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Abstract
  In  this  paper  the  singular  configurations  of  wrist-partitioned  6R  serial  robots  in  gen-
eral,  and  the  KUKA  KR-15/2  industrial  robot  in  particular,  are  analytically  described
and  classified.  While  the  results  are  not  new,  the  insight  provided  by  the  geometric 
analysis  for  users  of  such  robots  is.  Examining  the  problem  in  the  joint  axis  parameter 
space,  it  is  shown  that  when  the  end-effector  reference  point  is  taken  to  be  the  wrist 
centre  the  determinant  of  the  associated  Jacobian  matrix  splits  into  four  factors,  three
of  which  can  vanish.  Two  of  the  three  potentially  vanishing  factors  give  a  complete  de-
scription  of  the  positioning  singularities  and  the  remaining  one  a  complete  description
of  the  orientation  singularities,  in  turn  providing  a  classification  scheme.

Configurations  Singulières  des  Robots  Sériels  à  Poignet
Sphérique  et  Six  Couples  Rotöides:  une  Perspective

Géométrique  pour  les  Utilisateurs

Résumé
Dans  cet  article  les  configurations  singuliéres  des  robots  sériels  à  poignet  sphérique
et  six  couples  rotöides  en  général,  et  celle  du  robot  industriel  KUKA  KR-15/2  en 
particulier,  sont  analytiquement  décrites  et  classifiées.  Bien  que  les  résultats  ne  soient
pas  nouveaux,  la  perspective  fournie  par  l’analyse  géométrique  pour  des  utilisateurs  de
tels  robots  l’est.  En  examinant  le  problème  dans  l’espace  commun  de  paramètre  d’axe,
on  montre  que  quand  le  point  de  référence  terminal  est  pris  comme  étant  le  centre  du 
poignet  le  déterminant  de  la  matrice  associée  du  Jacobian  se  divise  en  quatre  facteurs,
dont  trois  peuvent  disparâitre.  Deux  des  trois  facteurs  qui  peuvent  potentiellement 
disparâitre  donnent  une  description  complète  des  singularités  de  positionnement  et  les 
autres  une  description  complète  des  singularités  d’orientation,  fournissant  ainsi  une
méthode  de  classification.



1 Introduction

The singularities of wrist-partitioned six-revolute (6R) axis serial robots have already been
thoroughly investigated and classified. The aim of this paper is to describe certain results
in a readily accessible way using elementary concepts from linear algebra and geometry. 6R
serial robot singularities occur at configurations corresponding to singularities of the 6 × 6
Jacobian matrix relating the robot’s joint rates to the end-effector (EE) Cartesian velocities.
The formulation of the Jacobian found in this paper summarises and builds upon material
found in text books such as [1, 2, 3].

Singular configurations of three degree-of-freedom (DOF) positioning robots, also called
regional manipulators, are analysed in terms of Cartesian singularity surfaces in [4]. 3R po-
sitioning manipulator singularities are enumerated and classified using the notion of generic
manipulator singularities in [5]. The orientation of the EE in a wrist-partitioned manipula-
tor is usually adjusted by its spherical wrist. The nature of wrist orienting singularities are
explained in the context of the hyperbolic normal form in [6].

The concept of removable singularities has been a major research area. This notion
states that if a singularity occurs on the path between two configurations, it may, under
certain conditons, be removed by slightly altering the path. Removable singularities occur
in robots possessing three, four, and five DOF, whereas singularities associated with six DOF
robots are nonremovable. A representative method for removing singularities from the three
positioning joints of a six DOF PUMA is investigated in [7]. Classification and enumeration
of 5R robots possessing nonremovable singularities is presented in [8].

Singularities in redundantly actuated manipulators can lead to self motions. These are,
perhaps, the most insidious because the EE can move when the manipulator should be sta-
tionary. A recent investigation into particular parallel platform architectures, one intended
for use as a flight simulator, have self motions in every configuration in its workspace [9].
Additional work has been directed towards determining conditions for avoidability and un-
avoidability in serial redundant robots, see [10].

