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Abstract: A new kinematic pair called an algebraic screw pair,
or A-pair, is introduced that utilizes the self-motions inherent to
a specific configuration of Griffis-Duffy platform. Using the A-
pair as a joint in a hybrid parallel-serial kinematic chain results
in a sinusoidal coupling of rotation and translation between ad-
jacent links. The resulting linkage is termed an A-chain. This
paper presents initial work towards visualizing the workspace of
A-chains by considering short planar and spatial serial chains
connected with two A-joints. These are called 2A-chains. An ad-
ditional goal is to compare similar R- and A-chains. Preliminary
work in this area is also presented.

1 Introduction

The A-pair [1] is a novel kinematic pair which exploits the sin-
gle degree of freedom (DOF) self-motion produced by a spe-
cific configuration of Griffis-Duffy platform (GDP) [2], which is
a special configuration of Stewart-Gough platform (SGP). Self-
motions represent situations where the end effector (EE) of the
manipulator can move in an uncontrolled manner without actua-
tor input. The rationale behind proposing this new kinematic pair,
called an algebraic screw pair, or A-pair, is based on the hypoth-
esis that replacing the revolute pairs (R-pairs) in a serial manipu-
lator with A-pairs will enhance the rigidity of the serial arm [1].
This paper focuses on development of techniques for visualiza-
tion of the workspace of A-chains with one and two joints. Quan-
tifying the resulting difference in reachable workspace volume of
similar R- and A-chains is necessary to justify the development
of this new class of kinematic pair.

The reachable workspace of a manipulator is the space a ref-
erence point on the EE can reach in at least one orientation [3].
Analysis of the reachable workspace is typically approached us-
ing either numerical or analytic techniques with the former being

much more abundant in literature and the later being either fo-
cused on very specific manipulators (usually short R-chains) or
addressed in a general manner very similar to techniques used to
find the direct kinematics of a manipulator. The numeric analy-
sis appears to begin with Roth in 1975 [4] where the relationship
between the kinematic geometry of a manipulator and its per-
formance is examined. In 1980 and 1981 numerical algorithms
for tracing the boundary surfaces of a mechanisms workspace are
proposed in [5, 6].

In 1983 Yang and Lee published two companion articles
[7, 8]. The first paper suggests a method for analytically deter-
mining the workspace of a manipulator which, as presented in
the paper, is essentially the same as obtaining the direct kine-
matic equations. The paper then continues by discussing how to
find holes and voids in the reachable workspace of R-chains by
starting at the joint closest to the EE, looking at the workspace
and then moving to the next joint and examining how the cross-
section of the first workspace interacts with the joint axis to deter-
mine if any holes or voids are created. The process is then recur-
sively applied to each successive joint until the base is reached.
This technique can be used for R-chains but is not general enough
to be easily adapted to A-chains. The companion paper, [8],
presents an algorithm for finding the workspace boundaries, uses
the cross-section of the workspace to determine its volume, and
proposes several performance indices. The algorithm for the
boundary determination is the basis of a method that will be dis-
cussed in more detail later. The proposed performance indices,
the volume index (VI), relates the volume of the manipulator
workspace to the total length of the manipulator. The VI may
be a useful tool when comparing the reachable workspace of R-
chains and A-chains, though it will not be the only one used.

Tsai and Soni [9] recognized that as the number of joints in an
R-chain increases it becomes increasingly impractical to describe
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Figure 1: Midline-to-vertex GDP configuration.

the boundaries of the workspace by explicit equations. They in-
stead describe how to find the contour of the workspace on an
arbitrary plane and suggest using multiple planes to gain an un-
derstanding of the workspace as a whole. In 1986 Kumar and
Patel [10] looked at issues, existing at the time, concerning the
graphical represention and manipulating the workspace of a ma-
nipulator on a computer display. The technique involves repre-
senting the workspace as a series of pixels. In 2008, a similar
technique is employed by Castelli, Ottaviano and Ceccarelli [11]
that divides the ambient space around a manipulator into pixels
and steps through the available joint angles to determine which
pixels can be reached by the manipulator. The theory reported
in [11] is the start point for the algorithm developed in this re-
search, and the technique will be discussed in more detail in the
next section.

