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Abstract. A novel algorithm is presented which employs a projective
extension of the Euclidean plane to identify the entire one-parameter
family of inscribing ellipses, subject to a set of four linear constraints in
the plane of the pencil, and directly identifies the area maximising one
given any convex quadrangle. In the algorithm, four specified bounding
vertices, no three collinear, determine four line equations describing a
convex quadrangle. Considering the quadrangle edges as four polar lines
enveloping an ellipse, together with one of the corresponding pole points
on the ellipse, we define five bounding constraints on the second order
equation revealing a description of the pencil of inscribing line conics.
This envelope of line conics is then transformed to its point conic dual
for visualisation and area maximisation. The ellipse area is optimised
with respect to the single pole point and the maximum area inscribing
ellipse emerges.

Keywords: convex quadrangle; point and line ellipses; pole point and polar
line.

1 Introduction

Planar algebraic curves have long been the focus of algebraic and geometric
investigation, see [12, 14, 15] for example. Still, for some reason, the problem of
determining the ellipse possessing the largest area inscribing an arbitrary convex
quadrangle has evaded attention in the published literature. Despite this there
is genuine need for this knowledge in a variety of engineering applications.

Consider systems of design, or measurement variables in an electrical, or me-
chanical system. Covariance is a measure of how changes within one variable are
related to changes in a second; the covariance between two variables, therefore,
becomes a measure of to what degree each variable is dependent upon the other.
Currently, covariance ellipses are generated in many fields of study in order to
analyse data sets in an effort to understand the physical processes or relations
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which are present within a given system. In statistical analysis the covariance
ellipse of n separate variables, given distinct data points, can be generated as
an n × n matrix [13]. The diagonal of the matrix represents the variance of
each variable within the data set, while each non-diagonal element represents
the covariance of each variable with another. The indices of the matrix element
indicates which two variables are involved. For a two variable system the matrix
is 2×2 and symmetric, possessing a form identical to that of the quadratic form
of an ellipse. The largest area ellipse indicates the maximum covariance between
the variables.

Performance indices for machine design are used to compare specific elements
of capability. Redundantly actuated parallel mechanisms have operational force
outputs that are not unique; these forces do not correspond to a unique set of
joint forces, which can help reduce the effect of singularities [10, 17]. Analysis
of kinematic isotropy, or the capacity of a mechanism to change position, ori-
entation, and velocity given its pose in the workspace yields insight regarding
velocity performance [9]. In this context, the area of the ellipse inscribing the ar-
bitrary polygon defined by the reachable workspace of the redundantly actuated
parallel mechanism is proportional to the kinematic isotropy of the mechanism.
In [9, 10] the approach to identifying the maximum area inscribing ellipse is a
numerical problem, essentially fitting the ellipse inscribing the linear constraints
defining the velocity profile of the mechanism by starting with the unit circle.

To the best of the author’s knowledge, there are only a handful of papers
that report investigations into determining maximum area ellipses inscribing
arbitrary polygons. The dual problem, that is the problem of determining the
polygons of greatest area inscribed in an ellipse is reported in [11]. While in-
teresting, this dual problem is not germane to determining the maximum area
ellipse inscribing a polygon. Three papers by the same author [5–7] appear to
lead to a solution to the general problem of finding the largest area ellipse in-
scribing an n-sided convex polygon, however the papers focus on the proof of
the existence of a solution rather than an explicit algorithm for computing the
ellipse equation, or shape coefficients. Finally, a numerical fitting approach is
presented in [1] that uses brute force convex optimisation techniques to fit the
largest volume ellipsoid inscribing a polyhedron. But this technique is essentially
the iterative fitting approach used in [9, 10]. For maximum area ellipses inscrib-
ing convex quadrangles one expects that there should be an elegant closed-form
algebraic solution to the problem.

