atlas UKF involves recursive prediction and update steps to continually make

available the estimated states. Indirect (also referred to as the error-state) UKF for-

mulation is more commonly used in scenarios in which an external sensor is available

to observe a strapdown internal sensor such as a gyroscope. For this reason, it is

opted to utilize an indirect formulation since dynamic modeling of the Atlas sphere

is all together avoided.

Often, due to inaccuracies of torque models, the indirect filter is found to be

more accurate [6, 16]. It has been shown that the Atlas sphere can be manipulated

using dual-row omni-directional wheels which, although maintaining continuous con-

tact with the sphere, will induce significant undesired vibrations which ultimately

will add to the difficulty of estimating the motion [2]. Moreover, single row omni-

directional wheels have large associated slip making them equally difficult to model.

With indirect modeling, the dynamics of the system can be ignored and the system

treated as a black box as long as the sensor errors can be predicted. In Atlas, the

relative IOS measurements are considered to be the true angular rates of the sphere,

along with added sensor error noise, and angular white noise(AWN). The IOS process

model developed from this is

ωg = ωtrue + bg + kg,sf + kg,ma + ng,a, (3.2)

where ωtrue is the true angular rotation rate of the Atlas sphere, bg is the gyro drift

rate bias (rad
sec

) driven by rate random walk(RRW), kg,sf and kg,ma are the rate level

gyro scale factor and misalignment errors associate to the IOS, and ng,a is white noise

corrupting the IOS gyro rate measurement but becoming the angular random walk

29

(ARW) (rad√
sec

) at the gyro angle level [11,25]. For a great description of angle random

walk refer to Stockwell from Crossbow Inc. [27]. The rate level scale factor errors are

modeled as a function of true rates obtained from the estimated scale factors using

kg,sf =


sx 0 0

0 sy 0

0 0 sz




ωx

ωy

ωz


,

kg,ma =


0 maxy maxz

mayx 0 mayz

mazx mazy 0




ωx

ωy

ωz


. (3.3)

where sx/y/z represent the individual gyro residual scale factors and maxy/xz/yx/yz/zx/zy

represent the non-orthogonalities of the gyroscope triad. External vision measure-

ments from the VOS are considered absolute attitude measurements with added noise

which, presumably on some level, are able to observe the IOS bias drift and IOS sensor

error factors, but the VOS operates at a much slower frequency.

3.2.1 Choosing the Augmented State Vector

From literature, there are two main UKF variants; augmented and non-augmented

[10]. A non-augmented UKF is used for specific cases when the process and measure-

ment noises are known to be additive. The basic difference is that the augmented

UKF creates a set of sigma points once within a filtering recursion, while the non-

augmented performs this process twice. The propagated covariance matrix is formed

in the non-augmented UKF by adding the noise covariance, Q, to the state covari-

ance. This will only hold for noise that is additive. Realizing comparisons made by

30

Wu et al. [10], it was opted to use an augmented UKF for Atlas as opposed to a

non-augmented UKF for several reasons, namely:

Speed: The augmented UKF draws a set of sigma points only once within a filtering

recursion, while the non-augmented UKF must redraw a new set of sigma points

to fully incorporate the effect of additive process noise. It is computationally

more efficient to create only one set of sigma points and propagate these points

once through both the process and measurement models. However, creating an

augmented state covariance matrix using the state error covariance, Pxx,k−1, and

the state process noise covariance, Qk, has a slight disadvantage for calculating

matrix square roots. Since the augmented state covariance matrix is both square

and positive definite, use of a Cholesky decomposition aids in speed savings.

Accuracy: Since it is unknown whether the process and measurement noises are additive

or non-additive, the augmented UKF is used. Also a benefit, the augmented

UKF is not restricted to be Gaussian as long as the state and observation noises

are well characterized by mean and covariance information. It has been shown

in [10] that the augmented UKF performs more accurately and more consistently

mainly owed to its capability in capturing and propagating odd-order moment

information, often associated to non-linear processes, throughout one filtering

recursion.

Following from this, the generalized non-linear state augmentation equations for

the Atlas orientation UKF are defined with

xak+1 = f[xak; uk; k],

zk = h[xak; uk; k] + wk (3.4)

31

where xak is the 31-dimensional state of the system at a dynamic time-step. This can

further be defined with

xak =

 xk

vk


where uk is the input vector, and zk is the observation vector with the state noise

vk and observation noise wk which can be assumed zero mean white Gaussian

N(0,QIOS), N(0,RV OS) respectively. Further details of the make-up of the Atlas

UKF state vector are in the following section.

3.2.2 A Breakdown of the Atlas IOS Process Design

The Atlas/IOS process design can be broken down into two sub-routines; IOS mech-

anization and IOS sensor error compensation. Given that a low-cost IMU is used in a

strapdown scenario, large biases, scale factors and misalignment factors are typically

the most prominent errors to consider [13]. The augmented state vector is therefore

designed to include these. Table 3.1 displays the augmented state vector for the UKF

design.

32

State (x) Description Size

q Attitude quaternion 4× 1

bg Gyroscope biases 3× 1

sg Gyroscope scale factors 3× 1

mag Gyroscope misalignment factors 6× 1

Noise (v)

ve Rotation vector noises 3× 1

vbg Gyro bias noises 3× 1

vsg Gyro scale factor noises 3× 1

vmag Gyro misalignment factor noises 6× 1

Table 3.1: The Alas UKF Augmented State Vector

33

IOS Mechanization

The Microstrain 3DM-GX1 can output multiple forms of data. Using a Sena

ParaniSD-100 Bluetooth adapter, the 3DM-GX1 IMU has been found to transmit

stabilized angular rates every 13.1072 milliseconds. This translates into a frequency

of ≈ 76.2939 Hz. As previously outlined in Equation (2.9), IOS mechanization in-

volves integrating the Euler angular rates into incremental rotations performed with

∆T = 0.0131072 seconds reproduced as

Θ̃k = σφ,θ,ψ = ωx,y,z ∗∆t. (3.5)

where Θ̃ denotes the measured 3DM-G IMU incremental Euler angular rotations, and

tilde ˜ denotes a measured sensor value as opposed to the actual value. The Atlas

IOS sensor error terms are modeled as slowly varying random variables with added

white Gaussian noise and are obtained using

bg,k = bg,k−1 + vgb,k, (3.6)

sg,k = sg,k−1 + vgs,k, (3.7)

mag,k = mag,k−1 + vgma,k, (3.8)

with white Gaussian noise terms, v. This noise is incorporated into the sensor models

here to appropriately encompass the random walk nature of these typically non-

stationary, non-zero mean error terms [12].

IOS Sensor Error Compensation

Before re-composing the incremental angular rotations to obtain the corresponding

rotation quaternion, the IMU sensor measurement error estimates are first used to

34

obtain compensated incremental angular rotations about each local IMU axis with

Θk = (I + Gg,k− 1
2
)−1[Θ̃k − bg,k− 1

2
∆T − ve,k], (3.9)

where I is a 3× 3 identity matrix and Gg,k− 1
2

is called the ‘Gmatrix’, composed of

the interpolated gyro scale factor and gyro misalignment sensor error terms where

Gg,k− 1
2

=


sx maxy maxz

mayx sy mayz

mazx mazy sz


. (3.10)

with sandma representing interpolated scale factors, sg,k− 1
2
, and misalignment fac-

tors, mag,k− 1
2
, respectively. Note: interpolated sensor error terms are denoted with

subscript ‘k− 1
2
’. Linear interpolation is used to obtain the sensor error values midway

through the incremental rotation which are used for compensating the angular rate

during each filter recursion.

As per Equation (2.7), the rotation quaternion is composed using the compensated

incremental angular rotations calculated in Equation (3.9). The rotation quaternion

is then applied to obtain the new orientation quaternion as follows:

qk = qk−1 ⊗ qrot. (3.11)

Note: this use assumes the angular velocity vector remains constant during the short

(constant) IOS time interval, ∆tk.

35

3.3 Prediction

Once again, the prediction portion of the Atlas UKF is performed for each IOS

incremental measurement, regardless of whether a VOS measurement has been made

available or not at this point. The following prediction process involves creating

disturbances around the previous estimated ‘augmented’ state, x̄ak−1, based on the

previous ‘augmented’ state covariance, Pa
xx|k−1.

1. In general, with n representing the number of states estimated, an initial n× 1

dimensional random ‘augmented’ state vector xa is created, with estimated

mean x̄ak−1 and ‘augmented’ covariance Pa
xx,k−1. This vector has a set of 2n+ 1

sigma points created using

χa0 = x̄ak−1,

χai = x̄ak−1 +
√

(n+ κ)Pa
xx,k−1

i
,

χai+n = x̄ak−1 −
√

(n+ κ)Pa
xx,k−1

i
, (3.12)

W0 = κ/(n+ κ),

Wi = 1/2(n+ κ),

Wi+n = 1/2(n+ κ). (3.13)

where i ∈ {1, · · ·, n},
√

Pa
xx,k−1 i

is the ith column of the ‘Cholesky’ matrix

square root of

 Pxx,k−1,15×15 015×15

015×15 QIOS,15×15

 and Wi is the weight associated

with the ith sigma point, χai .

The scalar κ is a scaling parameter which is usually set to 0 or 3 − n. This is

done so that fourth-order moment information is mostly captured in the true

Gaussian case [7, 10].

36

Following from Kraft [4], using a quaternion formulation adds a level of com-

plexity which must be taken into consideration for the Atlas UKF. The correct

number of ‘augmented’ state sigma points need to be created. For the Atlas

UKF, the scaling parameter is maintained in this case; κ = 0. The quaternion

has four components in the Atlas UKF formulation, however, since a quaternion

has only 3 degrees of freedom, as mentioned earlier, in this case n = 30. How-

ever, one cannot simply add the axis-angle disturbance to the previous quater-

nion. In order to add the current disturbance angles, a necessary step for this

involves transforming the current axis-angle disturbances into an equivalent dis-

turbance quaternion as per Equation (2.7) and using quaternion multiplication

as per Equation (2.3) to apply the attitude disturbance. Note: Distinguishing

the difference between an orientation quaternion and a disturbance or rota-

tion quaternion which is used to rotate between two orientations is extremely

important and a lot of times misunderstood from the literature.

Following from this, the remaining Atlas UKF state vector components are sim-

ply disturbed using standard vector addition as per a usual UKF formulation.

2. The Atlas ‘augmented’ sigma points are then instantiated through the Atlas

process model to yield a set of transformed sigma points (3.14).

Yai = f (χak; u
a
k; k) (3.14)

where Yai is used to clearly distinguish it as an estimate based on the IOS

probability distribution and separate from an actual IOS or VOS measurement.

3. Next, the Atlas transformed sigma points must be properly averaged to ob-

tain the ‘augmented’ ‘a-priori’ mean, x̄a−k , and ‘a-priori‘ state covariance, P−xx,k.

37

Note: Unlike the vector portions of the state, simple barycentric averaging does

not yield correct results for the computation of the mean quaternion. The ori-

entation portion of Yai , ie. the quaternion portion of the transformed sigma

points, is averaged keeping in mind that quaternions are members of a homo-

geneous Riemannian manifold (the four dimensional unit sphere) and not of a

vector space (see Kraft [4]). The approach uses the intrinsic gradient descent

algorithm outlined in Appendix A.1.

4. The [31× 1] ‘augmented’ ‘a-priori’ mean state estimate, x̄−k , is formed from the

mean quaternion portion along with the average sensor error vector portions,

and state noise portions.

5. Next, the Atlas ‘a-priori’ state covariance, namely P−xx,k, is obtained as follows

(3.15).

Pa−
xx,k =

1

2n

2n∑
i=1

[Yai − x̄a−k] · [Yai − x̄a−k]T (3.15)

Note: In reference to [Yai −x̄a−k] in Equation (3.15), the sigma point orientation

axis-angle differences, Φi, i = 1, ..., 2n, between the propagated sigma points and

the mean of the distribution are calculated from the last iteration of the mean

finding algorithm (step(c) from Appendix A.1). It is these axis-angle differences

along with the calculated differences pertaining to the sensor errors and noise

vector portions which get used to create sigma point variance arrays [30× 1] in

size.

38

3.4 Update

Typically in a normal UKF, a measurement update step requires both the ‘a-priori’

state estimate, x̄a−k , and an estimate of the measurement, z̄−k to both be available. For

this reason, due to varying sensor frequencies in Atlas, the update portion of the Atlas

UKF is instead performed only when the slower VOS measurement becomes available.

Further complicating the matter, there is suggestion that each VOS measurement may

be lagged due to image processing time [28]. For simplification, it is assumed that this

latency-delay is well characterized and constant based on a known VOS frequency.

3.4.1 Out of Sequence Measurement Handling in Atlas UKF

In this section, an approach (developed by Julier et al. [7]) for optimally fusing latency

delayed sensor data in nonlinear systems has been adapted for use in the Atlas UKF.

With the VOS frequency known, (i.e. ≈ 20 Hz), the lag time can be calculated as

∆Tl = 1
V OSfreq

(sec). Next, this lag time is utilized to indicate when the first and

all subsequent VOS measurements become available to the UKF. It is assumed the

first lagged VOS measurement from timestep l = k − N in the past, only becomes

available to the Atlas UKF ∆Tl seconds later. The first IOS measurement, also from

timestep l = k −N , is improved at timestep k, after ∆Tl seconds have passed.

Figure 3.1 depicts accurate fusion of a lagged innovation vector that takes place

at time k to utilize the Kalman correction term that corresponds to time l = k −N .

Sensor Latency Compensation

In the Atlas UKF, optimally fusing an N-sample lagged innovation vector, z̃k−N is

accomplished using

z̃k−N = zV OS,k−N − z̄−k−N , (3.16)

39

Figure 3.1: Out of Sequence Measurement from VOS Sensor Latency

which requires accurately obtaining the correct Kalman gain term, Kk,N , where the

IOS ‘a-priori’ state estimate and state covariance, corresponding to when the lagged

VOS measurement was initially captured, are held in memory, x̄a−k−N and P−x|k−N

respectively.

1. Generally in an UKF, in order to characterize the influence of measurement

noise, an observation function (or measurement model) is typically used to

further propagate the transformed set of sigma points, Yai (see [4]) with

Zi,k−N = h(Yai,k−N , 0), (3.17)

z̄−k−N = mean(Zi,k−N), (3.18)

where i ∈ {1, · · · , 2n}, and h is the observation VOS process model function

(see Appendix E.0.2). Note: There is no added noise in Equation (3.17) since

the sigma points encompass this.

A very interesting issue arises in the Atlas UKF at this point with regards to

the observation function. Since the VOS process will ultimately measure the

orientation quaternion directly, the lagged observation function h(.) can simply

be treated as the identity matrix, thereby always using the corresponding ‘k-N’

40

‘a-priori’ IOS state estimate as the expected VOS measurement. This allows

for speed savings with minimal loss to the end estimate. The prediction, can

quite clearly be the 4× 1 ‘a-priori’ orientation quaternion portion, q̄−k−N , of the

‘k-N’ ‘a-priori’ state estimate, x̄a−k−N , using

z̄−k−N = q̄−k−N . (3.19)

2. Similarly, the 3 × 3 lagged VOS measurement state covariance is simply the

‘k-N’ IOS ‘a priori’ state process covariance, (attitude parts only):

P−zz,k−N = P−xx,k−N,(1:3,1:3), (3.20)

where P−zz,k−N is the uncertainty in the measurement caused by the uncertainty

in the state vector prediction which correspond to ’k-N’ timesteps in the past.

3. Again for speed savings, the ‘k-N’ propagated sigma point orientation axis-angle

differences, Φk−N,i, i ∈ {1, · · · , 2n}, can also be held in memory. These can

be re-used to create the cross-correlation-covariance-over-time matrix, Pxkzk−N ,

calculation between the current system state at timestep ‘k’, and the lagged

‘a-priori’ observation estimate corresponding to timestep ‘k-N’, using

Pxkzk−N =
1

2n

2n∑
i=1

[Yai − x̄a−k] · [Φk−N,i]
T . (3.21)

Note: The equivalent axis-angle rotation vector differences are used here. Also

[Yai − x̄a−k] is [30× 1] in size whereas, [Φk−N,i] is [3× 1] in size. This creates a

[30× 3] cross-covariance matrix.

41

4. Next, The innovation covariance, Pvv,k−N , is calculated as the sum of the pro-

jected measurement state vector covariance P−zz,k−N and the measurement noise

covariance RV OS,k−N using

Pvv,k−N = P−zz,k−N + RV OS,k−N . (3.22)

5. The Kalman Gain can now be expressed in terms of the correct covariance terms

using

Kk,N = Pxkzk−N · (Pvv,k−N)−1. (3.23)

6. Typically, the ‘a posteriori’ state estimate, x̄+
k , can be calculated at this point

from the sum of the current ‘a-priori’ predicted state plus a correction factor

formed from the lagged innovation, z̃k−N , and the Kalman gain term:

x̄+
k = x̄−k + Kk,N(z̃k−N). (3.24)

However, in this case, since a quaternion is used, contrary to Equation (3.16),

the lagged innovation must be formed instead using the corresponding quater-

nion rotation that rotates q̄−vos,k−N into qvos,k−N using formulation described

in Equation (2.10). Reproduced here, the multiplication from the measured

orientation quaternion is

q̃innov ,k−N = qvos,k−N ⊗ (q̄−vos,k−N)−1. (3.25)

7. Next, the axis-angle form Θinnov ,k−N is obtained from q̃innov ,k−N using Equation

(2.11) outlined in Section 2.3. This is followed by multiplying by the Kalman

42

gain term to obtain a Kalman correction vector, Corr, of size 30× 1 using

Corr = Kk,N ∗Θinnov ,k−N , (3.26)

where the first 3 components of the Kalman correction vector, namely ∆Θcorr,

become re-transformed back into a correcting rotation quaternion, qcorr, as

follows:

q̄+
k = qcorr ⊗ q̄−k . (3.27)

Note: The remaining 27 Kalman correction factors are used as per usual vector

addition to update the sensor error states, 12 total, and state noise terms, 15

total.

8. Finally, the updated ‘a-posteriori’ covariance can be formed using the ‘a-priori’

predicted state covariance minus the innovation covariance, weighted by the

Kalman gain using

P+
x,k = P−x,k −Kk,NPvv,k−NKk

T . (3.28)

The entire Atlas UKF outlined above was formulated into a Matlab function

‘UKF.m’ and is provided in Appendix C.2. Figure 3.2 visually depicts the Atlas

UKF estimation of the Atlas orientation. Note: for clarity, all covariance terms,

iterative sigma point propagation terms, quaternion and vector averaging, and IOS

sensor error estimation terms have been left out of the diagram.

Note: A second version of the Atlas UKF allows instantaneous IOS quaternion

measurements to be used namely UKF2.m (see Appendix C.4).

43

Figure 3.2: The Atlas UKF flowchart of orientation estimation.

Chapter 4

Using the IOS within Matlab for Atlas

UKF testing

For the purpose of testing the Atlas UKF, only attitude sensing is considered by

using the 3DM-GX1 IMU measurements. The 3DM-GX1 includes three orthogonal

MEMs accelerometers, three vector magnetometers, three angular rate gyros, and a

thermocouple. It is capable of measuring static and dynamic rates with 360◦ range

over all three axes (pitch, roll, & yaw).

The algorithms required to compute orientation over 360◦ on all three axes are

embedded within the micro controller of each 3DM-GX1. Gyro-stabilized rates are

obtained after being corrected using Microstrain’s proprietary sensor fusion filter em-

bedded within the 3DM-GX1. This compensates for gravitational and temperature

issues. Details of this filter fusion algorithm are not available to the general public.

For this reason, herein this thesis, the gyro-stabilized rates are treated as the mea-

sured gyro rates. Detailed specifications for the 3DM-GX1 are provided in Appendix

B.4.

The 3DM-GX1 arrives from the manufacturer calibrated over the temperature

range of −20◦C → +70◦C. Correction coefficients needed for each and every sensor

44

45

on the 3DM-GX1 are burned into the modules non-volatile memory. The 3DM-

GX1 houses a small thermocouple with each gyro to compensate for temperature

changes [29]. The 3DM-GX1 has its own internal clock which tracks time. All of

the data acquisition functions, whether in the continuous mode or the polled mode,

provide elapsed timer ticks in the data return. This capability provides the user

with accurate time stamping independent of the computer operating system. All the

constant manufacture 3DM-GX1 IMU specifications used within the Atlas UKF are

written to a Matlab file, ‘IMUspecs.m’, and can be found in Appendix B.5.

