## MECH 5507 <br> Advanced Kinematics

## KINEMATIC MAPPING APPLICATIONS

Professor M.J.D. Hayes

Department of Mechanical and
Aerospace Engineering

## Planar Kinematic Mapping

- Three parameters, $a, b$ and $\phi$ describe a planar displacement of $E$ with respect to $\Sigma$.
- The coordinates of a point in $E$ can be mapped to those of $\Sigma$ in terms of $a, b$ and $\phi$ :

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
\cos \varphi & -\sin \varphi & a \\
\sin \varphi & \cos \varphi & b \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- (x:y:z): homogeneous coordinates of a point in $E$.
- (X:Y:Z): homogeneous coordinates of the same point in $\Sigma$.
- $(a, b)$ : Cartesian coordinates of $O_{E}$ in $\Sigma$.
- $\phi$ : rotation angle from $X$ - to $x$-axis, positive sense CCW.


## Kinematic Mapping



- The inverse mapping is:

$$
\begin{array}{ccc}
\tan (\phi / 2) & = & X_{3} / X_{4} \\
a & = & 2\left(X_{1} X_{3}+X_{2} X_{4}\right) /\left(X_{3}^{2}+X_{4}^{2}\right) \\
b & = & 2\left(X_{2} X_{3}-X_{1} X_{4}\right) /\left(X_{3}^{2}+X_{4}^{2}\right)
\end{array}
$$

## Kinematic Mapping

- Using half-angle substitutions and these above relations the basic Euclidean group of planar displacements can be written in terms of the image points

$$
\lambda\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
X_{4}^{2}-X_{3}^{2} & -2 X_{3} X_{4} & 2\left(X_{1} X_{3}+X_{2} X_{4}\right) \\
2 X_{3} X_{4} & X_{4}^{2}-X_{3}^{2} & 2\left(X_{2} X_{3}-X_{1} X_{4}\right) \\
0 & 0 & X_{3}^{2}+X_{4}^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- The inverse transformation yields

$$
\mu\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
X_{4}^{2}-X_{3}^{2} & 2 X_{3} X_{4} & 2\left(X_{1} X_{3}-X_{2} X_{4}\right) \\
-2 X_{3} X_{4} & X_{4}^{2}-X_{3}^{2} & 2\left(X_{2} X_{3}+X_{1} X_{4}\right) \\
0 & 0 & X_{3}^{2}+X_{4}^{2}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]
$$

- $\lambda$ and $\mu$ being non-zero scaling factors arising from the use of homogeneous coordinates.


## Constraint Manifold Equation

- Consider the motion of a fixed point in $E$ constrained to move on a fixed circle in $\Sigma$, with radius $r$, centred on the homegeneous coordinates ( $X_{C}: Y_{C}: Z$ ) and having the equation

$$
K_{0}\left(X^{2}+Y^{2}\right)+2 K_{1} X Z+2 K_{2} Y Z+K_{3} Z^{2}=0
$$

where

$$
K_{0}=\text { arbitrary homogenisi ng constant. }
$$

- If $K_{0}=1$, the equation represents a circle, and

$$
\begin{aligned}
& K_{1}=-X_{C}, \\
& K_{2}=-Y_{C}, \\
& K_{3}=K_{1}^{2}+K_{2}^{2}-r^{2} .
\end{aligned}
$$

- If $K_{0}=0$, the equation represents a line with line coordinates

$$
\left[K_{1}: K_{2}: K_{3}\right]=\left[\frac{1}{2} L_{1}: \frac{1}{2} L_{2}: L_{3}\right] .
$$

©M.J.D. Hayes

## PR-Dyad Line Coordinates

- For $P R$-dyads the $K_{i}$ line coordinates are generated by expanding the determinant created from the coordinates of a known point on the line, and the known direction of the line, both fixed relative to $\Sigma$ :

$$
\left|\begin{array}{ccc}
X & Y & Z \\
F_{X / \Sigma} & F_{Y / \Sigma} & 1 \\
\cos \xi_{\Sigma} & \sin \xi_{\Sigma} & 0
\end{array}\right|
$$

where

$$
\begin{array}{ll}
X, Y, Z & =\text { homogenious coordinates of pointson the line, } \\
F_{X / \Sigma}, F_{Y / \Sigma} & =\text { coordinates of fixed point on the line in } \Sigma, \\
\xi_{\Sigma} & =\text { angle of the line relative to } \Sigma .
\end{array}
$$

giving

$$
\left[K_{1}: K_{2}: K_{3}\right]=\left[-\frac{1}{2} \sin \xi_{\Sigma}: \frac{1}{2} \cos \xi_{\Sigma}: F_{X / \Sigma} \sin \xi_{\Sigma}-F_{Y / \Sigma} \cos \xi_{\Sigma}\right]
$$

## $R P$-Dyad Line Coordinates

- For $R P$-dyads the $K_{i}$ line coordinates are generated by expanding the determinant created from the coordinates of a known point on the line, and the known direction of the line, both fixed relative to $E$ :

$$
\left|\begin{array}{ccc}
x & y & z \\
M_{x / E} & M_{y / E} & 1 \\
\cos \xi_{E} & \sin \xi_{E} & 0
\end{array}\right|
$$

where

$$
\begin{array}{ll}
x, y, z & =\text { homogeniou s coordinates of pointson the line, } \\
M_{x / E}, M_{y / E} & \equiv \text { coordinates of a fixed point on the line in } E, \\
\xi_{E} & =\text { angle of the line relative to } E .
\end{array}
$$

giving

$$
\left[K_{1}: K_{2}: K_{3}\right]=\left[-\frac{1}{2} \sin \xi_{E}: \frac{1}{2} \cos \xi_{E}: M_{x / E} \sin \xi_{E}-M_{y / E} \cos \xi_{E}\right]
$$

## Constraint Manifold Equation

- The constraint manifold for a given dyad represents all relative displacements of the dyad links when disconnected from the other two links in a four-bar mechanism.
- An expression for the image space manifold that corresponds to the kinematic constraints emerges when $(X: Y: Z)$, or $(x: y: z)$ from

$$
\begin{aligned}
& {\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
X_{4}^{2}-X_{3}^{2} & -2 X_{3} X_{4} & 2\left(X_{1} X_{3}+X_{2} X_{4}\right) \\
2 X_{3} X_{4} & X_{4}^{2}-X_{3}^{2} & 2\left(X_{2} X_{3}-X_{1} X_{4}\right) \\
0 & 0 & X_{3}^{2}+X_{4}^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right],} \\
& {\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
X_{4}^{2}-X_{3}^{2} & 2 X_{3} X_{4} & 2\left(X_{1} X_{3}-X_{2} X_{4}\right) \\
-2 X_{3} X_{4} & X_{4}^{2}-X_{3}^{2} & 2\left(X_{2} X_{3}+X_{1} X_{4}\right) \\
0 & 0 & X_{3}^{2}+X_{4}^{2}
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] .}
\end{aligned}
$$

are substituted into

$$
K_{0}\left(X^{2}+Y^{2}\right)+2 K_{1} X Z+2 K_{2} Y Z+K_{3} Z^{2}=0 .
$$

## Constraint Manifold Equation

- The result is the general image space constraint manifold equation:

$$
\begin{aligned}
& C S: K_{0}\left(X_{1}^{2}+X_{2}^{2}\right)+\frac{1}{4}\left(K_{0}\left[x^{2}+y^{2}\right]+K_{3}-2\left[K_{1} x+K_{2} y\right]\right) X_{3}^{2}-\left(K_{1}+K_{0} x\right) X_{1} X_{3}+\left(K_{2}-K_{0} y\right) X_{2} X_{3} \mu \\
& \left(K_{0} y+K_{2}\right) X_{1} \pm\left(K_{0} x+K_{1}\right) X_{2} \mu\left(K_{1} y-K_{2} x\right) X_{3}+ \\
& \frac{1}{4}\left(K_{0}\left[x^{2}+y^{2}\right]+K_{3}+2\left[K_{1} x+K_{2} y\right]\right)=0 .
\end{aligned}
$$

- If the kinematic constraint is
- a fixed point in $E$ bound to a circle $\left(K_{0}=1\right)$, or line $\left(K_{0}=0\right)$ in $\Sigma$, then ( $x: y: z$ ) are the coordinates of the coupler reference point in $E$ and the upper signs apply.
- a fixed point in $\Sigma$ bound to a circle $\left(K_{0}=1\right)$, or line $\left(K_{0}=0\right)$ in $E$, then $(X: Y: Z)$ are substituted for $(x: y: z)$, and the lower signs apply.


## Constraint Manifold Equation


$K_{0}=1$ : the $C S$ is a skew hyperboloid of one sheet ( $R R$ dyads).

$K_{0}=0: C S$ is an hyperbolic paraboloid ( $R P$ and $P R$ dyads).

## SOLVING THE BURMESTER PROBLEM USING KINEMATIC MAPPING

© M. John D. Hayes ${ }^{1}$, Paul J. Zsombor-Murray ${ }^{2}$
${ }^{1}$ Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada, ${ }^{2}$ Centre for Intelligent Machines, McGill University, Montréal, Canada

ASME DETC 2002
Mechanisms Synthesis and Analysis Symposium - Special Session:
Computer Aided Linkage Design
Montréal, QC
Tuesday October 1, 2002

## Five Position Exact Synthesis

- The five-position Burmester problem may be stated as:
- given five positions of a point on a moving rigid body and the corresponding five orientations of some line on that body, design a four-bar mechanism whose coupler crank pins are located on the moving body and is assemblable upon these five
 poses.
- In this example we assume the dyad types we wish to synthesize by setting $K_{0}=1$, thereby specifying $R R$-dyads.