To arrive at a solution consider that for every four lines which comprise a
convex quadrangle, there exists a pencil of inscribing ellipses which lies tangent
to all four of these lines [5]. One, and only one of the pencil of ellipses possesses
maximal area [6]. The most general point form of the equation of the second
degree using homogeneous coordinates is [15]

a00x
2
0 + 2a01x0x1 + 2a02x0x2 + a11x

2
1 + 2a12x1x2 + a22x

2
2 = 0. (1)

This equation expresses all conic sections in terms of coordinates of points, where
the signs of the coefficients determine the conic type [2]. Five relations between
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the six aij point conic coefficients are sufficient to determine any conic. Thus,
the coordinates of five distinct finite points, no three collinear, are required to
determine an ellipse. All points on the circumference of the ellipse satisfy the
equation

xTAx = 0, (2)

where x is a homogeneous point triple, while A is the 3× 3 symmetric, positive
definite coefficient matrix composed of the aij point conic shape coefficients,
where aij = aji. The same conic can be described by its envelope of tangents
using the line coordinates of the tangents. We term the line form of the shape
coefficient matrix AL, and the homogeneous line coordinates are Xi. Because
AL is symmetric it’s elements obey the equality Aij = Aji, and the line form of
the general equation of the second degree can be expressed as

∑
AijXiXj = 0. (3)

All tangents enveloping the ellipse satisfy the equation

XTALX = 0, (4)

where X is a triple of line coordinates and matrix AL is symmetric and positive
definite containing the Aij line conic shape coefficients. The line and point triples
are dual to one another, as are the point shape matrix and line shape matrix.
Moreover, it can be shown that

A = A−1
L =

adjAL

detAL
. (5)

Five constraints are required to uniquely identify an ellipse, but the lines of
the edges of a convex quadrangle provide only four. One additional condition
is required. The pole and polar are respectively a point and a line that have a
unique reciprocal relationship with respect to a given conic section [3]. If the
pole point lies on the conic section, its polar is the tangent line to the conic
section at that point [15]. Hence, given a conic section and a line tangent to
the conic, the corresponding pole point is the tangent point of the polar line
with respect to the conic. For an ellipse that inscribes a convex quadrangle, the
edges of the quadrangle are polar lines to the points on the ellipse, and the pole
points are the tangent points of the edges and the ellipse. We obtain the fifth
constraint as the pole point with respect to the polar line comprising one of the
quadrangle edges. As the location of this pole point is varied, the entire pencil of
inscribing ellipses is generated with the pair of internal diagonals of the complete
quadrangle being the bounding, zero-area, degenerate ellipses.

To establish the maximum area inscribing ellipse, we use the area formula [2]
for an arbitrary ellipse in general position. This formula is expressed as a ratio of
the determinant of the point shape coefficient matrix, detA to the determinant
of the quadratic form of the point equation of the ellipse, which we call detA0
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where

detA0 =

∣∣∣∣
a11 a12
a12 a22

∣∣∣∣ = a11a22 − a212. (6)

Using these determinants, the general area formula for ellipse k is

Area(k) =

(
detA

(detA0)
3/2

)
π. (7)

In order to simplify the computations, we attach a homogeneous reference
coordinate system with (x0 : x1 : x2) coordinates to one of the quadrangle’s
vertices and place the origin at the left most vertex of an edge, and direct the
x1-axis along the length of that edge. The coordinates of the pole point along
that edge consists of only the homogenising coordinate and a coordinate on
the x1-axis, hence we arbitrarily label the pole point ax. The location of ax is
restricted by the vertices of that edge. The degenerate ellipses corresponding the
pole points located at either vertex are the respective internal diagonals of the
quadrangle.

The area is maximised by parameterising the point conic shape matrix A in
terms of the pole point ax by computing the zeros of the first partial derivative
of A with respect to ax

∂Area(k)

∂ax
= 0. (8)

Of course this equation has multiple zeros, but only one, corresponding to the
maximum area inscribing ellipse, lies between the two vertices of the quadrangle
edge on the x1-axis [4].

2 Solution Procedure

Consider an arbitrary convex quad-
rangle. Select an arbitrary vertex
and place the origin of a reference
coordinate system possessing homo-
geneous coordinates (x0 : x1 : x2)
on that vertex. Select x0 to be the
homogenising and the x1 coordinate
axis to be pointing towards the ter-
minal vertex of the associated edge.
See Fig. 1 for example. The four vertices considered are, in counter-clockwise
order, (1 : 0 : 0), (1 : 8 : 0), (1 : 9 : 3), and (1 : 5 : 4).