For the testing of the Atlas UKF, a Matlab program has been written to acquire

data from the 3DM-GX1. As outlined in the 3DM-GX1 communications protocol [30],

the 3DM-GX1 has the capability to transmit numerous quantities of interest. The

3DM-GX1’s on-board processor operates with a 0.0065536 second clock tick interval.

Wireless transmission differs from a direct wired communication link. The 3DM-

GX1 will not transmit unsolicited data. In order to conduct experiments, a Matlab

function is adapted and developed based on example code provided by Prime [31].

This adapted code, re-named ‘3DMG operate.m’, enables R2-232 communication with

the IOS within Matlab. The written function enables Matlab to record IOS data for

a chosen amount of time and plots and displays the results. This code is provided

in Appendix C.8. Using this function, varying commands can be issued to have the

3DM-GX1 transmit any or all of its sensor measurements in any form. It is found,

that while a direct RS-232 cable connection offers faster transmission rates, up to

≈ 153 Hz, wireless data is only transmitted at a maximum frequency half of this

(76.2939 Hz). Due to this fact, presumably it is less suitable to use instantaneous

IOS measurements since the maximum transmission rate is the same as receiving the

stabilized IOS measurements. This fact is not detailed in any other Microstrain 3DM-

GX1 literature. It may be possible for the full scale future Atlas simulator to utilize

faster direct RS-232 cable instantaneous measurement quantities from the 3DM-GX1

46

by transmitting VOS measurements to an onboard computer internal to the sphere

for data fusion. Due to a direct cable connection, this would allow for faster IOS

measurements. Currently, having IOS transmitted using a paraniSD-100 Bluetooth

adapter, the maximum rate that any quantity can be transmitted is two IOS clock

ticks, which translates into a constant frequency of 76.2939 Hz. This is maintained

throughout all tests conducted herein. It was also observed that no ’bad’ or dropped

packets were handled. Details for the use of the ‘3DMG operate.m’ function which is

used to operate the IOS within Matlab are outlined here. The Matlab code can be

found in Appendix C.8.

4.0.2 Operating the IOS within Matlab

In order to operate the IOS, the ‘3DMG operate.m’ function is written for Matlab

to acquire IOS measurements for a set length of time. It may be possible to create

a ’real-time’ version of this function in the future, however, there exist functions in

Labview for this purpose, although fidelity of these Labview functions is unknown.

Instead, the Matlab function is written to easily allow the Atlas UKF performance

to be analyzed offline. Key features to this developed Matlab function are as follows:

Communication The construction of a serial port object is formed for writing and

receiving bytes from the IOS, an IOS command can be chosen by the user and

will set the IOS into a continuous polling mode.

Translate Data Packets The data quantities obtained from the 3DM-GX1 are un-

signed 16bit integers that get transformed into a 2’s complement representation.

Error Handling There is no opportunity for bad or dropped packets since this will

cause the function to return an error message. The last two un-signed data bits

are used as checksums. Each data packet is analyzed for error and passed on.

47

Scaling The data packets are scaled into the proper units corresponding with ‘3DMG

protocol v.3.1.01 ’ [30].

Closing connection The correct method for deleting a serial port object is per-

formed.

Visualization Once the connection is closed the recording is complete and the data

is visualized in Matlab.

For now, only commands 2,4,5 and 12 have been fully implemented within

‘3DMG operate.m’. These commands correspond to quantities of interest for the

purposes of testing the Atlas UKF and are described further in Section 5.2.

Using command 2, Figure 4.1(a) shows the un-compensated individual IOS gyro

stabilized angular rate measurements from the 3DM-GX1 for 30 seconds of back and

forth sinusoidal rotation about the local IOS ‘yaw’ z-axis. Figure 4.1(b) shows these

individual Euler angular rate measurements formed together into one corresponding

angular rate measurement about an axis of rotation. The angular rate magnitude

measurement includes errors from all three individual gyros. It should be noted

that obtaining the magnitude measurement requires that care be taken to include the

direction of rotation from each gyro rate which involves retaining the sign. The Matlab

function ‘sign mag.m’(see Appendix D.8) is created to calculate this magnitude for

the three angular rates while maintaining the sign for the direction of rotation. This

function is used for visualization of the un-compensated IOS angular rate magnitude

only. During the actual Atlas UKF operation, the sign mag.m function is not required

since the IOS process handles individual IOS Euler rates as inputs for performing

integration and creates the subsequent quaternion from the individual Euler angles.

48

(a) Individual IOS Euler angular rates.

(b) Angular rate magnitude.

Figure 4.1: 3DM-GX1 gyro stabilized angular rates for 30 seconds of pure yaw

Chapter 5

Simulation Testing of the Atlas UKF and

Measured Data Results

For testing the Atlas UKF, a simulation is developed that creates simulated mea-

surements for both the IOS and VOS based on expected noise on each state. The

simulated measurements with noise stay within reasonable limits of the Atlas plat-

form operating conditions. The current angular velocity and acceleration performance

specifications for the Atlas sphere are listed in Table (5.1). These specifications are

maintained when testing simulations of varying rotational trajectories.

Parameter Description Value Units

Ω Maximum Angular Velocity 1 rad
s

Ω̇ Maximum Angular Acceleration 8.8 rad
s2

Table 5.1: Atlas full scale performance specifications.

5.1 Simulation Tests

Using MATLAB, a simulation has been created to test the quaternion based Atlas

UKF with sensor error estimation against two other forms of fusion filter: the Simple

Sensor Fusion(SSF) algorithm and the non-augmented quaternion based UKF without

49

50

sensor error estimation (UKF NoSE) [28]. Unlike the SSF algorithm developed by

Brian Rasquinha [32], the SSF algorithm used in this thesis utilizes quaternions and

incorporates OOSM handling (see Appendix C.9). Along with the ability to test

various sensor frequencies, any non-linear rate profile can be tested within this Matlab

simulation program (see Appendix C.14). The simulation is used to contaminate a

proposed non-linear angular rate profile by adding random Gaussian noise based on

sensor specifications for each simulated IOS and VOS sensor measurement over the

operating time designated.

5.1.1 Simulated Noise

During simulation, both IOS and VOS measurements are created by purposely con-

taminating an actual rotation trajectory with noise based on the covariance of each

measured state. Initial covariance of each state is based on manufactured specifica-

tions using standard deviations where available. During simulation, the covariance is

used to create contaminated measurements. This is accomplished with a computer

generated random number between 0 and 1 which is used to create scaled noise based

on the standard deviations of each state. Next, the simulated noises are added within

the IOS process model and VOS process model onto each state. This creates the simu-

lated noisy measurements for each sensor. The simulated measurements subsequently

get passed on to the UKF to estimate the Atlas orientation.

IOS Process Noises

Using the angular random walk (ARW) value of 3.5
◦
√
hr

based on a 15 second Allan

variance method which is provided by Microstrain [26], the IOS angular position

51

standard deviation for a short duration timestep ‘dt ’ is calculated as

ARW =
3.5 ∗ π

180 ∗
√

3600
(
rad√
s

),

σω = 60 ∗ ARW ∗
√
BWins (

rad

s
),

=

3.5∗π
180√
dt

3600

3600
(
rad

s
)

and (5.1)

σθ = ARW ∗
√
dt (rad),

(5.2)

where ‘dt ’ is the discrete timestep based on the current IOS selection (i.e. typically

0.0131 sec).

The simulated Euler angle measurement standard deviations and the sensor error

terms standard deviations can be used to create the white gaussian noise (WGN)

variables which get added to the actual states to be estimated to simulate an IOS

angular velocity measurement as outlined in Section 3.2, Equation (3.2). As such,

the standard deviations are

ve = σθ ∗ randn[3× 1],

vbg = σbg ∗ randn[3× 1],

vsg = σsg ∗ randn[3× 1],

vmag = σmag ∗ randn[6× 1],

(5.3)

with

Θ̃k = (I + Gg,k− 1
2
) ∗Θk + bg,k− 1

2
∆T + ve,k. (5.4)

52

Similarly, the IOS process noise covariance matrix is initially created using the

standard deviations

QIOS,[15×15] =



σ2
θx

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0σ2
θy

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0σ2
θz

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0σ2
bg,x

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0σ2
bg,y

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0σ2
bg,z

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0σ2
sg,x 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0σ2
sg,y 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 σ2
sg,z 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0σ2
mag,xy 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0σ2
mag,xz 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 σ2
mag,yx 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0σ2
mag,yz 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0σ2
mag,zx 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 σ2
mag,zy



.

(5.5)

53

VOS Process Noises

Within the Matlab function VOSparameters.m, standard deviations for pixel location

in image coordinates, as well as the Atlas sphere marker placement standard devia-

tions based on the CMM are used to create the VOS measurement covariance matrix.

In this matrix, both CMM calibration inaccuracies as well as image processing in-

accuracies are represented, to complete the current overall model of the VOS [33].

During simulation, using the standard deviations, simulated noise terms are created

to purposefully contaminate the Atlas orientation camera images. The VOS process

(‘VOSprocess.m’) is re-written in a condensed form for clarity in this thesis and is

available in Appendix C.7.

As outlined in the ‘VOSparameters.m’ and the ‘MakeRvos.m’ function, a general

[3 × 3] axis-angle VOS measurement noise covariance, RV OS, is created by encom-

passing both the image pixel error and the sphere marker location error. Details for

creation of this matrix are slightly more complex and outside the overall focus of this

thesis, however, they are available in Appendix C.7.

The results from simulation reveal good feasibility of the UKF for attitude estima-

tion through a non-linear trajectory and lead to further testing using actual measured

data from the IOS.

5.2 Dynamic Test of the UKF using measured IOS

Data

The simulation program is modified and made into a Matlab program to take ac-

tual measured IOS data and fuse with simulated VOS measurements. In order to

test the true dynamic performance of the UKF, a highly precise Apex Dynamics

AD047 encoded gearbox is used to rotate the 3DM-GX1 through known rate profiles.

54

Measurements from the 3DM-GX1 and gearbox encoder measurements of the global

angular position are recorded. Suitability of the gearbox for use in testing the IOS

and UKF is investigated in this section. Manufacture specifications for the gearbox

are provided in Appendix B.6.

The objective of the true data tests is to manipulate and record the IOS motion

through a known, non-linear, angular rate profile, in an attempt to excite possible

sensor errors and cause drift in the IOS measurements. Using the gearbox/IOS setup,

two different types of tests are conducted.

5.2.1 Description of Tests

A series of tests, short in duration are run to gain a general sense if the UKF will work

and also to determine the best IOS command to use. After this initial testing, a second

series of tests, longer in duration are run to increase the possibility of misalignment

errors in the IOS gyro-stabilized measurements and demonstrate the filter remains

convergent for extended periods of time while undergoing dynamic rotational motion.

30 second test: Matlab is used to simultaneously record (motor and IOS) back and

forth pure yaw rotation following a sine function rate profile about the local

3DM-GX1 z-axis, [0, 0,−1]T . This test is performed 3 different times for each

IMU command output for 30 seconds.

• Using a command of 4 in ‘3DMG operate.m’, the instantaneous orientation

quaternion is transmitted.

• Using a command of 5 in ‘3DMG operate.m’, the instantaneous gyro sta-

bilized quaternion is transmitted.

• Using a command of 2 in ‘3DMG operate.m’, the gyro stabilized angular

rate vector is transmitted.

55

120 second test: The second test conducted is a two minute non-linear rate profile

as listed in Table 5.2. The true gearbox encoder measurement rotation angle is

shown in Figure 5.1 for this rate profile. Since the encoder measures absolute

rotation from the initial gearbox starting orientation, the data is modified to

stay within 360◦(2π radians), see Figure 5.2. The 3DM-GX1 is attached ini-

tially rolled 45◦ about the local 3DM-GX1 x-axis while maintaining that the

motor’s axis of rotation is pointed through the 3DM-GX1’s origin. This con-

figuration assumes a constant rotation axis pointed along the IMU’s [0, 1,−1]T

axis. A manual attempt is made to minimize the initial 3DM-GX1 mounting

configuration misalignment. Manual mounting corresponds well to what can be

expected from a student installment within the Atlas sphere. No attempt is

made to quantify the initial misalignment since this is presumed to be represen-

tative of a typical mounting. A 2-minute test is performed a total of 9 times,

(three for each different IMU command) as follows.

• Using a command of 5 in ‘3DMG operate.m’, the instantaneous gyro sta-

bilized quaternion was transmitted.

• Using a command of 2 in ‘3DMG operate.m’, the gyro stabilized angular

rate vector was transmitted.

• Using a command of 12 in ‘3DMG operate.m’, both the gyro stabilized in-

stantaneous quaternion and gyro stabilized angular rate vector was trans-

mitted

56

Figure 5.1: The gearbox motor rotation angle vs. the angular profile (deg) for the
120 second test.

Figure 5.2: The modified true encoder motor rotation angle (rad) within 360◦ (2π
radians).

57

Stage |Ω(t)|(◦/sec) ∆(t)(sec) Comments

1 rest 60 hold in position

2 constant 30 5 complete rotations

60 about IMU axis

3 rest 5 hold in position

sinusoidal 120◦

4 non-constant 70 back and forth

57.6 cos(0.48t) rotation

5 rest 5 hold in position

Table 5.2: The angular rate profile for one 120 second dynamic test.

58

During Stage 2, the gearbox maintains a constant angular rate of 10 rev
min

(60◦/sec

or 1.05 rad
sec

) for 5 rotations.

During Stage 4, the gearbox produces non-constant angular rates, reaching a

maximum rate of 9.6 rev
min

(57.6◦/sec or 1.01 rad
sec

) for a sinusoidal angular rotation profile.

At such a low speed, the gearbox measurements are found to follow the designed

angular position path within acceptable limits: the RMS error for one entire 120

second test was only 0.0004614◦ with the maximum error 0.3663◦. This error is

largely due to overshoots and undershoots between each stage. The gearbox records

rotation data at 2KHz which is deemed acceptable for testing the algorithm. It is

subsequently treated as the true rotation profile path followed for all filter test results.

A Matlab file for calculating the RMS gearbox error can be found in Appendix C.11.

5.2.2 Choosing an IOS Command

With no theoretical basis for choosing one method of measurement over another, a

process of elimination was used to decide on the best IOS command. Shown in Figure

5.6, the stabilized angular rate measurements from the 3DM-GX1 correspond closely

to the true motor angular rate measurements before the UKF is run. Acquiring this

data corresponds to using Command 2 for the stabilized angular rate vector. When

using Command 4, IOS gyro instantaneous quaternion without stabilization, large

spikes of noise are seen in the data compared to using Command 5, instantaneous

gyro-stabilized quaternion which demonstrates less noise in Figure 5.4.

Only Command 2, Command 4 and Command 5 are implemented for use in the

UKF with sensor error estimation at this time.

For handling instantaneous orientation quaternions, within the IOS process, the

IOS mechanization is modified slightly since it avoids having to use discrete integra-

tion. Instead, the incremental rotation vector, Θ̃k, is obtained by using Equation

(2.10) and Equation (2.11). Details are found within the Matlab file IOSprocess2.m

59

within UKF2.m in Appendix C.4.

When using Command 2 with IOS angular rates, IOSprocess.m in UKF.m is

utilized. Details of these functions are found in Appendix C.2 and they follow the

approach developed in Section C.3.

Figure 5.3 shows the error in estimating the equivalent rotation vector magni-

tude, found when measuring instantaneous quaternion with Command 5. This is

compared to Figure 5.8 using angular rates, Command 2, for 30 seconds. The instan-

taneous measurements display noisier uncompensated data but follow the true path

more closely. The stabilized quaternion orientation measurement shows less noise but

deviates away from the initial start position.

Summarized in Table 5.3, results of the 30 second testing show using direct gyro-

stabilized angular rate measurements Command 2 from the 3DM-GX1 produce the

most accurate UKF estimation. It is presumed that offline discrete integration in Mat-

lab yields a more accurate measurement and that this is due to the higher precision

that the computer can handle when compared to the 3DM-GX1 on-board processor.

This may also be due to less initial noise entering the gyro measurement compared

to the 3DM-GX1 on-board integration process performed using Command 5.

Average RMS Value (deg)

CMD 2 0.5443

CMD 5 1.8507

CMD 4 1.9767

Table 5.3: The RMS axis-angle true error after UKF, VOS 20 Hz, 30 second test.

60

Figure 5.3: Depiction of the error in estimating the equivalent rotation vector mag-
nitude estimate from the estimated quaternion, using Command 5, for a 30
second test.

61

(a) The transformed instantaneous quaternions made into an equivalent
axis-angle magnitude value, using Command 4.

(b) The transformed gyro stabilized instantaneous quaternions made into
an equivalent axis-angle magnitude value, using Command 5.

Figure 5.4: A comparison of 30 seconds of measured IOS uncompensated data vs.
measured true path motor data, with various 3DM-GX1 Commands.

62

5.2.3 Data Synchronization

Synchronization of true motor path data and IOS data is achieved using with a Matlab

function, convertmotordata.m found in Appendix (C.13).

Using the motor encoder, the ’true’ angular positions are measured at a frequency

of 2KHz. This ’true’ data set is then differentiated to yield the ’true’ angular rate

profile that is followed by the IMU. Using Matlab, plots of the axis-angle angular

velocity magnitude is used to synchronize the angular rate data sets recorded from

both the IMU and motor shown in Figures (5.5) and (5.6).

63

(a) The motor angular rate vector magnitude.

(b) The IOS angular rate vector magnitude.

Figure 5.5: Comparison of true motor data vs. IOS angular rate vector magnitude
for one 120 second test.

64

Figure 5.6: Re-aligned IOS angular rate magnitude data synchronized to motor
data for one 120 second test

65

Currently, the VOS is non-operational due to colour recognition issues. Because

of this, the decision was opted to simulate VOS measurements using the true motor

data and simulate noise corrupting the VOS measurement based on proposed camera

parameters. Each simulated VOS orientation measurement is created using a per-

spective camera model which uses the expected identification of markers in the image

at that orientation. The simulated VOS measurement is modified to further incorpo-

rate an expected delay. Together this fully simulates out of sequence measurements

caused by image processing time. These are made to mimic any frequency up to the

faster IMU frequency and are passed to the UKF presumably just as actual VOS

measurements eventually will.

5.3 Secondary filters used for comparison

Aside from using only the developed ‘augmented’ UKF with sensor error estimation

developed herein this paper, two other filter forms are modified and used for test

comparison; SSF, and UKF NoSE (see Appendix C.9 and C.10). The two filters are

further described in the following subsections.

5.3.1 Simple Sensor Fusion (SSF)

The simple sensor fusion (SSF) algorithm, initially developed by Carleton CUSP,

fourth year student Brian Rasquinha at Carleton University [32], originally only dealt

with Euler orientation representations and was tested solely on stationary IMU data.

The SSF algorithm has been updated in this research to take angular rate mea-

surements from the IMU, integrate to get an orientation quaternion and correct for

the drift due to integration by resetting/correcting the IOS quaternion measurement

based on the difference between the IOS and VOS orientation measurements. The

code incorporates a method for dealing with out of sequence VOS measurements.

66

The SSF code makes no attempt to optimally fuse any of these measurements using

statistical information, instead the code assumes the VOS measurement is always a

completely accurate measurement. The underlying concept with this is to obtain a

correction factor which is the difference between the IOS orientation and VOS orien-

tation. Each IOS measurement between subsequent VOS measurements is modified

with the correction factor obtained using

Corrk = IOSk−N − V OSk−N , (5.6)

Fusedk = IOSk − Corrk, (5.7)

where N represents the number of discrete timesteps a measurement is lagged by.

This measurement becomes available to the function at timestep k.

The modified SSF Matlab code, ‘Simple sensor fusion.m’, which incorporates

quaternions is found in Appendix (C.9). This code is run in parallel to the UKF

with sensor error estimation and the UKF without sensor error estimation to get an

overall sense of each method’s effectiveness and also to reveal the benefits of using

one filter over the others. The above experiments are performed using exactly the

same IOS and VOS measurements to keep comparisons similar.

