
Extreme Distance to a Spatial Circle

P.J. ZSOMBOR-MURRAY1, M.J.D. HAYES2, and M.L. HUSTY3

1Centre for Intelligent Machines, McGill University, Montréal, QC., Canada
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Abstract

Determination of shortest distances in the three dimensional task space of robots is

pertinent to pick-and-place operations, collision avoidance, and for impact prediction

in dynamic simulation. The conventional approach is to find perpendicular distances

between planar patches approximating body surfaces. In contrast, this paper treats

four variants of shortest distance computations wherein one or both elements are cir-

cular edges. These three dimensional cases include circle and point, circle and plane,

circle and line and two non coplanar circles. Solutions to these four fundamental prob-

lems are developed with elementary geometry. Examples are presented, and the closed

form algebraic solutions are verified with descriptive geometric constructions.

Distance Extrême à un Cercle Spatial

Résumé

La détermination des distances les plus courtes dans l’espace tridimensionnel de tâche

des robots est convenable aux opérations de transfert, action d’éviter de collision, et

pour la prévision d’impact dans la simulation dynamique. L’approche convention-

nelle est de trouver des distances perpendiculaires entre les pièces rapportées planaires

rapprochant des surfaces de corps. En revanche, cet article traite quatre variantes

des calculs de distance les plus courts où un ou les deux éléments sont les bords cir-

culaires. Ces cas tridimensionnels incluent le cercle et se dirigent, entourent et sur-

facent, entourent et rayent et deux cercles non coplanaires. Des solutions à ces quatre

problèmes fondamentaux sont développées avec la géométrie élémentaire. Des exem-

ples sont présentés, et les solutions algébriques de forme fermée sont vérifiées avec les

constructions géométriques descriptives.



1 Introduction

Consider some rigid body “approach” scenarios. Insertion of a workpiece feature into a hole,
or avoiding collision among machine parts and with surroundings, or even anticipating point
of impact in a multibody dynamic simulation are fairly important and routine aspects of
robotic manipulation. In these situations it is necessary to track boundary regions on the
pairs of bodies in relative motion so as to identify, from instant to instant, the points which
are closest to each other. Commonly, the bodies are approximated by polyhedra, spheres,
simple solids of revolution, e.g., cylinder, and their planar right truncations. Four situations,
involving the latter, will be addressed. The problem posed is to determine the closest point
on a given circle in space with respect to a given

1. point,

2. plane,

3. line or

4. second cirle.

A moment’s reflection will reveal what sort of “collision course” might relate to any of these
four cases. For instance, collision avoidance from a trajectory generation perspective for
pick-and-place operations is discussed in detail in [1]. Therefore it is not intended to embark
on a descriptive enumeration of such encounters. Rather the efficient computation of these
four types of closest distance will be addressed by examining the underlying geometry to
formulate a good set of constraint equations to describe, hence solve, the problems at hand.

The issue arose when G. Grabner [2], a doctoral candidate in Mechanik at TU-Graz, asked
one of us (Husty) if the condition of proximity between spatial circles could be assigned some
clear geometric interpretation. After considerable discussion Husty [3] pointed out that a
minimal (or maximal) distance to a circle must be measured along a ray which intersects
the circle axis; a line on its centre and normal to its plane. Validity of this observation is
evident if one imagines a tangent line and notes that only lines on the tangent point and
intersecting the axis may be normal to the tangent and coincidentally intersect the curve.
The normal condition is the criterion of shortest distance from anywhere to a given line
and the differential element of circular arc ds on the tangent is such a line. Figure 1 shows
a generator of a cone of revolution in the pencil of cones that are right-sectioned by the
circle and have apices on its axis. The foregoing, possibly tedious, argument is deemed
necessary because the circle axis intersection criterion is the constraint on which all four of
the mentioned shortest distance cases are based. The first two cases are easy to formulate
and compute in various ways. Nevertheless they are included in order to lead up, via the
line-to-circle case, to the quite subtle fourth.
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Figure 1: Pencil of cones right-sectioned by circle k having apices on axis A.