In this paper the unique kinematic geometry of the A-chain
is introduced. It’s displacement characteristics are discussed,
and relevant Denavit-Hartenberg (DH) parameters defined. An
adapted Castelli algorithm [11] is proposed and applied to the
visualization of the A-chain reachable workspace, and the reach-
able workspaces of R- and A-chains with one and two DOF are
compared.

2 Kinematic Geometry of A-Chains

The A-pair comprises one particular configuration of GDP called
the midline-to-vertex configuration, illustrated in Figure 1, where
a leg with an anchor point on the fixed base has an anchor point
on the midpoint of one of the edges of the triangle on the mov-
ing platform and vice versa, maintaining the same order of legs
around the perimeter of the fixed base and moving platform. Ad-
ditional constraints applied include: the fixed base and moving
platform triangles are congruent equilateral triangles; and the six
legs are all of a fixed length, l, equal to the height, h, of the trian-
gles made by their anchor points (distance from the midpoint of
one of the edges of the triangle to the opposite vertex on the same
triangle).

When working with kinematic pairs that have a limited range
of motion or, as is also the case with A-pairs, where there is a cou-
pling of two or more DH-parameters it is necessary to identify the
direction of the home position (or some other reference position)
of the joint with respect to the preceding link in the kinematic
chain. The A-pair has both a limited range of motion [12] and
couples the joint angle with the joint offset so it is important to
know which way the A-pair is attached to the preceding link.

It is necessary to decompose the joint angle into two compo-
nents, one fixed and one variable. The fixed component of the
joint angle, θf , is the angle between adjacent links when the A-
pair is in the home position. The home position is when the upper
an lower triangles are coincident [1, 12] (this is a theoretical po-
sition that can be reached only if self collisions are ignored). The
variable component of the joint angle, θv , is measured relative to
the home position. That is, when θv = 0 the joint is in the home
position.

With this definition the separation of the fixed base and mov-
ing platform of the A-pair is a function of θv and is independent
of θf . The equation for the separation, denoted d, is:

d = ρ sin
(
θv

2

)
, (1)

where ρ is a function of the geometry of the GDP. The current
work focuses on a GDP constructed such that the fixed base and
moving platform are congruent equilateral triangles with each
side of the triangles being of length a. The value for ρ obtained
using this GDP geometry is

ρ =
a
√

6
3
. (2)

Four DH-parameters are used to unambiguously describe the
kinematic geometry of each link in an n-link serial chain. For
link i, where i ∈ 1, . . . , n, the DH-parameters are defined as:

• link length, ai, is the length of the common normal between
adjacent joint axes;

• link twist, αi, is the angle between adjacent joint axes about
the line defining link i;

• joint offset, di, is the offset along the joint axis of two adja-
cent links; and

• joint angle, θi, is the angle between adjacent links about the
joint axis.

For A-pairs it is important to clarify the definitions of the joint
angle and joint offset. The joint angle must be broken into two
components, one fixed and one variable. The fixed component,
θfi, refers the angle between adjacent links about the joint axis
when the A-pair is in its home position. The variable component,
θvi, is measured from the home position and it is this variable
component that is used in Eqn. (1) to determine the separation of
the fixed base and moving platform of the A-pair. The total joint
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Figure 2: The DH-parameters for a link in an A-chain with ap-
propriate coordinate systems attached.

angle is θi = θfi + θvi. The coupling of translation and rotation
requires that the total joint offset also be broken into fixed and
variable components. When working with A-pairs the parameter
di refers to the the fixed component, that is, the distance along the
joint axis between adjacent links when the joint is in the home
position (θiv = 0). The variable component of the joint offset
is provided by Eqn. (1). The DH-parameters of the A-chain are
illustrated in Figure 2.