Hunt [11] revived a geometric entity called the cylindroid, which fell from use during
the middle part of the twentieth century. The cylindroid is a ruled surface generated by the
resultant wrench of two conjugate screws of equal pitch. It is well known that the columns of
the Jacobian are Plücker line, or screw coordinates of the six revolute axes, see [12]. Certain
properties of the cylindroid regarded in the context of screw theory provide an algebraic-
geometric framework of great use in the rank analysis of robot manipulator Jacobians [13].
For instance, the set of all singular configurations of serial six DOF manipulators is described
using Lie algebra properties of the screw space in [14].

There are many other important contributions regarding general 6R singularities con-
tained in the literature. Some representative examples are [15, 16, 17, 18, 19]. The list is
by no means exhaustive, but is included to serve as a guideline for further study by the
reader so inclined. The literature is well known among kinematicians, geometricians, and
robotics researchers. Despite this fact, operating manuals for industrial models give either
an insignificant treatment of the subject, or none at all, see for instance [20, 21, 22]. What is
truly unfortunate is that it appears most users of 6R robots are generally not well acquainted
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Figure 1: General 6R wrist-partitioned architecture.

with the literature, rather only the operating manuals of their specific robot.
When the robot comes to a sudden, crashing halt the operator is often left mystified as

to why. Courses offered by robot manufacturers are a partial remedy in that cautionary
lessons are given: warning the operator not to programme positions too near the work space
boundary; avoid alignment of some axes; exercise caution in regions close to singularities and
monitor for rapid increases in joint rates. However, the learning curve to the understanding of
the causes is frustratingly long and steep. Additionally, while the English-language literature
examined gives a complete and exact classification, it requires a very advanced level of
mathematical and geometric knowledge and experience. What is required, from a robot
users point of view, is a focused geometric interpretation of how the singularities arise, given
the structure of the associated Jacobian. This gives the motivation to present the following
analysis.

1.1 Kuka KR-15/2 Description

A wrist-partitioned, or decoupled manipulator is defined as one whose wrist axes (the last
three axes) intersect in a common point, see Figure 1. The wrist is also spherical because
when the intersection point, C, of the axes is fixed then all points on the wrist move on
spheres centred at C. It is also said to be partitioned, or decoupled because the positioning
and orienting problems can be considered separately. That is, when point C is the end-
effector (EE) reference point, arbitrary displacements can be thought of as the translation
of point C combined with the orientation of the EE reference frame, whose origin is C.

The KUKA KR-15/2 is illustrated in Figure 2, showing its six axes together with its base,
{B}, and EE, {E}, reference frames. Coordinate reference frames are attached to each link
using the Denavit-Hartenberg procedure [23]. Thus, the EE can be brought to any desired
position and orientation, within the workspace of the robot, by changing the joint angles
θi about their respective joint rotation axes ei, where i ∈ {1, 2, . . . , 6} (see Figure 1). The
point of intersection of axes 4, 5, and 6, point C in Figures 1 and 2, is considered as the EE
reference point.
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Figure 2: The six axes, base, {B}, and EE, {E}, reference frames of a KR-15/2.

2 The Jacobian

The Jacobian is a time-varying linear transformation that relates the Cartesian velocities of
the EE to the time rate of change of the joint angles. It allows for the relationship between
the two vectors to be expressed as

v = Jθ̇, (1)

where the six joint rates are given by

θ̇ =
[

θ̇1 θ̇2 . . . θ̇6

]T
. (2)

The velocity vector is

v =

[
w
ċ

]
, (3)

with

w =




ωx

ωy

ωz


 , ċ =




ċx

ċy

ċz


 , (4)
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where w is the angular velocity vector of the EE reference frame and ċ the linear velocity
vector of C all relative to the fixed base frame.

It is well known that the determinant of the Jacobian of a six-axis robot is invariant under
a change of the EE reference point [2, 3]. It will prove useful in the analysis to consider C as
this point. To determine the Jacobian matrix, we require the direction vectors of the joint
axes, ei. We additionally need the position vectors, ri, of point C with respect to the ith
joint axis coordinate frame origin. Both ei and ri must be expressed in terms of the base
coordinate reference system.