5.3.2 UKF with No Sensor Error Compensation

(UKF NoSE)

A UKF developed by Kyle Chisholm [28], incorporates no sensor error estimation and

assumes additive noise opting for use of a non-augmented version [28]. To account for

OOSM, the UKF NoSE modifies the lagged VOS state measurements forward in time

in an attempt to utilize the Kalman gain correction factor during each iteration. While

having the benefit of smoothing the estimate between each time-step, the downside

67

of this implementation is the added complexity from having to create a modified

VOS measurement at every time-step. Also, un-accounted for error between two IOS

estimates is less optimal than fusing an actual lagged VOS measurement with the

actual IOS measurement corresponding to the same timestep [7]. Nevertheless, for

purposes of demonstrating improvement that can be achieved by estimating sensor

error terms, results using the UKF NoSE are included as a filter for comparison. The

UKF NoSE.m Matlab file is also included in Appendix (C.10).

5.4 Filtering Results

True measured synchronized motor encoder data, along with measured and aligned

IOS data is fed through each of the three filters offline using the function in Matlab,

Run simulation.m, found in Appendix (C.14). It is found that the most accurate

orientation estimate occurs using the UKF with sensor error estimation. Test results

indicate that use of the UKF with sensor error estimation maintains estimates within

3 standard deviations thereby allowing it to remain a viable option for estimating

the Atlas orientation. Atlas specification for orientation control is ±1◦ accuracy [19].

For one 120 second dynamic test, the maximum error found exceeded this at 3◦ but

had a RMS error of 0.83◦. It is presumed that longer test runs, through multiple

trajectories, would ultimately improve the misalignment term estimates used by the

UKF, thereby improving the estimation further. Without a method for testing, it

is difficult to state with any certainty whether the UKF is successfully estimating

the misalignment G matrix terms properly. According to Lam “successful estima-

tion normally requires multiple rate profiles whose individual rate magnitudes need

to meet a certain minimum requirement for state observability” [11]. Although this

is attempted, the fact remains that the rate profiles tested may not completely ex-

cite all the misalignment errors sufficiently for the UKF filter to fully observe them.

68

The full performance testing requires having the VOS with the Atlas motion plat-

form completely operational for longer periods of time and conducted over multiple

rate profiles. It stands to reason that such tests will construct better sensor error

term estimates as well as allow for further tuning of the covariance QIMU and RV OS

matrices. Ultimately, this will further improve the UKF filter. However, without

equipment that has the ability to simultaneously rotate and accurately measure the

Atlas sphere orientation, over a rotation rate profile incorporating more than one axis,

it is difficult to determine the complete extent to which the UKF can estimate sensor

error terms.

5.4.1 30 second test results

Although short in duration, the 30 second test performing cyclic yaw motion con-

firmed the importance of eventually estimating sensor error terms online. SSF is

computationally more efficient when considering near stationary rotations, however,

once relatively small misalignment errors become present, degraded estimates become

increasingly apparent as time unfolds. Figure 5.7 shows the effect of fusing the VOS

and IOS into an overall axis-angle magnitude estimate created from each quaternion

estimate. Figure 5.8 shows the orientation estimate’s error magnitude away from the

true recorded motor axis-angle magnitude. Figures 5.9 and 5.10 demonstrate the Eu-

ler angle estimation error for each IMU axis with the 3 standard deviation bounds.

Results show, the 30 second test is just long enough to demonstrate divergence begin-

ning to occur in the SSF & UKF NoSE estimates, while the UKF with sensor error

estimation maintains an estimate within 3 standard deviation bounds.

69

Figure 5.7: A comparison of all fusion filters to estimate the equivalent rotation
vector magnitude, using angular rate measurements from the IMU, Command
2, for one 30 second test.

Figure 5.8: A comparison of all fusion filter’s error in estimating the equivalent
rotation vector magnitude estimate, for one 30 second test, with zero being the
true value.

70

Figure 5.9: The individual IMU yaw (ψ) angle estimation error including 3σ bounds,
for one 30 second test.

71

(a) Individual IMU roll (φ) angle estimation error.

(b) Individual IMU pitch (θ) angle estimation error.

Figure 5.10: The Atlas X and Y axis-angle estimation error for one 30 second test.

72

The results for the 30 second test are summarized in Table (5.4).

Filter Axis-angle Maximum

Type Magnitude Error

RMS Error (degrees) (degrees)

UKF with

Sensor Error 0.5443 1.4267

Estimation

UKF without

Sensor Error 0.8251 1.9251

Estimation

Simple

Sensor 0.2750 0.8365

Fusion

IMU 1.6272 3.8216

Table 5.4: The RMS error of axis-angle magnitude estimate 30 second test

73

5.4.2 120 second test results

With a longer trial it is evident the estimated gyro sensor error terms play a role in

ameliorating the individual Euler angle estimates. For this test, the IMU is initialized

to rotate so that no angular movement about the local IMU x-axis occurs.

From the 120 second test, it becomes apparent that neither the SSF nor the UKF

without sensor error estimation has the ability to account for IMU misalignments

away from the assumed IMU axis of rotation [0; 1;−1] for dynamic motion estimation.

As shown in Figure 5.11 misalignment errors in the SSF overall axis-angle orientation

estimate is hidden when only the magnitude is calculated. This is similar when the

result of the scalar quaternion estimate is calculated and plotted, shown in Figure 5.12.

The first scalar quaternion component, q0, estimate, incorporates rotation (including

misalignments) of all three vector quaternion components, and therefore this hides

the misalignment errors. However, once the SSF estimated orientation quaternion is

decomposed further into individual Euler angle rotations about the local IMU x, y, z

axes φ, θ, ψ, the misalignment errors become immediately noticeable for each rotation

angle away from the initial rest position. This is believed to be due to misalignment

found in the vector portion of the quaternion estimates as seen in Figure 5.12 and

Figure 5.13. As shown, once the quaternion is decomposed further into Euler angle

rotations, the only filter that maintains a reliable estimate is the UKF which is shown

following closest to zero. Estimation error is especially evident during Stage 4 of one

120 second test with non-constant angular velocity of the IMU. Figure 5.14 shows

the estimated Atlas orientation angle φ about the IMU roll x-axis for the 120 second

test. Again, this should remain zero since the rotation axis is perpendicular to the

x-axis. It is only by using the UKF with sensor error correction that the remaining

three vector quaternion portions become properly estimated.

A compelling result, shown in Figure 5.15, is obtained by finding the rotation

74

Figure 5.11: The equivalent rotation vector magnitude estimate for one 120 second
test.

quaternion, qrot, between the estimated quaternion orientation and the true quater-

nion orientation, using Equation (2.10), followed by transforming into axis-angle error,

using Equation 2.11, and then calculating the equivalent rotation vector error magni-

tude for each timestep. Plotting this, the overall effectiveness of the UKF with sensor

error estimation outside of pure stationary motion is shown to have non-divergent

behaviour.

The estimate can be shown to remain convergent over the entire tested sampling

period. However, for clarity, only a small portion of the overall test is shown since the

full 120 second figures appear very dense. Figure 5.16 demonstrates the Euler angle

estimation error of the UKF with sensor error estimation algorithm for the local IMU

yaw or z-axis along with the 3 standard deviation bounds.

Figure 5.17 shows cross axis error between IMU Y and X axis, further validating

the UKF with sensor error estimation.

75

(a) q0

(b) q1

Figure 5.12: The individual quaternion component estimates, q0 and q1, for one 120
second test.

76

(a) q2

(b) q3

Figure 5.13: The individual quaternion component estimates, q2 and q3, for one 120
second test.

77

Figure 5.14: The x-axis Phi Angle, φ , estimation error for one 120 second test.

Figure 5.15: The axis-angle error magnitude using VOS measurements at 20 Hz for
one 120 sec test.

78

Figure 5.16: The Atlas (ψ) yaw Euler angle estimation error with 3σ bounds, for a
portion of one 120 second test.

Figure 5.17: The cross Y vs. X axis-angle error for one 120 second test.

79

Figure 5.18: Misalignment Factors, mag sensor error estimates for one 120 second
test determined using the UKF with sensor error estimation.

Gyro bias, scale factor, and misalignment factor sensor error estimates are shown

in Figures 5.18, 5.19 and 5.20. Aside from the evidence of a stable estimation, it

is difficult to know how well these error term values are estimated since there is no

measured or otherwise actual known values. According to Shin, sensor error values

will slowly change due to rate random walk but remain close to constant [14, 25].

This appears to be the case, however, without further testing it is not known whether

further non-linear rotation would help the estimates to converge.

80

Figure 5.19: Scale Factors, sg, sensor error estimates for one 120 second test deter-
mined using the UKF with sensor error estimation.

Figure 5.20: Gyro biases, bg, sensor error estimates for one 120 second test deter-
mined using the UKF with sensor error estimation.

81

Figure 5.21: The estimated IMU roll angle for one 120 second test with the true
value zero since the actual IMU roll axis is perpendicular to the axis of rotation.

Table 5.5 displays the root mean squared error from the equivalent rotation vector

magnitude estimate calculated for one entire 120 second angular rate profile test, using

each filter, corresponding to having latent simulated VOS measurements available at

20 Hz. The results clearly demonstrate benefit to using the UKF with sensor error

estimation compared to the other filters and individual sensors by themselves. This

result is even more clearly illustrated in Figure 5.21 which shows the estimated IOS

roll angle displacement throughout one 120 second test, which in actuality, is zero

since the IOS roll axis is perpendicular to the axis of rotation.

82

It should be noted that although the UKF with sensor error estimation performs

accurately, the performance for use in a real-time application has not been investigated

in any great detail. Currently, simulation performance using Matlab on a 1.8 GHz

AMD Turion 64 ML-32 processor, 1GB DDR, notebook computer running Microsoft

Windows XP is greatly in excess of real-time requirements with a measured second

taking approx. 11.5 seconds to compensate off-line. The entire 120 second test

was compensated in 1200 seconds which again is 11 times slower than needed. One

proposal is to move the estimation algorithm into a more suitable real-time software,

operated in a faster quad-core microprocessing computer. This will remain a task

for fourth year CUSP students to investigate further although the assumption at

this time is that faster runs are achievable with the code eventually compiled into an

executable or run within Labview. Table 5.6,5.7 and 5.8 summarize RMS values of all

the equivalent rotation vector magnitude estimate errors when compared to the true

motor profile for each of three 120 second tests. The tables are separated for varying

VOS frequencies of 17.5, 20 and 30 Hz, respectively. All of the tests conducted use

CMD 2 to transmit IMU angular rates.

Filter Rotation Vector Maximum

Type Magnitude RMS Error

Average RMS Error (degrees) (degrees)

UKFwSE 0.87 3.55

UKF NoSE 10.92 42.44

SSF 37.97 102.81

IMU 41.88 66.58

VOS 2.87 5.42

Table 5.5: The RMS values of the equivalent rotation vector magnitude estimate’s
error using VOS 20 Hz measurements for 120 second tests and averaged for one
trial.

83

VOS 17.5 Hz RMS of AA Mag Error (deg) Maximum Error (deg)

Trial 1 2 3 1 2 3

UKFwSE 4.4279 4.4428 5.1672 16.8059 15.0350 22.5024

VOS 4.1467 4.1713 4.1447 7.2653 7.3023 7.4093

IOS 30.0518 74.0519 89.9960 66.0861 178.7743 179.9356

Table 5.6: Three trials showing the RMS values for the axis-angle magnitude esti-
mate’s error using VOS 17.5 Hz measurements for a 120 second test.

VOS 20 Hz RMS of AA Mag Error (deg) Maximum Error (deg)

Trial 1 2 3 1 2 3

UKFwSE 0.6653 0.9784 1.0155 2.8693 3.1980 2.9110

VOS 3.2596 3.2824 3.2604 5.7088 5.8511 5.7845

IOS 30.0518 74.0519 89.9960 66.0861 178.7743 179.9356

Table 5.7: Three trials showing the RMS error of the axis-angle magnitude estimate’s
error using VOS 20 Hz measurements for a 120 second test.

Table 5.9 lists the RMS value for 17.5 Hz data, comparing the second half (60 sec)

to the entire 120 second estimated states. The results indicate how, after some length

of time used for initial sensor error terms to become estimated, the overall attitude

estimate is improved substantially beyond the first dynamic sequence. This result

adds emphasis to the possibility of only using the UKF with sensor error estimation for

initial start-up, in order to calibrate sensor error terms (which are relatively constant),

if future real-time UKF computation time is too cumbersome. It is expected once

the VOS becomes operational, sensor error estimation fusion may only need to be

performed for a set pattern rate profile to determine initial sensor error values. Once

performed, a modified filter could treat the sensor error values as constant (without

need for continual estimation). This will reduce the number of states in the filter,

thereby, increasing computational speed. Suggestions could be to eliminate state

estimation for the gyro sensor error terms after a specified period of time, or include

84

VOS 30 Hz RMS of AA Mag Error (deg) Maximum Error (deg)

Trial 1 2 3 1 2 3

UKFwSE 0.4498 0.5259 0.6187 3.2924 2.3179 2.4515

VOS 2.3734 2.3890 2.3715 4.1275 4.1848 4.2670

IOS 30.0518 74.0519 89.9960 66.0861 178.7743 179.9356

Table 5.8: Three trials showing the RMS error of the axis-angle magnitude estimate
using VOS 30 Hz measurements for a 120 second test.

only gyro drift error estimation, since gyro drift tends to be one of the more prominent

sources of error.

VOS 17.5 Hz RMS Full (deg) RMS 2nd half (deg)

UKFwSE 4.4279 1.1477

VOS 4.1467 3.6255

IOS 30.0518 41.6969

Table 5.9: A comparison of the RMS errors, using VOS 17.5 Hz measurements, for
the 2nd half of trial 1 of the 120 second test vs. the complete 120 second test.

Chapter 6

Conclusions and Recommendations For

Future Work

6.1 Conclusions

6.1.1 Oriention Estimator

In this thesis a quaternion-based UKF with sensor error estimation was developed

for the fusion of Atlas IMU angular rates and VOS absolute orientation quaternion

measurements. As such, a unique estimation algorithm was developed which can be

implemented into the overall Atlas sphere to improve the orientation estimate beyond

the current capabilities one single sensor. Making use of the unique characteristic

that quaternions are free from representational singularities, the Atlas UKF allows

for estimation of unconstrained 3D attitudes through any set of rotation rate profiles.

The Atlas UKF formulation also takes into consideration known latency issues due to

out-of-sequence-measurements from the VOS. Through use of the UKF, sensor fusion

of the VOS and IOS measurements is accomplished to improve upon either sensor

measurement alone.

2. A Simulation program is developed in Matlab to verify the adapted unscented

85

86

Kalman

lter for use within the Atlas platform showing that there is no divergence within

the operational range.

6.1.2 Simulation

A simulation was developed to test any non-linear rate profile. Noise was simulated

for each of the estimated states and OOSM from the VOS were also simulated. The

simulation can test any suspected IOS or VOS frequency and results from simulation

reveal good feasibility of the UKF for attitude estimation through a non-linear trajec-

tory which led to further testing using the actual measured data from the IOS. The

simulation verified the adapted unscented Kalman filter was non-divergent within the

Atlas operational range.

6.1.3 Experimentation

Using a Microstrain 3DM-GX1 IMU and simulating a ‘slower’, ‘lagged’ vision attitude

arriving at some later known time-step, an experimental procedure and test setup was

developed for recording a known dynamic rotational trajectory followed by the IOS.

As well, using a high precision motor with encoder, a known nonlinear angular rate

profile can be followed while simultaneously acquiring IOS angular rate measurements.

Moreover, the settings to use when operating the IOS (3DM-GX1) were tested and

the Matlab code that can be used to communicate with the IOS inside Matlab was

created.

It was demonstrated, using real IOS data, that accounting for IOS sensor errors

is crucial to allow for online calibration and accurate estimation of changing orienta-

tions which surpass the small angle assumption in typical attitude estimation filters.

Although SSF and UKF, without sensor error estimation, work reasonably well for

87

stationary and low frequency motion, it was found that only the UKF with sensor

error estimation maintains a reasonable estimate under higher frequency rotation.

Two different IOS test scenarios were conducted to test various axes of rotation.

The first test was a 30-second test used to acquire angular rate measurements by

rotating solely about the Atlas [0, 0,−1], z or ‘Yaw’ axis. This test revealed little to

no effect from the misalignments. This is assumed to be due to the short duration of

testing and a lack of motion to excite/reveal the off axis sensor errors. The second test

setup involved rotating about a tilted 45◦ axis of rotation, [0, 1,−1]T . This process

further excited the IOS sensor errors and caused noticeable misalignment issues and

drift, further validating that sensor errors should be represented in the process model.

Simulated VOS measurements were created at three frequencies; 17.5, 20, and 30

Hz. Results from these tests indicate that with relatively inaccurate vision measure-

ments, receiving absolute VOS measurements more frequently, will yield improved

fused estimates.

Results using true dynamic data have shown that after an initial period to obtain

sensor error estimates, which must include an adequate dynamic rate profile, sensor

error terms can be estimated and help to improve the overall fused IOS/VOS estimate

beyond either sensor’s original estimate. It is unknown, at this time, whether longer

tests would further improve the overall estimation, although based on literature [9],

it is presumed the filter estimate would become better over time since slow varying

sensor errors become excited and increasingly observable with nonlinear motion.

Eventually, a full real-time version of the UKF with sensor error attitude estima-

tion could be implemented on-board the Atlas motion platform. This version will

need to have the ability to handle real-time computational loads, which is currently

not the case. Arguments can also be made for the possibility of using only the UKF

with sensor error estimation algorithm for an initial start-up process in order to cal-

ibrate for the misalignment and scale factor sensor error terms which, presumably,

88

remain relatively constant over a short period of time after an initial warm up pe-

riod. These terms could be held constant, eliminating need for use of a complex UKF

algorithm, if computationally cumbersome.

Through development of a quaternion-based indirect UKF filter with sensor er-

ror estimation, this thesis successfully demonstrated how an improved Atlas attitude

can be estimated when compared to either individual sensor by itself. The results

may not be optimal, and no attempt was made to prove optimality. Several angular

rate profiles have been tested using real IMU measurements in an attempt to excite

off axis gyroscopic errors. Results reveal suitability for use of a sensor fusion algo-

rithm, however, further tests could help to properly tune the process noise covariance

matrices, QIOS and RV OS, to bring the fused orientation estimate further into agree-

ment with the true trajectory. These can be tuned once the VOS is operational and

bench-testing has been completed.

This research serves as ground work for an eventual real-time sensor fusion al-

gorithm to be implemented in the Atlas motion platform. All pertinent Matlab

m-code is included in Appendices and further supplied online through the CUSP

SVN server [19]. The code can be reused in the future real-time control of the Atlas

platform.

6.2 Future Recommendations

The following are recommendations as a result of this research:

1. Once the VOS is fully operational, the VOS process should be updated to in-

corporate any changes to the VOS process model and VOS parameters. Further

offline tests involving actual measurements from the VOS can then be conducted

with the current UKF.

89

2. Using the algorithm outlined in this thesis, a real-time version of the fusion

filter should be implemented to receive both VOS & IOS measurements within

the control loop.

3. The current algorithm needs to be optimized for speed since it currently runs

11 times slower than required. Suggestions for future modifications are to prop-

erly tune the process and measurement covariance matrices once the VOS is

operational. Compile the code into a program other than Matlab for real-time

use to improve performance and speed.

List of References

[1] CUSP, “Cusp website.” Department of Mechanical & Aerospace Engineering,

Carleton University, http://cusp.mae.carleton.ca, viewed November 2008.

[2] A. Weiss, R. Langlois, and M. Hayes, “The effects of dual row omnidirectional

wheels on the kinematics of the atlas spherical motion platform,” Mechanism

and Machine Theory, 2008.

[3] A. Paterson, “Inertial orientation sensor, dr-sys-ap.08.ios.01,” design report, De-

partment of Mechanical & Aerospace Engineering, Carleton University, July

2007.

[4] E. Kraft, “A quaternion-based unscented kalman filter for orientation tracking..”

Cairns, Australia: Proceedings of the 6th International Conference on Informa-

tion Fusion (ISIF), July 2003.