In addition to DH-parameters each link is assigned one ref-
erence coordinate system, and the assignment of this coordinate
system depends on the two joint axes at the ends of the link. For
the purposes of this description, each link i, i = 1, . . . , n de-
scribes a rigid link that lies on the common normal between axes
i and i + 1, regardless of the actual shape of the physical link
in the manipulator, which is irrelevant to the kinematic analysis.
Let coordinate system i be denoted Σi. The origin of Σi located
where link i intersects the joint axes i. The Zi-axis of Σi points
along the ith joint axis, the direction is arbitrary but, with expe-
rience, is selected to ease future calculations. The Xi-axis points
along the common perpendicular towards the origin of Σi+1. If
the axes i and i + 1 intersect, the axis Xi is parallel to the nor-
mal of to the intersecting axes, the direction is again selected to
ease future calculations. The Yi-axis is assigned to complete the
right-handed coordinate system. This procedure works well for
intermediate links, however the base and EE coordinate systems,
Σ0 and Σn respectively, are often selected to ease calculations
by setting as many DH-parameters to zero as possible. Figure
2 shows the placement of two adjacent coordinate systems in an
A-chain.

3 Reachable Workspace Analysis

The reachable workspace of a manipulator is the space a refer-
ence point on the EE can reach in at least one orientation [3].

The algorithm that is described here (based on [11]) considers
the reachable workspace literally as a structured cloud of points.
The algorithm involves discretizing the ambient space around the
manipulator into three dimensional elements called pixels and in-
crementing each joint angle in sequence by a small amount to
determine which pixels are reached by the EE. The following out-
lines the algorithm step-by-step.

1. Determine the extreme values in each of the X , Y and Z
axes that can be reached by the EE of the manipulator.

2. Select the desired resolution in each axis (the dimensions of
each pixel), ∆X , ∆Y and ∆Z.

3. Define two three dimensional arrays, Pijk and Dijk, that
each represent the discretized ambient space, that is each of
the elements in the arrays represents one pixel of the ambi-
ent space. Pijk is a three dimensional binary array whose
elements are set equal to one if the EE of the manipulator
can be placed within that pixel and zero if it cannot. Dijk

counts the number of times a particular pixel is reached by
the EE as each joint of the manipulator is incremented. The
elements of both matrices are initially set to zero.

4. Starting with a predetermined set of joint variables, sequen-
tially step each joint variable by a small amount and com-
plete the following steps for every possible combination of
joint variables. The step size must be determined for each
manipulator based on its design parameters and the ambi-
ent space pixel size (based on the required accuracy and
time/computing power constraints).

4.1 Determine, using the direct kinematics, the position of
the EE in the ambient space.

4.2 Determine which pixel the EE is in (i.e. determine the
values of i, j, k in the subscript of the Pijk and Dijk

matrices).

4.3 Set the element of Pijk corresponding to the reached
pixel equal to one, if it is not already equal to one, to
indicate that the pixel corresponding to that array ele-
ment has been reached.

4.4 Increment the element of Dijk corresponding to the
reached pixel by one to count the number of times that
pixel is reached.

The geometry of the manipulator is defined using DH-
parameters as well as any required joint geometry parameters
such as ρ. Also defined are the variables for the ambient space
surrounding the manipulator such as the maximum and minimum
values in the X , Y and Z directions (Xmax, Xmin, etc.); and the
resolution of the pixels in each direction: ∆X , ∆Y and ∆Z. The
step size (the amount that the joints are moved between each it-
eration) is also selected and is based on the size of the pixels and
the geometry of the manipulator. At this time trial and error is
used to determine the best value of the step size (too small and
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the simulation takes too long to run, too large and there will be
gaps in the workspace).