Moreover, we will require the moments of the lines of the joint axes relative to the origin
of the base frame, shown in Figure 2. The moment vector of a line about point C, indicated
by mC , is defined as the cross-product of the position vector of a point on the line, emanating
from point C, with the line-bound direction vector of the line itself. If the position vector is
r and the line-bound vector is e then the moment vector with respect to C is defined as

mC = r× e. (5)

It is convenient to instead define the ri as the vector from the origin of the ith axis
reference frame, indicated by Oi, to point C, rather than as pointing from C to Oi. In the
definitions below, the order of the cross-product is reversed to agree with the change of sense
of the ri. It is important to note that, although we will focus our attention in particular
on the KUKA KR-15/2, the only condition on the following analysis is that the wrist be
partitioned.

2.1 Positioning Problem

For a general wrist-partitioned 6R manipulator, the motion of the EE can be decoupled
into distinct components: the positioning of point C and the orientation of the EE [4, 15].
The location of point C in the base reference frame is clearly independent of joint angles
θ4, θ5 and θ6. In this sense, the EE reference point can be brought to different positions
only by changing the angles about axes 1, 2 and 3. Therefore, the linear velocity of point C
depends only on the time rate of change of the joint angles θ1, θ2 and θ3. The linear velocity
components contributed by each angular joint velocity must be perpendicular to the planes
spanned by corresponding pairs of vectors of angular joint velocities and the ri, which may
be expressed as θ̇iei × ri = ωi × ri. We can write:

ċ = θ̇1e1 × r1 + θ̇2e2 × r2 + θ̇3e3 × r3, (6)

again, ri being the position vector of C with respect to Oi, and ei the direction vector of the
axes, both expressed in coordinates of the base frame.

2.2 Orienting Problem

The angular velocity vector, w, of the EE reference frame whose origin is on C can be written
as the vector sum of the contributions of the angular velocities of the individual joints:

w = ω1 + ω2 + . . . + ω6 = θ̇1e1 + θ̇2e2 + . . . + θ̇6e6. (7)
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2.3 The Jacobian Matrix

Given the relations in Equations (6) and (7) we see immediately that the Jacobian of Equa-
tion (1) has the form:

J =

[
J11 J12

J21 J22

]
,

=

[
e1 e2 e3 e4 e5 e6

e1 × r1 e2 × r2 e3 × r3 03×3

]
. (8)

The six columns of J are the Plücker line ray-coordinates of the six axes. They are
distinguished from Plücker line axis-coordinates by virtue of the order of their elements [24].
As ray-coordinates, the first three elements in each column are the direction cosines of the
corresponding axis; the last three are the components of the moment of the axis with respect
to C. Because axes 4, 5 and 6 all pass through C their moment components with respect to
C are zero, hence J22 = 03×3.

3 Singularities

When the Jacobian becomes rank deficient, the system of equations relating the joint rates to
the EE velocity contain linear dependencies (the degree of the deficiency equals the number
of dependencies among the equations). From a computational point of view this implies that
the system cannot be solved for θ̇. Either no solutions exist, or an infinite number do. This
means that no unique set of joint rates map to the desired EE velocity and control of the
robot becomes problematic.

The conditions on loss of full rank are exactly the conditions on the relative positions
and orientations of the six axes leading to singular configurations of the robot. When in a
singular configuration there is some direction along, or surface contained in the workspace
upon which it is impossible to move, or apply forces and moments, regardless of the joint
rates, or joint torques. This is a consequence of the design of the robot reflected in the
structure of Equation (1).

In general, the determinant of a large square matrix, J, that can be sub-divided into
four distinct square sub-matrices, J11, J12, J21 and J22, is not equal to the products of the
determinants of its four square sub-matrices. However, it it can be shown [25] that if the
lower-right sub-matrix, J22, contains only zeroes then the determinant of J is the negative
product of the upper-right and lower-left sub-determinants.

Clearly, J22 in Equation (10) is all zeroes. Therefore, det (J) = −(det (J12))(det (J21)).
Here det (J12) contributes the first three factors in Equation (11) while det (J21) contributes
the fourth. The factors from the upper-left sub-determinant have no effect on det (J), nor on
conditions for singular configurations. Hence, the analysis that follows in not restricted to the
particular architecture of the KUKA KR-15/2. It can be tailored to any 6R wrist-partitioned
manipulator.
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Because J21 concerns only the linear velocity of C while J12 concerns only the angular
velocity of the wrist, the singular configurations associated with the vanishing of the factors of
the determinant of J can be classified according as the configuration is position, or orientation
singular.