[5] P. Maybeck, Stochastic models, estimation, and control., vol. 1. New York, New

York: Academic Press Inc., 1979.

[6] M. Ahmadi, A. Khayatian, and P. Karimaghaee, “Orientation estimation by

error-state extended kalman filter in quaternion vector space,” in SICE Annual

Conference, pp. 60–67, Sept. 2007.

[7] S. Julier, R. Merwe, and E. A. Wan, “Sima-point kalman filters for nonlinear

estimation and sensor-fusion - applications to integrated navigation,” American

Institute of Aeronautics and Astronautics, pp. 1–30, 2004.

[8] S. Julier and J. Uhlmann, “A new extension of the kalman filter to nonlinear

systems,” Aerosense: 11th Int. Symp. Aerospace/Defense Sensing, Simulation

and Controls, vol. 3, pp. 182–193, 1997.

[9] J. J. LaViola, “A comparison of unscented and extended kalman filtering for

estimating quaternion motion,” In Proc. of the American Control Conference,

vol. 3, pp. 2435–2440, 2003.

90

91

[10] Y. Wu and D. Hu, “Unscented kalman filtering for additive noise case: Aug-

mented vs. non-augmented,” IEEE, Proceedings of the American Control Con-

ference, vol. 6, pp. 4051–4055, June 2005.

[11] Q. M. Lam, T. Hunt, P. Sanneman, and S. Underwood, “Analysis and design

of a fifteen state stellar inertial attitude dtermination system,” AIAA Guidance,

Navigation, and Control Conference and Exhibit, pp. 11–14, Aug. 2003.

[12] E.-H. Shin, “A quaternion-based unscented kalman filter for the integration of

gps and mems ins,” Proceedings of the 17th International Technical Meeting of

the Satellite Division of the Institute of Navigation ION GNSS, pp. 1060–1068,

2004.

[13] E.-H. Shin and N. El-Sheimy, “An unscented kalman filter for in-motion align-

ment of low-cost imus,” in Proceedings of the IEEE Frames Conference, pp. 273–

279, 2004.

[14] E.-H. Shin, Estimation Techniques for Low-Cost Inertial Navigation. Ph.d. dis-

sertation, The University of Calgary, Department of Geomatics Engineering, May

2005.

[15] Y.-J. Cheon and J.-H. Kim, “Unscented filtering in a unit quaternion space for

spacecraft attitude estimation,” IEEE International Symposium on Industrial

Electronics, pp. 66–71, 2007.

[16] S. Roumeliotis, G. Sukhatme, and G. Bekey, “Circumventing dynamic modelling:

Evaluation of the error-state kalman filter applied to robot localization,” in Pro-

ceedings of IEEE International Conference on Robotics and Automation, Detroit,

MI, vol. 2, pp. 1656–1663, May 1999.

[17] K. Park, GPS Receiver Self Survey and Attitude Determination Using Pseudolite

Signals. Ph.d. dissertation, Texas A&M University, Aug 2004.

[18] D. H. Titterton and J. L. Weston, Strapdown inertial navigation technology.

American Institute of Aeronautics and Astronautics, 2 ed., 2004. Hardback

Book.

[19] CUSP, “2008-2009 final report.” Carleton University, Department of Mechanical

& Aerospace Engineering, 2008-2009.

[20] S. W. R. Hamilton, “Lectures on quaternions,” Proceedings of the Royal Irish

Academy, pp. 1–16, 1847.

92

[21] J. C. Chou, “Quaternion kinematic and dynamic differential equations,” IEEE

Trans Robotics and Automation 8, pp. 53–64, Feb. 1992.

[22] EuclideanSpace, “Matrix to quaternion.” http://www.euclideanspace.com,

viewed August 2009.

[23] Wikipedia, “Axis-angle.” website, http://en.wikipedia.org/wiki/State space (controls),

viewed November 2008.

[24] F. Orderud, “Comparison of kalman filter estimation approaches for state space

models with nonlinear measurements,” in Proceedings of Scandinavian Confer-

ence on Simulation and Modeling, 2005.

[25] Q. M. Lam, N. Stamatakos, C. Woodruff, and S. Ashton, “Gyro modeling and es-

timation of its random noise sources,” AIAA Guidance, Navigation, and Control

Conference and Exhibit, pp. 1–11, Aug. 2003.

[26] Microstrian Inc., Detailed Specifications For 3DM-GX1. Technical Details,

http://www.microstrain.com/3dm-gx1.aspx, viewed Nov. 2008.

[27] W. Stockwell, “Angle random walk.” Crossbow Technology Inc.,

http://www.xbow.com, viewed April 2009.

[28] K. Chisholm, “Inertial measurement unit and vision fusion for a novel simu-

lator motion platform,” private communication, Department of Mechanical &

Aerospace Engineering, Carleton University, February 2009.

[29] Microstrain Inc., 3DM-GX1 Comarison With and Without Temperature Compen-

sation. Technical Report, http://www.microstrain.com/3dm-gx1.aspx, viewed

Nov. 2008.

[30] Microstrain Inc., 3DM-GX1 Data Communication Protocol 3.1.01., February

2005. Firmware version 2.1.00, http://www.microstrain.com/3dm-gx1.aspx,

viewed Nov. 2008.

[31] Z. Prime, Using the Microstrain 3DM-G(X1) IMUs. The

School of Mechanical Engineering, viewed Oct. 2007.

http://www.mecheng.adelaide.edu.au/∼zprime/documents/IMUTechNote.pdf.

[32] B. Rasquinha, “Simple sensor fusion algorithm development for atlaslite,” tech.

rep., Department of Mechanical & Aerospace Engineering, Carleton University,

CUSP Design Report, DR-CNT-br.09.SimpleSensorFusion.02.pdf, 2009.

93

[33] K. Chisholm, “Camera calibration for the vision orientation sensor,” private

communication, Department of Mechanical & Aerospace Engineering, Carleton

University, July 2009.

[34] X. Pennec, “Computing the mean of geometric features - application to the mean

rotation,” Institute National de Recherche en Informatique et en Automatique

(IN-RIA), March 1998.

[35] Apex Dynamics Inc., Apex Dynamics AD047-1 Specifications.

http://www.apexdyna.com/, viewed Aug. 2009.

[36] E. Trucco and A. Verri, Introductory techniques for 3-D computer vision. Prentice

Hall, 1998.

[37] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown orien-

tations,” In Proc. of the Seventh IEEE International Conference on Computer

Vision, vol. 1, pp. 666–673, 1999.

[38] G. Bebis, “The geometry of perspective projection.” University of

Nevada Computer Science Department, http://www.cse.unr.edu/ be-

bis/CS791E/Notes/PerspectiveProjection.pdf,viewed February 2009.

Appendix A

Finding the Mean Quaternion

Unlike vector quantities, which can use simple barycentric averaging to calculate the

mean, quaternions will not yield correct results for the computation of the mean

quaternion in this fashion. A series of orientation quaternions is averaged keeping

in mind that quaternions are members of a homogeneous Riemannian manifold (the

four dimensional unit sphere) and not of a vector space (see Kraft [4]). The approach

uses the intrinsic gradient descent algorithm outlined briefly here [34], [13], [4], [15].

Note: The Matlab m file for this routine is provided in Appendix D.1.

A.1 The Intrinsic Gradient Decent Algorithm

Given multiple quaternion points; qi, i = 1, ..., 2n, the weighted mean quaternion,

q̄, can be computed as follows:

1. Choose any of the qi’s as the initial mean quaternion, q̄.

2. Calculate the attitude difference (quaternion error), as outlined in Equa-

tion (2.10) in Section (2.3). qerr = qi ⊗ (q̄)−1.

3. Convert each qerr into their corresponding axis angle rotation vector errors,

Φi, i = 1, ..., 2n.

94

95

4. Calculate the weighted barycentric mean of the rotation vectors, Φ̄ =∑2n
i=1WiΦ̄i.

5. Convert Φ̄ into the corresponding correction quaternion, qcorr.

6. Update the mean quaternion, q̃ = qcorr ⊗ q̃.

7. Repeat steps (2) to (6) until
∥∥Φ̄∥∥ falls below a specified threshold; 0.000001

radians in this case.

Typically, the number of iterations for convergence is very small (in most cases,

one).

Appendix B

VOS & IOS Specifications

B.1 VOS Intrinsic Parameters

Parameter Description Value Units

rsphere Atlas Sphere Radius 1.4778× 103 mm

(x, y)res Camera Resolution 640× 480 pixels

ccdsize Camera Sensor CCD 12.700 mm

f Camera Focal Length 8 mm

(ox, oy) Principal Point (320, 240) pixel

(sx, sy Scaling Factors (1.59, 1.59)× 10−2 mm/pixel

(fx, fy) Combined Scaling and Focal Length (503.9370, 503.9370) pixel

Table B.1: Intrinsic Camera Parameters

B.2 VOS Extrinsic Parameters

Rotation matrix from world to camera frame

• rotate 90 degrees about World x axis

• then rotate 60 degrees about World y axis

96

97

cRw =


1/2

√
3/2 0

0 0 −1

−
√

3/2 1/2 0


(mm)

Calibrated, including radial and tangential distortions (as per [33]) but currently

not implemented.

cRw =


0.853634809828412 0.520398049122761 0.0222144529177602

0.0191206445695910 0.0113123450142586 −0.999753185442048

−0.520520904864016 0.853848874988720 −0.000293734647024813


(mm)

Translation from world frame origin to camera frame origin, calibrated to include

radial and tangential distortions (as per [33]).

cTw =


−9.32862410622034

−1.05455265129037

−532.512422264170


(mm)

Parameter Description Value Units

σu,v Pixel Frame StDev (0.30,0.54) pixel

σCMMx,y,z Marker Position CMM Measurement StDev 0.0254 mm

Table B.2: Extrinsic camera parameters.

98

B.3 VOSParameters.m

This m file lists the VOS specifications for use in the UKF

% Marker locations on the sphere wrt the sphere frame and the sphere radius

% load .mat file created by SphereMarkerPositions.m script

Spts = open(’SpherePts_r4.75.mat’);

PsAll = Spts.Sphere_points; %mm

% visualize local sphere points

% hold on;

% grid on;

% plot3(Ps(1,:),Ps(2,:),Ps(3,:),’.’,’MarkerSize’,15) %nonuniform

% hold off;

%number of points on sphere

n = size(PsAll, 2); %usually 32

%number of points in frame to be analyzed

N = 3;

%sphere radius

r = Spts.r_s; %mm

Intrinsic Camera Parameters

%Resolution

x_res = 640; %pixels

y_res = 480; %pixels

%ccd size (diagonal)

ccd_size = 0.5*25.4; %mm

%focal length

99

f = 8; %mm

%principle axis location

ox = x_res/2;%pix

oy = y_res/2;%pix

%scaling factors

sx = ccd_size/sqrt(x_res^2+y_res^2);%mm/pix

sy = ccd_size/sqrt(x_res^2+y_res^2);%mm/pix

%combined scaling and focal length

fx = f/sx;%pix

fy = f/sy;%pix

Extrinsic Camera Parameters

Rotation matrix from world to camera frame rotate 90 degrees about x axis then

rotate 60 degrees about y axis

Rcam = [1/2 sqrt(3)/2 0;

0 0 -1;

-sqrt(3)/2 1/2 0];

%find optimal distance from world frame origin to camera origin

alpha = atan2(sy*y_res/2, f);

Z = r/sin(alpha); %mm

%location of world frame origin wrt camera frame origin

%(x and y minor ~3cm offset)

Po = [30*randn; 30*randn; Z]; %mm

100

%location of camera frame origin wrt world frame origin

T = -Rcam’*Po;%mm

%create perspective projection matrix

M = [-fx*Rcam(1, 1)+ox*Rcam(3, 1) -fx*Rcam(1, 2)+ox*Rcam(3, 2)...

-fx*Rcam(1, 3)+ox*Rcam(3, 3) -fx*Po(1)+ox*Po(3);

-fy*Rcam(2, 1)+oy*Rcam(3, 1) -fy*Rcam(2, 2)+oy*Rcam(3, 2)...

-fy*Rcam(2, 3)+oy*Rcam(3, 3) -fy*Po(2)+oy*Po(3);

Rcam(3, 1) Rcam(3, 2) Rcam(3, 3) Po(3)];

VOS Measurement Noises

%marker position CMM measurement Std. Dev. in x, y and z components

Sigma_CMM = 0.001*25.4; %mm

%Measured point locations on sphere (from CMM - stays constant)

PsAll_m = PsAll + Sigma_CMM*randn(3, n);

save(’SpherePts_r4.75_m.mat’, ’PsAll_m’);

%Pixel location Std. Dev. in xim, yim components

Sigma_imu = 0.30; %pixels

Sigma_imv = 0.54; %pixels

Sigma_im = blkdiag(Sigma_imu,Sigma_imv);

VOS Measurement Covariance Matrix ’Rp’ - For pixel image

CMM sphere points Covariance matrix

Rs = Sigma_CMM^2*eye(3*N, 3*N);

101

% Pixel location points covariance matrix

Rim_pt = Sigma_im^2;

Rim = Rim_pt;

for k = 2:N

Rim = blkdiag(Rim,Rim_pt);

end

create structure of camera parameters

CamCalInfo = struct(’T’, T,...

’O’, [ox; oy], ...

’F’, [fx; fy], ...

’Rcam’, Rcam, ...

’Po’, Po, ...

’M’, M, ...

’Sigma_CMM’,Sigma_CMM, ...

’Sigma_im’,Sigma_im, ...

’Rs’,Rs, ...

’Rim’,Rim);

B.4 IOS Detailed Specifications

B.5 IMUspecs.m

This m file lists the IOS specifications for use in the UKF

% Created June 29, 2009

% Jesse Linseman

% Carleton University

102

Figure B.1: Microstrain detailed specifications [26].

103

% This m file specifies all necessary 3DMG

% constant values and standard deviation values

% to be used in sensor fusion code.

3DM-GX1 Gyroscope Specifications

An IMU CLOCK TICK is constant.

clock_tick = 0.0065536; %sec

The following gets the number of IMU clock ticks for transmitting a packet as per

3DM-GX1 Data Communication Protocol (Comm spec. Rev 3.01) February 17, 2005

- Wireless Transmission, [30].

[num,packetLength] = getNumTicks(user_reply);

% Frequency of INS (FASTER)

ins_freq = 1/(num*clock_tick); %Hz

%Effective Bandwidth of INS

% ins_BW = 30; %Hz (-3dB Nominal)

3DM-GX1 Timestep dt is the time between each INS measurement based on user

selection

dt = 1/ins_freq; %s

Noise specification terms for 3DM-GX1 are based on Microstrain datasheet [26].

% Obtain standard deviation values

104

% as per 3DM-GX1 Specifications Sheet:

% Obtain gyro sensor angular velocity standard deviation

% from ARW = 3.5 deg/sqrt(hr)

ARW = (3.5*pi)/(180*sqrt(3600)); %rad/sqrt(sec)

Sigma_omega = ARW*sqrt(dt) %rad

Sigma omega = 1.1656e− 004 radians, (0.0067) degrees.

Alternatively for Rate Random Walk use pre integration. Not currently im-

plemented.

Sigma omega = 60 ∗ ARW ∗
√
ins BW rad

s
or Sigma omega =

3.5∗pi
180√
dt

3600

3600
rad
s

% Gyro bias error for each axis (STD) 15 second Allan Variance Floor

Sigma_bias = 0.1*pi/180; %rad/s

% Gyro Scale Factor Error (-40 to 70 deg C) (STD)

Sigma_sf = 0.005; % unitless (5000 ppm or 0.5 percent FS)

% Gyro Axis Misalignment errors (with compensation) (STD)

Sigma_ma = 0.002; % unitless (2000 ppm or 0.2 percent FS)

% Gyro Resolution Error - not currently modelled

% Sigma_res = 0.01*pi/180; %rad/s

% Gyro G-Sensitivity Error - currently not modelled

% Sigma_grav = 0.01*pi/180; %rad/s/g

B.6 Motor/IMU Test Setup Specifications

∗: Values provided from Apex Dynamics for the AD 0471 Gearbox, [35].

105

Description Value Units

Gearbox Reduced Backlash 6 3∗ arcmin

Gearbox Standard Backlash 6 5∗ arcmin

Max Backlash

Motor/IMU 6 7.5 arcmin

Max Avail. Torque

Motor/IMU

(30 rpm) 40 Nm

Max Torque

during Tests

(≈ 14 rpm) ≈ 20 Nm

Table B.3: Motor/IMU Setup Specs

Figure B.2: Apex Dynamics AD 0471, [35]

Appendix C

Main Matlab Functions

With permission, the following Matlab m files are available from the Carleton CUSP

SVN server. The following descriptions are also available in HTML format from the

server for easier reading with coloured headings and descriptions.

C.1 RUN MAIN PROGRAM.m

This function can currently be used to run recorded test data offline. It oversees each

subfunction filter. The only requirement is having the correct ‘alldata.mat’ recorded

data file in the same folder as this and all the subfunction m files called.

C.2 UKF.m

Contents

• UKF.m

• Get noise disturbances di (Weights) based on Covariance

• Transform disturbances

• Create Sigma Points from ’augmented’ state vector x prev

106

107

• Transform/Propagate xi prev through system process model to get yi ’aug-

mented’ state sigma points

• PREDICTION

• Find P pri – ’a-priori’ state covariance

• Midstep - Added by Jesse Linseman June 17,2009

• PERFORM UPDATE

• Estimate measurement z hat and covariance Pzz

• For speed savings

• Innovation covariance Pvv

• Compute Kalman Gain (lag compensated)

• A posteriori

function [x_post, P_post] = ...

UKF(u_m, z_m, Rvos, x_prev, P_prev, dt,l,tol,CamCalInfo,N,r)

NOTE: Kappa is maintained at equal to 0

Inputs:

• u m - current measured IMU AngVel (including WGN & sensor errors).

• z m - current ’lagged’ VOS measurement q (including WGN).

• R VOS - current VOS measurement noise covariance.

• x prev - ’augmented’ state vector.

• P prev - ’augmented’ state covariance matrix [30x30].

• dt - IMU timestep (sec).

• l - latency term indicates number of IMU timesteps VOS measurement is lagged

by.

• tol - tolerance on mean quaternion.

• CamCalInfo - VOS parameters used in VOSprocess

108

• N - number of observed markers

• r - Atlas sphere radius

Outputs:

• x post - ‘augmented’ posteriori state estimate [31× 1]

• P post - ‘augmented’ posteriori state covariance Matrix [30× 30]

Get noise disturbances di (Weights) based on Covariance

The augmented process covariance matrix P prev includes state covariance ’P’ and

process noise covariance ’Q’.

n = size(P_prev, 1); %number of rows (30)

% Initialize

di = zeros(n, 2*n);

% Obtain sigma points matrix (pre-quaternion sigma points)

S = chol(n*P_prev); %[30X30]

for k = 1:n

di(:, k) = S(:, k);

di(:, k+n) = -S(:, k);

end

Transform disturbances

aa noise disturbances di(1:3, 1) into quaternion disturbances qi d(1:4, 1) convert

orientation portion of di into quaternion di initialize quaternion disturbance

qi_d = zeros(4, 2*n);

for k = 1:2*n

109

qi_d(:, k) = aa2q(di(1:3, k));

end

Create Sigma Points from ’augmented’ state vector x prev

initialize q, sensor error and noise portions of sigma points

qi_prev = zeros(4, 2*n);

si_prev = zeros(12,2*n);

wi_prev = zeros(15, 2*n);

for k = 1:2*n %number of Sigma Points to create (columns)

% apply q disturbance by q multiplication (rotate q_prev)

qi_prev(:, k) = ...

qmultiply(x_prev(1:4), qi_d(:, k)); %attitude sigma points

si_prev(:,k) = x_prev(5:16) + di(4:15,k); %sensor error sigma points

wi_prev(:,k) = di(16:30,k);

end

% Construct ’Augmented’ sigma point matrix

xi_prev(:,:) = ...

