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Abstract: In this paper an approach to the
kinematic calibration of serial robots with six
revolute axes in general, and the KUKA KR-
15/2 in particular, is presented. We proceed
by formulating how the pose of the robot (the
position and orientation of the end-effector)
varies with the kinematic parameters that
describe the robot geometry. The pose of
a robot is specified by six independent posi-
tion and orientation parameters. Because of
this independence, subsets of these parame-
ters can be used to formulate the system of
calibration equations. The model presented,
based on the Denavit-Hartenberg parame-
ters, is designed for use when only position
measurements are available. The measure-
ment concept involves comparing relative lin-
ear robot motions to parallel standard ruled
and flat straight edges. Images from a CCD
camera mounted to the tool flange yield rela-
tive distance measurements along the length
of the ruled straight edge while a stereo laser
displacement sensor yields height measure-
ments above the flat straight edge. The robot
needs be calibrated only over the required
workspace to perform a task, potentially en-
hancing task-specific accuracy. Results for
simulated measurements using the three x,
y, z position coordinates are presented.

Résumé: Dans cet article, une approche
générale pour l’étalonnage cinématique des
robots séries à six couples rotöides est
présentée. Le cas particulier du KUKA KR-
15/2 est aussi détaillé. Le processus consiste

à formuler la variation de la pose (position
et orientation de l’extrémité du manipula-
teur) du robot par rapport aux paramètres
cinématiques qui décrivent sa géométrie.
La pose d’un robot peut être décrite par
six paramètres indépendants de position et
d’orientation. Grâce à cette indépendance,
un sous groupe de ces paramètres peut être
utilisé pour formuler un système d’équations
de calibration. Le modèle présenté, basé
sur les paramètres de Denavit-Hartenberg,
est conçu pour être utilisé seulement quand
les mesures de position sont disponibles.
La mesure du déplacement consiste à com-
parer un mouvement linéaire du robot à
une règle droite graduée. Des images de
la règle provenants d’une camŕa numŕique
(camŕa CCD) montée sur le manipulateur
donnent des mesures de distance relatives
au déplacement du robot. Un capteur laser
de déplacement stéréo permet de mesurer
la hauteur au-dessus de la règle graduée.
Des résultats provenant de simulations où les
trois coordonnées de position x, y, z ont été
utilisés sont présentés.

Introduction: Calibration is essential for
robot manufacturing systems largely because
of the robot: they normally have good re-
peatability, but notoriously poor accuracy.
The accuracy, never stated by manufactur-
ers, is typically an order of magnitude worse
than the repeatability, which is the usual po-
sitioning performance indicator specified by
manufacturers. The calibration systems re-



viewed require absolute measurements of the
position of a reference point on the robot
and/or orientation of the end-effector.

In this paper we present a novel measure-
ment and calibration concept that relies in-
stead on relative measurements which re-
quires no measurement by external devices
to assess the robot pose (position and ori-
entation). This is, in a sense, more natu-
ral as robot motions are always computed
relative to the current pose. The calibra-
tion model requires changes in pose as in-
puts. We propose to use the relative motions
of the robot together with corresponding im-
ages of the ruled straight edge and changes
in distance from the flat straight edge to sup-
ply the differences directly. Thus, the robot-
mounted camera will capture an image of a
thermal-dimensionally stable ruled standard,
while a laser distance sensor will determine
the height above a parallel flat standard for a
set of poses that have the robot move linearly
in the direction of the straight edges, a first
prototype is shown in Figure 1. In principle,
the difference between the position of rulings
in adjacent images, together with the differ-
ence in height above the flat standard, are
the only required measurements. The robot
needs be calibrated only over the required
workspace to perform a task, potentially en-
hancing task-specific accuracy. Between 50
and 100 measurements are required, depend-
ing on the desired complexity of the calibra-
tion model.