3.1 The KR-15/2 Jacobian

For the KR-15/2 the first axis always points along the z-axis of the base frame, see Figure
2. Moreover, axes 2 and 3 are parallel to each other and to the xy-plane of the base frame,
this in turn means that e2 = e3. Hence, J11 simplifies to

J11 =




0 e3x e3x

0 e3y e3y

e1z 0 0


 . (9)

These simplifications, in turn, simplify the expressions for the cross-products in J21. The
Jacobian reduces to

J =




0 e3x e3x e4x e5x e6x

0 e3y e3y e4y e5y e6y

e1z 0 0 e4z e5z e6z

−e1zr1y e3yr2z e3yr3z 0 0 0
e1zr1x −e3xr2z −e3xr3z 0 0 0

0 e3xr2y − e3yr2x e3xr3y − e3yr3x 0 0 0




. (10)

These simplifications are valid for any 6R wrist-partitioned robot whose second and third
axes are parallel, both perpendicular to the first axis. The determinant of J, which is the
negative product of the determinants of J21 and J12, can be factored into the following 4
products:

det (J) = e1z(r2ze3yr3x − e3xr2zr3y + e3xr3zr2y − r3ze3yr2x)(r1ye3x − e3yr1x)

(e4xe5ze6y − e4xe6ze5y + e4ye5xe6z − e4ye6xe5z + e4ze6xe5y − e4ze5xe6y). (11)

4 Classification of Singularities

All conditions which cause a configuration of the KR-15/2, or an architecturally similar
6R robot, to be singular are represented algebraically by Equation (11). The determinant
vanishes whenever any, or any combination, of the factors vanishes. Since this causes the
Jacobian to become rank deficient, these conditions represent general singularities, not simply
those for position or orientation, of every wrist-partitioned 6R robot. From the standpoint
of vectors, it is clear that the second factor will vanish when the EE reference point C lies
in the plane spanned by e2 and e3, see Figure 3. The third factor vanishes when C lies on
axis 1. The fourth factor is clearly the crossproduct of the three wrist axes, and vanishes
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whenever any pair becomes collinear. Still, we believe insight is gained by considering the
singularities from the perspective of the basis of the vectorspace comprising the components
of the ei and ri. We will now discuss the geometric implications.

4.1 Case 1

The first factor is e1z . Since this quantity represents the direction of the first joint axis it
can never be identically zero. Indeed, the components of the direction vectors of the joint
axes are direction cosines and thus unit vectors. We may safely set e1z = 1 and rewrite the
determinant as the product of just three factors:

det (J) = (r2ze3yr3x − e3xr2zr3y + e3xr3zr2y − r3ze3yr2x)(r1ye3x − e3yr1x)

(e4xe5ze6y − e4xe6ze5y + e4ye5xe6z − e4ye6xe5z + e4ze6xe5y − e4ze5xe6y). (12)

Should any of these factors vanish the associated configuration of the robot is singular,
i.e. at least one degree of freedom is lost. In the following three subsections the conditions
that cause each of the three factors to vanish are examined from the perspective of the
parameter space geometry. The corresponding conditions in the Cartesian space of the base
coordinate reference system are also discussed.

4.2 Case 2: Elbow Singularity

If the first factor in Equation (12) is equal to 0 the corresponding singular configuration is
called an elbow singularity. Equation (13) involves products of the elements of e3, r2 and r3.

r2ze3yr3x − e3xr2zr3y + e3xr3zr2y − r3ze3yr2x = 0. (13)

In the coordinate space with these parameters as basis vectors, Equation (13) is an eight-
dimensional third-order surface; (e3x , e3y , r2x , r2y , r2z , r3x , r3y , r3z) being the parameters.

Neither the relative layout of the three vectors nor their magnitudes are affected by
rotations about axis 1, so we may consider axes 2 and 3 only when they are parallel to
the yz-plane. We then consider the intersection of the surface with the plane e3x = 0. In
this plane the x-components of the axis direction vectors are 0. Thus, terms containing e3x

vanish and the factor reduces to a five-dimensional cubic curve (the curve of intersection of
the plane and the parameter singularity surface):

r2ze3yr3x − r3ze3yr2x = 0. (14)

The remaining two terms contain only e3y because axes 2 and 3 are always parallel to the xy-
plane and never have a z-direction component. Since the direction vector can never vanish,
e3 can be normalized, which leaves the condition:

r2zr3x = r3zr2x , or r2z : r3z = r2x : r3x . (15)
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Figure 3: Stäubli RX series elbow singular configuration.