[qi_prev(:,:); si_prev(:,:); wi_prev(:,:)]; %State Sigma Points

Transform/Propagate xi prev through system process model to get yi ’aug-

mented’ state sigma points

yi = zeros(31,2*n);

for k = 1:2*n

% Note: no added noise

yi(:, k) = IOSProcess(u_m(:,1), xi_prev(:, k), dt);

110

end

% Obtain initial guess y0 for finding mean state (faster onvergence).

y0 = IOSProcess(u_m(:,1), x_prev, dt);

PREDICTION

A priori state estimate (MEAN) Calculate quaternion portion of mean using Rieman-

nian manifold intrinsic gradient decent algorithm (Kraft 2003)

• q pri - quaternion associated with attitude portion of state

• q ei - aa errors associated with (quaternion) attitude portion of state

• s pri - sensor error portions

• w pri - noise portions

[q_pri, q_ei] = meanqRotation(yi(1:4,:), y0, tol);

% Calculate vectorial portion using Barycentric mean sensor error portion

[s_pri, s_ei] = meanSerror(yi(5:16,:));

% noise portions

[w_pri, w_ei] = meanSerror(yi(17:31,:));

% If noise portions are all assumed zero mean (WGN)

% no need to calculate: - not currently implemented

% ie. ‘a-priori’ noise w_pri expected value always zero (mean)

%w_pri = zeros(15, 1);

% State estimate (a priori)

y_pri = [q_pri; s_pri; w_pri];

111

Find P pri – ’a-priori’ state covariance

P_pri = zeros(n,n);

for k = 1:2*n

P_pri = P_pri + 1/(2*n)*([q_ei(:, k); s_ei(:,k);w_ei(:,k)] ...

*[q_ei(:, k);s_ei(:,k);w_ei(:,k)]’);

end

Midstep - Added by Jesse Linseman June 17,2009

To deal with latency issue create memory terms

persistent y_pri_hold; %variable to hold IMU term in memory

persistent P_pri_hold; %variable to hold IMU term in memory

persistent qi_hold; %variable to hold ’augmented’ IMU sigma states

persistent q_ei_hold;

if isempty(y_pri_hold) || isempty(P_pri_hold) || isempty(q_ei_hold)

% Performed on 1st iteration only

• stores current ’a-priori’ IMU aug state vector

• stores current ’a-priori’ IMU aug state covariance

• stores current ’a-priori’ transformed sigma points

• stores current ’a-priori’ transformed sigma points errors

y_pri_hold(:,1) = y_pri(1:4);

P_pri_hold(:,:,1) = P_pri;

112

qi_hold(:,:,1) = yi(1:4,:);

q_ei_hold(:,:,1) = q_ei;

y_pri_hold(:,2) = y_pri(1:4);

P_pri_hold(:,:,2) = P_pri;

qi_hold(:,:,2) = yi(1:4,:);

q_ei_hold(:,:,2) = q_ei;

end

if l == 0 %VOS measurement available from k-N lagged timesteps back

PERFORM UPDATE

ONLY WHEN VOS MEASUREMENT IS AVAILABLE

y_pri_hold(:,1) = y_pri_hold(:,2); %Use stored estimate

P_pri_hold(:,:,1) = P_pri_hold(:,:,2);

qi_hold(:,:,1) = qi_hold(:,:,2);

q_ei_hold(:,:,1) = q_ei_hold(:,:,2);

y_pri_hold(:,2) = y_pri(1:4); % Re-store current IOS measurement

P_pri_hold(:,:,2) = P_pri;

qi_hold(:,:,2) = yi(1:4,:);

q_ei_hold(:,:,2) = q_ei;

C.2.1 Estimate measurement z hat and covariance Pzz

Use VOSprocess - not needed if increased speed is required Obtain zi sigma points

by propagating yi Sigma points through VOS observation model To use comment

113

out following section

% zi = zeros(4,2*n);

% for k = 1:2*n

% % Note: no added noise

% [zi(:,k)] = VOSprocess(qi_hold(:,k,1), CamCalInfo, N, r,0);

% end

% % Initial Guess for mean VOS measurement used for speed savings only

% z0 = VOSprocess(y_pri_hold(:,1), CamCalInfo, N, r,0);

% % find z mean estimate z_hat and errors ei_z

% [z_hat, ei_z] = meanqRotation(zi, z0, tol);

% % VOS Measurement process covariance Pzz

% Pzz = zeros(3, 3);

% for k = 1:(2*n)

% Pzz = Pzz + 1/(2*n)*(ei_z(:, k)*ei_z(:, k)’);

% end

C.2.2 For speed savings

For speed savings the lagged expected VOS measurement ’z hat’ can simply be the

’a priori’ ’augmented’ state attitude (quaternion) from k-N timesteps ago.

z_hat = y_pri_hold(:,1);

Similarly, the expected measurement state covariance Pz hat of the VOS mea-

surement would simply be the IOS ’a priori’ state process covariance (P pri attitude

parts only)

Pzz = P_pri_hold(1:3,1:3);

114

Innovation covariance Pvv

Pvv = Pzz+Rvos;

Cross correlation covariance Pyz (lag compensated).

Pyz = zeros(30, 3); % Initialize Pyz

for k = 1:2*n

%Using VOSprocess function? => un-comment following line

%Pyz = Pyz + 1/(2*n)*[q_ei(:, k);s_ei(:,k);w_ei(:,k)]*ei_z(:, k)’;

%For speed savings => comment line if not needed

Pyz = Pyz + 1/(2*n)*[q_ei(:, k);s_ei(:,k);w_ei(:,k)]*q_ei_hold(:,k,1)’;

end

Compute Kalman Gain (lag compensated)

K = Pyz*inv(Pvv);

% innovation of attitude

e_qinnov = qerror(z_m,z_hat(1:4));

% to axis angle

e_innov = q2aa(e_qinnov);

% state correction in axis angle

corr = K*e_innov;

% quaternion correction

q_corr = aa2q(corr(1:3));

A posteriori

Add Kalman gain correction terms to states

115

q_post = qmultiply(q_corr, q_pri);

se_post = y_pri(5:16) + corr(4:15);

w_post = y_pri(17:31) + corr(16:30);

% posteriori estimates

x_post = [q_post; se_post;w_post];

P_post = P_pri - K*Pvv*K’; %Kalman Update

else

% No Kalman update

x_post = y_pri;

P_post = P_pri;

end

C.3 IOSprocess.m

Contents

• IOS Mechanization

• IOS Sensor Error Compensation

• Apply quaternion rotation

function x_new = IOSProcess(omega,x,dt)

Inputs:

• omega: (rad/s): measured angular velocity

• x: : ’augmented’ state vector

• dt: (sec): timestep

Output:

116

• x new: : new ’augmented’ state vector

Extract Current States From ’x -augmented state vector’

q = x(1:4); %current attitude (quaternion)

bias = x(5:7); %current est biases

sf = x(8:10); %current est scale factors

ma = x(11:16); %current est misalignments

noise = x(17:31); %current est state noises

IOS Mechanization

Integrate angular velocity (omega) based on small angle assumption

sigmaIMU = dt*(omega); %rad

IOS Sensor Error Compensation

[sigmanew,bias_new,sf_new,ma_new] = senscomp(dt,sigmaIMU,bias,sf,ma,noise);

Apply quaternion rotation

axis angle to quaternion rotation ’r’

r = aa2q(sigmanew); %updated for code speed increase by Jesse Linseman

% Applies the quaternion differential (r) through to

% get new orientation

q_new = qmultiply(q, r);

if q_new(1)<0

q_new = -q_new;

end

117

Recreate new augmented state vector

x_new = [q_new;bias_new;sf_new;ma_new;noise];

C.4 UKF2.m

This is the same as UKF.m but it calls IOSprocess2.m instead (see Appendix C.5).

Contents

• Get noise disturbances di (Weights) based on Covariance

• Transform disturbances

• Create Sigma Points from ’augmented’ state vector x prev

• Transform/Propagate xi prev through system process model to get yi ’aug-

mented’ state sigma points

• PREDICTION

• Find P pri – ’a-priori’ state covariance

• Midstep - Added by Jesse Linseman June 17,2009

• Estimate measurement z hat and covariance Pzz

• Innovation covariance Pvv

• Compute Kalman Gain (lag compensated)

• A posteriori

Also the input line is as follows.

function [x_post, P_post] = UKF2(q_m, z_m, Rvos, x_prev, P_prev, dt,l,tol)

% NOTE: Kappa is maintained at equal to 0

%

118

Inputs:

• q m - current measured IMU attitude (including WGN & sensor errors)

• z m - current ’lagged’ VOS measurement q (including WGN)

• R VOS - current VOS measurement noise covariance

• x prev - ’augmented’ state vector

• P prev - ’augmented’ state covariance matrix [30x30]

• dt - IMU timestep (sec)

• l - latency term indicates number of IMU timesteps VOS measurement is lagged

by

• tol - tolerance on mean quaternion

Otherwise this function is the same as UKF.m

C.5 IOSprocess2.m

Contents

• IOS Mechanization

• IOS Sensor Error Compensation.

• Apply quaternion rotation

function x_new = IOSProcess2(q_m,x,dt,k)

Inputs:

• q m: (rad): measured IMU orientation (quaternion)

• x: : ’augmented’ state vector

• dt: (sec): timestep

• k: : k = 1 indicates when to update q last m

119

Outputs:

• x new: : new ’augmented’ state vector

Extract Current States From ’x -augmented state vector’

q = x(1:4); %current attitude (quaternion)

bias = x(5:7); %current est biases

sf = x(8:10); %current est scale factors

ma = x(11:16); %current est misalignments

noise = x(17:31); %current est state noises

IOS Mechanization

persistent q_last_m

if isempty(q_last_m)

q_last_m = [1;0;0;0];

end

qrot = qerror(q_last_m,q_m);

if k==1

q_last_m = q_m;

end

sigmaIMU = q2aa(qrot);

IOS Sensor Error Compensation.

[sigmanew,bias_new,sf_new,ma_new] = senscomp(dt,sigmaIMU,bias,sf,ma,noise);

Apply quaternion rotation

Axis angle to quaternion rotation ’r’

120

r = aa2q(sigmanew); %updated for code speed increase by Jesse Linseman

Applies the quaternion differential (r) through to get new orientation.

q_new = qmultiply(q, r);

if q_new(1)<0

q_new = -q_new;

end

Recreate new augmented state vector

x_new = [q_new;bias_new;sf_new;ma_new;noise];

C.6 senscomp.m

This function gets called by IOSprocess.m and IOSprocess2.m It also has two internal

functions V2G & getTol.

Contents

• senscomp.m

• Gmatrix calculation

• Tolerance check on errors

Created by Jesse Linseman. This function applies sensor error compensation used

by UKF.m or UKF2.m.

function [sigmanew,bias,sf,ma] = senscomp(dt,sigma,biasold,sfold,maold,noise)

bias = biasold+noise(4:6);

bias = gettol(bias);

121

biashalf = (biasold+bias)/2; % interpolation

biashalf = gettol(biashalf);

sf = sfold+noise(7:9);

sf = gettol(sf);

sfhalf = (sfold+sf)/2; % interpolation

sfhalf = gettol(sfhalf);

ma = maold+noise(10:15);

ma = gettol(ma);

mahalf = (maold+ma)/2; % interpolation

mahalf = gettol(mahalf);

Gmatrix = v2G(sfhalf,mahalf); % Create G matrix

sigmanew = inv(eye(3)+Gmatrix)*(sigma - biashalf*dt - noise(1:3)); %rad

end

Gmatrix calculation

function G = v2G(A,B)

G = diag(A);

G(1,2) = (B(1));

G(1,3) = (B(2));

G(2,1) = (B(3));

G(2,3) = (B(4));

G(3,1) = (B(5));

G(3,2) = (B(6));

end

122

Tolerance check on errors

Used to keep value zero if very small

function valout = gettol(valin)

tol = 0.0000001;

valout = valin;

for val = 1:size(valin,1)

if abs(valin(val))< tol

valout(val)=0;

end

end

end

C.7 VOSprocess.m

This function represents the VOS process in its entirety. Developed by Jesse Lin-

seman, August 31, 2009. Portions of this function were originally created by Kyle

Chisholm for his UKF design which have been modified to fit within one overlaying

function herein.

% Purpose:

% STAGE 1: Based on an IMU estimated Atlas Sphere orientation quaternion,

% develop the estimated map of marker positions for that orientation.

% STAGE 2: Using this estimated map of marker locations, estimate the

% VOS orientation measurement that is expected observed.

123

function [qi] = VOSprocess(q, CamCalInfo, N, r, sim)

% *q current orientation quaternion of Atlas sphere

% (TRUE or ESTIMATE)

% N number of markers seen in image (usually 3)

% CamCalInfo structure of camera parameters (CONSTANT)

Extract All necessary variables

Spts = open(’SpherePts_r4.75.mat’);

PsAll = Spts.Sphere_points; %mm

if sim == 1

% point locations on sphere (used for simulation only)

Spts = open(’SpherePts_r4.75_m.mat’);

PsAll_m = Spts.PsAll_m; %mm

end

T = CamCalInfo.T; % translation from World 2 Cam frame (rel to world)

M = CamCalInfo.M; % perspective projection matrix

Rcam = CamCalInfo.Rcam; % rotation matrix from world to camera coordinates

ox = CamCalInfo.O(1); % optical x-axis location in pixel image

oy = CamCalInfo.O(2); % optical y-axis location in pixel image

fx = CamCalInfo.F(1); % focal x length scaling factors

fy = CamCalInfo.F(2); % focal y length scaling factors

Rim = CamCalInfo.Rim; % Pixel location points covariance matrix

n = size(PsAll, 2); % total number of markers

124

STAGE 1: Create Map Of World Marker Locations Based On current

Sphere Orientation

Used to get markers in field of view (FOV) transform current quaternion into rotation

matrix.

Rs2w = q2R(q);

% Transform true sphere marker point positions from local to world frame

Pw = Rs2w*PsAll;

% Transform all sphere marker points from world to camera frame

Pc = Rcam*(Pw-T*ones(1, n));

% Determine absolute distances from camera origin

% to all true sphere marker points

d = sqrt(Pc(1, :).^2+Pc(2, :).^2+Pc(3, :).^2);

Find N closest sphere marker points to camera origin sort d from shortest to

largest distances

[d_sorted IX] = sort(d);

Psfov = zeros(3*N, 1); %(9x1)

Psfov_m = zeros(3*N, 1); %used for simulation only

Pimfov = zeros(2*N, 1); %(6x1)

for k = 1:N

% get expected local sphere marker point ’k’ in camera Field Of View (FOV)

Psfov(3*k-2:3*k, 1) = PsAll(:, IX(k));

if sim == 1 % *code used for simulation only*

Psfov_m(3*k-2:3*k, 1) = PsAll_m(:, IX(k));

125

end

% transform sphere marker point ’k’ from local to world frame

Pw = Rs2w*Psfov(3*k-2:3*k, 1);

% use projection perspective matrix M

Z = M*[Pw; 1];

% determine 2D pixel coords from Z

IM = Z/Z(3);

% determine x’,y’ image frame coords of points in fov

Pimfov(2*k-1:2*k, 1) = IM(1:2, 1);

end

if sim == 1 % *code used for simulation only*

Pimfov_m = Pimfov+chol(Rim)*randn(2*N, 1);

Pm = [Psfov_m; Pimfov_m];

save(’Pm.mat’, ’Pm’);

Pimfov = Pimfov_m; %set for use in Stage 2

end

STAGE 2: Obtain VOS Measurement Estimate

Use developed marker position map to determine the estimated VOS orientation

quaternion measurement.

% rotate translation to make rel to cam coords

P = -Rcam*T;

% Extract P components (camera pos in world frame rel to cam frame)

126

Px = P(1);

Py = P(2);

Pz = P(3);

m = size(Pimfov, 1); %usually 6

Pw = zeros(3, m/2); %(3x3)

for k = 1:N

% Extract camera frame x,y pixel location for marker ’k’.

xim = Pimfov(2*k-1, 1);

yim = Pimfov(2*k, 1);

% Image plane coords in mm:

x = (ox-xim)/fx;

y = (oy-yim)/fy;

% Using Atlas sphere radial constraint, find camera frame image point coord

% with respect to world (relative to camera frame).

Wx = -x*(-Px*x-Py*y+x^2*Pz+y^2*Pz+ ...

(r^2+2*x*Pz*Px-x^2*Pz^2-Px^2-y^2* ...

Pz^2-Py^2+2*y*Pz*Py+2*Px*x*Py*y+x^2* ...

r^2-x^2*Py^2+y^2*r^2-y^2*Px^2)^(1/2))/(x^2+y^2+1)+x*Pz-Px;

Wy = -y*(-Px*x-Py*y+x^2*Pz+y^2*Pz+ ...

(r^2+2*x*Pz*Px-x^2*Pz^2-Px^2-y^2* ...

Pz^2-Py^2+2*y*Pz*Py+2*Px*x*Py*y+x^2* ...

r^2-x^2*Py^2+y^2*r^2-y^2*Px^2)^(1/2))/(x^2+y^2+1)+y*Pz-Py;

Wz = -sqrt(r^2-Wx^2-Wy^2);

127

Pcw = [Wx; Wy; Wz];

% Rotate Pcw to world frame coordinates.

Pw(:, k) = Rcam’*Pcw;

end

% Rotation matrix (only works with N = 3):

Mnew = Pw*inv(reshape(Psfov, 3, 3));

% Singular Value Decomposition:

[U,S,V] = svd(Mnew);

% S = (Mnew’*Mnew)^0.5;

% Rnew = Mnew*inv(S);

Rnew = U*V’;

% Convert to quaternion.

qi = R2q(Rnew);

C.8 3DMG operate.m

This function is used to gather/record a set amount of data from the Microstrain

3DM-GX1 IMU. The user must choose the appropriate command to have the IMU

send the proper quantities.

Created by Jesse Linseman Carleton University July 10 2009

close all;

128

clear all;

clc;

disp(’Turn 3DMG off and then back on again’);

pause;

Set up the serial port

s = serial(’COM1’,’BaudRate’,38400,’Timeout’,2);

% This sets up the serial connection file that

% Matlab needs in order to connect to the serial port

Commands List

This is a list of important hexadecimal commands for the 3DM-GX1. All commands

are one byte in length. Some commands require additional data bytes following the

initial command byte to fully define the action to be taken. All commands generate

a response of a fixed number of bytes.

% COMMAND (##) DEFINITION

% Hexidecimal Decimal

% 00 0 Null Command (not implemented)

% 01 1 Send Raw Sensor Bits

% 02 2 Send Gyro-Stabilized Vectors

% 04 4 Send Instantaneous Quaternion

% 05 5 Send Gyro-Stabilized Quaternion

% 06 6 Capture Bias (only when stationary)

% 07 7 Send Temperature

% 08 8 Send EEPROM Value

% 09 9 Write EEPROM Value

129

% 0C 12 Send Gyro-Stabilized Quaternion & Rate Vector

% 0F 15 Tare Coordinate System

% 10 0 ## 16 0 ## Sets Continuous mode (along with a command ##)

% 10 0 0 16 0 0 Set Polled mode

% 11 17 Remove Tare

% 12 18 Send Gyro-Stab. Quaternion & Inst. Vectors

% 24 36 Write System Gains

% 25 37 Read System Gains

% 27 39 Self Test

% 28 40 Read EEPROM Value with Checksum

% 29 41 Write EEPROM Value with Checksum

% 30 48 Send Gyro-Stab. Euler Angles & Rate Vector

% 31 49 Send Gyro-Stab. Euler Angles & Accel & Rate Vector

% F0 240 Send Firmware Version Number

% F1 241 Send Device Serial Number

disp(’Please choose a decimal command #:’);

disp(’2 => Send Gyro Stabilized Angular Rate Vectors’);

disp(’4 => Send Instantaneous Quaternion’);

disp(’5 => Send Gyro Stabilized Quaternion’);

disp(’12 => Send Gyro-Stabilized Quaternion & Rate Vector’);

disp(’48 => Send Gyro-Stabilized Euler Angles & Rate Vector’);

user_reply = input(’Please choose... ’);

while (isempty(user_reply))

user_reply = input(’invalid response... Please try again:’);

end

130

Hexadecimal example

Comm mode 0x31 - Gyro-stabilized Euler Angles & Rate Vectors command =

hex2dec(’31’);

% A Typical Response is 23 bytes including:

% |Header byte|, |Intervening bytes|, |16 bit checksum|

% TYPE DESCRIPTION

% Header byte => same value as the corresponding command byte

% Intervening bytes => a series of 16 bit signed integers (actual data)

% 16 bit checksum => sum of all 16 bit integers & header byte (MSB = 00)

Runtime Details

RunTime = 120; %sec (approx amount of time to record (in seconds))

Obtain 3DM-GX1 Details

IMUspecs; %Gather IMU specifications of 3DMG based on |user_reply|.