Before proceeding, we leisurely examine
the history of robot calibration to put our
contribution in context. Robots have been
used in the manufacturing industry for many
years. The first industrial robot, the fa-
mous Unimate, was sold to General Motors
and installed in New Jersey in 1961. Obey-
ing step-by-step commands stored on a mag-
netic drum, the 3,000-kg arm sequenced and
stacked hot pieces of die-cast metal. Pre-
cision and accuracy were not unduely large
concerns (Mooring et al., 1991). These
robots were relatively easy to program, as all

Figure 1. KUKA KR-15/2 Calibration Measurement
Head.

positions were taught.
In these early applications, repeatability

was an important issue, which is the abil-
ity of that robot to position the end-effector
in the same place, with the same orientation,
repeatedly. Increasingly, there was demand
for more intelligent robots to complete more
complicated tasks than those involving re-
peatable pick-and-place motions: such as the
need for a robot to accurately follow a con-
tinuous path in seam welding operations; or
the insertion of large numbers of electronic
components in printed circuit boards.

As manufacturing technology improved, so
demands on robot accuracy increased. Sub-
stantial errors were noticed between where
the robot was commanded to go and where
the robot controller sent it, namely, the dif-
ference between robot repeatability and ac-
curacy had become apparent. Here, accu-
racy refers to the ability of a robot to po-
sition itself into any arbitrary commanded
pose, rather than return to the same pose
many times. It has also become apparent
that small deviations from the nominal robot
geometric parameters could produce large er-
rors at the end-effector. Hence, a need for the
improvement in the accuracy of a robot has



become paramount.

Experience has shown that the greatest
portion of the robot inaccuracy is con-
tributed by kinematic, or geometric errors.
Corrections in the accuracy of these errors
can produce improvements to the same or-
der of magnitude as the repeatability (Moor-
ing et al., 1991). Improvements in manufac-
turing tools and techniques yielding tighter
tolerances and stiffer mechanical structures
have been shown to reduce the geometric er-
rors in robots, but come at a great expense in
time and money. Since nothing can be man-
ufactured to exactly match the specified di-
mensions, there will still be errors. Machine
tool manufacturers, therefore, saw an eco-
nomic advantage to developing calibration
systems. One early calibration method was
known as machine calibration, which uses in-
ternal compensation software on an individ-
ual machine basis to compensate for absolute
accuracy deficiencies, resulting in a high-level
of repeatability. Later research led to high
precision measurement systems that include
coordinate measurement machines (CMM),
theodolites, laser interferometers and vision
systems.

Most existing calibration methods are ex-
pensive as they employ the use of expensive
equipment. A CMM can cost in excess of
US $100,000 depending on the required level
of accuracy. Other methods require multi-
ple laser interferometers and/or laser theodo-
lites, which can cost US $100,000 each, and
the use of precision machined fixtures, which
typically require the use of a CMM as well.

In the last decade, a variety of proposed
calibration methods have been offered as al-
ternatives. Many different calibration meth-
ods are given an excellent review by Holler-
bach & Wampler (1996). Explicit robot cal-
ibration methods differ according to mea-
surement system. These are open-loop meth-
ods (requires an external system to mea-
sure the pose of the robot end-effector)
and closed-loop methods (attaching the end-
effector to ground, calibration is achieved us-

ing joint angle sensing only). Wampler, et al.
(1995) present what they call an implicit loop
method. They give a framework for treating
the open-loop method as closed: the loop is
closed through an external sensor.

One approach constrains the end-effector
motion. Goswami et al. (1993) present a rep-
resentative example of a constraint method
that uses a simple radial-distance linear vari-
able differential transformer (LVDT) that
measures the distance from several fixed
points in the workspace to the robot’s end-
effector. They employ the use of an accu-
rate, inexpensive telescopic ball-bar system
as a measuring device, where the ball-bar
has a magnetic chuck permanently mounted
on one end and a removable precision steel
sphere mounted on the opposite end. The re-
movable sphere allows the addition of exten-
sion rods to increase the reach of the robot’s
workspace. Constraint methods, such as
this one, have the disadvantage of limiting
the calibration workspace and require the
addition of more mechanical pieces to in-
crease the robot’s reach. Additional pieces
or larger fixturing devices will introduce
more errors inherently (geometric and non-
geometric) and will increase the cost. In the
ball-bar method, there are also additional
time and space requirements for setting up
the fixturing system, which may not be ideal
in a manufacturing location. Meanwhile, the
removal of the constraint can cause the robot
to drift and the calibration may become in-
valid (Wampler et al., 1995). This method
is not task-specific, meaning the robot is cal-
ibrated over an environment that the robot
may not be operating in or with the proper
tool, which may introduce additional com-
pliance errors, as would calibration with the
addition of the fixture to the end-effector.