The array representations of the workspace, Pijk and Dijk,
are initialized based on the maximum and minimum values along
each axis and the resolution specified by ∆X , ∆Y and ∆Z. The
elements of these two arrays are all set to zero to indicate that the
corresponding pixels have not yet been reached by the EE of the
manipulator.

With the geometry defined and the ambient space discretized
it is now necessary to loop through all possible joint variable com-
binations and determine the position of the EE in each configu-
ration. The matrices for computing the direct kinematics are ob-
tained using the method shown in [1].

The X , Y and Z positions of the origin of the EE coordinate
system are obtained from the first column of the transformation
matrix from the base coordinate system to the EE coordinate sys-
tem, T (the second, third and fourth elements of that vector re-
spectively) and adjusted such that the position (0, 0, 0) is in the
centre of the ambient space. The pixel coordinates corresponding
to the EE position are obtained by

i = floor
(

X−∆X
∆X

)
, j = floor

(
Y−∆Y

∆Y

)
, k = floor

(
Z−∆Z

∆Z

)
,

where the floor() operator returns the nearest integer that is less
than or equal to the value inside the brackets. These pixel coordi-
nates correspond to an element in the discretized ambient space
arrays Pijk and Dijk and the matrices are updated accordingly
(Pijk(i, j, k) is set equal to one to indicate that the pixel has been
reached at least once and Dijk(i, j, k) is incremented by one to
count the number of times the pixel has been reached).

Once the iterations are complete the workspace has been ob-
tained for the manipulator at the resolution defined by the size of
the pixels and the joint variable step size for each iteration. The
elements of Pijk can be plotted in three dimensions to provide for
an overview of the workspace or a cross section of the workspace
can be plotted to look for things like voids or holes.

At the current time nothing is done with the Dijk array, but in
the future it will be used to start the investigation of the dexterity
of the manipulator. It is also useful for determining an appropri-
ate joint variable step size for the ambient space resolution. If
the count of the number of times a pixel is reached is very high
(especially for a simple manipulator) it may indicate that the step
size is small for the given resolution and the simulation will take
longer to complete than necessary. The results of the simulation
are saved as a data file so that they can be kept for future use
without having to re-run the simulation.

3.1 The Reachable Workspaces of Single-Joint Chains

There are infinitely many configurations of manipulator that can
be constructed with different numbers of joints and different sets
of parameters making it difficult to simply compare R-chains with
A-chains. To gain an initial understanding of relevant issues, the
current work is restricted to short chains comprising one and two
joints. At this point the all joints will be limited to the range

60◦ ≤ θi ≤ 300◦ in order to correspond to the absolute maximum
range of an A-pair [12]. Self-collisions between the links of the
manipulator are also being ignored at this time.

In order to show the characteristics of the A-chain workspace
a very large A-pair relative to the size of the links has been used
(the side of one of the sides of the triangles, a, has been set to 10).
In reality the joint would likely be much smaller than the links and
the shape of the workspace would not be as exaggerated. This is
important to remember since at first glance the 2R- and 2A-chains
bear little resemblance to one another.

Examining the workspace of chains with only one joint ap-
pears trivial, but it is important to understand how each joint in
the chain works in order to fully understand and predict how a
chain of multiple joints might move in space.

Figure 3 compares the reachable workspaces of a 1R-chain
and a 1A-chain. The 1R-chain has the DH-parameters (the units
are irrelevant): a1 = 10, α1 = 0◦, and d1 = 6, and the DH-
parameters of the 1A-chain are: a1 = 10, α1 = 0◦, d1 = 0 and
the fixed component of the joint angle is θf1 = 0◦. The difference
in the joint offset (d1) between the two manipulators is set so the
workspaces of the manipulators will overlap.
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Figure 3: Plots of the reachable workspaces of a 1R-chain and a
1A-chain.