## Nature of the Constraint Surfaces

- Burmester theory states that five poses are sufficient for exact synthesis of two, or four dyads capable of, when pared, producing a motion that takes a rigid body through exactly the five specified poses.
- This means that five non coplanar points in the image space are enough to determine two, or four dyad constraint surfaces that intersect in a curve containing the five image points.
- This is interesting, because, in general, nine points are required to specify a quadric surface (any function $f(x, y, z)=0$ is a surface):

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0 .
$$

- The equation contains ten coefficients; their ratios give nine independent constraints whose values determine the equation.
- It turns out that the special nature of the hyperboloid and hyperbolic paraboloid constraint surfaces represent four constraints on the quadric coefficients; thus five points are sufficient.


## Nature of the Constraint Surfaces

- The $R R$-dyad constraint hyperboloids intersect planes parallel to $X_{3}=0$ in circles.
- Thus all constraint hyperboloids contain the image of the imaginary circular points, $J_{1}$ and $J_{2}:(1: \pm i: 0: 0)$.
- The points $J_{1}$ and $J_{2}$ are on the line of intersection $X_{3}=0$ and $X_{4}=0$.
- This real line, $l$, is the axis of a pencil of planes that contain the complex conjugate planes $V_{1}$ and $V_{2}$, which are defined by $X_{3} \pm i X_{4}=0$.
- The $R R$-dyad hyperboloids all have $V_{1}$ and $V_{2}$ as tangent planes, though not at $J_{1}$ and $J_{2}$.
- The $P R$ - and $R P$-dyad hyperbolic paraboloids contain $l$ as a generator, and therefore also contain $J_{1}$ and $J_{2}$.
- In addition, $V_{1}$ and $V_{2}$ are the tangent planes at $J_{1}$ and $J_{2}$.
- Taken together, these conditions impose four constraints on every constraint surface for $R R$-, $P R$ - and $R P$-dyads.
- Thus, only five non coplanar points are required to specify one of these surfaces.


## Application to the Burmester Problem

- Goal:
- determine the moving circle points, $M_{1}$ and $M_{2}$ of the coupler (revolute centres that move on fixed centred, fixed radii circles as a reference coordinate system, EE, attached to the coupler moves through the given poses).

©M.J.D. Hayes


## The Five Poses

- To convert specified pose variables $a, b$, and $\phi$ to image space coordinates, we first divide through by $X_{4}$ to get

$$
X_{1}=\frac{(a \tan (\phi / 2)-b)}{2}, X_{2}=\frac{(a+b \tan (\phi / 2))}{2}, X_{3}=\tan (\phi / 2), X_{4}=1 .
$$

- The five poses are specified as $\left(a_{i}, b_{i}, \phi_{i}\right), i=1, \ldots, 5$, the planar coordinates the origin of EE, and orientation all relative to $\left(0,0,0^{\circ}\right)$ in FF .
- The locations of the origins of FF and EE are arbitrary.



## The Five Equations

- We get five simultaneous constraint equations.
- Each represents the constraint surface for a particular dyad.
- This set of equations is expressed in terms of eight variables:
i. $\quad X_{1}, X_{2}, X_{3}, X_{4}=1$, the dehomogenized coupler pose coordinates in the image space.
ii. $K_{1}, K_{2}, K_{3}$, the coefficients of a circle equation $\left(K_{0}=1\right)$.
iii. $x, y, z=1$, coordinates of the moving crank-pin revolute centre, on the coupler, which moves on a circle.
- $\quad$ Since $X_{1}, X_{2}, X_{3}$, are given, we solve the system for the remaining five variables
- $K_{1}, K_{2}, K_{3}, x, y$.


## Geometric Interpretation

- The Geometric interpretation is:
- five given points in space are common to, at most, four RR-dyad hyperboloids of one sheet.
- If two real solutions result, then all $4 R$ mechanism design information is available:
i. Each circle centre is at $X_{C}=-K_{1}, Y_{C}=-K_{2}$.
ii. Circle radii are $r^{2}=K_{3}-\left(X_{C}^{2}+Y_{C}^{2}\right)$.
iii. Coupler length is $L^{2}=\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}, i, j \in\{1,2,3,4\}, i \neq j$.
- In the case of iii, the subscripts refer to two solutions $i$ and $j$.
- If four real solutions result, the corresponding dyads can be paired in six distinct ways, yielding six $4 R$ mechanisms all capable of guiding the coupler through the five specified poses.


## Crank Angles

- To construct the mechanism in its five poses, the crank angles must be determined.
- Take each ( $x_{\mathrm{i}}, y_{\mathrm{i}}, z=1$ ), and perform the multiplication for each with the five pose variables in

$$
\left[\begin{array}{l}
X_{i} \\
Y_{i} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1-X_{3}^{2} & -2 X_{3} & 2\left(X_{1} X_{3}+X_{2}\right) \\
2 X_{3} & 1-X_{3}^{2} & 2\left(X_{2} X_{3}-X_{1}\right) \\
0 & 0 & X_{3}^{2}+1
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i} \\
1
\end{array}\right],
$$

- The corresponding sets of $\left(X_{i}, Y_{i}\right)$ are the Cartesian coordinates of the moving $R$-centres expressed in FF, implicitly define the crank angles.
- For a practical design branch continuity must be checked.


## Mechanism to Generate Poses



| Parameter | Value |
| :---: | :---: |
| $F_{1}$ | $(-8,0)$ |
| $F_{2}$ | $(8,0)$ |
| $F_{1} F_{2}$ | 16 |
| $F_{1} C$ | 8 |
| $C D$ | 10 |
| $D F_{2}$ | $1+$ |

Table 1. THE GENERATING MECHANISIA

| dh $^{\text {th }}$ Pose, $A_{i}$ | $a$ | $b$ | $\varphi$ (deg) |
| :---: | :---: | :---: | :---: |
| 1 | -3.339 | 1.360 | 150.94 |
| 2 | -2.975 | 7.063 | 114.94 |
| 3 | -3.405 | 9.102 | 100.22 |
| 4 | -7.435 | 11.561 | 74.07 |
| 5 | -9.171 | 11.219 | 68.65 |

Table 2. FIVE RIGID BCDY POSES IN FF.
©M.J.D. Hayes
Carleton University, Mechanical and Aerospace Engineering

## The Constraint Hyperboloids



The two constraint hyperboloids for the left and right dyads
©M.J.D. Hayes
Carleton University, Mechanical and Aerospace Engineering

## Solution

| Parameter | Value |
| :---: | :---: |
| $F_{1}$ | $(-7.997,0.001)$ |
| $F_{2}$ | $(7.983,-0.023)$ |
| $F_{1} F_{2}$ | 15.980 |
| $F_{1} C$ | 7.999 |
| $C D$ | 10.003 |
| $D F_{2}$ | 13.972 |

Talle 4. THE SYITHESIZED MECHANISAA

| Parameter | Value |
| :---: | :---: |
| $F_{1}$ | $(-8,0)$ |
| $F_{2}$ | $(8,0)$ |
| $F_{1} F_{2}$ | 16 |
| $F_{1} C$ | 8 |
| $C D$ | 10 |
| $D F_{2}$ | $1+$ |

Table 1. THE GENERATING MECHANISIM

Carleton University, Mechanical and Aerospace Engineering

# Towards Integrated Type and Dimensional Synthesis of Mechanisms for Rigid Body Guidance 

© M.J.D. Hayes ${ }^{1}$, P.J. Zsombor-Murray ${ }^{2}$
${ }^{1}$ Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
${ }^{2}$ Centre for Intelligent Machines, McGill University, Montréal, Canada

CSME Forum 2004
University of Western Ontario
London, ON
June 1-4, 2004
Wednesday, June 2, 2004

## Integrated Type and Dimensional Synthesis

- Now we try to integrate both type and dimensional synthesis into one algorithm.
- We shall leave $K_{0}$ as an unspecified homogenizing coordinate and solve the five synthesis equations for $K_{1}, K_{2}$, $K_{3}, x$, and $y$ in terms of $K_{0}$.
- In the solution, the coefficients $K_{1}, K_{2}$, and $K_{3}$ will depend on $K_{0}$.
- If the constant multiplying $K_{0}$ is relatively very large, then we will set $K_{0}=0$, and define $K_{1}, K_{2}$, and $K_{3}$ as line coordinates proportional to the Grassmann line coordinates:

$$
\left[K_{1}: K_{2}: K_{3}\right]=\left[-\frac{1}{2} \sin \xi_{\Sigma}: \frac{1}{2} \cos \xi_{\Sigma}: F_{X / \Sigma} \sin \xi_{\Sigma}-F_{Y / \Sigma} \cos \xi_{\Sigma}\right]
$$

## Integrated Type and Dimensional Synthesis

- Otherwise, $K_{0}=1$, and the circle coordinate definitions for $K_{1}, K_{2}$, and $K_{3}$ are used:

$$
\begin{aligned}
& K_{0}=\text { arbitrary homogenisi ng constant } \\
& K_{1}=-X_{C} \\
& K_{2}=-Y_{C} \\
& K_{3}=K_{1}^{2}+K_{2}^{2}-r^{2}
\end{aligned}
$$

## Example



| parameter | value |
| :---: | :---: |
| $F_{1}$ | $(X: Y: Z)=(1.5: 2: 1)$ |
| $M_{1}$ | $(x: y: z)=(-2: 0: 1)$ |
| $M_{2}$ | $(x: y: z)=(0: 0: 1)$ |
| $M_{1} M_{2}$ | $l=2$ |
| $F_{1} M_{1}$ | $r=2.5$ |
| $P$-pair angle | $\vartheta_{\Sigma}=60(\mathrm{deg})$ |

Table 2: Geometry of the RRRP generating mechanism.
©M.J.D. Hayes
Carleton University, Mechanical and Aerospace Engineering

## Generated Poses

| pose | $a$ | $b$ | $\varphi(\mathrm{deg})$ |
| :---: | :---: | :---: | :---: |
| 1 | 5.24080746 | 4.36781272 | 4388348278 |
| 2 | 5.05087057 | 4.03883237 | 57.45578356 |
| 3 | 4.76358093 | 3.54123213 | 66.99534998 |
| 4 | 4.43453496 | 2.97130779 | 72.10014317 |
| 5 | 4.10748142 | 2.40483444 | 7230529428 |

Table 1: The five desired poses of the $R R R P$ mechanisn

- Convert these pose coordinates to image space coordinates ( $X_{1}: X_{2}: X_{3}: 1$ ), and substitute into the general image space constraint manifold equation.