There has been much work in the use of
laser systems for calibration. Vincze et al.
(1994) present a comprehensive overview of
existing laser solutions. A laser tracking sys-
tem (LTS) can determine both the position
and orientation of a robot’s end-effector with



high accuracy during arbitrary robot mo-
tions. However, a fixed laser beam method
is limited as it only measures along a nar-
row straight line and requires the use of a
heavy sensor head at the robot end-effector.
Using three to four laser beams allows very
precise length measurements with an inter-
ferometer to calculate position, but the ori-
entation range is limited and the dynamic
measurements can be inaccurate. Moreover,
the line of sight between laser and interfer-
ometer must be maintained. In the case of
a two-beam system, there is a requirement
for two tracking mechanisms with two sets of
angular encoder systems. Additionally, the
two beams will have to be reflected, and the
working range is more limited than for a one-
beam system.

In a one-beam system, it is also possible
to measure orientation, but only one pre-
cise mechanism for the deflection of the laser
beam needs to be built, meaning less like-
lihood of link interference. Also, there is a
decreased requirement on the orientation of
the robot holding the reflector when the same
reflector is used. The second deflection unit
is replaced in the one-beam solution with an
interferometer that provides excellent accu-
racy, but requirs an absolute measurement
system or a calibration at start-up.

Vincze et al. (1994) present a one-beam so-
lution that uses a steerable laser interferom-
eter with a steerable reflector. This solution
uses pitch and yaw measurements, with the
steerable interferometer yielding all 3 com-
ponents of position and the steerable reflec-
tor yielding two components of orientation.
However, this solution uses a HeNe laser-
interferometer, mirrors, a high precision car-
dan joint, retroreflectors, a position sensitive
diode (PSD), and a CCD camera in an elabo-
rate set-up. This system would not be easily
implemented, or maintained on a manufac-
turing floor. Furthermore, HeNe lasers tend
to be more fragile than solid-state lasers and
may be easily damaged in a manufacturing
environment. Depending on the laser class

required by a particular solution, safety may
also be a concern. The complexity of the
equipment drives up the expense of this type
of solution to the calibration problem.

Gong et al. (2000) present a self-
calibrating system that can be easily imple-
mented on a production line or manufactur-
ing floor that does not require the use of a
special measurement system. Their solution
consists of a hybrid non-contact optical sen-
sor (a combination of a CCD camera and a
structured light sensor) that is mounted on
the robot hand. The system is moved to
measure some external targets where the dis-
tance between any two targets has previously
been measured using a CMM. By comparing
the distance measured by the robot system
with the CMM measured distance, it is pos-
sible to calibrate the robot. The requirement
for a CMM makes this solution costly. Also,
their method requires a hand-to-sensor cali-
bration to find the position and orientation
of the sensor coordinate system with respect
to the robot hand coordinate system, mean-
ing the robot calibration is now limited by
the hand-to-sensor calibration. An approach
presented by van Albada, et al. (1995) has a
similar dependence on a CMM.

The hand-to-sensor calibration adds com-
plexity and lengthens the error chain. See
Chang & Liang (1989), for example. The
camera itself must be calibrated, but needs
to be done only once. There are many
approaches, those offered by Lenz & Tsai
(1987) and Stein (1993) are representative
of algebraic and geometric methods, respec-
tively. We propose to use the camera cal-
ibration procedure put forward by Ofner
(2000), which determined the unique projec-
tive transformation that straightens image
lines warped by the linear portion of the dis-
tortion inherent to the camera-lens combina-
tion.

The kinematic calibration measurement
concept presented in this paper uses a robot-
mounted CCD camera and laser distance sen-
sors, together with ruled and flat standards



Figure 2. The DH parameters.

allowing for a low-cost, self-calibrating sys-
tem that does not require external measure-
ment and has the potential of achieving the
same, or better accuracy of those that do.