The workspace of the of the 1R-chain is a planar semi-circle
while the workspace of the 1A-chain is a semi-circle when pro-
jected onto the X-Y plane, but the Z value varies according to
Z = ρ sin (θv/2). Near the beginning and end of the range of ro-
tation the 1A-chain workspace is below the 1R-chain while near
the middle of the range of rotation it is above.

3.2 The Reachable Workspaces of 2-Joint Chains

Comparing two-jointed chains becomes increasingly difficult be-
cause there are many more configuration possibilities. Three rel-
atively simple cases are examined: the axes of the two joints are
parallel (the workspace of the 2R-chain is planar); the joint axes
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are perpendicular but not intersecting; the axes are perpendicular
and intersect.

3.2.1 Parallel Axes

When a 2R-chain has parallel joint axes (and links with non-zero
lengths) the reachable workspace lies on a plane. The shape of
the planar workspace depends on the link lengths and available
range of motion of each joint, however the reachable workspace
will typically be a circular band whose thickness depends on the
length of the second link and the range of rotation of the second
joint.

The DH-parameters of the 2R- and 2A-chains used here are
listed in Table 1. Joint offsets of six units were used in order

Table 1: DH-Parameters of the 2-jointed chains with parallel
axes.

Chain/Link i ai αi di θfi θ Range
2R-Chain

1 10 180◦ 6 N/A 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 6 N/A −120◦ ≤ θ2 ≤ 120◦

2A-Chain
1 10 180◦ 0 0◦ 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 0 180◦ 60◦ ≤ θ2 ≤ 300◦

to remain consistent with the 1R-chain from the previous section
and the link twist of 180◦ was used such that the plane of the
reachable workspace would be on the X-Y plane at Z = 0. The
workspace of this manipulator is illustrated in Figure 4.
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Figure 4: Plot of the reachable workspace of a 2R-chain with
parallel axes.
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Figure 5: Plot of the reachable workspace of a 2A-chain with
parallel axes.

The workspace of the 2R-chain is to be compared to a dimen-
sionally similar 2A-chain. Because of the coupled translation and
rotation the reachable workspace of the 2A-chain is no longer in
the plane and is a more complex shape than that of the planar
2R-chain, as seen in Figure 5. To gain better understanding of
the shape features, several cross-sections of the workspace are
examined. Figure 6 shows several cross-sections of the 2A-chain
reachable workspace. The cross-sections show that the 2A-chain
workspace does not contain any large planar segments like the
2R-chain, suggesting that the reachable workspaces of the two
types of chains have little in common.

Using the pixel representation of the ambient space around the
manipulator it is possible to determine which pixels are reached
by both types of manipulators, this gives some insight into the
intersection of the two workspaces. It must be noted that because
of the discretization of the ambient space the same pixel may be
activated, but in reality the same exact point in space has not been
reached. Figure 7 shows the intersection of the workspaces. The
intersection appears to be segments of a plane, but in reality it is
likely curves on the plane. This is similar to the point intersec-
tion in Figure 3 appearing as three pixels because of the coarse
discretization of the ambient space.

3.2.2 Non-Intersecting Perpendicular Axes

In this configuration the 2R-chain reachable workspace differs
from the previous configurations in that it is no longer planar.
The DH-parameters of the two 2R- and 2A-chains with non-
intersecting perpendicular axes are listed in Table 2. For the 2R-
chain joint offsets of di = 8 were used to put the two workspaces
in the same region of the ambient space. The pixel resolution is
0.5 units.

The reachable workspace of the 2R-chain is the toroidal sec-
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Figure 6: Cross-sections of the reachable workspace of a 2A-chain with parallel axes.

Table 2: DH-Parameters of the 2-jointed chains with non-
intersecting perpendicular axes.