% The above also determines |packetLength| based on |user_reply|.

% Approx. number of discrete simulation steps

t_steps = floor(RunTime/dt); %unitless (floor - answer always rounded down)

% Mean tolerance for convergence of

% estimated quaternion.

tol = 0.000001; %rad

131

Scaling constants for the data

scaling = [1/8192; 360/65536; 7000/32768000; ...

8500/32768000];

Initialize Arrays for speed

anonymous function needed to calculate the unsigned 16bit int

un = @(msb,lsb) double(256*msb+lsb);

IMUstats; %Create statistical values for use in UKF

IMUdata = zeros(packetLength,t_steps); %original data packet (no change)

IMUconv = zeros(floor((packetLength-3)/2),t_steps); %2’s complement number

StabQ = zeros(4,t_steps);

StabAngRate = zeros(3,t_steps);

Put 3DM-GX1 into Continuous Mode

RS-232 only

disp(’Press any key to start recording’)

pause;

try

Header Packet

fopen(s); % Open the serial connection

fwrite(s,[16 0 user_reply(1)]); % Command for IMU

% Check & Remove Header

132

Header_bytes = 7; % not used

Discraded_header = fread(s,Header_bytes);

Record IMU Data

for i = 1:t_steps

packet = double(fread(s,packetLength));

IMUdata(:,i) = packet;

Received checksum

checksum = un(packet(packetLength-1),packet(packetLength));

Computed checksum from the packet

computed = un(0,packet(1)); % MSB = 0

for j = 1:floor((packetLength-3)/2)

temp = un(packet(2*j),packet(2*j+1));

computed = computed + temp;

% correct data to a 2’s complement number.

if temp > 32767

temp = temp-65536;

end

IMUconv(j,i) = temp;

end

Compare the two checksums

Rule: The last two bytes in a recieved packet must equal the sum of the preceeding

bytes (including header byte) in the packet to be valid

133

if mod(computed,65536) ~= checksum

error(’IMUSerialReceive:ChecksumError’,’Checksum error from IMU’);

end

Compare Packet Header

if packet(1) ~= user_reply(1)

error(’IMUSerialReceive:misalignment’,’IMU packet handling is not correct’);

end

Scale Packet to SI Units

This section depends on the user reply selection

if (user_reply == 4) || (user_reply == 5) || (user_reply == 12)

StabQ(:,i) = scaling(1)*IMUconv(1:4,i);

elseif user_reply == 2

StabAngRate(:,i) = scaling(4)*IMUconv(7:9,i); %Angular Rate Vector (rad/s)

end

end

fclose(s); %Close connection to IMU.

delete(s); %Cleanup the serial port.

catch

% If there is an error

fclose(s); % close connection

delete(s); % delete the object (required)

rethrow(lasterror);

end

134

Visualize Results

if (user_reply == 4) || (user_reply == 5) || (user_reply == 12)

PlotStabQ; % Visualize Quaternion

% Convert StabQ back to aa to visualize.

PlotAxisAng; % Visualize Axis Angle Results.

end

if user_reply == 2

PlotStabAngRate; %Visualize Angular Rate

end

C.9 Simple Sensor Fusion Function

Contents

• Simple Sensor Fusion.m

• getnewCorr.m

Simple Sensor Fusion.m

Original SSF created to handle Euler angle only by Brian Rasquinha 2008/2009

CUSP. The following SSF code was developed by Jesse Linseman, Carleton Uni-

versity, July 20 2009 for use with quaternions. Note: No statistical information used.

function SF_quat = Simple_Sensor_Fusion(u_m,z_m,dt,l)

Inputs:

• u m - current measured IMU AngVel (including WGN & sensor errors)

135

• z m - current ’lagged’ VOS measurement q (including WGN)

• dt - IMU timestep (sec)

• l - latency term indicates number of IMU timesteps VOS measurement is lagged

by

Outputs:

• SF quat - Sensor Fusion estimated Quaternion

Allocate Memory Terms

persistent Corr

persistent IMU_q;

Performed on First Iteration Only

if isempty(Corr)||isempty(IMU_q)

Corr = [1;0;0;0];

IMU_q = [1;0;0;0];

end

Integrate to get IMU Orientation Quaternion

sigmaIMUaa = dt*u_m;

r = aa2q(sigmaIMUaa);

IMU_q = qmultiply(IMU_q, r);

if IMU_q(1)<0

IMU_q = -IMU_q;

end

136

Update Correction Term If proper VOS measurement available

if l == 0;

% We have vision data, so update correction and

% store current IMU_q for later use

Corr = getnewCorr(z_m,IMU_q);

end

Apply most recent VOS correction factor Corr

SF_quat = qmultiply(IMU_q,Corr);

if SF_quat(1)<0

SF_quat = -SF_quat;

end

end

getnewCorr.m

Internal function to SSF.m used to handle OOSM from VOS. Obtains the valid cor-

rection term to be used at the current timestep and stores the current IMU quaternion

for later use.

function Corr = getnewCorr(z_m,IMU_q_store)

persistent IMU_q_hold

if isempty(IMU_q_hold)

IMU_q_hold = [1;0;0;0];

end

137

Corr = qerror(z_m,IMU_q_hold);

IMU_q_hold = IMU_q_store;

end

C.10 UKF No Sensor Error Estimation Function

Contents

• UKF NoSE.m

• findZmod.m

• IOSProcess NoSE.m

UKF NoSE.m

from VOS UKF developed by Kyle Chisholm, Carleton University comments added

by Jesse Linseman for clarity findZmod.m moved in as internal function. IOSPro-

cess NoSE.m moved in as internal function.

function [q_post, P_post] = ...

UKF_NoSE(u_m, z_m, Rvos, q_prev, P_prev, Qw, dt, l, tolerance)

Inputs

• u m - Angular Rates from IOS

• z m - VOS lagged measurement

• Rvos - VOS measurement covariance matrix

• q prev - previous state quaternion estimate

• P prev - preious state covariance matrix estimate

• Qw - state noise covariance matrix

• dt - timestep

138

• l - lag term

• tolerance - tolerance for mean quaternion calc

Outputs

• q post - posterior state measurment estimate

• P post - posteriori state covariance estimate

% from generalized UKF, Kappa is equal to 0

% Get noise disturbances di

% size of covariance matrix

n = size(P_prev, 1);

% Initialize

di = zeros(n, 2*n);

% get sigma matrix

S = chol(n*P_prev);

for k = 1:n

di(:, k) = S(:, k);

di(:, k+n) = -S(:, k);

end

% Transform aa noise disturbances di(:, 1) to q state disturbances qi_d

% initialize quaternion disturbance

qi_d = zeros(4, 2*n);

for k = 1:2*n

% axis angle to quaternion

qi_d(:, k) = aa2q(di(:, k));

end

139

% create Sigma Points of state x

% initialize sigma points

qi_prev = zeros(4, 2*n);

for k = 1:2*n

% apply q disturbance by q multiplication (rotate q_prev)

qi_prev(:, k) = qmultiply(q_prev, qi_d(:, k));

end

% Propagate xi_prev through process model to get xi

% initialize qi

qi = zeros(4, 2*n);

for k = 1:2*n

% run through process

qi(:, k) = IOSProcess_NoSE(u_m, qi_prev(:, k), dt);

end

% Find mean quaternion q_pri (a priori) and aa errors ei

% initial guess for q_pri (mean rotation)

q0 = IOSProcess_NoSE(u_m, q_prev, dt);

% find q_pri and ei

[q_pri, ei] = meanqRotation(qi, q0, tolerance);

% A priori state covariance without process noise

140

% covariance Pq

Pq = zeros(3, 3);

for k = 1:(2*n)

Pq = Pq + 1/(2*n)*(ei(:, k)*ei(:, k)’);

end

Find Q (process noise) create ui sigma points

m = size(Qw, 1);

S = sqrtm(m*Qw);

ui = zeros(m, 2*m);

for k = 1:m

ui(:, k) = u_m + S(:, k);

ui(:, k+m) = u_m - S(:, k);

end

% propagate ui through process model

qi_u = zeros(4, 2*m);

for k = 1:2*m

qi_u(:, k) = IOSProcess_NoSE(ui(:, k), q_prev, dt);

end

% find qu_mean

[qu_mean, eu_i] = meanqRotation(qi_u, q0, tolerance);

% process noise Covariance

Q = zeros(n, n);

for k = 1:(2*n)

Q = Q + 1/(2*n)*(eu_i(:, k)*eu_i(:, k)’);

end

141

% A priori covariance

P_pri = Pq+Q;

% Estimate measurement z_hat and covariance Pz_hat

% Since z is simply the state quaternion

z_hat = q_pri;

Pz_hat = Pq;

% modify state measurement forward in time to account for OOSM

[z_mod, Rvmod] = ...

findZmod(q_pri, P_pri, q_prev, P_prev, z_m, Rvos, l, tolerance);

% Innovation Covariance Pz

Pz = Pz_hat+Rvmod;

% Cross Covariance Pqz is simply Pq

Pqz = Pq;

% Compute Kalman Gains

K = Pqz*inv(Pz);

% this gain corresponds to noise in aa

% we need to convert innovation to correction of x_pri in quaternion

% innovation

e_qinnov = qerror(z_mod, z_hat);

% to axis angle

e_innov = q2aa(e_qinnov);

% state correction in axis angle

a_corr = K*e_innov;

% quaternion correction

q_corr = aa2q(a_corr);

A posteriori

142

q_post = qmultiply(q_corr, q_pri);

P_post = P_pri - K*Pz*K’;

P_post = real(P_post);

end

findZmod.m

Used to modify VOS measurements forward in time for OOSM handling for

UKF NoSE.

function [z_mod, Rvmod] = ...

findZmod(q_pri, P_pri, q_prev, P_prev, z_m, Rvos, k, tolerance)

persistent q_hold;

persistent P_hold;

persistent holdit;

% if first run

if isempty(q_hold) || isempty(P_hold)

q_hold(:, 1) = q_prev;

P_hold(:, :, 1) = P_prev;

q_hold(:, 2) = q_prev;

P_hold(:, :, 2) = P_prev;

holdit = 0;

% if q_prev (a posteriori) is just updated at time k-1,

% use q on hold for OOSM and save current q_prev for later

elseif k == 0

q_hold(:, 1) = q_hold(:, 2);

P_hold(:, :, 1) = P_hold(:, :, 2);

holdit = 1;

143

elseif holdit == 1

q_hold(:, 2) = q_prev;

P_hold(:, :, 2) = P_prev;

holdit = 0;

end

% create covariance matrix of "inputs" to OOSM handling process

Q = blkdiag(Rvos, P_pri, P_hold(:, :, 1));

% disturbances

% size of covariance matrix

n = size(Q, 1);

% Initialize

di = zeros(n, 2*n);

% get sigma matrix

S = real(sqrtm(n*Q));

for k = 1:n

di(:, k) = S(:, k);

di(:, k+n) = -S(:, k);

end

% convert di to quaternions

% initialize quaternion disturbance

% from camera (VOS measurement)

Dzi_c = zeros(4, 2*n);

% a priori

Dqi_pri = zeros(4, 2*n);

% a posteriori from time camera took image

Dqi_hold = zeros(4, 2*n);

for k = 1:2*n

144

Dzi_c(:, k) = aa2q(di(1:3, k));

Dqi_pri(:, k) = aa2q(di(4:6, k));

Dqi_hold(:, k) = aa2q(di(7:9, k));

end

% initialize sigma points

zi_c = zeros(4, 2*n);

qi_pri = zeros(4, 2*n);

qi_hold = zeros(4, 2*n);

for k = 1:2*n

% apply q disturbance by q multiplication

zi_c(:, k) = qmultiply(z_m, Dzi_c(:, k));

qi_pri(:, k) = qmultiply(q_pri, Dqi_pri(:, k));

qi_hold(:, k) = qmultiply(q_hold(:, 1), Dqi_hold(:, k));

end

% initialize zi

zi = zeros(4, 2*n);

for k = 1:2*n

% OOSM handling process

q_rot = qerror(qi_pri(:, k), qi_hold(:, k));

zi(:, k) = qmultiply(q_rot, zi_c(:, k));

end

% initial guess for z

q_err = qerror(q_pri, q_hold(:, 1));

z0 = qmultiply(q_err, z_m);

% find mean measurement z and rotation errors ei

[z_mod, ei] = meanqRotation(zi, z0, tolerance);

% measurement covariance Rvmod

145

Rvmod = zeros(3, 3);

for k = 1:(2*n)

Rvmod = Rvmod + 1/(2*n)*(ei(:, k)*ei(:, k)’);

end

end

IOSProcess NoSE.m

Internal IOS process function used to integrate IOS measurements.

function q_new = IOSProcess_NoSE(omega, q, T)

%extract states

%integrate omega

sigma = T*(omega);

%axis angle to quaternion r

sigma_mag = sqrt(max(0, sigma’*sigma));

if sigma_mag == 0;

ac =1;

as = 0;

else

ac = cos(sigma_mag/2);

as = sin(sigma_mag/2)/sigma_mag;

end

r = [ac;

as*sigma];

% Apply rotation

q_new = qmultiply(q, r);

146

if q_new(1)<0

q_new = -q_new;

end

end

C.11 TrueTraj.m

This function creates an array of the TRUE rotation profile attempted to be followed

by the gearbox July 13, 2009, 120 second data set

L = size(yout,1); %number of recorded data points

t = 0.0005; % increment (sec/datapoint).

TrueAng = zeros(L,1);

elapsedtime = 0;

for k = 1:L

TrueAng(k,1) = getMotorAng(elapsedtime);

elapsedtime = elapsedtime + t ;

end

Calculate RMS Error of Motordata

err = zeros(1,L);

RMS = 0;

maxTheta = 0;

for k = 1:L

err = TrueAng(k,:)-yout(k,1);

ThetaSqr = err^2;

147

if sqrt(ThetaSqr) > maxTheta

maxTheta = sqrt(ThetaSqr);

end

RMS = RMS + (1/L)*ThetaSqr;

end

Results = {’RMS_degrees’,’Max_degrees’;RMS,maxTheta};

C.12 getMotorAng.m

Created by Jesse Linseman July 13, 2009 Used to command gearbox to angular

position

Input:

• elapsedtime: seconds: amount of time since start

Output:

• MotorAng: degrees: Desired motor position

function MotorAng = getMotorAng(elapsedtime)

Conversions:

% MaxMotorRPM = 10; %Rev/min

% Motorrps = MaxMotorRPM/60; %rev/s

% Motordps = Motorrps*360; %degrees/s

if elapsedtime <= 10

% Hold for 10 sec and start IMU

148

MotorAng = 0;

elseif elapsedtime <= 40

% 5 rotations (constant AngVel)

MotorAng = (elapsedtime-10)*60; %Constant Rotation at 10 RPM to 1800

elseif elapsedtime <= 45

% Hold still for 5 sec

MotorAng = 1800;

elseif elapsedtime <= 115

% Back and forth 120 degrees from zero position

% cosine non-constant ang rate

% Note: Maximum RPM is < 10

%(actually 57.6 deg/s => 9.6 Rev/min)

MotorAng = 1800+120*sin(0.48*(elapsedtime-45));

else

% hold still for last 5 seconds

MotorAng = 1800+120*sin(0.48*(115-45));

end

Note: Total elapsed time should be 120 seconds.

C.13 Convertmotordata.m

This function is used to synchronize 3DM-GX1 IMU data and true Motor Encoder

data which are recorded separately but at approximately the same time. Matlab plots

are used to determine the closest point for synchronization and the data is shifted

accordingly. It is required that the motor recording is started before the IOS to

properly utilize this function.

149

Contents

• MOTOR DATA MANIPULATION (True Data)

• Using IMU Stabilized Rate Vector Data

• Using IMU Stabilized Quaternion Data

%Created July 10, 2009

%By Jesse Linseman

%Carleton University

%Modified:

%Author: Date: Description of Changes:

%Jesse Linseman July 17 2009 Axis Angle Only

% This code converts 2Khz motor data into 76Hz true path synchronized data

% for comparing with the 3DMG IMU data

MOTOR DATA MANIPULATION (True Data)

%Need to create Motor Orientation Quaternion Right Away

L = size(yout,1);

motorAngPos = (pi/180)*yout(:,1);

motorAngVel = (pi/180)*yout(:,2);

% clear yout;

clc;

%IMU_Axis_of_Rot = input(’Please Enter Axis Of Rotation (eg [#;#;#]): ’);

150

Pure Yaw 30 second test 120 second test

IMU Axis of Rot=


0

0

−1


IMU Axis of Rot=


0

1

−1


IMU_Axis_of_Rot = [0;1;-1]

Mag_IMU_Axis_of_Rot = sqrt((IMU_Axis_of_Rot)’*IMU_Axis_of_Rot);

Unit_IMU_Axis_of_Rot = IMU_Axis_of_Rot./Mag_IMU_Axis_of_Rot;

clear IMU_Axis_of_Rot, clear Mag_IMU_Axis_of_Rot

%Motor Position Data

preMOTORaa = zeros(3,L);

preMOTORaa_mag = zeros(1,L);

preMOTORq = zeros(4,L);

postMOTORaa = zeros(3,L);

postMOTORaa_mag = zeros(1,L);

for i = 1:L

preMOTORaa(:,i) = motorAngPos(i,1)*Unit_IMU_Axis_of_Rot;

preMOTORaa_mag(:,i) = sqrt(preMOTORaa(:,i)’*preMOTORaa(:,i));

preMOTORq(:,i) = aa2q(preMOTORaa(:,i));

postMOTORaa(:, i) = q2aa(preMOTORq(:,i));

postMOTORaa_mag(:,i) = sqrt(postMOTORaa(:, i)’*postMOTORaa(:, i));

end

151

%Motor Angular Velocity Data

premotorAngVel = zeros(3,L);

for i = 1:L

premotorAngVel(:,i) = motorAngVel(i,:)*Unit_IMU_Axis_of_Rot;

end

%%Check Motor Position Data

% hold off;

% figure(1);

% plot(preMOTORaa_mag(1,:),’-b’); %Motor (Actual) Data

% hold on;

% plot(postMOTORaa_mag(1,:),’-r’); %Motor (Actual) Data

% %plot(motorAngPos(:,1),’-k’); %Motor (Actual) Data

% title(’Motor Axis Angle Magnitude Comparison’)

% xlabel(’MOTOR Data Time Step’)

% ylabel(’Axis Angle (rad)’)

% hold off;

motor_freq = 2000; %Hz

clc;

disp(’In order to synchronize the two data sets,’)

disp(’Matlab plots are utilized to obtain two data points corresponding to the’)

disp(’same instant in time.’)

disp(’’)

disp(’ie. Choose a peak or trough that correspond to one another’)

152

In order to synchronize the two data sets, Matlab plots are utilized to obtain two

data points corresponding to the same instant in time. ie. Choose a peak or trough

that correspond to one another

Using IOS Stabilized Rate Vector Data

if user_reply == 2

hold off;

% Motor

motorAngVel_mag = zeros(1,L);

for k = 1:L

motorAngVel_mag(:,k) = sqrt(premotorAngVel(:,k)’*premotorAngVel(:,k));

end

figure(1);

plot(motorAngVel_mag()); %Motor (Actual) Data

title(’Motor Angular Velocity Magnitude’)

xlabel(’MOTOR Data Time Step’)

ylabel(’Angular Velocity (rad/s)’)

hold off;

% IMU

L = size(StabAngRate,2);

StabAngRate_mag = zeros(1,L);

for k = 1:L

StabAngRate_mag(:,k) = sqrt(StabAngRate(:,k)’*StabAngRate(:,k));

end

153

figure(2);

plot(StabAngRate_mag()); %IMU Data

title(’IMU Angular Velocity Magnitude’)

xlabel(’IMU Data Time Step’)

ylabel(’Angular Velocity (rad/s)’)

hold off;

end

154

Using IOS Instantaneous ‘Gyro-Stabilized’ Quaternion Data

This function can also be used on non-stabilized Inst. quaternion output.

if (user_reply == 5) || (user_reply == 4)

In order to get the average of the beginning stationary IMU data, use ‘meanqRota-

tion.m’ to average about the Riemannian Manifold for N ‘stationary’ quaternion data

points

% Choose N dynamic data steps from first ’2’ seconds of IMU stationary data

steps = floor(2/dt); %number of stationary data points to average

stationaryIMUq = StabQ(:,50:steps+50);

[startIMUq, ei] = meanqRotation(stationaryIMUq, StabQ(:,1), tol);

% Obtain rotation quaternion to rotate all IMU data into Motor orientation

IMU2Motq = qerror([1;0;0;0],startIMUq);

L = size(StabQ,2);

preIMUq = zeros(4,L);

preIMUaa = zeros(3,L);

preIMUaa_mag = zeros(1,L);

for i = 1:L

preIMUq(:,i) = qmultiply(IMU2Motq, StabQ(:,i));

preIMUaa(:, i) = q2aa(preIMUq(:,i));

preIMUaa_mag(:, i) = sqrt(preIMUaa(:, i)’*preIMUaa(:, i));

end

%Plots

155

%Motor

hold off;

figure(1);

plot(postMOTORaa_mag(),’-r’); %Motor (Actual) Data

title(’Motor Axis Angle Magnitude’)

xlabel(’MOTOR Data Time Step’)

ylabel(’Axis Angle (rad)’)

hold off;

%IMU

hold off;

figure(2);

plot(preIMUaa_mag(),’-b’); %IMU Data

title(’IMU Axis Angle Magnitude’)

xlabel(’IMU Data Time Step’)

ylabel(’Axis Angle (rad)’)

hold off;

end

choice = 0;

while choice ~= 1

clc;

disp(’ In order to synchronize the two data sets,’)

disp(’ look at Matlab plots and choose’)

disp(’ the x-axis data_step corresponding to the same instant in time.’)

