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What Is Kinematic Calibration?

• Perhaps the most significant technical problems faced by a robot 

user are: 

– Issues involving off-line programming of the robot.

– Sharing programs with other robots. 

• Of all the issues the most complex is that of kinematic 

calibration. 

• Large discrepancies between where the robot thinks it is and 

where it actually is usually exist. For positioning, a typical robot 

with a 1m reach will have     1mm variation. 

• The reason for this variation is largely due to the details of the 

manufacture of the robot.


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But, Sometimes Not...

• Infra-red image (cold). • Infra-red image after 10 hours 

continuous motion sequence.
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What Is Kinematic Calibration?

• The link lengths and joint angles are assigned nominal values in 
the controller. The accuracy of the robot depends on the 
variation between nominal and actual values.

• That is why calibration is needed.

• The errors induced by manufacture can be calibrated at a 
specific temperature by the manufacturer at the time of purchase 
of the robot. 

• This is not a long term solution since wear from operating the 
robot introduces new errors.

• There are three main sources for these errors, and hence 
calibration procedures are classified according to the level of 
error they address.
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What Is Kinematic Calibration?

• Joint level calibration:

– This usually involves calibration of the drives and joint sensors.

• Kinematic model level calibration:

– The purpose is to determine the actual kinematic geometry of the 

manipulator as well as correction for joint-angle errors. The model errors 

involve the changes in the physical dimensions of the links. 

– These errors arise from manufacturing tolerances, thermal expansion and 

system errors.

• Non-kinematic level calibration:

– These errors are due to joint and link compliance, friction, clearance and 

deformations induced by dynamics.

• Our focus is on the kinematic model level. The errors at this 

level contribute about 95% of the overall positioning error.
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What Is Kinematic Calibration?

• Teaching (Taught Positions)

– A taught configuration is one that the manipulator is moved to physically. 

– The joint position sensors are read and the joint angles stored. 

– When the robot is commanded to return to the taught configuration from 

some other, each joint is returned to the stored value.

• Repeatability

– The repeatability of a robot is a measure of how precisely the robot can 

return to a taught configuration.

– Repeatability has become the standard configuration performance 

indicator specified by manufacturers.

– Typical values for articulated arms range from     0.1mm for the KUKA 

KR-15/2 to     0.035mm for the Stäubli RX130.  



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What Is Kinematic Calibration?

• Off-line programmed positions

– This form of motion specification must be used when robotic tasks are 
guided by vision, or other motion guidance systems external to that of the 
robot.

– The desired robot EE position and orientation is computed external to the 
robot controller.

– The inverse kinematics of the robot must be computed in order to solve for 
the required joint angles. 

• Accuracy

– It may be that the computed pose is one that the robot has never before 
attained, hence repeatability is no longer sufficient to assess precision.

– The accuracy of the robot is the precision with which a computed pose can 
be attained.

• The lower bound of accuracy is repeatability.
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Implicit Calibration

• Goal

– Integrated 

optical/robotic 

measurement system

– Application to rapid 

prototyping
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Implicit Calibration

• Raw images of the calibration cylinder and connector:
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Implicit Calibration

• Section raw data reconstruction without robot calibration:
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Implicit Calibration

• Section raw data reconstruction after robot calibration:
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Implicit Calibration

• Solid model:

Wireframe model Rendered solid model
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Relative Measurement Concept

• Where the robot thinks it is: (xr, yr, zr).

– Output from the robot controller.

• Where the robot is measured to be: 

(xm, ym, zm).

– Output from our measurement sensors.

• Where LabVIEW commanded the robot 

to go: xC, or yC.

– Distance in the xr, or yr directions the robot 

is commanded to move by LabVIEW.



© M.J.D. Hayes, Carleton University 14

Relative Measurement Concept

• Experiment

– Measure linearly over the length of the 

ruled straight edge in 1cm increments 

along 2 distinct lines in the robot x and 

y-axis directions.

– Record a CCD image of the ruler in 

each position.