Let the polar line gx containing the pole point ax be on the edge along the x1-
axis. The line coordinates of any line g are [G0 : G1 : G2] and can be computed
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as a Grassmannian expansion of the point coordinates of two points on the line
[8]. For gx in particular we use the two vertices along the x1-axis:

∣∣∣∣∣∣
G0 G1 G2

1 0 0
1 8 0

∣∣∣∣∣∣
= [0 : 0 : 8] = [0 : 0 : 1]. (9)

The vector whose elements are the pole point coordinates of the tangent point p
is in general obtained by multiplying the line conic shape coefficient matrix by
the vector of line coordinates of g [15]:

p =

⎡
⎣
A00 A01 A02

A01 A11 A12

A02 A12 A22

⎤
⎦
⎡
⎣
G0

G1

G2

⎤
⎦ =

⎡
⎣
A00G0 +A01G1 +A02G2

A01G0 +A11G1 +A12G2

A02G0 +A12G1 +A22G2

⎤
⎦ . (10)

The de-homogenised coordinates in the x1 direction are, in general, termed px
and can be determined from Eq. (10) as

px =
A01G0 +A11G1 +A12G2

A00G0 +A01G1 +A02G2
. (11)

Along the x1-axis the x2-coordinate is always identically zero, and hence the line
coordinates of the x1-axis are gx = [0 : 0 : 1]. Give the components of gx, it is to
be seen that Eq. (11) reduces to

ax =
A12

A02
. (12)

Eq. (12) yields an independent line conic constraint equation parametrised in
terms of ax:

axA02 −A12 = 0. (13)

Additionally, when the line coordinates of the x1-axis, gx = [0 : 0 : 1] are
substituted into Eq (3) yields the constant line conic constraint equation which
is independent of Eq. (12):

A22 = 0. (14)

The remaining three quadrangle edges yield three triples of line coordinates for
the edges labelled g1, g2, g3, which produce three more line conic constraint
equations. Thus, the system of four polar lines and one pole point is equiva-
lent five linearly independent conditions. This means that the line conic shape
coefficients from Eq. (3) can be identified for any value of ax on the open inter-
val along the x1-axis between the vertex points on that axis. This reveals the
one-parameter pencil of ellipses inscribing a given convex quadrangle.
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The pencil of inscribing ellipses can be computed with a Grassmannian ex-
pansion of the matrix line conic shape coefficient constraints:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 A01 A02 A11 A12 A22

0 0 ax 0 −1 0

0 0 0 0 0 1

G2
01 2G01G11 2G01G21 G2

11 2G11G21 G2
21

G2
02 2G02G12 2G02G22 G2

12 2G12G22 G2
22

G2
03 2G03G13 2G03G23 G2

13 2G13G23 G2
23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

The expansion along the top row yields expressions for line conic shape coeffi-
cients in terms of ax and the line coordinates of the four quadrangle edges gx,
g1, g2, and g3. The matrix AL is populated with established values and inverted
to reveal the matrix of corresponding point conic shape coefficients. The entire
family of inscribing ellipses is thus obtained. To obtain the one inscribing ellipse
with maximum area, the expression in Eq. (8) is evaluated and solved for ax.
The single value for ax on the x1-axis between the vertices of the edge laying on
that axis is the pole point of the maximum area ellipse inscribing the quadrangle.

3 Example

To illustrate the algorithm we will proceed with an example using the quadrangle
illustrated in Fig. 1. Recall, the vertices are (1 : 0 : 0), (1 : 8 : 0), (1 : 9 : 3), and
(1 : 5 : 4) in counter-clockwise order. Using appropriate pairs of vertices, the line
coordinates of the four edges are computed, in the manner of Eq. (9), to be:

gx = [0 : 0 : 1];

g1 = [24 : −3 : 1];

g2 = [21 : −1 : −4];

g3 = [0 : 4 : −5].

Using the line coordinates, the line conic shape parameter matrix in Eq. (15) is
populated giving

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 A01 A02 A11 A12 A22

0 0 ax 0 −1 0

0 0 0 0 0 1

576 −144 48 9 −6 1

441 −42 −168 1 8 16

0 0 0 16 −40 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)
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The determinants of the appropriate minors of Eq. (16) are evaluated to
reveal that

A00 = ax − 32,

A01 = −3

2
ax − 144,

A02 = −48,

A11 = −120ax,

A12 = −48ax,

A22 = 0.

These coefficients are used to populate the line conic shape coefficient matrix
AL which is inverted to obtain the point conic coefficient matrix A, reveal-
ing the point conic coefficients. The general inscribing ellipse point equation,
parametrised with ax, represents the pencil with a pole point on the open inter-
val between the vertices (1 : 0 : 0) and (1 : 8 : 0) using the coefficients computed
in the previous step yields:

a2xx
2
0 − 2axx0x1 −

(
1

16
a2x − ax

)
x0x2 + x2

1 −
(

1

24
a2x +

61

48
ax − 6

)
x1x2 +

(
163

3072
a2x − 71

48
ax + 9

)
x2
2 = 0.