- This yields five polynomial equations in terms of the $K_{i}, x$ and $y$.
- Solving for $K_{1}, K_{2}, K_{3}, x$ and $y$ in terms of the homogenizing circle, or line coordinate $K_{0}$ yields:


## Solutions

| Parameter | Surface 1 | Surface 2 | Surface 3 | Surface 4 |
| :---: | :---: | :---: | :---: | :---: |
| $K_{1}$ | $-1.500 K_{0}$ | $-4.2909 \times 10^{6} K_{0}$ | $-15.6041 K_{0}$ | $-8.3011 K_{0}$ |
| $K_{2}$ | $-2.0000 K_{0}$ | $2.4773 \times 10^{6} K_{0}$ | $3.4362 K_{0}$ | $-5.0837 K_{0}$ |
| $K_{3}$ | $-2.5801 \times 10^{-6} K_{0}$ | $2.3334 \times 10^{7} K_{0}$ | $107.3652 K_{0}$ | $93.4290 K_{0}$ |
| $x$ | -2.0000 | $8.1749 \times 10^{-7}$ | 0.2281 | 3.7705 |
| $y$ | $3.4329 \times 10^{-7}$ | $-1.3214 \times 10^{-6}$ | -0.7845 | -2.0319 |

Table 3: The constraint surface coefficients.

- At present, heuristics must be used to select an appropriate value for $K_{0}$ by comparing the relative magnitudes of $K_{1}$ and $K_{2}$.
- The coefficients for Surfaces 1,3 , and 4 suggest $R R$-dyads when $K_{0}=1$.
- The rotation centre for Surface 2 is numerically large : $\left(4.3 \times 10^{6},-2.5 \times 10^{6}\right)$.
- The crank radius is about $5 \times 10^{6}$.
- This surface should be recomputed as an hyperbolic paraboloid, revealing the corresponding $P R$-dyad.
- The reference point with fixed point coordinates in $E$ is the rotation centre of the $R$-pair.
- In a $P R$-dyad, it is clear that this point is constrained to be on the line parallel to the direction of translation of the $P$-pair.
- From the Surface 2 coefficients we have $(x, y)=\left(8.1749 \times 10^{-7},-1.3214 \times 10^{-6}\right)$.
- We could transform these coordinates to $\Sigma$ using one of the specified poses to obtain the required point coordinates, but they are sufficiently close to 0 to assume they are the origin of moving reference frame $E$.
- The angle of the direction of translation of the $P$-pair relative to the X -axis of $\Sigma$ is $\xi_{\Sigma}$, and is

$$
\xi_{\Sigma}=\arctan \left(\frac{-K_{1}}{K_{2}}\right)=\arctan \left(\frac{4.2909 \times 10^{6} K_{0}}{2.4773 \times 10^{6} K_{0}}\right)=60.0^{\circ}
$$

## Dyads

| Parameter | Relation | Value |
| :---: | :---: | :---: |
| $F_{1}$ | $\left(-K_{1_{1}},-K_{2_{1}}\right)$ | $(1.500,2.000)$ |
| $M_{1}$ | $\left(x_{1}, y_{1}\right)$ | $\left(-2.000,3.4329 \times 10^{-7}\right)$ |
| $M_{2}$ | $\left(x_{2}, y_{2}\right)$ | $\left(8.1749 \times 10^{-7},-1.3214 \times 10^{-6}\right)$ |
| $\vartheta_{\Sigma}$ | $\arctan \left(\frac{-K_{1_{1}}}{K_{2_{1}}}\right)$ | $60.0^{\circ}$ |

Table 4: Geometry of one of six synthesized mechanisms that is identical to the generating $R R R P$ linkage in Figure 1.

| Solution | Dyad surface pairing |
| :---: | :---: |
| 1 | Dyad 1 - Dyad 2 |
| 2 | Dyad 2 - Dyad 3 |
| 3 | Dyad 2 - Dyad 4 |
| 4 | Dyad 1 - Dyad 3 |
| 5 | Dyad 1 - Dyad 4 |
| 6 | Dyad 3 - Dyad 4 |

Table 5: Dyad pairings yielding the six synthesized mechanisms.
©M.J.D. Hayes

## Dyad Pairings



Solution 1


Solution 2


Solution 5
Solution 6
©M.J.D. Hayes
Carleton University, Mechanical and Aerospace Engineering

# Kinematic Mapping Application to Approximate Type and Dimension Synthesis of Planar Mechanisisms 

© M.J.D. Hayes ${ }^{1}$, T.Luu ${ }^{1}$, X.-W. Chen ${ }^{2}$<br>${ }^{1}$ Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada<br>${ }^{2}$ School of Computer Science, McGill University,<br>Montréal, Canada

$9^{\text {th }}$ International Symposium on
Advances in Robot Kinematics
June 28 - July 1, 2004, Sestri Levante, Italy
Monday, June 28, 2004

## Kinematic Mapping



- The inverse mapping is:

$$
\begin{array}{rlc}
\tan (\phi / 2) & = & X_{3} / X_{4} \\
a & = & 2\left(X_{1} X_{3}+X_{2} X_{4}\right) /\left(X_{3}^{2}+X_{4}^{2}\right) \\
b & = & 2\left(X_{2} X_{3}-X_{1} X_{4}\right) /\left(X_{3}^{2}+X_{4}^{2}\right)
\end{array}
$$

Carleton University, Mechanical and Aerospace Engineering

## Kinematic Mapping

- Using half-angle substitutions and these above relations the basic Euclidean group of planar displacements can be written in terms of the image points

$$
\lambda\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
X_{4}^{2}-X_{3}^{2} & -2 X_{3} X_{4} & 2\left(X_{1} X_{3}+X_{2} X_{4}\right) \\
2 X_{3} X_{4} & X_{4}^{2}-X_{3}^{2} & 2\left(X_{2} X_{3}-X_{1} X_{4}\right) \\
0 & 0 & X_{3}^{2}+X_{4}^{2}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]
$$

- $\lambda$ being non-zero scaling factors arising from the use of homogeneous coordinates.


## Circle and Line Coordinates

- Consider the motion of a fixed point in $E$ constrained to move on a fixed circle in $\Sigma$, with radius $r$, centred on the homegeneous coordinates ( $X_{C}: Y_{C}: Z$ ) and having the equation

$$
K_{0}\left(X^{2}+Y^{2}\right)+2 K_{1} X Z+2 K_{2} Y Z+K_{3} Z^{2}=0
$$

where

$$
K_{0}=\text { arbitrary homogenisi ng constant. }
$$

- If $K_{0}=1$, the equation represents a circle, and

$$
\begin{aligned}
& K_{1}=-X_{C}, \\
& K_{2}=-Y_{C}, \\
& K_{3}=K_{1}^{2}+K_{2}^{2}-r^{2} .
\end{aligned}
$$

- If $K_{0}=0$, the equation represents a line with line coordinates

$$
\left[K_{1}: K_{2}: K_{3}\right]=\left[\frac{1}{2} L_{1}: \frac{1}{2} L_{2}: L_{3}\right] .
$$

©M.J.D. Hayes

## Constraint Manifold Equation

- The constraint manifold for a given dyad represents all relative displacements of the dyad.
- An expression for the image space manifold that corresponds to the kinematic constraints emerges when ( $X: Y: Z$ ) from

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{ccc}
X_{4}^{2}-X_{3}^{2} & -2 X_{3} X_{4} & 2\left(X_{1} X_{3}+X_{2} X_{4}\right) \\
2 X_{3} X_{4} & X_{4}^{2}-X_{3}^{2} & 2\left(X_{2} X_{3}-X_{1} X_{4}\right) \\
0 & 0 & X_{3}^{2}+X_{4}^{2}
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right],
$$

are substituted into

$$
K_{0}\left(X^{2}+Y^{2}\right)+2 K_{1} X Z+2 K_{2} Y Z+K_{3} Z^{2}=0 .
$$

## Constraint Manifold Equation

- The result is the general image space constraint manifold equation:

$$
\begin{aligned}
& C S: K_{0}\left(X_{1}^{2}+X_{2}^{2}\right)+\frac{1}{4}\left(K_{0}\left[x^{2}+y^{2}\right]+K_{3}-2\left[K_{1} x+K_{2} y\right]\right) X_{3}^{2}-\left(K_{1}+K_{0} x\right) X_{1} X_{3}+ \\
& \left(K_{2}-K_{0} y\right) X_{2} X_{3}-\left(K_{0} y+K_{2}\right) X_{1}+\left(K_{0} x+K_{1}\right) X_{2}-\left(K_{1} y-K_{2} x\right) X_{3}+ \\
& \frac{1}{4}\left(K_{0}\left[x^{2}+y^{2}\right]+K_{3}+2\left[K_{1} x+K_{2} y\right]\right)=0 .
\end{aligned}
$$

## Constraint Manifold Equation


$K_{0}=1$ : the $C S$ is a skew hyperboloid of one sheet ( $R R$ dyads).