2 From Point to Circle

Points on a circle in space can be conveniently represented by two simultaneous surface
equations; the plane m on the circle k and a sphere h of the same radius r. Assume point P
is given along with k, specified by its centre point M and axis line A. A second plane p on
all lines joining P to A provides the third constraining surface necessary to obtain a discrete
set of points, i.e., solutions. Describing P and M by their homogeneous point coordinates,
circle axis A by its radial Plücker line coordinates (a thorough discussion of point, line, and
plane coordinates is to be found in [4]) , and the radius by the scalar r we have:

P{p0 : p1 : p2 : p3}, M{m0 : m1 : m2 : m3},

A{a01 : a02 : a03 : a23 : a31 : a12} and r.

The three constraints which express extreme points C{c0 : c1 : c2 : c3} on k, i.e., closest and
farthest from P , can be written after the homogeneous plane coordinates of p, p{P0 : P1 :
P2 : P3} are defined.

p = A ∩ P, Pi =
3

∑

j=0

Aijpj,

P0 = A01p1 +A02p2 +A03p3

P1 = −A01p0 +A12p2 −A31p3

P2 = −A02p0 −A12p1 +A23p3

P3 = −A03p0 +A31p1 −A23p2.
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Therefore the constraints are written as follows.

h : m2
0
(c2

1
+ c2

2
+ c2

3
)− 2m0c0(m1c1 +m2c2 +m3c3)

+c2
0
(m2

1
+m2

2
+m2

3
− r2m2

0
) = 0, (1)

m : −(A23m1 + A31m2 + A12m3)c0

+m0A23c1 +m0A31c2 +m0A12c3 = 0, (2)

p : P0c0 + P1c1 + P2c2 + P3c3 = 0. (3)

Figure 2: Descriptive geometric solution to the shortest distance problem connecting a circle
to a point not in the plane of the circle.

Figure 2 shows a constructive solution to this problem which yields the points C and
C ′; the nearest and furthest from P . The lines on P and C and P and C ′ are seen to
intersect A. To reinforce the notion that the solution could be arrived at in various ways,
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notice by reexamining Figure 2 that a cone on apex P and sectioned by k contains two
generators on C and C ′, where p cuts k. Similarly one might express the distance from P
to C by angularly parameterizing C around k and formulating a minimization problem. It
is contended however that the set of three explicit constraint equations represents the best
way.

3 From Plane to Circle

At lower right in Figure 2 one sees the constructive solution to finding the extreme segments
connecting a given plane p to k. The computational approach proposed is based on the
observation that all shortest distances to p must be measured along lines perpendicular to
p. So Eq. 3 in the set of constraints above is replaced by Eq. 4 below, that of a plane
a{A0 : A1 : A2 : A3} on A and normal to given plane p{P0 : P1 : P2 : P3}.

a = A ∩Q, Ai =
3

∑

j=0

Aijqj,

where Q is a point on the line at infinity, Q{q0 : q1 : q2 : q3} ≡ {0 : P1 : P2 : P3}.

A0 = A01P1 +A02P2 +A03P3,
A1 = +A12P2 −A31P3,
A2 = −A12P1 +A23P3,
A3 = +A31P1 −A23P2,

a : A0c0 + A1c1 + A2c2 + A3c3 = 0. (4)

Notice that an elliptical cylinder sectioned by k and normal to p contains two generators on
C and C ′ where a cuts k.

4 From Line to Circle

Now the intention is to connect given line X to k via paths of extreme length. The solutions
to a specific problem is shown in Figure 3 No constructive solution is available because the
surface, which replaces p or a in the previous two cases, is no plane but a quadric ruled by all
lines intersecting A and X and normal to X as well. This is a three line ruling. The third line
is Q the line at infinity that intersects all lines normal to X . E.g., if X{1 : 0 : 0 : 0 : 0 : 0}
then Q{0 : 0 : 0 : 1 : 0 : 0}. The ruling on three lines is q, a hyperboloid of one sheet which
must intersect h and m on four not necessarily real points.