Letting ax vary on the open line segment between 0 and 8 generates the one
parameter pencil of inscribing ellipses illustrated in Fig. 2. Examining this

figure one immediately sees that centres of the inscribing ellipses are all on a
line connecting the midpoints of the two internal quadrangle diagonals, where
the midpoints themselves represent the centres of the degenerate ellipses formed
by selecting ax = 0 or ax = 8. The midpoints of the internal diagonals are
indicated by small circles on the diagonals, while the centres of the illustrated
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inscribing ellipses are each indicated with a small “x”, moreover, the centres of
the ellipses are all collinear, all agreeing with well known facts summarised in
[15].

Finally, we determine the value of ax which maximises the inscribing ellipse
area using Eqs. (8) and (7). The area of any ellipse k in the pencil is

Area(k) = −48
π
(
ax

2 − 29 ax + 168
)
ax√−ax (ax 3 − 61 ax 2 + 1096 ax − 5376) (ax − 32)

. (17)

Differentiating Eq. (17) with respect to ax gives

∂Area(k)

∂ax
= 24

(
67 ax

2 − 1520 ax + 5376
)
π√−ax (ax 3 − 61 ax 2 + 1096 ax − 5376) (ax − 32)

2 . (18)

Equating Eq. (18) to zero and solving for ax leads to two distinct zeros:

ax = 18.30254191, and ax = 4.384025253.

Each value of ax generates a point conic, but clearly, only one can be an ellipse
inscribing the quadrangle. The conics for each value of ax are, respectively

334.9830404x2
0 − 36.60508382x1x0 − 39.23898193x2x0 +

x12 + 3.30185366x2x1 − .29834468x2
2 = 0,

(19)

19.21967742x2
0 − 8.768050506x1x0 − 5.585255092x2x0 +

x12 − 1.229454466x2x1 + 3.535090062x2
2 = 0.

(20)

The conics can be classified using a well known classification method [16]
based on four quantities defined by the elements of the matrix of point conic
shape coefficients A which are invariant under the basic Euclidean transforma-
tion group. The four invariants are:

Δ = detA; (21)

Δ0 = detA0 = a11a22 − a212; (22)

H = a11 + a22; (23)

K = a00H − (
a201 + a202

)
. (24)

For the conic in Eq. (19) corresponding to ax = 18.30254191, which cannot
be an inscribing ellipse since this coordinate on the x1-axis is outside the region
limited by the vertices on the x1-axis, we see that: Δ 	= 0 indicating that the
equation represents a regular non-degenerate conic; Δ0 	= 0 indicating that the
equation represents a conic with a centre; but Δ0 < 0 indicating Eq. (19) is a
regular hyperbola, see Fig. 3.

Since the other value of ax = 4.384025253 does indeed lay in the open interval
between the vertices on the x1-axis, we conclude that this is the pole point on
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the x1-axis of the largest area inscribing ellipse. Considering Eq. (20), this is
confirmed when we see that: Δ 	= 0 indicating that the equation represents a
regular non-degenerate conic; Δ0 	= 0 indicating that the equation represents a
conic with a centre; but that Δ0 > 0 and the product ΔH < 0 which together
indicate that this conic is a regular ellipse, see Fig. 4. Moreover, it is to be
observed that the centre of this inscribing ellipse lies on the line connecting the
midpoints of the two internal diagonals, as it must [15].

4 Conclusions

In this paper the reciprocal relationship between pole point and polar line was
employed to develop an algorithm to determine the largest area ellipse inscribing
an arbitrary convex quadrangle. An illustrative example was presented demon-
strating use of the algorithm. The quadrangle represents only four linear con-
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straints on the inscribing ellipse; a fifth independent one was required. The fifth
constraint turns out to be the pole point corresponding to one of the polar lines
forming the convex quadrangle.

This work has applications to determining the upper bound on error el-
lipses given specific linear constraints, and for determining the maximum area
inscribing ellipse given linear constraints that form convex quadrangles which
characterize the velocity performance of parallel mechanisms in the presence of
actuation redundancy, among a variety of other relevant mechanical engineering
applications. Future work will aim to extend the approach to determining the
maximum area ellipse inscribing arbitrary n-sided arbitrary convex polygons.
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