After inspecting Equation (15) it is clear the condition is satisfied whenever r2 and r3

are aligned on the z- or x-axes, respectively. But, in general it is satisfied whenever r2 and
r3 are aligned. Recall that ri = c−Oi, which means we can write Equation (15) in terms of
the angle between the z- and y-components for each of r2 and r3, i.e., φ1 and φ2:

‖r3‖ cos φ3 : ‖r2‖ cos φ2 = ‖r3‖ sin φ3 : ‖r2‖ sin φ2. (16)

Equation (16) can only be satisfied when φ3 = ±φ2 (mod π), or when the magnitude of
either r2 or r3 vanishes. The latter requires that point C be located on the origin of the
coordinate reference frame of either joint 2 or 3, but this is physically impossible for the KR-
15/2, and most other 6R wrist-partitioned robots, due to link interference. Additionally, the
case where φ3 = φ2± π is precluded by joint limits and interference. This type of positional
singularity is therefore restricted to the condition that φ3 = ±φ2.

Figure 4: Two KUKA KR-15/2 elbow singular configurations.
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In summary, the elbow singular configurations occur whenever point C lies in the plane
spanned by axes 2 and 3. For the KUKA KR-15/2, this can only occur when O2, O3 and C
are distinct and collinear. When the robot is in an elbow singular configuration changes in
the angles of joints 2 and 3, ∆θ2 and ∆θ3, can produce motions only in the direction normal
to the plane Π23 containing e2 and e3. No motions of C in Π23 parallel to e2 and e3 are
possible. Two elbow singular configurations are shown in Figure 4.

Owing to the construction of the KR-15/2 the elbow singular sub-space comprises a
portion of the surface of a fixed torus centred at the origin of the base reference frame.
In general, this is true for all wrist-partitioned robots. The torus shape parameters are
dependent on the link lengths and joint offset between axis 1 and 2. For robots designed
such that axes 1 and 2 intersect, such as the Stäubli RX series, and the Kawasaki JS-10, the
torus degenerates to a double sphere.

Clearly, the elbow singularity surface represents the limits of the robot workspace. As
the working envelope is easily visualised, elbow singular configurations should be easily
anticipated. They may be avoided by keeping the EE at a safe distance from its limits.

4.3 Case 3: Shoulder Singularity

If the second factor in Equation (12) vanishes the configuration is said to be shoulder singular,
see Figure 5. The following arguments illustrate why.

r1ye3x − e3yr1x = 0. (17)

Equation (17) may be viewed as a four-dimensional quadric surface in the coordinate space
whose basis are the parameters (e3x , e3y , r1x , r1y). It can vanish under three circumstances.

1. If e3x = 0 then either e3y = 0, or r1x = 0. Since e3 is a direction vector which remains
parallel to the xy-plane then both x- and y-components cannot simultaneously vanish.
Hence, the factor will vanish only if r1x = 0. This means that point C lies in the
yz-plane of the base. Because of the construction of the KR-15/2, C is additionally
constrained to be on the z-axis in this plane.

2. If e3y = 0 then either e3x = 0, or r1y = 0. In this circumstance r1y = 0 because, as
mentioned above, both x- and y-components cannot simultaneously vanish. Now, C
will lie in the zx-plane of the base frame. Again, in the case of the KR-15/2, C is
additionally constrained to lie on the z-axis.

3. If neither e3x = 0, or e3y = 0 then r1x = r1y = 0. This condition also means that C is
on the z-axis of the base frame. While it is possible for a KUKA KR-15/2 to attain
this configuration, it is not possible for the Stäubli RX architecture.

Shoulder singular configurations for the KUKA KR-15/2 occur when point C lies any-
where on the z-axis of the base frame, which is the axis of joint 1, see Figure 6. But, in
general these singularities occur when C lies on an architecture specific line in the plane Π12,
containing axes 1 and 2. Plane Π12, whose orientation is set by ϑ1, is covered by lines parallel
to e2 and e3 which all intersect e1. When C lies in Π12, no linear, or angular velocities are
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Figure 5: A Stäubli RX series shoulder singular configuration.

possible in the directions parallel to e2 and e3, although it can move on a line parallel to
e1, the axis of the first joint. Point C can have any location along this singularity line,
and the line itself can be rotated about axis 1. Therefore, the shoulder singularities occupy
the surface of a right-circular cylinder of radius r, whose central axis lies on axis 1. For
the KR-15/2, r = 0. Because the shoulder singularities are contained within the reachable
workspace, they are more difficult to anticipate than elbow singularities.