$K_{0}=0: C S$ is an hyperbolic paraboloid ( $R P$ and $P R$ dyads).

## SVD

- Any $m \times n$ matrix $\mathbf{C}$ can be decomposed into the product

$$
\mathbf{C}_{m \times n}=\mathbf{U}_{m \times m} \mathbf{S}_{m \times n} \mathbf{V}_{n \times n}^{T}
$$

- where $\mathbf{U}$ is an orthogonal matrix ( $\mathbf{U U}^{T}=\mathbf{I}$ ),
- the uppermost $n \times n$ elements of $\mathbf{S}$ are a diagonal matrix whose elements are the singular values of $\mathbf{C}$,
- $\mathbf{V}$ is an orthogonal matrix $\left(\mathbf{V} \mathbf{V}^{T}=\mathbf{I}\right)$.
- The singular values, $s_{i}$, of $\mathbf{C}$ are related to its eigenvalues, $\lambda_{i}$. If $\mathbf{C}$ is rectangular $\mathbf{C}^{\mathbf{T}} \mathbf{C}$ is positive semidefinite with non-negative eigenvalues:

$$
\begin{aligned}
& \left(\mathbf{C}^{T} \mathbf{C}\right) \mathbf{x}=\lambda \mathbf{k} \Rightarrow\left(\mathbf{C}^{T} \mathbf{C}-\lambda \mathbf{I}\right) \mathbf{k}=0 \\
& \text { and } s_{i}=\sqrt{\lambda_{i}}
\end{aligned}
$$

## SVD

- SVD explicitly constructs orthonormal bases for the nullspace and range of a matrix.
- The columns of $\mathbf{U}$ whose same-numbered elements $s_{i}$ are non-zero are an orthonormal set of basis vectors spanning the range of $\mathbf{C}$.
- The columns of $\mathbf{V}$ whose same-numbered elements $s_{i}$ are zero are an orthonormal set of basis vectors spanning the nullspace of $\mathbf{C}$.
- If $\mathbf{C}_{m \times n}$ does not have full column rank then the last $n$-rank $(\mathbf{C})$ columns of $\mathbf{V}$ span the nullspace of $\mathbf{C}$.
- Any of these columns, in any linear combination, is a nontrivial solution to

$$
\mathbf{C k}=\mathbf{0}
$$

## Aside: Line and circle feature extraction

- Not specifying a value for $K_{0}$ gives a homogeneous linear equation in the $K_{i}$ :

$$
K_{0}\left(X^{2}+Y^{2}\right)+2 K_{1} X Z+2 K_{2} Y Z+K_{3} Z^{2}=0 .
$$

- It is homogeneous in the projective geometric sense, and homogeneous in the linear algebraic sense in that the constant term is 0 :

$$
\mathbf{k} \mathbf{X}^{T}=0 .
$$

- Four points in the plane yields the following homogeneous system of linear equations:

$$
\mathbf{X k}=\left[\begin{array}{cccc}
X_{1}^{2}+Y_{1}^{2} & 2 X_{1} Z & 2 Y_{1} Z & Z^{2} \\
X_{2}^{2}+Y_{2}^{2} & 2 X_{2} Z & 2 Y_{2} Z & Z^{2} \\
X_{3}^{2}+Y_{3}^{2} & 2 X_{3} Z & 2 Y_{3} Z & Z^{2} \\
X_{4}^{2}+Y_{4}^{2} & 2 X_{4} Z & 2 Y_{4} Z & Z^{2}
\end{array}\right]\left[\begin{array}{l}
K_{0} \\
K_{1} \\
K_{2} \\
K_{3}
\end{array}\right]=\mathbf{0}
$$

©M.J.D. Hayes

## Line and circle feature extraction

- In the general case where $\mathbf{X}$ has full rank the system has either
- only the trivial solution, $\mathbf{k}=\mathbf{0}$, or

2- infinitely many nontrivial solutions in addition to the trivial solution.

- Not very useful for feature identification if $\mathbf{k}$ characterizes the feature.
- However, if the points are all on a line or a circle, then $\mathbf{X}$ becomes rank deficient by 1 .
- In other words, $\mathbf{X}$ acquires a nullity of 1 : the dimension of the nullspace is 1 and is spanned by a single basis vector.
- Since the singular values are lower bounded by 0 and arranged in descending order on the diagonal of $\mathbf{S}$ by the SVD algorithm a nontrivial solution for $\mathbf{k}$ is the same numbered column in $\mathbf{V}$ corresponding to $s_{i}=0$.
- This is true for any $\mathbf{X}_{m \times 4}$, where $\mathrm{m} \geq 4$, having a nullity of 1 .


## Points Falling Exactly on a Circle

- Given 42 points falling exactly on the unit circle centred on the origin generated by the parametric equations

$$
\begin{aligned}
& X=r \cos \vartheta \\
& Y=r \sin \vartheta
\end{aligned}
$$

- This gives $\operatorname{rank}\left(\mathbf{X}_{42 \times 4}\right)=3$
- We have $s_{4}=0$ and look at the $4^{\text {th }}$ column of $\mathbf{V}$ :

$$
\left[\begin{array}{l}
K_{0} \\
K_{1} \\
K_{2} \\
K_{3}^{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\text { circle } \\
-X_{c} \\
-Y_{c} \\
K_{1}^{2}+K_{2}^{2}-r^{2}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
r
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$



Carleton University, Mechanical and Aerospace Engineering

## Points Falling Exactly on a Line

- Given 25 points falling exactly on a line through the origin having slope $m=1$, generated by the parametric equations

$$
\begin{aligned}
& X=t \\
& Y=t
\end{aligned}
$$

- This gives $\operatorname{rank}\left(\mathbf{X}_{25 \mathrm{xt}}\right)=3$
- We have $s_{4}=0$ and look at the $4^{\text {th }}$ column of $\mathbf{V}$ :

$$
\begin{aligned}
{\left[\begin{array}{c}
K_{0} \\
K_{1} \\
K_{2} \\
K_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0.7071 \\
-0.7071 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\operatorname{line} \\
-\frac{1}{2} \sin \xi \\
\frac{1}{2} \cos \xi \\
X \sin \xi-Y \cos \xi
\end{array}\right] \Rightarrow\left[\begin{array}{c}
\xi \\
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
45^{\circ} \\
0 \\
0
\end{array}\right] } \\
\text { Carleton University, Mechanical and Aerospace Engineering }
\end{aligned}
$$

## Points Falling Approximately on a Circle

- Given 42 points falling approximately on the unit circle centred on the origin generated by the parametric equations

$$
\begin{aligned}
& X=r \cos \vartheta+\text { noise } \\
& Y=r \sin \vartheta+\text { noise }
\end{aligned}
$$

- This gives $\operatorname{rank}\left(\mathbf{X}_{42 \times 4}\right)=4$ and $\operatorname{cond}\left(\mathbf{X}_{42 \times 4}\right)=225.2$.
- Still, when we look at $\mathbf{V}(:, 4)$ :

$\left[\begin{array}{l}K_{0} \\ K_{1} \\ K_{2} \\ K_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ -0.00047 \\ 0.00027 \\ -0.99746\end{array}\right]=\left[\begin{array}{c}\text { circle } \\ -X_{c} \\ -Y_{c} \\ K_{1}^{2}+K_{2}^{2}-r^{2}\end{array}\right] \Rightarrow\left[\begin{array}{c}X_{c} \\ Y_{c} \\ r\end{array}\right]=\left[\begin{array}{c}0.00047 \\ -0.00027 \\ 0.99746\end{array}\right]$


## Points Falling Approximately on a Line

- Given 25 points falling approximately on a line through the origin having slope $m=1$, generated by the parametric equations

$$
\begin{aligned}
& X=t+\text { noise } \\
& Y=t+\text { noise }
\end{aligned}
$$

- This gives $\operatorname{rank}\left(\mathbf{X}_{25 \times 4}\right)=4$ and $\operatorname{cond}\left(\mathbf{X}_{25 \mathrm{x} 4}\right)=5448.6$
- Still, when we look at $\mathbf{V}(:, 4)$ :

$$
\left[\begin{array}{l}
K_{0} \\
K_{1} \\
K_{2} \\
K_{3}
\end{array}\right]=\left[\begin{array}{c}
-0.00068 \\
0.71156 \\
-0.69558 \\
-0.00099
\end{array}\right]=\left[\begin{array}{c}
\text { approximat e line } \\
-\frac{1}{2} \sin \xi \\
\frac{1}{2} \cos \xi \\
X \sin \xi-Y \cos \xi
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\xi \\
X \\
Y
\end{array}\right] \cong\left[\begin{array}{c}
45^{\circ} \\
0 \\
0
\end{array}\right]
$$