4.1 Computing the Quadric

Although the general theory of quadrics and their properties are treated with authority and
at considerable length by Sommerville [5] and others, the derivation of the implict point

5



Figure 3: Descriptive geometric solution to the shortest distance problem connecting a circle
to a line not in the plane of the circle.

equation of the hyperboloid on three given skew lines in a regulus is not. The implicit
equation derivation is alluded to via detailed geometric analysis by Hilbert and Cohn-Vossen
in [6], but no algebraic treatment is given. It was however covered in detail in [7] and [8] so
only the overall principle of approach will be outlined and the results, in terms of relevant
line coordinates, will be presented here. The three given axial lines are A, Q and X and
they must intersect all radial lines C in the opposite regulus. E.g.,

A01c01 + A02c02 + A03c03 + A23c23 + A31c31 + A12c12 = 0.

Using the condition that the point C is on line C and eliminating all variable line coor-
dinates cij from three line intersection equations like the one above produces the quadric
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q = q(c0, c1, c2, c3) = 0.

[A01(Q31X12 −Q12X31) +Q01(X31A12 −X12A31)

+X01(A31Q12 − A12Q31)] c2
1

+[A02(Q12X23 −Q23X12) +Q02(X12A23 −X23A12)

+X02(A12Q23 − A23Q12)] c2
2

+[A03(Q23X31 −Q31X23) +Q03(X23A31 −X31A23)

+X03(A23Q31 − A31Q23)] c2
3

+[A23(Q31X02 −Q02X31 +X12Q03 −X03Q12)

+Q23(X31A02 −X02A31 + A12X03 − A03X12)

+X23(A31Q02 − A02Q31 +Q12A03 −Q03A12)] c2c3

+[A31(Q12X03 −Q03X12 +X23Q01 −X01Q23)

+Q31(X12A03 −X03A12 + A23X01 − A01X23)

+X31(A12Q03 − A03Q12 +Q23A01 −Q01A23)] c3c1

+[A12(Q23X01 −Q01X23 +X31Q02 −X02Q31)

+Q12(X23A01 −X01A23 + A31X02 − A02X31)

+X12(A23Q01 − A01Q23 +Q31A02 −Q02A31)] c1c2

+[A01(Q31X02 −Q02X31 −X12Q03 +X03Q12)

+Q01(X31A02 −X02A31 − A12X03 + A03X12)

+X01(A31Q02 − A02Q31 −Q12A03 +Q03A12)] c0c1

+[A02(Q12X03 −Q03X12 −X23Q01 +X01Q23)

+Q02(X12A03 −X03A12 − A23X01 + A01X23)

+X02(A12Q03 − A03Q12 −Q23A01 +Q01A23)] c0c2

+[A03(Q23X01 −Q01X23 −X31Q02 +X02Q31)

+Q03(X23A01 −X01A23 − A31X02 + A02X31)

+X03(A23Q01 − A01Q23 −Q31A02 +Q02A31)] c0c3

+[A01(Q02X03 −Q03X02 + A02(Q03X01 −Q01X03)

+A03(Q01X02 −Q02X01)] c2
0
= 0. (5)

4.2 A Hyperbolic Paraboloid

In the example of Figure 3 lines A and X are given by their radial Plücker coordinates, while
in Eq. 5 the Plücker coordinates are axial so

A{A01 : A02 : A03 : A23 : A31 : A12} ≡ {−30 : 40 : 0 : 4 : 3 : 0}

≡ {−sa02 : sa01 : 0 : a01 : a02 : 0},

Q{Q01 : Q02 : Q03 : Q23 : Q31 : Q12} ≡ {1 : 0 : 0 : 0 : 0 : 0},

X{X01 : X02 : X03 : X23 : X31 : X12} ≡ {0 : 0 : 0 : 1 : 0 : 0}.

7



Substituting into Eq. 5 produces, with the reference frame attitude chosen in Figure 3, the
equation of a nice hyperbolic paraboloid with a principal axis tipped along the space diagonal
in the first octant.

q : sa01c0c2 − a02c1c3 ≡ 40c2 − 3c1c3 = 0. (6)

Together with the sphere h this surface intersects the meridial plane m of the circle in four
points. This is illustrated in Figure 4. These could all be real if the plane m were parallel
to A and X but alas m is normal to A by definition so there are but two extreme lines from
X , i.e., to C and C ′ shown in Figure 3. For the moment, no method is evident whereby q
might be replaced by a plane so as to make this a true second order problem.
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Figure 4: Plane, sphere, and hyperbolic paraboloid.