Method Overview: The measurement
concept and calibration method presented
here uses a CCD camera and two laser dis-
tance sensors to measure a change in posi-
tion and compare it to the commanded posi-
tion change relative to ruled and flat stan-
dards. The difference in commanded and
measured motions is used to iteratively ad-
just the Denavit-Hartenburg (DH) parame-
ters, allowing the robot to correct for inac-
curacies. The parameters are assigned ac-
cording to Denavit and Hartenberg (1955),
as shown in Figures 2 and 3. The new pa-
rameters are then used to accurately position
the robot. A benefit of this method is that
there is no need to distinguish between the
geometric and non-geometric errors, which
intrinsically involve dealing with non-linear
parameters that are difficult to correctly an-
alyze. Regardless, effects of geometric errors
tend to be larger (about 95% of the overall
error) than the effects of non-geometric er-
rors (Gong et al., 2000(b)).

Another benefit of this method of calibra-
tion is that it is task-specific: the robot does
not need to be calibrated over the entire
workspace, only in the robot’s task-space for
that specific operation. Thus, task-specific
calibration over small areas can lower the

Figure 3. KUKA KR-15/2 DH Parameters.

amount of geometric errors that arise during
the specific task. Compliance errors fall in
the category of non-geometric errors and deal
with the link deflection and flexibility of the
robot joints when external loads are added,
or with the weight of the robot (Gong et al.,
2000(b)). The method discussed in this pa-
per allows the robot to be calibrated with the
addition of any external payload, including
tools, resulting in lower compliance errors.

Finally, the proposed method only requires
measurement of relative motions rather than
the absolute end-effector positions in the
workspace. This eliminates the need for a
hand-to-sensor calibration, in turn shorten-
ing the error chain.

Kinematic Calibration Details: The
forward kinematics of an n-link manipulator
is give by:

bx = f(ρ), (1)

where bx is a 6 x 1 vector containing the 6
degree-of-freedom (DOF) Cartesian coordi-
nates of the end-effector reference frame with
respect to the base frame, ρ is the 4n × 1
vector of DH-parameters describing the kine-
matic geometry of the joint axes and f(ρ) is



the kinematic transformation from the end-
effector of the robot to the base.

In our model there are four DH parame-
ters for each i of n-links in the manipulator:
the joint angles, ϕi; the joint twist angles, αi;
the link lengths, ai; and the link offsets, di.
This accounts for the 4n × 1 in the param-
eter vector ρ. The model can be made more
comprehensive by adding parameters to ac-
count for other geometric, and non-geometric
sources of error.

In the current calibration method, only the
3 DOF position coordinates of bx are re-
quired. The pose of a robot is specified by
six independent position and orientation pa-
rameters. Because of this independence, sub-
sets of these parameters can be used to for-
mulate the system of calibration equations.
Thus, it is not essential to use orientation
measurements. Eliminating the end-effector
orientation simplifies both the mathematics
and the measurement process. The latter is
important in order to keep the calibration in-
expensive.

With the removal of the end-effector orien-
tation, bx simplifies to a 3 x 1 position vec-
tor and f(ρ) reduces to the position vector
component of the tip-to-base transformation
matrix, bTt. A small error in the end-effector
position can be approximated as
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∂f
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 , (2)

or

∆x =
∂f

∂ρ
∆ρ = J∆ρ. (3)

In Equation 3, ∆x, refers to the difference
between where the robot thinks it is, via
the nominal DH parameters and kinematic
chain, and where it actually is. The vector
∆ρ represents the corresponding errors in the
DH-parameters. It is these DH-parameter er-
rors that are to be calibrated out.

The matrix J is the full position Jacobian
for the manipulator, i.e., a 3 × 4n matrix

of partial derivatives of f(ρ) with respect to
each of the 4n DH-parameters:

J ≡
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. (4)

Usually, the Jacobian is calculated under
the assumption that all the DH-parameters
except the joint variables remain constant,
making it a 3×n matrix (or 6×n if the orien-
tation is included). That is not the case here
where small errors are assumed in all DH-
parameters. Since the Jacobian in Eq. (4) is
generally non-square, it is not invertible, so
the solution to Eq. (3) requires the pseudo-
inverse of J. The Moore-Penrose formulation
yields

∆ρ = (JTJ)−1JT ∆x = J+∆x. (5)

The general calibration procedure is to
measure the end-effector error, ∆x, and cal-
culate ∆ρ using Eq. 5. Since there are 4n un-
knowns in ∆ρ and only three values in ∆x, at
least 4n/3 poses are required for a complete
determination of the DH-parameter errors.
Each pose creates a set of three equations
via Eq. 3, which can be stacked for m-poses:




∆x1

∆x2

∆x3

...