– The difference in the locations of the 

rulings in adjacent images is the 

difference between commanded and 

actual displacement in the direction of 

the ruler. 

– Change in z-axis direction obtained 

using a laser displacement sensor.
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Relative Measurement Concept

• Relative X and Y positioning.

Dxm

y0

ym

0yyy mm D
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Relative Measurement Concept

• Relative Z positioning.

– Two MEL sensors, left (M52L4) 

and right (M5L10).

– Changes in the Z coordinate for 

motions along the length of the 

flat straight edge should be nil.

– A linear DZ increment was added 

to each motion to compensate for 

misalignment of the straight edge 

relative to the XY base plane of 

the robot.
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Kinematic Parameter Identification

• The forward kinematic (FK) relation between the kinematic

model and the EE pose is given by:

where                     are vectors of the Denavit-Hartenberg 

parameters which describe the robot kinematic geometry.

• The vector r combines all kinematic parameters into one

vector,  f is a matrix function, and x is the vector of EE position 

and orientation (i.e. Euler angles).

• The calibration is based on iteration of the linearised FK.
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Kinematic Parameter Identification

• The vector of joint angles is q. Given that the procedure is
linearised, we can model the joint characteristics linearly as

where       is the vector of joint angle sensor readings, l is the 
vector of joint angle offsets and k the vector of joint angle gains.

• The first variation of the EE pose corresponding to variations in the
DH parameters is given by:

• is the pose error, xmeas-xcomp,, and        is the vector of DH errors.
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The Jacobian by Differentiation

• The Jacobian can be partitioned into linear and angular components.

• If only linear components are considered, as is the case when only

linear measurements of the EE reference point are made, the sub-

Jacobian relating the three EE reference point velocities to the six

joint rates can be obtained by taking the partial derivatives of the

transformation equation for the forward kinematics.

• If the DH kinematic model is used then in addition to the partial

derivatives with respect to the joint angles, the partial derivatives

with respect to the DH parameters are also required.
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The Jacobian by Differentiation

• Taking the partial derivatives of f(r) with respect to all 24

parameters we obtain after eliminating the homogeneous

coordinate (which vanishes upon differentiation):
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The Jacobian by Differentiation

where 

• This 3x24 Jacobian is completely general and can be applied to

any 6R wrist-partitioned robot architecture, but the terms are

quite complicated.
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The Jacobian by Differentiation

• If the displacement errors due to the difference between where

the robot thinks it is and where it actually is are small relative to

the link lengths then the velocity relation can be used to

represent this difference.

• That is, the difference equations become
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DH Parameter Identification

• We are interested in solving the previous equation for Dr.

• There are 24 unknowns and 3 equations.

• The system is underdetermined and has no solution in general.

• This suggests measuring more than one pose and approximating
the solution in a least squares sense.

• Each pose creates a set of three more equations, which can be
stacked for m poses.
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Calibration Procedure

• The calibration proceeds by iterating using SVD

where i indicates the iteration step, which gives updated DH 
parameters (at i=1, r0 represents the nominal DH parameters).

• The computed pose is obtained by computing the FK

1

1



 DD ii xJr

iii rrr D 1

)()( 1)comp( iiii ffx rrr D 
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Calibration Procedure

• In an absolute measurement based system each pose, xmeas is 

measured once, and is constant, while xi(comp) is updated at each 

iteration. 

• In the relative measurement based system the measurement data 

directly yields Dxi.

• In an absolute measurement system, the Dx is computed as

• Knowing Dx0 from the processed data provided by the vision 

and laser measurement system, and knowing the initial value of 

xcomp means the absolutely measured pose is embedded in the 

existing relatively measured data.

)comp(meas ii xxx D
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Calibration Procedure

• We can compute the constant value of xmeas from 

• For estimating the DH correction factors, Dr, we require xmeas so 

we can iteratively update Dri until it is vanishingly small.

• Now we can use SVD to solve Dri=J-1Dxi-1. 