## Approximate Mechanism Synthesis

- To exploit the ability of SVD to construct the basis vectors spanning the nullspace of the homogeneous system of synthesis equations $\mathbf{C k}=\mathbf{0}$, we must rearrange the terms in the general constraint surface equation, and for now, restrict ourselves to RRand PR-dyads.
- We obtain a constraint equation linear in the surface shape parameters $\mathrm{K}_{0}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$, and products with x and y :

$$
\begin{aligned}
& {\left[\frac{1}{4}\left(X_{3}+1\right) x^{2}+\left(X_{2}-X_{1} X_{3}\right) x+\frac{1}{4}\left(X_{3}+1\right) y^{2}-\left(X_{1}+X_{2} X_{3}\right) y+X_{2}^{2}+X_{1}^{2}\right] K_{0}+} \\
& {\left[\frac{1}{2}\left(1-X_{3}^{2}\right) x-X_{3} y+X_{1} X_{3}^{4}+X_{2}\right] K_{1}+\left[X_{3} x+\frac{1}{2}\left(1-X_{3}^{2}\right) y-X_{1}+X_{2} X_{3}\right] K_{2}+\frac{1}{4}\left(X_{3}^{2}+1\right) K_{3}=0 .}
\end{aligned}
$$

## Approximate Mechanism Synthesis

- There are 12 terms. The $X_{i}$ are assembled into the $m \times 12$ coefficient matrix $\mathbf{C}$.
- The corresponding vector $\mathbf{k}$ of shape parameters is:

$$
\left[\begin{array}{llllllllllll}
K_{0} & K_{1} & K_{2} & K_{3} & K_{0} x & K_{0} y & K_{0} x^{2} & K_{0} y^{2} & K_{1} x & K_{1} y & K_{2} x & K_{2} y
\end{array}\right]^{\mathrm{T}}
$$

- Several of the elements of $\mathbf{k}$ have identical coefficients in $\mathbf{C}$ :
- $\frac{1}{4}\left(1+X_{3}^{2}\right)$ is the coefficient of $K_{0} x^{2}, K_{0} y^{2}$, and $K_{3}$.
- $\frac{1}{2}\left(1-X_{3}^{2}\right)$ is the coefficient of $K_{1} x$ and $K_{2} y$.
- $\quad X_{3} \quad$ is the coefficient of $K_{2} x$ and $K_{1} y$.


## Approximate Mechanism Synthesis

- The like terms may be combined yielding an $m \times 8$ coefficient matrix $\boldsymbol{C}$ whose elements are:

$$
\left[\begin{array}{lllll}
X_{1}^{2}+X_{2}^{2} & X_{2}+X_{1} X_{3} & X_{2} X_{3}-X_{1} & X_{2}-X_{1} X_{3} & -\left(X_{1}+X_{2} X_{3}\right)
\end{array} \frac{1}{4}\left(1+X_{3}^{2}\right) \frac{1}{2}\left(1-X_{3}^{2}\right) \quad X_{3}\right]
$$

- The corresponding $8 \times 1$ vector $k$ of shape parameters is:

$$
\left[\begin{array}{lllllll}
K_{0} & K_{1} & K_{2} & K_{0} x & K_{0} y & K_{0}\left(x^{2}+y^{2}\right)+K_{3} & \left(K_{1} x+K_{2} y\right)
\end{array}\left(K_{2} x-K_{1} y\right)\right]^{\mathrm{T}}
$$

- We now have a system of $m$ homogeneous equations in the form

$$
C k=0
$$

## Approximate Mechanism Synthesis

- We obtain the following correspondence between $\operatorname{rank}(\mathcal{C})$, the mechanical constraints, and the order of the coupler curve:

| $\operatorname{rank}(\boldsymbol{C})$ | constraint | coupler curve order |
| :---: | :---: | :---: |
| 8 | general planar motion | $? ?$ |
| 6 | two RR-dyads | 6 |
| 6 | one PR-, one RR-dyad | 4 |
| 5 | twoPR-dyads | 2 |

- In general, $\operatorname{rank}(\mathbb{C})=8$, with $O_{E}$ on neither a line or circle.
- Practical application of the approach will require fitting constraint surfaces to their approximate curve of intersection, which means $\operatorname{rank}(\mathbb{C})=8$.
- We will have to approximate $\boldsymbol{\mathcal { C }}$ by matrices of lower rank.
- To start we will investigate Eckart-Young-Mirsky theory.


## Example

- An exploratory experiment was devised.
- A PRRR mechanism was used to generate a set of 20 coupler positions and orientations using the origin of E , given by the coordinates ( $a, b$ ), as the coupler point, and taking its orientation to be that of the coupler.
- The positions range from $(2,1)$ to $(3,2)$, and the orientations from $-5^{\circ}$ to $-90^{\circ}$.
- The range of motion of the PR- and RRdyads map to a hyperbolic paraboloid and hyperboloid of one sheet, respectively.
- These quadrics intersect in a spatial quartic, such that $\operatorname{rank}(\mathbb{C})=6$.


## Example

- When the rank of a $20 \times 8$ matrix is deficient by 2 , then 2 columns are linear combinations of the remaining 6 .
- The column vectors $\mathbf{V}(:, 6)$ and $\mathbf{V}(:, 7)$ in the SVD of $\boldsymbol{e}$ span its nullspace.
- Any linear combination $\mathbf{V}(:, 6)+\lambda \mathbf{V}(:, 7)$ is a solution.
- But, we can regard this in a different way.
- We can combine these columns of $\boldsymbol{C}$ and corresponding
- elements of $\boldsymbol{k}$.
- The rank of $\boldsymbol{\mathcal { C }}$ is invariant under this process.
- We obtain two different $20 \times 7$ coefficient matrices possessing rank $=6$.
- The resulting two nullspace vectors represent the generating PR-, and RR-dyads, exactly.


## PR-Dyad Synthesis

- To extract the PR-dyad we set $K_{0}=0$.
- Recall

$$
k=\left[\begin{array}{llllll}
K_{0} & K_{1} & K_{2} & K_{0} x & K_{0} y & K_{0}\left(x^{2}+y^{2}\right)+K_{3} \\
\left(K_{1} x+K_{2} y\right) & \left(K_{2} x-K_{1} y\right)
\end{array}\right]^{\mathrm{T}}
$$

- In the system $\mathbb{C} k=0$ we can add columns 4 and 5 of $\mathbb{C}$ because $K_{0}=0$.
- The resulting $20 \times 7$ matrix $\mathcal{C}$ possesses rank 6 .
- The $7^{\text {th }}$ column of the $\mathbf{V}$ matrix that results from the SVD of $\boldsymbol{C}$ yields $\boldsymbol{k}$ that exactly represents the constraint surface for the generating PR-dyad.


## RR-Dyad Synthesis

- To extract the RR-dyad we add columns 2 and 3 of $\boldsymbol{C}$.
- This can be done when $\left(X_{1}-X_{2} X_{3}\right) /\left(X_{1} X_{3}+X_{2}\right)$ has the same scalar value for every, $X_{1}, X_{2}$, and $X_{3}$ in the pose data.
- The scalar is the ratio $K_{1} / K_{2}$ of the PR-dyad parameters.
- This happens only when PR-dyad design parameters contain

$$
K_{3}=x=y=0
$$

- In this case the hyperbolic paraboloid has the equation

$$
K_{1}\left(X_{1} X_{3}+X_{2}\right)+K_{2}\left(X_{2} X_{3}-X_{1}\right)=0
$$

- The curve of intersection with any RR-dyad constraint hyperboloid will be symmetric functions of $X_{3}$ in $X_{1}$ and $X_{2}$.
- An image space curve with $\operatorname{rank}(\mathcal{C})=6$ but PR-dyad design parameters

$$
K_{3} \neq x \neq y \neq 0
$$

can always be transformed to one symmetric in $X_{1}$ and $X_{2}$.

## Results

Table 1. Nullspace vectors obtained by adding two columns of $\mathcal{C}$, and same-numbered elements of $\boldsymbol{\kappa}$

| Column $4+5$ | Value | Column 2+3 | Value | Value $/ K_{0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $K_{0}$ | 0 | $K_{0}$ | -0.2085 | 1 |
| $K_{1}$ | 0.7071 | $K_{1}+K_{2}$ | 0.2085 | -1 |
| $K_{2}$ | -0.7071 | $K_{0} x$ | -0.2085 | 1 |
| $K_{0}(x+y)$ | 0 | $K_{0} y$ | 0 | 0 |
| $K_{0}\left(x^{2}+y^{2}\right)+K_{3}$ | 0 | $K_{0}\left(x^{2}+y^{2}\right)+K_{3}$ | -0.8340 | 4 |
| $K 1 x+K 2 y$ | 0 | $K 1 x+K 2 y$ | 0.4170 | -2 |
| $K 2 x-K 1 y$ | 0 | $K 2 x-K 1 y$ | 0 | 0 |


| Table 2. Generating mechanism shape parameters. |  |  |
| :---: | :---: | :---: |
| Parameter | $P R$-dyad | $R R$-dyad |
| $K_{0}$ | 0 | 1 |
| $K_{1}$ | -1 | -2 |
| $K_{2}$ | 1 | 0 |
| $K_{3}$ | 0 | 3 |
| $x$ | 0 | 1 |
| $y$ | 0 | 0 |

©M.J.D. Hayes

## Conclusions and Future Work

- We have presented preliminary results that will be used in the development of an algorithm combining type and dimensional synthesis of planar mechanisms for $n$-pose rigid body guidance.
- This approach stands to offer the designer all possible linkages that can attain the desired poses, not just 4R's and not just slider-cranks, but all four-bar linkages.
- The results are preliminary, and not without unresolved conceptual issues.
- Cope with noise: random noise greater than $0.01 \%$ is problematic.
- Establish how to proceed with 4R mechanisms.
- For the general approximate case with $\operatorname{rank}(\mathbb{C})=8$, determine how to approximate $\boldsymbol{C}$ with lower rank matrices.
- Establish optimization criteria.
- Investigate meaningful metrics in the kinematic mapping image space.