∆xm




=




J1(ρ1)

J2(ρ2)

J3(ρ3)

...

Jm(ρm)







∆φ

∆α

∆a

∆d




. (6)

If exactly 4n/3 poses are measured, Eq. (5)
will provide an estimate of ∆ρ. If more than



4n/3 poses are measured, ∆ρ in Eq. (5) can
be fit, in a least-squares sense, to the mea-
sured data.

A problem in the calculation of J+ in
Eq. (5) exists if J is singular or numerically
nearly singular. This is addressed using a
singular value decomposition (SVD) of J,

J = USVT , (7)

where U is a 3 × 4n matrix with orthogo-
nal columns, S is a 4n× 4n diagonal matrix
whose elements are the singular values of J,
and V is a 4n×4n orthonormal matrix. The
pseudo-inverse of J is then,

J+ = VS−1UT . (8)

Since S is a diagonal matrix, S−1 is also
a diagonal matrix whose elements are 1/si.
If any of the singular values of S are zero,
then the corresponding values of S−1 are set
to zero, rather than ∞. This is also applied
to values of S that are nearly zero. For the
sake of numerical calculation, “nearly zero”
refers to singular values si whose ratio to the
maximum singular value is less than rank(V )
(i.e. the dimension of the column space of V )
times the machine precision, ε, si/smax ≤
rank(V )ε, as recommended by Press, et al.
(1992) in Numerical Recipes in C.

Setting the nearly zero values to zero re-
moves information from J, which appears to
conflict with the goals of performing calibra-
tion. However, values near zero are prone to
numerical processing errors and indicate DH-
parameters that are close to being unobserv-
able in the given robot configuration. (Sin-
gular values that are zero indicate the corre-
sponding DH-parameters are not observable
at all). What this means is that small vari-
ations in ∆x could result in large changes
in the calculation of ∆ρ. The information
yielded by the very small singular values
should be thrown out because it is, at best,
useless. Bad information is worse than no
information.

The calibration proceeds by iterating

Eq. (5) with the updated DH-parameters,

ρi = ρi−1 + ∆ρ, (9)

where i indicates the iteration step. (Note
that ρ0 is required for the first iteration,
which refers to the nominal DH-parameter
set.) The location of where the robot thinks
it is can be found by substituting Eq. (9) into
Eq. (1), thereby computing the forward kine-
matics:

xi(comp) = f(ρi) = f(ρi−1 + ∆ρ). (10)

In an absolute measurement based system,
each pose, xmeas, is measured only once, and
remains constant while xi(comp) is updated
with each iteration. In the relative mea-
surement based system presented herein, the
measurement data directly yields values of
∆x. In absolute measurement based systems
the ∆x in Eq. (6) are computed as,

∆xi = xmeas − xi(comp). (11)

Knowing ∆x from the processed data pro-
vided by the vision and laser measurement
system, and knowing the initial value of
xcomp means that the absolutely measured
pose is embedded in the existing relatively
measured data. But, for estimating the DH
parameter correction factors, ∆ρ, we require
xmeas so that we can iteratively update ∆ρi

until it is vanishingly small. Hence, after the
relative measurement data, ∆x, is acquired
and the initial xcomp, based on the nominal
DH parameters ρ0, is computed, the absolute
measurement data may be extracted from
Eq. (11) using initial values:

xmeas = ∆x0 + x0(comp). (12)

Now, Eq. (5) can be solved for the DH pa-
rameter errors using SVD. Each subsequent
iteration provides a new estimation of ∆ρi

until the convergence criterion, κ, in Eq. (13)
is satisfied:

‖ J∆ρ−∆x ‖≤ κ. (13)

It is important to emphasize that it is not
necessary to measure the absolute position of



the robot, xmeas. It is sufficient to measure
the difference between actual (measured) and
computed positions between two poses, ∆x.