• Each subsequent iteration provides a new Dri until the 

convergence criterion, k, is satisfied:

)comp(00meas xxx D

kr DD  ii xJ 1
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Calibration Procedure Summary

1. Move the robot through m+1 poses. Compute x0(comp)
and J

using the nominal DH parameters and the FK. 

2. Upon processing the measurement data compute xmeas, which is 

determined form the difference between  adjacent poses.

3. Now the iterative parameter identification commences. First, 

compute Dri+1 using SVD.

4. Check if                           , if not continue.

5. Update the DH parameters, J, x(comp) and Dx.

6. Go to step 3.

kr DD  ii xJ 1
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Simulation

• A fictitious set of synthetic DH parameter errors was created:

• A perfect measurement system simulator then provided:

• A KUKA KR-15/2 robot was modeled using the nominal DH 
parameters in Table I.

• An arbitrary initial pose was selected and constant increments 
were sequentially added to the initial values to change the 
configuration, listed in Table II.

• The increments were selected so each joint would move in a 
different way, and after 100 poses the robot remained in the 
workspace.

syntheticnominalactual rrr D

compmeas xxx D



© M.J.D. Hayes, Carleton University 29

Simulation

Link i qi
i (deg) ai (mm) di (mm)

1 q1
90 300 675

2 q2
0 650 0

3 q3
90 155 0

4 q4
-90 0 600

5 q5
90 0 0

6 q6
0 0 140

Table I

Nominal DH-parameters for Kuka KR-1512

q1
0.0 Dq1

-3.0

q2
-90.0 D q2 3.0

q3 0.0 D q3 -2.0

q4
0.0 D q4 -3.5

q5 0.0 D q5 3.2

q6 0.0 D q6 -2.5

Initial position (deg) Increments (deg)

Table II

Initial joint angles; constant increments
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Simulation

• The si threshold was set to 

where rank(V)=24, and on the 

computer used e =2.2204 x 10-16

• The convergence criterion was 

set to be k =10-14. 

151033.5)(rank eV

The 100 robot poses.

* is the EE reference point

o are the joint centres

Results

• 1 singular value was annihilated 

after 3 iterations.

• 23 of 24 parameters errors were 

identified exactly.

• CPU time was 24.53 sec.
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Results

DH-Error Synthetic Identified Difference

Joint Angle (rad) (rad) (%)

Dq1 0.000870 0.000870 0.00%

Dq2 0.000940 0.000940 0.00%

Dq3 -0.001000 -0.001000 0.00%

Dq4 0.000620 0.000620 0.00%

Dq5 -0.000810 -0.000810 0.00%

Dq6 0.000260 0.000000 100.00%

Twist error (rad) (rad) (%)

D1 0.000157 0.000157 0.00%

D2 0.000130 0.000130 0.00%

D3 -0.000160 -0.000160 0.00%

D4 -0.000253 -0.000253 0.00%

D5 0.000462 0.000462 0.00%

D6 -0.000320 -0.000320 0.00%

Link length (m) (m) (%)

Da1 0.000031 0.000031 0.00%

Da2 0.000051 0.000051 0.00%

Da3 0.000012 0.000012 0.00%

Da4 -0.000045 -0.000045 0.00%

Da5 0.000064 0.000064 0.00%

Da6 0.000058 0.000058 0.00%

Link offset (m) (m) (%)

Dd1 -0.000075 -0.000075 0.00%

Dd2 0.000031 0.000031 0.00%

Dd3 0.000022 0.000022 0.00%

Dd4 0.000048 0.000048 0.00%

Dd5 -0.000020 -0.000020 0.00%

Dd6 0.000078 0.000078 0.00%

DH-Parameter Synthetic Identified Difference



© M.J.D. Hayes, Carleton University 32

Results

• Recall the ith column in V
corresponding to the zeroed si

gives the linear combination of 
Dr’s that is ill-determined.

• The si are arranged in 
decreasing order, hence s24 has 
been zeroed.

• Examining the 24th column of 
V we see V(6,24)=0.999...

• This indicates Dr6 is, by itself, 
not a trustworthy estimate.

• This is in agreement with the 
synthesized errors.
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