# Integrated Type And Dimensional Synthesis of Planar Four-Bar Mechanisms 

(C) Tim J. Luu ${ }^{1}$ and M.J.D. Hayes ${ }^{2}$
${ }^{1}$ Neptec Design Group Ltd., Ottawa, Canada
${ }^{2}$ Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada,

ARK 2012
$13^{\text {th }}$ International Symposium on Advances in Robot Kinematics

June 24-28, 2012
Innsbruck, Austria

## Five Position Exact Synthesis

- The five-position Burmester problem may be stated as:
- given five positions of a point on a moving rigid body and the corresponding five orientations of some line on that body, design a four-bar mechanism that can move the rigid body exactly through these five poses.

- In general, exact dimensional synthesis for rigid body guidance assumes a mechanism type (4R, slider-crank, elliptical trammel, et c.).
- Our aim is to develop an algorithm that integrates both type and approximate dimensional synthesis for $n>5$ poses.


## Type Synthesis

- For planar mechanisms, two types of mechanism constraints:
- Prismatic (P);
- Revolute (R).
- When paired together, there are four possible dyad types.


## Dyad Constraints

- Dyads are connected through the coupler link at points $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$.
- RR - a fixed point in $E$ forced to move on a fixed circle in $\Sigma$.
- PR - a fixed point in $E$ forced to move on a fixed line in $\Sigma$.
- RP - a fixed line in $E$ forced to move on a fixed point in $\Sigma$.
- PP - a fixed line in $E$ forced to move in the direction of a fixed line in $\Sigma$.



## Kinematic Constraints

- Three parameters, $a, b$ and $\theta$ describe a planar displacement of $E$ with respect to $\Sigma$.
- The coordinates of a point in $E$ can be mapped to those of $\Sigma$ in terms of $a, b$ and $\theta$.
$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & a \\ \sin \theta & \cos \theta & b \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
- ( $x: y: z$ ): homogeneous coordinates of a point in $E$.
- (X:Y:Z): homogeneous coordinates of the same point in $\Sigma$.
- $(a, b)$ : Cartesian coordinates of $O_{E}$ in $\Sigma$.
- $\quad \theta$. rotation angle from $X$ - to $x$-axis, positive sense
 CCW.


## Circle and Line Coordinates

- Consider the motion of a fixed point in $E$ constrained to move on a fixed circle in $\Sigma$, with radius $r$, centred on the homegeneous coordinates $\left(X_{C}: Y_{C}: Z\right)$ and having the equation

$$
K_{0}\left(X^{2}+Y^{2}\right)+2 K_{1} X Z+2 K_{2} Y Z+K_{3} Z^{2}=0
$$

where

$$
K_{0}=\text { arbitrary homogenisi ng constant. }
$$

- If $K_{0}=1$, the equation represents a circle, and

$$
\begin{aligned}
& K_{1}=-X_{C}, \\
& K_{2}=-Y_{C}, \\
& K_{3}=K_{1}^{2}+K_{2}^{2}-r^{2} .
\end{aligned}
$$

- If $K_{0}=0$, the equation represents a line with line coordinates

$$
\left[K_{1}: K_{2}: K_{3}\right]=\left[\frac{1}{2} L_{1}: \frac{1}{2} L_{2}: L_{3}\right]
$$

©M.J.D. Hayes

## Circle / Line Coordinates

## Circle / Line Equation:

Ignoring infinitely distant coupler attachment points set

$$
Z=z=1
$$

Circle Coordinates

$$
\begin{aligned}
& K_{0}=1 \\
& K_{1}=-X_{C} \\
& K_{2}=-Y_{C} \\
& K_{3}=K_{1}^{2}+K_{2}^{2}-r^{2}
\end{aligned}
$$


$K_{0}$ acts as a binary switch between circle and line coordinates

Line Coordinates
$K_{0}=0$
$K_{1}=-\frac{\sin \vartheta_{\Sigma}}{2}$
$K_{2}=\frac{\cos \vartheta_{\Sigma}}{2}$
$K_{3}=x \sin \vartheta_{\Sigma}-y \cos \vartheta_{\Sigma}$

## Reference Frame Correlation

Applying $\left[\begin{array}{l}X \\ Y \\ 1\end{array}\right]=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & a \\ \sin \theta & \cos \theta & b \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$ to $\mathbf{C k}=\left[\begin{array}{lll}X^{2}+Y^{2} & 2 X & 2 Y\end{array} 1\left[\begin{array}{l}1\end{array}\left[\begin{array}{l}K_{0} \\ K_{1} \\ K_{2} \\ K_{3}\end{array}\right]=0\right.\right.$

## yields

$$
\mathbf{C k}=\left[\begin{array}{c}
(x \cos \boldsymbol{\theta}-y \sin \boldsymbol{\theta}+\mathbf{a})^{2}+(x \sin \boldsymbol{\theta}-y \cos \boldsymbol{\theta}+\mathbf{b})^{2} \\
2(x \cos \boldsymbol{\theta}-y \sin \boldsymbol{\theta}+\mathbf{a}) \\
2(x \sin \boldsymbol{\theta}-y \cos \boldsymbol{\theta}+\mathbf{b}) \\
1
\end{array}\right]^{T}\left[\begin{array}{c}
K_{0} \\
K_{1} \\
K_{2} \\
K_{3}
\end{array}\right]=\mathbf{0}
$$

- Prescribing $n>5$ poses makes $\mathbf{C}$ an $n \times 4$ matrix.
- $\mathbf{a}, \mathbf{b}$, and $\boldsymbol{\theta}$ are the specified poses of $E$ described in $\Sigma$.


## Approximate Synthesis for $n$ Points

For $n$ poses:
$\mathbf{C k}=\left[\begin{array}{c}(x \cos \boldsymbol{\theta}-y \sin \boldsymbol{\theta}+\mathbf{a})^{2}+(x \sin \boldsymbol{\theta}-y \cos \boldsymbol{\theta}+\mathbf{b})^{2} \\ 2(x \cos \boldsymbol{\theta}-y \sin \boldsymbol{\theta}+\mathbf{a}) \\ 2(x \sin \boldsymbol{\theta}-y \cos \boldsymbol{\theta}+\mathbf{b}) \\ 1\end{array}\right]^{T}\left[\begin{array}{c}K_{0} \\ K_{1} \\ K_{2} \\ K_{3}\end{array}\right]=\mathbf{0}$

- The only two unknowns in $\mathbf{C}$ are the coordinates $x$ and $y$ of the coupler attachment points expressed in $E$.
- For non-trivial $\mathbf{k}$ to exist satisfying $\mathbf{C k}=\mathbf{0}$, then $\mathbf{C}$ must be rank deficient.
- The task is to find values for $x$ and $y$ that render $\mathbf{C}$ the most ill-conditioned $d_{\text {nad }}$ M.D. . Hayes Mechanical \& Aerospace


## Matrix Conditioning

The condition number of a matrix is defined to be:

$$
\kappa \equiv \frac{\sigma_{M A X}}{\sigma_{M I N}}, 1 \leq \kappa \leq \infty
$$

A more convenient representation is:

$$
\gamma \equiv \frac{1}{\kappa}, 0 \leq \kappa \leq 1
$$

$\gamma$ is bounded both from above and below.

Choose $x$ and $y$ in matrix $\mathbf{C}$ such that $\gamma$ is minimized.

## Nelder-Mead Multidimensional Simplex

- Any optimization method may be used and the numerical efficiency of the synthesis algorithm will depend on the method employed.
- We have selected the Nelder-Mead Downhill Simplex Method in Multidimensions.
- Nelder-Mead only requires function evaluations, not derivatives.
- It is relatively inefficient in terms of the required evaluations, but for this problem the computational burden is small.
- Convergence properties are irrelevant since any optimization may be used in the synthesis algorithm.
- The output of the minimization are the values of $x$ and $y$ that minimize the $\gamma$ of $\mathbf{C}$.


## Nelder-Mead Multidimensional Simplex

- The Nelder-Mead algorithm requires an initial guess for $x$ and $y$.
- We plot $\gamma$ in terms of $x$ and $y$ in the area of $(x, y)=(0,0)$ up to the maximum distance the coupler attachments are permitted to be relative to moving coupler frame $E$.
- Within the corresponding parameter space, the approximate local minima are located.
- The two pairs of $(x, y)$ corresponding to the approximate local minimum values of $\gamma$ are used as initial guesses.
- The Nelder-Mead algorithm converges to the pair of $(x, y)$
coupler attachment point locations that minimize $\gamma$ within the region of interest.