Figure 6: Two KUKA KR-15/2 shoulder singular configurations.
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4.4 Case 4: Wrist Singularity

The last case concerns the third factor in Equation (12). This condition depends only on the
direction cosines of the three wrist axes 4, 5 and 6. For this reason they are termed wrist
singularities, and are pure orienting singulatities in contrast to the positioning singularities
of the elbow and shoulder, which depend on the position of C.

Equation (18) represents the determinant of J21. It may be thought of as a nine-
dimensional third-order surface in the coordinate space of the nine components of e4, e5

and e6.

e4xe5ze6y − e4xe6ze5y + e4ye5xe6z − e4ye6xe5z + e4ze6xe5y − e4ze5xe6y = 0. (18)

For orientations of the wrist axes the location of the wrist centre, C, is arbitrary. Let it
be located on the origin of the fixed base frame. Moreover, this singularity condition depends
on the relative orientation of axes 4, 5 and 6, so we can consider one to be fixed relative to
the others and the base frame. In this way we will consider the intersections of the cubic
surface with the nine individual coordinate planes. Here we will examine e5:

1. e5 =




1
0
0


: Equation (18) reduces to

e4ye6z − e4ze6y = 0. (19)

2. e5 =




0
1
0


: Equation (18) reduces to

e4ze6x − e4xe6z = 0. (20)

3. e5 =




0
0
1


: Equation (18) reduces to

e4xe6y − e4ye6x = 0. (21)

The above three intersections leave the condition that the cross-product of the projections of
two direction vectors in the respective coordinate planes must vanish. This means e4 must
be parallel to e6. This situation arises whenever axes 4 and 6 are aligned.

Similar analysis can be made by examining both e4 and e6 in the same way as we just
examined e5. The results show that the singular conditions require e5 to be parallel to e6,
and e4 to be parallel to e5. However, because of the construction of the wrist: axes 5 and 6
as well as axer 4 and 5 are always perpendicular. Thus, these conditions are not physically
possible and the corresponding wrist singular configurations are never attainable.
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Figure 7: Two KUKA KR-15/2 wrist singular configurations.

To summarise, the condition for wrist singular configurations is only satisfied when axes 4
and 6 are parallel. Thus, the reachable wrist singular configurations comprise only a portion
of the third-order wrist parameter singularity surface: a quadratic curve. Figure 7 shows
two wrist singular configurations. Because this condition can be satisfied independently of
the position of C, the following discomforting fact applies to all wrist-partitioned 6R robots:
the entire reachable workspace is potentially wrist singular.

5 Conclusions

We have presented an analytical description and classification of the complete set of singu-
lar configurations of the KUKA KR-15/2 six-axis serial robot in particular, and all wrist-
partitioned 6R robots in general. The analysis shows that all general singular positions are
either shoulder, elbow, or wrist singularities, or any combination thereof, no others exist.
The shoulder singular positions of C comprise an architecture specific right circular cylinder
whose central axis is the z-axis of the base frame. For the KUKA KR-15/2 the cylinder
radius is zero and the cylinder degenerates to the z-axis itself. Elbow singularities of point
C occupy a portion of a torus, or double sphere, however, this surface is the boundary of
the workspace. For the KUKA KR-15/2 the surface is a torus segment. Wrist singularities
can occupy the entire reachable workspace of C. It is interesting to note that it has never
been explicitly stated in the literature, or so it appears, that the entire orientable workspace
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is potentially singular, even in papers dealing specifically with orientation singularities, such
as [10].

While these results are not entirely new, the geometric analysis of the conditions that
cause the Jacobian to become rank deficient are. When the robot suddenly jerks to a halt
because the controller has anticipated motion through a singularity, the operator is often
left mystified, despite the clarity of the error message that a singular configuration has been
reached. We believe that presenting the conditions in this way allows the users of wrist-
partitioned industrial robots to better understand their singular configurations.
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