Chain/Link i ai αi di θfi θ Range
2R-Chain

1 10 90◦ 8 N/A 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 8 N/A −120◦ ≤ θ2 ≤ 120◦

2A-Chain
1 10 90◦ 0 0◦ 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 0 180◦ 60◦ ≤ θ2 ≤ 300◦

tion with a plane of symmetry parallel to theX-Y plane atZ = 8,
seen in in Figure 8. At first glance the reachable workspace of the

geometrically similar 2A-chain (shown in Figure 9) appears to
be similar to that of the 2R-chain, but the 2A-chain workspace
has no plane of symmetry. An estimate of the intersection of the
reachable workspaces of the two manipulators can be obtained
by determining which pixels in the ambient space are reached by
both the 2R- and 2A-chain.

Figure 10 reveals the intersection of the two workspaces. The
scatter plot of the common pixels shows that the two workspaces
intersect in a planar semi-circle. Some of the additional pix-
els that the two workspaces have in common are artifacts of the
coarseness of the pixels resolution. This shows that the 2A-chain
can only reach a somewhat small number of the same points as
a 2R-chain. Regardless, the study so far has only considered
the ability of the A-chains to match geometrically equivalent R-
chains and not any quantitative comparisons (i.e. workspace area,
etc.).
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Figure 7: Plot of the intersection of the 2R-chain and 2A-chain
reachable workspaces for 2-jointed chains with parallel axes.
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Figure 8: Plot of the reachable workspace of a 2R-chain with
non-intersecting perpendicular axes.

3.2.3 Intersecting Perpendicular Axes

The DH-parameters of the two chains are provided in Table 3.
The joint offset of the second joint, d2 = 18, was selected to
account for the length of the first link (different from a1 for in-
tersecting joint axes) that is 10 units long and also to account for
the inherent joint offset of A-pairs, approximately 8 units. The
pixels shared by the two workspaces are illustrated in Figure 11.
The intersection appears to be a portion of the band that is the
workspace of the 2R-chain, though with a finer pixel resolution
the intersection may reduce to a planar semi-circle.
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Figure 9: Plot of the reachable workspace of a 2A-chain with
non-intersecting perpendicular axes.
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Figure 10: Plot of the intersection of the 2R-chain and 2A-chain
reachable workspaces for 2-jointed chains with non-intersecting
perpendicular axes.

3.3 Conclusions

In this paper algebraic screw pairs (A-pairs) and an algorithm for
visualizing and comparing the reachable workspaces of short, di-
mensionally similar R- and A-chains has been presented. The
algorithm is based on [11]. The ambient space around the manip-
ulator is discretized into three dimensional pixel elements. Each
joint angle is incremented in sequence by a small amount to deter-
mine which pixels are reached by the EE. The preliminary anal-
ysis indicates that the A-chains cannot precisely reproduce the
reachable workspace of a geometrically similar R-chain with the
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Table 3: DH-Parameters of the 2-jointed chains with non-
intersecting perpendicular axes.

Chain/Link i ai αi di θfi θ Range
2R-Chain

1 0 −90◦ 8 N/A 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 18 N/A −120◦ ≤ θ2 ≤ 120◦

2A-Chain
1 0 90◦ 0 0◦ 60◦ ≤ θ1 ≤ 300◦

2 5 0◦ 10 180◦ 60◦ ≤ θ2 ≤ 300◦
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Figure 11: Plot of the intersection of the 2R-chain and 2A-chain
reachable workspaces for 2-jointed chains with intersecting per-
pendicular axes.

same number of joints. However, the work presented here used
A-pairs that were large relative to the size of the links, thereby
exaggerating the difference between the two types of chains for
illustrative purposes. In a real manipulator with appropriately
sized joints the differences between the two workspaces would
be much smaller.

The work thus far has involved directly comparing the abil-
ity of an A-chain to duplicate the displacements of an R-chain.
Though an A-chain workspace may only match a small part of
the R-chain workspace the A-chain workspace still has consid-
erable size. A true measure of a manipulators usefulness is how
it performs a desired task, not how well it matches an existing
manipulator. Performance indices taking this into account will be
considered in future research.
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