## $\gamma$ Plot


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## $\gamma$ Plot

AdGiif - UNREGISTERED

©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## $\gamma$ Plot



## Nelder-Mead Minimization

- Once approximate minima are found graphically, they are input as initial guesses into the Nelder-Mead polytope algorithm
- The output of the minimization is the value of $x$ and $y$ that minimize the $\gamma$ of $\mathbf{C}$


## Singular Value Decomposition

Any $m \times n$ matrix can be decomposed into:

$$
\mathrm{C}_{m \times n}=\mathrm{U}_{m \times m} \mathbf{S}_{m \times n} \mathbf{V}_{n \times n}^{T}
$$

where:

- $\mathbf{U}$ spans the range of $\mathbf{C}$
- V spans the nullspace of $\mathbf{C}$
- $\mathbf{S}$ contains the singular values of $\mathbf{C}$

For $\mathbf{C}$ ill-conditioned ( $\gamma$ minimized):

- The last singular value in $\mathbf{S}$ is approximately zero
- The last column of $\mathbf{V}$ is the approximate solution to $\mathbf{C K}=0$

The last column of $\mathbf{V}$ is then the solution to vector $\mathbf{K}$, defining a circle or line

## Circle or Line?

- In the most general case, the vector $K$ defines a circle, corresponding to an RR dyad
- If the determined circle has dimensions several orders of magnitude greater than the range of the poses, the geometry is recalculated as a line, corresponding to a PR dyad


A PR dyad, analogous to an RR dyad with infinite link length and centered at infinity

## Special Cases: The RP Dyad

- RP dyads are the kinematic inverses of PR dyads
- To solve:
- switch the roles of fixed frame $\Sigma$ and moving frame $E$
- Express points $x$ and $y$ in terms of $X, Y$, and $\theta$
- Solve for constant coordinates $(X, Y)$ that minimize $\gamma$ of $\mathbf{C}$
$\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{ccc}\cos \theta & \sin \theta & -b \sin \theta-a \cos \theta \\ -\sin \theta & \cos \theta & b \cos \theta+a \sin \theta \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}X \\ Y \\ 1\end{array}\right]$


## Special Cases: The PP Dyad

PP dyads:

- can only produce rectilinear motion at a constant orientation
- can produce any rectilinear motion at constant orientation
- are designed based on the practical constraints of the application


## Examples: The McCarthy Design Challenge

- Issued at the ASME DETC Conference in 2002
- No information given on the mechanism used to the generate poses
- 11 poses: overconstrained problem



## Manufacture Synthesis Matrix

- Substitute pose information into
$\mathbf{C K}=\left[\begin{array}{c}{\left[(x \cos \boldsymbol{\theta}-y \sin \boldsymbol{\theta}+\mathbf{a})^{2}+(x \sin \boldsymbol{\theta}-y \cos \boldsymbol{\theta}+\mathbf{b})^{2}\right]} \\ {[2(x \cos \boldsymbol{\theta}-y \sin \boldsymbol{\theta}+\mathbf{a})]} \\ {[2(x \sin \boldsymbol{\theta}-y \cos \boldsymbol{\theta}+\mathbf{b})]} \\ {[1]}\end{array}\right]^{T}\left[\begin{array}{c}K_{0} \\ K_{1} \\ K_{2} \\ K_{3}\end{array}\right]=[\mathbf{0}]_{\mathbf{x} \times 1}$
- Plot $\gamma$ in terms of $x$ and $y$


## $\gamma$ Plot


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## $\gamma$ Plot

AdGiif - UNREGISTERED

©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## $\gamma$ Plot



## Extracting Mechanism Parameters

- Minima found graphically at approximately
(1.5, 0.6), and (1.4, -2.0)
- Using these values as input, Nelder-Mead minimization finds the minima at

$$
\text { (1.5656, -0.0583) and }(1.4371,-1.9415)
$$

- Singular value decomposition is used to find the $K$ vector corresponding to these coordinates


## Results

Dyad 1 Dyad 2
$x \quad 1.56561 .4371$
$y \quad-0.0583-1.9415$
$\begin{array}{llll}K_{0} & 1.0000 & 1.0000\end{array}$
$K_{1}-0.7860-2.2153$
$K_{2}-0.3826-1.6159$
$K_{3}-2.23904 .5236$

## The Solution

AdGif - UNREGISTERED

©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Examples: The Square Corner

Exact synthesis is impossible for planar four-bar:

- A PPPP mechanism can replicate the positions, but not the orientations
- The coupler curve of a planar four-bar is at most 6 , while a square corner requires infinite order

- Motion from $(0,1)$ to $(1,1)$ to $(1,0)$
- Orientation decreases linearly from 90 to 0 degrees


## Manufacture Synthesis Matrix

- Substitute pose information into
$\mathbf{C K}=\left[\begin{array}{c}{\left[(x \cos \boldsymbol{\theta}-y \sin \boldsymbol{\theta}+\mathbf{a})^{2}+(x \sin \boldsymbol{\theta}-y \cos \boldsymbol{\theta}+\mathbf{b})^{2}\right]} \\ {[2(x \cos \boldsymbol{\theta}-y \sin \boldsymbol{\theta}+\mathbf{a})]} \\ {[2(x \sin \boldsymbol{\theta}-y \cos \boldsymbol{\theta}+\mathbf{b})]} \\ {[1]}\end{array}\right]^{T}\left[\begin{array}{c}K_{0} \\ K_{1} \\ K_{2} \\ K_{3}\end{array}\right]=[\mathbf{0}]_{\mathbf{x} \times 1}$
- Plot $\gamma$ in terms of $x$ and $y$


## $\gamma$ Plot


©M.J.D. Hayes
87
Mechanical \& Aerospace Engineering, Carleton University

## $\gamma$ Plot

AdGiif - UNREGISTERED

©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## $\gamma$ Plot


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Extracting Mechanism Parameters

- Minima found graphically at approximately ( $0.8,0.6$ ), and ( $0.8,-0.6$ )
- Using these values as input, Nelder-Mead minimization finds the minima at ( $0.8413,0.5706$ ) and ( $0.8413,-0.5706$ )
- Singular value decomposition is used to find the $K$ vector corresponding to these coordinates


## Results

Dyad 1 Dyad 2
$x \quad 0.84130 .8413$
$\begin{array}{llll}y & 0.5706 & -0.5706\end{array}$
$K_{0} \quad 1.0000 \quad 1.0000$
$K_{1}-4.58431 .0539$
$K_{2} \quad 1.0539-4.5843$
$K_{3} \quad 1.2704 \quad 1.2704$

## The Solution

AdGiif - UNREGISTERED

©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Conclusions

- This method determines type and dimensions of mechanisms that best approximate $n>5$ poses in a least squares sense
- No initial guess is necessary
- Examples illustrate utility and robustness


# Quadric Surface Fitting Applications to Approximate Dimensional Synthesis 

© M.J.D. Hayes, S. Radacina-Rusu

Department of Mechanical and Aerospace Engineering,
Carleton University, Ottawa, Canada,

Proceedings of the $13^{\text {th }}$ IFToMM World Congress
June 19-23, 2011
Guanajuato, México

- Given a suitably over constrained set of image space coordinates $X_{1}, X_{2}, X_{3}$, and $X_{4}$ which represent the desired set of positions and orientations of the coupler identify the constraint surface shape coefficients: $\mathrm{K}_{0}, \mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}, x$, and $y$.
- The given image space points are on some space curve.
- Project these points onto the best $4^{\text {th }}$ order curve of intersection of two quadric constraint surfaces.
- These intersecting surfaces represent two dyads in a mechanism that possesses displacement characteristics closest to the set of specified poses.


## Identifying the Constraint Surfaces

- Surface type is embedded in in the coefficients of its implicit equation:

$$
\begin{aligned}
& c_{0} X_{4}^{2}+c_{1} X_{1}^{2}+c_{2} X_{2}^{2}+c_{3} X_{3}^{2}+c_{4} X_{1} X_{2}+c_{5} X_{2} X_{3}+ \\
& c_{6} X_{3} X_{1}+c_{7} X_{1} X_{4}+c_{8} X_{2} X_{4}+c_{9} X_{3} X_{4}=0 .
\end{aligned}
$$

- It can be classified according to certain invariants of its discriminant and quadratic forms:

$$
\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]^{T}\left[\begin{array}{cccc}
c_{1} & \frac{1}{2} c_{4} & \frac{1}{2} c_{6} & \frac{1}{2} c_{7} \\
\frac{1}{2} c_{4} & c_{2} & \frac{1}{2} c_{5} & \frac{1}{2} c_{8} \\
\frac{1}{2} c_{6} & \frac{1}{2} c_{5} & c_{3} & \frac{1}{2} c_{9} \\
\frac{1}{2} c_{7} & \frac{1}{2} c_{8} & \frac{1}{2} c_{9} & c_{0}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right]=\mathbf{X}^{T} \mathbf{D} \mathbf{X}=0 .
$$

## Identifying the Constraint Surfaces

- Given a sufficiently large number $n$ of poses expressed as image space coordinates yields $n$ equations linear in the $c_{\mathrm{i}}$ coefficients

$$
\begin{aligned}
& c_{0} X_{4}^{2}+c_{1} X_{1}^{2}+c_{2} X_{2}^{2}+c_{3} X_{3}^{2}+c_{4} X_{1} X_{2}+c_{5} X_{2} X_{3}+ \\
& c_{6} X_{3} X_{1}+c_{7} X_{1} X_{4}+c_{8} X_{2} X_{4}+c_{9} X_{3} X_{4}=0
\end{aligned}
$$

- The $n$ equations can be re-expressed as:


## $\mathrm{Ac}=0$.

- The same numbered elements in Matrix A, corresponding to the $X_{\mathrm{i}}$ are scaled by the unknown $c_{\mathrm{i}}$.