%IMUpt = input(’enter IMU TIMESTEP: ’);

156

Example Choice: IMUpt = 2432 - Use plots MOTORpt = 80005 - Use plots

IMUpt = 2432

%MOTORpt = input(’enter approx corresponding MOTOR TIMESTEP: ’);

MOTORpt = 80005

firstmotorpt = floor(MOTORpt-(IMUpt)*(motor_freq/ins_freq));

firstIMUpt = 1;

lastIMUpt = size(StabQ,2);

if user_reply == 2

AngRatedatamanipulation;

end

if user_reply == 5

Posdatamanipulation;

end

clc;

RMSvalue;

disp(’Satisfied? Type 1’);

disp(’Type 1’);

disp(’otherwise, to improve choice’);

%choice = input(’Type 2: ’);

157

choice = 1

end

RMS AxisAngle Error in Degrees = 74.0519 Maximum Error = 178.7743

Satisfied? Type 1

Type 1

otherwise, to improve choice

choice =

1

AngRatedatamanipulation.m

Internal subfunction within Convertmotordata.m used to integrate and compare syn-

chronized data sets from Motor and IMU.

Contents

• AngRate DATA MANIPULATION

158

• ANGULAR VELOCITY DATA (rad/s)

• POSITION DATA (rad)

AngRate DATA MANIPULATION

% Assume Initial IMU Position is Zero [1;0;0;0];

IMU_q = [1;zeros(30,1)];

L = lastIMUpt-(firstIMUpt-1);

MOTORandIMUquatsync =zeros(9,L); %initialize array

MOTORandIMUAngVelsync = zeros(7,L);

MOTORAngVelsync_mag = zeros(1,L);

IMUAngVelsync_mag = zeros(1,L);

try

k =0;

for i = firstIMUpt:lastIMUpt

k=k+1;

ANGULAR VELOCITY DATA (rad/s)

% Motor Angular Velocity (rad/s)

MOTORandIMUAngVelsync(1:3,k) = ...

premotorAngVel(:,floor(firstmotorpt+(k-1)*(motor_freq/ins_freq)));

MOTORAngVelsync_mag(k)= ...

sqrt(MOTORandIMUAngVelsync(1:3,k)’*MOTORandIMUAngVelsync(1:3,k));

% IMU Angular Velocity (rad/s)

159

MOTORandIMUAngVelsync(4:6,k) = ...

StabAngRate(1:3,i);

IMUAngVelsync_mag(k)= ...

sqrt(MOTORandIMUAngVelsync(4:6,k)’*MOTORandIMUAngVelsync(4:6,k));

ANGULAR POSITION DATA (rad)

% Integrate IMU AngVel to get IMU Position Data

% Motor Position (quaternion)

MOTORandIMUquatsync(1:4,k) = ...

preMOTORq(:,floor(firstmotorpt+(k-1)*(motor_freq/ins_freq)));

% IMU Position (quaternion)

IMU_q = ATLASProcess(MOTORandIMUAngVelsync(4:6,k),IMU_q,dt);

MOTORandIMUquatsync(5:8,k) = IMU_q(1:4);

% TIME SIGNATURE

% Elapsed seconds

MOTORandIMUquatsync(9,k) = dt*i;

MOTORandIMUAngVelsync(7,k) = MOTORandIMUquatsync(9,k);

end

figure(3);

%Motor (True) Data

plot(MOTORandIMUAngVelsync(7,1:L),MOTORAngVelsync_mag(), ’r-’);

hold on

%IMU (Sensor) Data

plot(MOTORandIMUAngVelsync(7,1:L),IMUAngVelsync_mag(), ’b-’);

160

title(’Axis Angle Angular Velocity Magnitude Comparison’)

xlabel(’Elapsed Record Time (sec)’)

ylabel(’Axis Angle Angular Velocity (rad/s)’)

hold off;

catch

figure(3);

%Motor (True) Data

plot(MOTORandIMUAngVelsync(7,1:L),MOTORAngVelsync_mag(), ’r-’);

hold on

%IMU (Sensor) Data

plot(MOTORandIMUAngVelsync(7,1:L),IMUAngVelsync_mag(), ’b-’);

title(’Axis Angle Angular Velocity Magnitude Comparison’)

xlabel(’Elapsed Record Time (sec)’)

ylabel(’Axis Angle Angular Velocity (rad/s)’)

hold off;

end

C.14 UKFsim.M

Script for simulating UKF created by Jesse Linseman May 2009 for inclusion of IMU

bias, sensor misalignment, sensor scale factor estimation and general speed savings.

clc;

disp(’GPSUKFSIM: Please wait while the simulation runs ...’);

clear all;

161

VOS Parameters

Extrinsic & Intrinsic

VOSParameters;

IOS Parameters

user_reply = input(’Please choose an IOS command ’);

while (isempty(user_reply))

user_reply = input(’invalid response... Please try again:’);

end

IMUspecs;

Run-Time (Simulation)

Length of simulation.

RunTime = input(’Enter length of simulation (sec)’);

%RunTime = 30; %s

Select VOS frequency

clc;

disp(’Please select VOS frequency value in Hertz’)

vos_freq = input(’Typically 20Hz: ’);

if vos_freq > ins_freq

vos_freq = ins_freq;

end

162

%total time between VOS measurements

tmdelay = 1/vos_freq; %s

%h => approx integer number of IMU sampled steps between VOS measurements

%assumed constant - however, this may not be valid

h = ceil(tmdelay/dt); %unitless (ceil - answer always rounded up)

initialize correlation time

corrtime = dt; %s

% number of discrete simulation steps.

% (floor - answer always rounded down).

t_steps = floor(RunTime/dt); % unitless

% mean tolerance for convergence

tol = 0.000001; %rad

Covariance Matrices

IOS Process Noise Covariance Matrix

Q = blkdiag(Qq, Qbias, Qsf, Qma);

% VOS Measurement Noise Covariance Matrix

Rp = blkdiag(Rs, Rim); %Overall VOS measurement noise covariance matrix

Initialize State Vector Covariance Matrix ’P init’

Initially set to either Identity or ’Q’ [15x15]

163

%P_init = eye(15); %aa state covariance Matrix

P_init = Q;

P_prev = blkdiag(P_init,Q); % ’augmented’ state covariance matrix

State Vector Initialization (Estimate)

Initial ’Augmented’ State Vector Estimate

% includes attitude quaternion

% [31 X 1]:

%

% x_error =

% [attitude quaternion (4x1)

% gyro biases (3X1)

% gyro scale factors (3X1)

% gyro misalignments (6X1)]

% x_noises =

% [aa attitude noise (3x1)

% gyro bias noise (3X1)

% gyro scale factor noise (3X1)

% gyro misalignment noise (6X1)]

q_guess = [1;0;0;0];

x_state = [q_guess; 0;0;0; 0;0;0; 0;0;0;0;0;0];

x_noise = zeros(15,1); %Assume zero noise to start

x_prev = [x_state; x_noise]; %Augmented State Vector

State Vector Initialization (Actual)

Initial ’augmented’ state vector ‘actual’

164

aa_init = Sigma_omega*randn(3, 1);

% initial quaternion attitude (offset from zero position slightly)

q_rot = aa2q(aa_init);

q_init = qmultiply(q_rot,q_guess);

bias_init = x_state(5:7) + Sigma_bias*randn(3,1); %rad/s

sf_init = x_state(8:10) + Sigma_sf*randn(3,1);

ma_init = x_state(11:16) + Sigma_ma*randn(6,1); %0.2 percent FS

x_init = [q_init(1:4); bias_init(1:3); ...

sf_init(1:3); ma_init(1:6); zeros(15,1)];

Memory Allocation

Initialize arrays (for speed) input (each axis)

u = zeros(3, t_steps); % Allocate space

% actual ’augmented’ state (quaternion)

x_act = zeros(31, t_steps); % Allocate space

% measured input (Euler ang vel from IMU unit)

u_m = zeros(3, t_steps); %Allocate space

%Fake VOS measurement (quaternion from VOS)

VOS_fake = zeros(4, t_steps);

%Available VOS measurement (quaternion from VOS)

VOS_avail = zeros(4, t_steps);

% measurement noise covariance

Rvos = zeros(3, 3, t_steps); %Allocate space

% estimated ’augmented’ state (quaternion)

x_hat = zeros(31, t_steps); %Allocate space

% covariance of estimated state

165

P_hat = zeros(30, 30, t_steps); %Allocate space

% no VOS

x_noVOS = zeros(31, t_steps); %Allocate space

% Initial ’Previous’ State [31x1]

x_noVprev = x_prev; %Estimate with no VOS to aid

% Initial ’Actual’ State [31X1]

x_act(1:16,1) = x_init(1:16);

disp(’Press any key to perform UKF compensation’);

pause();

clc;

disp(’Running simulation. Please wait...’)

START OF SIMULATION & UKF Iteration

for i = 1:t_steps

% i = 1; % only used for testing purposes

Latency Compensation & Correlation Time (lag time)

Code to deal with latency issues between INS & VOS

% h(integer) approx number of simulation timesteps between VOS measurement

if i >= 1 && i <= h

l = rem(i+h-1, h)-h; % l => latency term

% rem - remainder after division

corrtime = dt + dt*(h + l);

else

l = rem(i-1, h); %remainder after division

166

corrtime = dt + dt*l;

end

Note: Above code assumes tmdelay is constant It determines the current correla-

tion time based on current lag term to be used in sensor error update (corrtime term)

ie. corrtime = elapsed time(sec) since last VOS measurement Note: Matlab is able

to handle division properly if corrtime = zero.

Dynamic Q

Not currently Implemented Dynamic update of IOS Process Noise Covariance

Matrix ’Q’ Attitude STD - Angular Random Walk Process

% Sigma_omega = ARW*sqrt(corrtime); %rad

% To be added after integration

% if l ~= 0 % Performed only if VOS Measurement not available

% Matrix is Dynamic (based on corrtime)

% Qq = Sigma_omega^2*eye(3); %depends on corrtime

% Gyro bias error covariance - (Gauss Markov Process)

% Qbias = Sigma_bias^2*(1-exp(1)^(-2*dt/corrtime))*eye(3);

% Gyro Scale Factor covariance -(Gauss Markov Process)

%Qsf = Sigma_sf^2*(1-exp(1)^(-2*dt/corrtime))*eye(3);

% Gyro Axis Misalignment covariance - Random Constant

% Qma = Sigma_ma^2*eye(6); %No change

%Combine to Make aa Process Noise Covariance (15X1)

Q = blkdiag(Qq, Qbias, Qsf, Qma); %Process Noise Covariance Matrix

% Re-create new ’augmented’ P_prev

% P_prev = P_prev+blkdiag(zeros(15,15),Q);

167

P_prev = blkdiag(P_prev(1:15,1:15),Q);

% end

Angular Rate Profile (Euler rates)

Angular rate inputs to follow about each Global axis of Atlas sphere.

if dt*i <= 10

u(:, i) = [0; %rad/s

0; %rad/s

0];%rad/s

elseif dt*i <= 40

u(:, i) = -1.0472*[0; %rad/s

1/sqrt(2); %rad/s

-1/sqrt(2)];%rad/s

elseif dt*i <= 45

u(:, i) = [0; %rad/s

0; %rad/s

0];%rad/s

elseif dt*i <= 115

u(:, i) = -1.0053*cos(0.48*(dt*i))*[0; %rad/s

1/sqrt(2); %rad/s

-1/sqrt(2)];%rad/s

elseif dt*i <= 120

u(:, i) = [0; %rad/s

0; %rad/s

0];%rad/s

168

end

Actual ’Augmented’ State (Run the model)

True attitude of Atlas sphere follows the IOS system process model perfectly random

sensor errors are considered It is used to create the next ACTUAL Atlas attitude

without noise and create the actual random gyro sensor errors

x_act(:,i) = IOSProcess(u(:,i),x_init, ...

dt,Sigma_omega,Sigma_bias,Sigma_sf,Sigma_ma,0);

x_init = x_act(:, i);

Create FAKE IMU Sample for Simulation

% create ’G’ matrix from scale factors & misalignment factors

Gmatrix = v2G(x_act(8:10,i),x_act(11:16,i)); %unitless

% Measured Angular Velocity from IMU (Euler Angular Rates)

u_m(:,i) = u(:,i).... %actual angular velocity

+ x_act(5:7,i)... %gyro bias errors

+ (Gmatrix)*u(:,i); %... %... %sf & ma errors

% Note: FAKE AWN is added after integration in simulation IOSprocess

% Extra unmodelled noise added if desired

%+ 60*ARW*sqrt(ins_BW)*randn(3, 1);... %ARW - only if not using AWN

%+ Sigma_res*randn(3,1)... %res error

%+ unmodelled*randn(3,1); %unmodelled errors

% if user_reply == 4 - Not currently implemented

169

% -OR- Create a Fake IMU orientation measurement using actual noises

% sigmaact = q2aa(x_act(1:4,i)); %quaternion to axis angle

%

% sigmaIMU(:,i) = (eye(3)+Gmatrix)*sigmaact...

% + x_act(5:7,i)*dt...

% + 60*ARW*sqrt(ins_BW)*randn(3, 1)*dt... %ARW

% + Sigma_res*randn(3,1)*dt... %res error

% + unmodelled*randn(3,1)*dt... %unmodelled errors

% + x_act(17:19,i); %rad %AWN error

% quatIMU(:,i)= aa2q(sigmaIMU(:,i));

% end

IMU State without VOS or UKF (Used For comparison only)

Obtains IMU state estimate based on current IMU measured state with no VOS, no

UKF.

% ttime_noVOS = i*dt;

% Sigma_omega = ARW*sqrt(ttime_noVOS);

x_noVOS(:,i) = IOSProcess(u_m(:,i), x_noVprev, dt,0,0,0,0,1);

% Set the current state estimate as the next

% state for us in the i+1 iteration.

x_noVprev = x_noVOS(:, i); %noise not estimated

Create a Fake VOS Sample for Simulation

% Measure orientation with VOS process (add random noise)

[VOS_fake(:, i)] = VOSprocess(x_act(1:4, i), CamCalInfo, N, r,1);

170

% Dynamic axis angle Rvos measurement covariance matrix

makeRvos;

% Use lag term to mimic available lagged VOS measurements.

VOS_avail(:,i) = VOS_fake(:, i-(l+h));

Run the UKF estimator

[x_hat(:,i), P_hat(:,:,i)] = ...

UKF(u_m(:,i), VOS_avail(:,i), Rvos(:, :, i-(l+h)), ...

x_prev, P_prev, dt,l,tol);

x_prev = x_hat(:,i);

P_prev = P_hat(:,:,i);

end

disp(’done’);

Visualize Quaternion Results

figure(1);

plot(dt*(1:t_steps), x_hat(1, :), ’b-’)

hold on

plot(dt*(1:t_steps), x_act(1, :), ’g-’)

plot(dt*(1:t_steps), x_noVOS(1, :), ’m-’)

plot(dt*(1:t_steps), VOS_avail(1, :), ’k-’)

title(’q1 - Scalar’)

xlabel(’Simulation Time Elapsed (sec)’)

171

ylabel(’Quaternion 1 Value (rad)’)

figure(2);

plot(dt*(1:t_steps), x_hat(2, :), ’b-’)

hold on

plot(dt*(1:t_steps), x_act(2, :), ’g-’)

plot(dt*(1:t_steps), x_noVOS(2, :), ’m-’)

plot(dt*(1:t_steps), VOS_avail(2, :), ’k-’)

title(’q2’)

xlabel(’Simulation Time Elapsed (sec)’)

ylabel(’Quaternion 2 Value (rad)’)

figure(3);

plot(dt*(1:t_steps), x_hat(3, :), ’b-’)

hold on

plot(dt*(1:t_steps), x_act(3, :), ’g-’)

plot(dt*(1:t_steps), x_noVOS(3, :), ’m-’)

plot(dt*(1:t_steps), VOS_avail(3, :), ’k-’)

title(’q3’)

xlabel(’Simulation Time Elapsed (sec)’)

ylabel(’Quaternion 3 Value (rad)’)

figure(4);

172

plot(dt*(1:t_steps), x_hat(4, :), ’b-’)

hold on

plot(dt*(1:t_steps), x_act(4, :), ’g-’)

plot(dt*(1:t_steps), x_noVOS(4, :), ’m-’)

plot(dt*(1:t_steps), VOS_avail(4, :), ’k-’)

title(’q4’)

xlabel(’Simulation Time Elapsed (sec)’)

ylabel(’Quaternion 4 Value (rad)’)

Visualize Axis Angle Results

aa_err = zeros(3,t_steps);

aa_herr = zeros(3,t_steps);

aa_err_VOS = zeros(3,t_steps);

for k = 1:size(x_noVOS, 2)

q_err = qerror(x_noVOS(1:4, k), x_act(1:4, k));

aa_err(:, k) = q2aa(q_err);

end

for k = 1:size(x_noVOS, 2)

q_err = qerror(VOS_avail(:,k), x_act(1:4, k));

aa_err_VOS(:, k) = q2aa(q_err);

end

for k = 1:size(x_hat, 2)

q_err = qerror(x_hat(1:4, k), x_act(1:4, k));

aa_herr(:, k) = q2aa(q_err);

173

end

figure(5);

plot(dt*(1:t_steps), aa_err(1,:), ’r-’);

hold on

plot(dt*(1:t_steps), aa_err_VOS(1,:), ’k-’);

plot(dt*(1:t_steps), aa_herr(1,:), ’b-’);

title(’Axis Angle ERROR’)

xlabel(’Simulation Time Elapsed (sec)’)

ylabel(’Axis Angle Value (rad)’)

figure(6);

plot(dt*(1:t_steps), aa_err(2,:), ’r-’);

hold on

plot(dt*(1:t_steps), aa_err_VOS(2,:), ’k-’);

plot(dt*(1:t_steps), aa_herr(2,:), ’b-’);

title(’Axis Angle ERROR’)

xlabel(’Simulation Time Elapsed (sec)’)

ylabel(’Axis Angle Value (rad)’)

figure(7);

plot(dt*(1:t_steps), aa_err(3,:), ’r-’);

hold on

plot(dt*(1:t_steps), aa_err_VOS(3,:), ’k-’);

plot(dt*(1:t_steps), aa_herr(3,:), ’b-’);

title(’Axis Angle ERROR’)

xlabel(’Simulation Time Elapsed (sec)’)