Combining all of the above details, the pa-
rameter identification algorithm can be sum-
marized in the following nine steps:

1. Move the robot through m + 1 poses.
Compute the initial xcomp using the nom-
inal DH parameters and the forward
kinematics transformation from Eq. (10).
After the measurement data has been
processed, compute xmeas using Eq. (12).
Each element in the vector xmeas is deter-
mined from the difference between two
adjacent poses, hence for a vector of di-
mension m, m + 1 differences are re-
quired. The values contained in xmeas are
assumed to be constant and need only be
computed once at the start of the identi-
fication algorithm.

2. Compute the Jacobian, J based on the
nominal DH parameters.

3. Now the iterative parameter identifica-
tion commences. The first step is to com-
pute ∆ρ using Eq. (5) and SVD.

4. Check if the convergence criterion,

‖ J∆ρ−∆x ‖≤ κ

has been satisfied. If not, continue.

5. Update the DH parameters using Eq. (9)

6. Update the Jacobian, J, using Eq. (4).

7. Update xcomp using Eq. (10).

8. Update ∆x using Eq. (11).

9. Go to step 3.

Simulation: A MATLAB simulation of a
calibration experiment was performed as a
proof of concept. The parameter identifica-
tion algorithm was run using synthetically
generated errors and measurements. That is,
a fictitious set of DH-parameter errors were
created,

ρactual = ρnominal + ∆ρsynthetic.

A perfect measurement system simulator
then provided

∆x = xmeas − xcomp.

A KUKA KR-15/2 robot was modelled us-
ing DH parameters (see Table I). An arbi-
trary home position was selected and con-
stant increments were sequentially added to
the home joint angles to change the robot
configuration, these are all listed in Table II.
The increments were selected so the final po-
sition would be in the workspace after 100
increment steps, and so that all the joints
would move in different ways. The number
of measured positions was set to be 100. The
tolerance on the smallness of singular val-
ues was set to be rank(V )ε ≈ 5.33 × 10−15

(rank(V ) = 24 and on the computer used
ε = 2.2204×10−16), and the convergence cri-
terion was set to be κ = 10−8, a value ar-
rived at by trial and error. The selection of
κ = 10−8 is justified by the results below.
Computed poses were determined with the
nominal DH parameters and measured poses
were determined with some assigned param-
eter errors. The calibration procedure was
then run.

i ϕi αi (deg.) ai (m) di (m)

1 ϕ1 90 0.300 0.675
2 ϕ2 0 0.650 0
3 ϕ3 90 0.155 0
4 ϕ4 -90 0 0.600
5 ϕ5 90 0 0
6 ϕ6 0 0 0.140

Table I
DH parameter assignments.

Initial position (deg.) Increments (deg.)

ϕ1 0.0 ∆ϕ1 -3.0
ϕ2 -90.0 ∆ϕ2 3.0
ϕ3 0.0 ∆ϕ3 -2.0
ϕ4 0.0 ∆ϕ4 -3.5
ϕ5 0.0 ∆ϕ5 3.2
ϕ6 0.0 ∆ϕ6 -2.5

Table II
Initial joint angles; constant increments.



Parameter Synthetic Identified % Difference
error

Joint Angle (rad) (rad) (%)

∆ϕ1 0.000870 0.000870 0
∆ϕ2 0.000940 0.000940 0
∆ϕ3 -0.001000 -0.001000 0
∆ϕ4 0.000620 0.000620 0
∆ϕ5 -0.000810 -0.000807 0.37
∆ϕ6 0.000260 0.000000 100.00

Twist Angle (rad) (rad) (%)

∆α1 0.000157 0.000157 0
∆α2 0.000130 0.000130 0
∆α3 -0.000160 -0.000160 0
∆α4 -0.000253 -0.000253 0
∆α5 0.000462 0.000464 -.41
∆α6 -0.000320 -0.000320 0

Link Length (m) (m) (%)

∆a1 0.000031 0.000031 0
∆a2 0.000051 0.000051 0
∆a3 0.000012 0.000012 0
∆a4 -0.000045 -0.000045 0
∆a5 0.000064 0.000063 1.60
∆a6 0.000058 0.000058 0

Link Offset (m) (m) (%)

∆d1 -0.000075 -0.000075 0
∆d2 0.000031 -0.000069 322.05
∆d3 0.000022 0.000122 -453.80
∆d4 0.000048 0.000048 0
∆d5 -0.000020 -0.000019 3.22
∆d6 0.000078 0.000078 0

Table III
Synthetic, identified parameter errors, % difference for
simulated calibration experiment.