## Identifying the Constraint Surfaces

- Applying SVD to Matrix A reveals the vectors $\mathbf{c}$ that are in, or computationally close, in a least-squares sense, to the nullspace of $\mathbf{A}$.
- Certain invariants of the resulting discriminant and corresponding quadratic form reveal the nature of the quadric surface.
- $R R$ dyads require the quadric surface to be an hyperboloid of one sheet with certain properties.
- $R P$ and $P R$ dyads require the quadric surface to be an hyperbolic paraboloid.


## Equivalent Minimization Problem

- Assuming the mechanism type has been identified given $n \gg 5$ specified poses, the approximate synthesis problem can be solved using an equivalent unconstrained non-linear minimization problem.
- It can be stated as "find the surface shape parameters that minimize the total spacing between all points on the specified reference curve and the same number of points on a dyad constraint surface".
- First the constraint surfaces are projected into the space corresponding to the hyperplane $X_{4}=1$.
- This yields the following parameterizations:


## Equivalent Minimization Problem

- Hyperboloid of one sheet:

$$
\begin{gathered}
{\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
\left(\left[x-K_{1}\right] t+K_{2}+y\right)+\left(r \sqrt{t^{2}+1}\right) \cos \gamma \\
\left(\left[y-K_{2}\right] t-K_{1}-x\right)+\left(r \sqrt{t^{2}+1}\right) \sin \gamma \\
2 t
\end{array}\right],} \\
\gamma \in\{0, \Lambda, 2 \pi\}, t \in\{-\infty, \Lambda, \infty\},
\end{gathered}
$$

x and y are the coordinates of the moving revolute centre expressed in the moving coordinate system E,
$K_{1}$ and $K_{2}$ are the coordinates of the fixed revolute centre expressed in the fixed coordinate system $\Sigma$,
$r$ is the distance between fixed and moving revolute centres, while $t$ and $\gamma$ are free parameters.

## Equivalent Minimization Problem

- Hyperbolic paraboloid:

$$
\begin{aligned}
& {\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{c}
f(t) \\
g(t) \\
t
\end{array}\right]+s\left[\begin{array}{c}
-b(t) \\
a(t) \\
0
\end{array}\right]} \\
& t \in\{-\infty, \Lambda, \infty\}, \mathrm{s} \in\{-\infty, \Lambda, \infty\},
\end{aligned}
$$

$f(t), g(t), a(t)$, and $b(t)$ are functions of the surface shape parameters and the free parameter $t$, while $s$ is another free parameter.

- Note that in both cases the $X_{3}$ coordinate varies linearly with the free parameter $t$, and can be considered another free parameter.


## Equivalent Minimization Problem

- The total distance between the specified reference image space points on the reference curve and corresponding points that lie on a constraint surface where $t=X_{3}=X_{3_{\text {ref }}}$ is defined as

$$
d=\sum_{i=1}^{n} \sqrt{\left(X_{1_{\mathrm{ref}}}-X_{1_{i}}\right)^{2}+\left(X_{2_{\mathrm{ref}}}-X_{2_{i}}\right)^{2}}
$$

- The two sets of surface shape parameters that minimize $d$ represent the two best constraint surfaces that intersect closest to the reference curve.
- The distance between each reference point and each corresponding point on the quadric surface in the hyperplane $t=X_{3}=X_{3_{\text {ref }}}$ can measured in the plane spanned by $X_{1}$ and $X_{2}$.


## Example

- A planar $4 R$ linkage was used to generate 40 poses of the coupler.
- The resulting image space points lie on the curve of intersection of two hyperboloids of one sheet.
- The reference curve can be visualized in the hyperplane $X_{4}=1$.



## Example

- In order for the algorithm to converge to the solution that minimizes $d$, decent initial guesses for the surface shape parameters are required.
- Out of the 40 reference points, sets of five were arbitrarily chosen spaced relatively wide apart yielding sets of five equations in the five unknown shape parameters.
- Solving yields the initial guesses.
- Non-linear unconstrained algorithms such as the NelderMead simplex and the Hookes-Jeeves methods were used with similar outcomes.


## Results Generated From Initial Guesses

| Parameter | Guess 1 | Guess 2 | Guess 3 | Guess 4 | Guess 5 | Guess 6 | Guess 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K_{1}$ | -97.720 | -18.202 | 888.914 | -5.000 | 1.000 | -25.445 | -1.398 |
| $K_{2}$ | -57.463 | -12.363 | 432.395 | 0.000 | -1.000 | -17.073 | -6.191 |
| $K_{3}$ | 1491.757 | 261.650 | -2374.375 | 21.000 | -23.000 | 390.531 | 36.554 |
| $x$ | -1.133 | -1.287 | -0.894 | 3.000 | -1.000 | -1.309 | -4.388 |
| $y$ | 0.534 | 0.889 | -5.375 | -2.000 | -2.000 | 1.030 | -2.361 |
| Iterations | 450 | 623 | 718 | 101 | 176 | 745 | 436 |
| $d$ | 1.1132 | 1.9333 | 6.726 | 0.0004 | 0.0010 | 1.5746 | 4.8138 |

## Results: Initial Guess 3


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 4



©M.J.D. Hayes
107
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 5


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Intersection of Two Best Surfaces


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 1



©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 2



©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 3


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 4



©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 5


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 6



©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Results: Initial Guess 7


©M.J.D. Hayes
Mechanical \& Aerospace Engineering, Carleton University

## Conclusions

- A new approximate synthesis algorithm was developed minimizing the total deviation, $d$, from specified poses represented as points in the kinematic mapping image space.
- No heuristics are necessary and only five variables are needed.
- The algorithm returns a list of best generating mechanisms ranked according to $d$.
- The minimization could be further developed to jump from local minima to other local minima depending on desired "closeness" to specified poses.
- Relationships between the surface shape parameters may be exploited so the algorithm recognizes undesirable solutions and avoids iterations in those directions.


## MECH 5507 Advanced Kinematics

## Applications to Analysis

Professor M.J.D. Hayes

Department of Mechanical and
Aerospace Engineering

## Applications to Analysis

- Kinematic mapping can also be used effectively for the analysis of complex kinematic chains.
- A very common example is a planar three-legged manipulator.
- A moving rigid planar platform connected to a fixed rigid base by three open kinematic chains. Each chain is connected by 3 independent 1 DOF joints, one of which is active.


## General Planar Three-Legged Platforms

- 3 arbitrary points in a particular plane, described by frame $E$, that can have constrained motion relative to 3 arbitrary points in another parallel plane, described by frame $\Sigma$.
- Each platform point keeps a certain distance from the corresponding base point. These distances are set by the variable joint parameter and the topology
 of the kinematic chain.


## Characteristic Chains

- The possible combinations of $R$ and $P$ pairs of 3 joints starting from the fixed base are:

RRR, RPR, RRP, RPP, PRR, PPR, PRP, PPP

- The $P P P$ chain is excluded since no combination of translations can cause a rotation.
- 7 possible topologies each characterized by one simple
 chain.


## Passive Sub-Chains

- There are 21 possible joint actuation schemes, as any of the 3 joints in any of the 7 characteristic chains may be active.
- When the active joint input is set, the remaining passive sub-chain is one of the following 3 :

$$
R R, P R, R P
$$

- The $P P$-type sub-chains are disregarded because platforms containing such sub-chains are more likely to be architecture singular.
- Thus, the number of different three-legged platforms is

$$
C(n, k)=\frac{(n+k-1)!}{k!(n-1)!} \Rightarrow C(18,3)=1140
$$

- The direct kinematic analysis of all 1140 types is possible with this method.


## Kinematic Constraints

- $R R$-type legs: hyperboloid
- One of the passive $R$-pairs has fixed position in $\Sigma$. The other, with fixed position in $E$, moves on a circle of fixed radius centred on the stationary $R$-pair.
- $P R$-type legs: hyperbolic paraboloid
- The passive $R$-pair, with fixed position in $E$, is constrained to move on a line with fixed line coordinates in $\Sigma$.
- $R P$-type legs: hyperbolic paraboloid
- The passive $P$-pair, with fixed position in $E$, is constrained to move on a point with
 fixed point coordinates in $\Sigma$. These are kinematic inversions, or projective duals, of the $P R$-type platforms.


## The Direct Kinematic Problem

- The direct kinematic position analysis of any planar threelegged platform jointed with lower-pairs reduces to evaluating the points common to three quadric surfaces.

©M.J.D. Hayes


## Workspace Visualization: Three $\boldsymbol{R} \underline{P} R$-Type Legs


©M.J.D. Hayes
Carleton University, Mechanical and Aerospace Engineering

## Three $\boldsymbol{P} \boldsymbol{P} \boldsymbol{R}$-Type Legs



## Mixed Leg ( $\boldsymbol{R} \underline{P} R, \underline{R} P R, R \underline{R} \underline{R}$ ) Platform

- This particular platform consists of one each of $R R$-type, $R P$-type and $P R$-type legs.
- The constraint surfaces for given leg inputs define the 3 constraint surfaces.
- The surfaces reveal 2 real and a pair of complex conjugate FK solutions.

- The $\underline{R} P R$ and $R P \underline{R}$ constraint surfaces have a common generator.


## Mixed Leg Platform Workspace



- $R R$-type legs result in families of hyperboloids of one sheet all sharing the same axis.
$P R$ - and $R P$-type legs in general result in families of hyperbolic paraboloids.
These families are pencils:
- If the active joint is a $P$-pair the hyperbolic paraboloids in one family share a generator on the plane at infinity.
- If the active joint is an $R$-pair the hyperbolic paraboloids in one family share a finite generator.