174

ylabel(’Axis Angle Value (rad)’)

Check Sensor Error Estimation

figure(8);

plot(dt*(1:t_steps), x_hat(5, :), ’b-’)

hold on

plot(dt*(1:t_steps), x_act(5, :), ’g-’)

plot(dt*(1:t_steps), x_noVOS(5, :), ’m-’)

title(’Gyro Bias’)

xlabel(’Simulation Time Elapsed (sec)’)

ylabel(’Sensor Bias Value (rad/s)’)

hold off;

figure(9);

plot(dt*(1:t_steps), x_hat(8, :), ’b-’)

hold on

plot(dt*(1:t_steps), x_act(8, :), ’g-’)

plot(dt*(1:t_steps), x_noVOS(8, :), ’m-’)

title(’Scale Factor’)

xlabel(’Simulation Time Elapsed (sec)’)

ylabel(’Sensor SF Value (unitless)’)

hold off;

figure(10);

175

plot(dt*(1:t_steps), x_hat(16, :), ’b-’)

hold on

plot(dt*(1:t_steps), x_act(16, :), ’g-’)

plot(dt*(1:t_steps), x_noVOS(16, :), ’m-’)

title(’Misalignment Factor’)

xlabel(’Simulation Time Elapsed (sec)’)

ylabel(’Sensor MA Value (unitless)’)

hold off;

RMSplots;

Appendix D

Smaller Matlab functions

D.1 meanqRotation.m

Contents

• meanqRotation.m

• Obtain number of quaternions points to average

• Initialize mean quaternion estimate

• Perform Iterations

This function converges to find the mean quaternion using the Riemannian man-

ifold approach with an initial guess

function [q_mean, ei] = meanqRotation(qi, q0, tol)

Inputs:

• q0: initial mean guess (if no guess, use any qi)

• qi: array of all quaternions to be averaged

• tol: tolerance for convergence

Outputs:

176

177

• q mean: mean quaternion converged upon

• ei: variance between each qi and q mean

Obtain number of quaternions points to average

n = size(qi, 2); %number of columns

Initialize mean quaternion estimate

q_mean = q0;

Perform Iterations

% initialize e_mag, ei, counter and begin iteration

e_mag = tol+1;

ei_q = zeros(4, n);

ei = zeros(3, n);

count = 0;

while e_mag > tol && count < 100

% get error quaternion rotations

for k = 1:n

ei_q(:, k) = qerror(qi(:, k), q_mean);

% convert to axis angle

ei(:, k) = q2aa(ei_q(:, k));

end

% barycentric mean

e_mean = 1/(n)*sum(ei, 2);

% convert back to quaternion rotation

e_meanq = aa2q(e_mean);

% update mean by applying qrotation

178

q_mean = qmultiply(e_meanq, q_mean);

% obtain magnitude of e_mean

e_mag = sqrt(e_mean’*e_mean);

count = count+1;

end

D.2 aa2q.m

Converts a 3 component Euler axis angles phi, theta, psi (radians) into a correspond-

ing rotation quaternion

function q = aa2q(aa)

t = sqrt(max(0, aa’*aa));

if t == 0

q = [1; 0; 0; 0];

else

q = [cos(t/2);

aa./t.*sin(t/2)];

end

if q(1) < 0

q = -q;

end

179

D.3 q2aa.m

Converts a 4 component rotation quaternion into corresponding Euler axis angles phi,

theta, psi (radians)

function aa = q2aa(q)

t = 2*acos(q(1));

if t == 0 || (1-q(1)^2) < 0

aa = zeros(3, 1);

else

y = (1-q(1)^2)^(-0.5);

aa = t*y*q(2:4, 1);

end

D.4 qmultiply.m

This function performs quaternion multiplication

function q = qmultiply(qa, qb)

q = [-qa(2)*qb(2) - qa(3)*qb(3) - qa(4)*qb(4) + qa(1)*qb(1);

qa(2)*qb(1) + qa(3)*qb(4) - qa(4)*qb(3) + qa(1)*qb(2);

-qa(2)*qb(4) + qa(3)*qb(1) + qa(4)*qb(2) + qa(1)*qb(3);

qa(2)*qb(3) - qa(3)*qb(2) + qa(4)*qb(1) + qa(1)*qb(4)];

180

D.5 qerror.m

This function obtain the rotation quaternion between two quaternion orientations.

function qerr = qerror(qd, qm)

qerr = [qd(2)*qm(2) + qd(3)*qm(3) + qd(4)*qm(4) + qd(1)*qm(1);

qd(2)*qm(1) - qd(3)*qm(4) + qd(4)*qm(3) - qd(1)*qm(2);

qd(2)*qm(4) + qd(3)*qm(1) - qd(4)*qm(2) - qd(1)*qm(3);

-qd(2)*qm(3) + qd(3)*qm(2) + qd(4)*qm(1) - qd(1)*qm(4)];

if qerr(1) < 0

qerr = -qerr;

end

This would be the same as performing these individual operations

• qa = qd;

• qb = qconj(qm);

• qerr = qmultiply(qa, qb);

D.6 R2q.m

This function create a orientation rotation matrix from an orientation quaternion.

function q = R2q(R)

T = max(0, 1+R(1, 1)+R(2, 2)+R(3, 3));

if T > eps

181

s = 0.5/sqrt(T);

q = [0.25/s;

(R(3, 2)-R(2, 3))*s;

(R(1, 3)-R(3, 1))*s;

(R(2, 1)-R(1, 2))*s];

elseif R(1, 1) > R(2, 2) && R(1, 1) > R(3, 3)

s = 2*sqrt(max(0, 1+R(1, 1)-R(2, 2)-R(3, 3)));

q = [(R(3, 2)-R(2, 3))/s;

0.25*s;

(R(1, 2)+R(2, 1))/s;

(R(1, 3)+R(3, 1))/s];

elseif R(2, 2) > R(3, 3)

s = 2*sqrt(max(0, 1-R(1, 1)+R(2, 2)-R(3, 3)));

q = [(R(1, 3)-R(3, 1))/s;

(R(1, 2)+R(2, 1))/s;

0.25*s;

(R(2, 3)+R(3, 2))/s];

else

s = 2*sqrt(max(0, 1-R(1, 1)-R(2, 2)+R(3, 3)));

q = [(R(2, 1)-R(1, 2))/s;

182

(R(1, 3)+R(3, 1))/s;

(R(2, 3)+R(3, 2))/s;

0.25*s];

end

D.7 q2R.m

This function creates the rotation matrix from an orientation quaternion

function R = q2R(q)

R = [1-2*q(3)^2-2*q(4)^2 2*q(2)*q(3)-2*q(4)*q(1) 2*q(2)*q(4)+2*q(3)*q(1);

2*q(2)*q(3)+2*q(4)*q(1) 1-2*q(2)^2-2*q(4)^2 2*q(3)*q(4)-2*q(2)*q(1);

2*q(2)*q(4)-2*q(3)*q(1) 2*q(3)*q(4)+2*q(2)*q(1) 1-2*q(2)^2-2*q(3)^2];

end

D.8 sign mag.m function

created by Jesse Linseman This function will take in an array of any length and

generate a magnitude with the associated sign for direction.

function valout = sign_mag(valin)

L = size(valin,1); %Number of values (rows)

temp = zeros(L,1);

sum = 0;

for i = 1:L

183

temp(i)= sign_sqrd(valin(i));

sum = sum + temp(i);

end

valout = sign_sqrt(sum);

end

sign sqrd.m

Internal function to retain the sign after squaring terms

function valout = sign_sqrd(valin)

if valin < 0

valout = -(valin*valin);

else

valout = valin*valin;

end

end

sign sqrt.m

Internal function to retain the sign after square rooting terms

function valout = sign_sqrt(valin)

if valin < 0

valout = -sqrt(abs(valin));

else

valout = sqrt(valin);

end

end

Appendix E

VOS Process In Detail

Affixed to the outside of the sphere are 32 uniquely coloured markers specifically

placed at known locations relative to the sphere’s local coordinate frame. By this

method, the digital camera is be able to identify each colour and associate each

marker in the image with a known physical location relative to the sphere coordinate

(local) frame as prescribed in an external file. By situating the camera at a precise

distance away from the sphere, and using the 32 markers allows for at least three

coloured markers to be observable in any camera image for any sphere orientation.

From an acquired camera image, the pixel locations in the image for three markers

can also be determined. Using the pixel marker locations in the image, the physical

marker’s coordinates relative to the world (global) frame can be determined based on

the geometry of the sphere and camera model parameters (Section E.0.1). Having

knowledge of the coordinate locations of three markers in both the world and sphere

local frames allows the rotation matrix (orientation) to be computed which can then

be made into an orientation quaternion.

Involved in the creation of the VOS measurement covariance matrix, RV OS, are

extrinsic and intrinsic camera parameters determined through the camera calibration

process.

Intrinsic: parameters correspond to the lens and image sensor (scaled focal lengths,

184

185

principal point and possible distortion corrections).

Extrinsic: parameters define the transformation from the world coordinate system

to the camera coordinate system (rotation and translation).

The next subsections detail the underlying camera process model which uses geometric

transformations to take three known pixel marker locations and determine the Atlas

sphere absolute orientation. Note: The following details are also outlined in reports

written by Kyle Chisholm ([28, 33])during the 2008/2009 school year (The reports

can be accessed with permission through the CUSP SVN [19]). Portions of these

texts are re-addressed here for further clarification of the camera process model used

in the simulation of the UKF.

E.0.1 The VOS Perspective Projection Camera Model

The VOS perspective projection camera model, described in [28], [33], [36] and [37],

is used to transform a marker location relative to the world frame (in 3-D space)

to estimate a pixel location in the image (2-D plane). The model incorporates a 3D

coordinate frame transformation from world to camera frame coordinates, perspective

projection, and intrinsic parameters involving the camera optics and image sensor.

Image distortion can also be corrected using a non-linear image distortion model but

was not implemented at the time of this paper’s writing.

Referring to Fig. E.1, with respect to the camera frame, a marker point cPx,y,z can

be projected onto the image plane at point px′,y′ , using similar triangle mathematics

in Equation (E.1). For clarity, the image plane, π, is shown in front of the camera

frame origin, O, when in actuality it would be inverted behind the camera’s focal

point. The camera focal length, f , is the perpendicular distance from the focal point

(camera frame origin, O) along the camera frame optical Z-axis to the image plane

origin, o. Transforming marker point cPx,y,z is as follows.

186

(a) Frames of Reference

(b) Similar Triangles

Figure E.1: Perspective Projection [36]

187

Figure E.2: Camera Projection Model [38]

px′ = f
cPx

cPz

py′ = f
cPy

cPz

(E.1)

where f is the focal length of the camera and px′,y′ are the image coordinates of

the projected marker point cPx,y,z which is a point relative to the camera frame, [36].

The 3D marker point relative to the camera frame, cPx,y,z is found using extrinsic

camera parameters.

The extrinsic camera parameters (a rotation matrix, cRw and an origin translation,

cTw) are used to transform a 3D marker point, wPx,y,z, relative to the world frame

to the marker point, cPx,y,z, relative to the camera frame, as per Equation (E.2).

cPx,y,z = cRw · wPx,y,z + cTw (E.2)

Ignoring image distortion and referring to Figure E.2, the last step of the perspec-

tive camera model is the transformation of the image plane coordinates, px′,y′ , to a

pixel location, pu,v, in the pixel frame as per Equation (E.3).

188

pu = ox + px′/sx

pv = oy + py′/sy (E.3)

where the Pixel frame origin is the top left of the image and the origin of the

image frame at point o is defined to be at pixel location (ox, oy), called the principal

point. One camera pixel corresponds to a real world distance in the image plane. This

is an intrinsic camera parameter given as a scaling factor, sx, sy, in unit length/pixel.

Substituting Equation (E.1) into Equation (E.3), Equation (E.4) is obtained which

can be used to transform a 3D world marker point location,(wPx,y,z), into a corre-

sponding 2D pixel frame point location, (pu,v).

pu = ox + fx
cPx
cPz

pv = oy + fy
cPy
cPz

(E.4)

Where components cPx,y,z are found using Eqn. E.2. Also fx = f
sx

and, fy = f
sy

are the combined scaling and focal length intrinsic camera parameters, defined in

Appendix B. Appendix B lists all the intrinsic and extrinsic camera parameters used

in the current UKF simulation.

The perspective projection matrix, M

Simplifying the above, the entire VOS Perspective Projection Camera Model, as

depicted in Figure E.2 is encompassed in the following perspective projection matrix,

M, re-defined below from [33].

189

M =


fxr11 + oxr31 fxr12 + oxr32 fxr13 + oxr33 fxTx + oxTz

fyr21 + oyr31 fyr22 + oyr32 fyr23 + oyr33 fyTy + oyTz

r31 r32 r33 Tz


(E.5)

Where cRw =


r11 r12 r13

r21 r22 r23

r31 r32 r33


Using M, a 2D pixel frame point location, pu,v can be found from a 3D marker

point, wPx,y,z, which is relative to the world frame, as follows (E.6).



xh

yh

h


= M



wPx

wPy

wPz

1


⇒ pu,v =

{
xh
h
, yh
h

}
(E.6)

E.0.2 VOS Process

Using Carleton University’s coordinate measurement machine (faro CMM), 32

uniquely coloured markers have been placed at precise known locations on the out-

side of the AtlasLite sphere. Observing markers in an image, the camera software can

distinguish their colours from which to lookup their corresponding local sphere frame

coordinates, LPx,y,z. All 32 local sphere coordinate locations are recorded in a Matlab

array file that was created during their CMM placement, named ‘SpherePts r4.75.mat ’

190

. Using Matlab, Figure E.3 is a 3D plot that displays the current 32 marker locations

surrounding the sphere’s centre (local sphere frame origin). These points are what is

currently being used to test the UKF since at the time of this work, the VOS was

non-operational due to colour identification issues.

Figure E.3: 32 Local Sphere Marker Positions (mm), LPx,y,z

During simulation and testing of the UKF, each simulated VOS orientation mea-

surement is created using a ‘true’ known orientation quaternion that the UKF at-

tempts to estimate. The simulated VOS orientation quaternion is created as follows.

Creating a simulated VOS image for simulation

1. The current rotation matrix, (R3×3), is created from the ‘true’ orientation

quaternion using Eqn. 2.12 derived in section 2.4, and all 32 local sphere marker

points are rotated into their ’true’ world frame marker coordinates as follows.

wP3×32 = R3×3
LP3×32

2. Next, wP3×32 gets transformed into the camera frame using Eqn. E.2. 32

191

absolute distances between the camera frame origin and each camera frame

marker point are determined.

dabs =
√

(cPx)2 + (cPy)2 + (cPz)2(mm)

3. Taking the N shortest dabs distances, N corresponding sphere markers are de-

termined to be in the camera’s field of view (F.O.V). (the number of markers

assumed in this case is N = 3)

4. Using the perspective projection matrix, M, outlined in section E.0.1, the N = 3

world marker points are transformed into N = 3 corresponding 2D pixel frame

point locations using Eqn. E.6.

The above steps complete the process of creating a simulated VOS image with N = 3

known pixel locations for simulation. Both pixel image distortion and sphere marker

location errors are added in as random noise for the purposes of simulation in the

above steps as well. In essence, the camera’s image processing time corresponds to

this above procedure. In the UKF, before the VOS process model can be used, this

above procedure is repeated each iteration to create a map of the N = 3 2D pixel

positions,pu,v, observed in the camera’s fov (the expected pixel image).

Determining an orientation quaternion from a pixel image, VOS process

model

In order to determine an orientation quaternion from an image, the N = 3 2D pixel

points must be transformed back to obtain the corresponding world coordinates as

well as local coordinates found from the associated colours. Achieving this allows

the corresponding rotation matrix to be developed and transformed further into an

orientation quaternion. A challenge remains that the perspective projection matrix

192

is not invertible; it can only find a 2D pixel point from a 3D world marker point.

However, since the marker locations are fixed to the AtlasLite sphere with radius rs,

and the center of the sphere is at the world frame origin, a new constraint can be

added to obtain the inverted perspective model [33]. Shown in Equation (E.7), the

radial constraint is as follows:

r2
s =

√
(wPx)2 + (wPy)2 + (wPz)2 (E.7)

As per Chisholm [28], [33], Eqn.E.4 and Eqn.E.7 were solved for cPw = cRw
wP

in terms of rs,
wTc (Translation relative to camera coordinates), and px′,y′ (image

frame coordinates), which, for each 2D pixel location point, yields two 3D points on

the sphere for each marker as depicted in Fig. E.4.

Figure E.4: Inverse projection intersecting AtlasLite sphere at two points [33]

Taking the 3D solution closest to the camera frame (P
′
), we get Equation (E.8),

which transforms a 2D pixel point into an equivalent 3D marker point with respect

to the camera frame.

193

cPw
x =

−x′

(x′2 + y′2 + 1)

(
−x′Tx − y′Ty + x′2Tz + y′2Tz + ξ

)
+ x′Tz − Tx

cPw
y =

−y′

(x′2 + y′2 + 1)

(
−x′Tx − y′Ty + x′2Tz + y′2Tz + ξ

)
+ y′Tz − Ty

cPw
z = −

√
r2
s − (cPw

x)2 − (cPw
y)2 (E.8)

with ξ =
√
r2
s(x
′2 + y′2 + 1)− (Tx − x′Tz)2 − (Ty − y′Tz)2 − (y′Tx − x′Ty)2

The following steps outline the procedure for creating the VOS orientation quater-

nion measurement from N = 3 observed 2D pixel frame point locations in an image,

also recognizing their associated colours.

1. Get the marker locations relative to the Local sphere frame, LPx,y,z, from the

associated N = 3 marker colours.

2. Determine the N = 3 absolute 3D camera frame marker positions, (cPw
x,y,z),

from the pixel locations using Equation (E.8).

3. Rotate the camera frame marker positions into the World frame using the cam-

era’s transposed extrinsic rotation matrix, (cRT
w), to obtain the N = 3 mea-

sured/estimated marker positions, (wPx,y,z), as follows.

wPx,y,z = cRT
w
cPw

x,y,z

4. Now that the marker locations relative to both sphere and world frame are

known, the rotation matrix which defines the orientation of the sphere can be

determined. The rotation matrix wRL is the orientation of the Local sphere

frame relative to the World frame, and can be calculated from the markers by

194

Equation (E.9), where subscripts 1, 2, and 3 refer to each of N = 3 3D markers

in the image [33].

[
wP1

wP2
wP3

]
= wRL

[
LP1

LP2
LP3

]

wRL =

[
wP1

wP2
wP3

][
LP1

LP2
LP3

]−1

(E.9)

5. To get an orthogonal rotation matrix, singular value decomposition is per-

formed. The rotation matrix obtained from the previous step is not orthogonal

due to errors present in the calibration process. In order to make the rotation

matrix orthogonal, such that RTR = I, singular value decomposition can be

applied. Given the measured rotation matrix wRL = SDVT , the new orthog-

onal rotation matrix is calculated to be Rnew = SVT (matrix D is constrained

as an identity matrix) [37].

6. This new rotation matrix, Rnew is converted into an orientation quaternion, as

per Equation (2.13) in Section 2.5. Note: If N > 3 markers are analyzed, a

least squares solution may be applied in order to calculate the rotation matrix

but has not been implemented.

The entire VOS process model described to this point is proposed as a non-linear

observation function for the UKF. A Matlab function, namely ‘VOSprocess.m’, has

been created for this process and is provided in Appendix E.0.2. For creating a simu-

lated VOS measurement, random noise is added during simulation for two quantities;

the measured CMM local sphere marker locations, and the measured pixel locations

in the acquired image. For simulation in the VOS process function, a flag input value

is used solely to signal when to introduce this added random noise.

195

It has been observed through simulation and testing with real IMU data that the

entire VOS process function can be avoided within the UKF altogether for speed sav-

ings. This results due to the fact that when a VOS measurement becomes available it

is lagged. The more current IOS measurement is available to act as the expected VOS

measurement for the lagged VOS measurement. By doing so, it has been observed

that only a slight degradation results with a large computational speed savings. The

method works for VOS operational frequencies higher than 15 Hz, otherwise, the cur-

rent IOS measurement can not be trusted due to significant drift. This application is

further described in Section 3.4.