Results: The MATLAB routines simulat-
ing the calibration experiment converged af-
ter two iterations and a total CPU time of
46.48 seconds, reporting that

‖ J∆ρ−∆x ‖= 3.5697e− 013.

We believe maintaining the norm three or-
ders of magnitude larger than ε to be pru-
dent. Values of κ need to be smaller than
10−13 to improve the parameter estimation.
This is in a range where round-off error could
bias results, which requires closer investiga-
tion in future work. Table III lists the results
together with the % difference relative to
synthetic parameter error values (note that
degrees are given in rads, while lengths are
in m). The calibration procedure identified
17 of the 24 parameter errors exactly. Four

additional parameters, ∆ϕ5, ∆α5, ∆a5 and
∆d5 were identified with less than 4% differ-
ence from the assigned synthetic error value,
moreover the signs of these four errors agree
with the assigned ones. It is interesting to
note that all four of these parameter errors
relate to the fifth robot joint axis. Three pa-
rameter errors, ∆ϕ6, ∆d2, and ∆d3 were, for
all intents and purposes, not identified.

The SVD algorithm annihilated one singu-
lar value, indicating that one parameter er-
ror was unobservable for this set of synthetic
measurements. The two next smallest singu-
lar values were 4 and 1 orders of magnitude
smaller than the third smallest. To address
this issue requires investigation of the effects
of the SVD singular value criteria on identi-
fication.

The question remains, how does one know
which of the parameters have been accurately
identified in the absence of apriori knowl-
edge? The answer, at least partially, will
likely be found by closer examination of the
statistical variance of the SVD output. It
turns out that the parameter variance is a
by-product of the SVD.

Conclusions and Future Work: The
calibration method presented in this paper
leads to a low-cost (US $7,000 - US $10,000)
system constructed with readily available off-
the-shelf items. Furthermore, it is straight-
forward to implement on a production line
or manufacturing floor and can easily be ap-
plied to any serially connected robotic ma-
nipulator. The system is also task-specific,
meaning a robot can be calibrated with the
appropriate tool and over the task-space be-
ing used, as opposed to the entire workspace,
thereby correcting geometric errors and im-
proving position accuracy without the need
to absolutely measure arbitrary poses cover-
ing the reachable workspace of the robot.

Results of a MATLAB simulation using
synthetically generated data indicate that
the measurement concept and parameter
identification procedure provides accurate
corrections to the DH-parameters. The cali-



bration was also successfully applied to a real
set of test measurements on a Kuka KR-15/2
robot, although the accuracy of the identified
parameters have not yet been experimentally
verified. A new simulation imposing linear
robot motions is being developed.

The corrected DH-parameters should be
tested using the same positioning to quantify
the improvement in the robot’s accuracy and
to calculate any remaining errors. Also, mea-
surements should be taken to compare the
simulation to the actual robot movement to
see if there is a difference in the simulated pa-
rameters. Additional investigation into the
statistical confidence intervals provided by
the SVD algorithm is necessary for the devel-
opment of control algorithms for automating
the calibration process. This would provide
the basis for the calibration system to decide
which identified parameters are likely to be
trustworthy.

It would be worthwhile to check this
method with the addition of a tool (payload).
This would give an indicate of how compli-
ance errors may contribute to robot manipu-
lator inaccuracy. Because the system is task-
specific, it must provide for calibration for
the task at hand, including the addition of a
payload, crucial for pick-and-place.

Ideally, the updated DH-parameters would
be fed back into the robot controller as they
are calculated, making the calibration sys-
tem operational in “real-time”. At this time,
it is not possible to do this because commer-
cial robot control architecture is closed; in-
stead, these new parameters need to be used
to alter the desired position (trajectory) to
complete the calibration. A method of feed-
ing the new parameters back into the robot
control system would complete the calibra-
tion system and is something to address in
the future. This would likely involve working
closely with a robot manufacturer to design
software and hardware to interface with the
control system that will directly feed in the
parameter changes, as determined for that
task.
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