5 From Circle to Circle

What can be done with a formulation based on two given spheres and meridial cutting
planes? One may form, on the circles’ axis lines so produced and the circles themselves,
three surfaces and obtain their points of intersection. What may be the nature of these
surfaces? Two lines and each circle taken separately and then both circles taken together
with either axis line may all be ruled with straight lines. Such surfaces are called either
conoids [9, 10] after Plücker, or cylindroids [11], after Ball; cones wherein the point apex
degenerates to a line. The authors could find no literature at hand which might provide
convenient method to generate conoid point or line equations of this sort. With the former
one would intersect the three surfaces to get points like C and C ′ above. With the latter only
two surfaces would be used to seek common lines, thereby fulfilling the key criterion. From
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the point equations one concludes, since there are no surfaces of order one, i.e., planes, which
contain circles with skew axes, that the solution of extreme circle to circle connections must
admit an octic lower bound. The reader’s indulgence is asked here because now an approach
somewhat different, from that common to the previous three cases, will be adopted.

5.1 Layout

Points P and Q are on the respective circumference of circles centred on C and M and with
radii R and r, respectively. These points are parameterized according to angles α and β
measured from rays parallel to z = 0 in a reference frame with the z-axis on the line of
intersection on the circle planes c and m. These vertical planes are disposed symmetrically,
by angle θ, on either side of the reference x-axis. Circle centres C and M , on these planes,
are an equal distance h above and below plane z = 0. The distances from the z-axis to C
and to M are j and k. The reference frame and circle layout are shown in Figure 5.

Figure 5: Circle-circle layout.
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5.2 A Line Geometric Approach

Consider circle axis lines P and Q on C and M and normal to c and m, respectively. Some
line R intersecting P and Q and on P and Q will exhibit minimum span between circle
circumferences because all lines in the congruence which intersects circumference and axis
are normal to the circle tangent. Only lines in such congruences may qualify as shortest
distance paths to an arbitrary point in space. Two constraint equations, based on this
principle, will be written and solved for α and β.

5.3 Constraint Equation Specifications

5.3.1 The Line P

P = C ∩ Cω,

where Cω is the point that closes P .

C{c0 : c1 : c2 : c3} ≡ {1 : j cos θ : −j sin θ : h},

Cω{0 : sin θ : cos θ : 0},

P{p01 : p02 : p02 : p23 : p31 : p12} ≡ {sin θ : cos θ : 0 : −h cos θ : h sin θ : j}.

5.3.2 The Line Q

Q = M ∩Mω,

where Mω is the point that closes Q.

M{m0 : m1 : m2 : m3} ≡ {1 : k cos θ : k sin θ : −h},

Mω{0 : sin θ : − cos θ : 0},

Q{q01 : q02 : q02 : q23 : q31 : q12} ≡ {sin θ : − cos θ : 0 : −h cos θ : −h sin θ : −k}.

5.3.3 The Line R

R = P ∩Q,

P{p0 : p1 : p2 : p3}

≡ {1 : cos θ(j +R cosα) : − sin θ(j +R cosα) : (h−R sinα)}, (7)

Q{q0 : q1 : q2 : q3}

≡ {1 : cos θ(k + r cos β) : sin θ(k + r cos β) : −(h− r sin β)}, (8)
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R{r01 : r02 : r03 : r23 : r31 : r12}

≡ {− cos θ[(j +R cosα)− (k + r cos β)]

: sin θ[(j +R cosα) + (k + r cos β)]

: −[(h−R sinα) + (h− r sin β)]

: sin θ[(j +R cosα)(h− r sin β)− (h−R sinα)(k + r cos β)]

: cos θ[(h+R sinα)(k + r cos β) + (j +R cosα)(h− r sin β)]

: 2 cos sin θ(j +R cosα)(k + r cos β)}.

5.3.4 Two Constraint Equations

∃P ∩R, ∃Q ∩R,

p23r01 + p31r02 + p12r03 + p01r23 + p02r31 + p03r12 = 0, (9)

q23r01 + q31r02 + q12r03 + q01r23 + q02r31 + q03r12 = 0. (10)

Substituting the Plücker coordinates of P , Q and R given above, removing the common
factor R from Eq. 9 and r from Eq. 10 produce Eqs. 11 and 12 below.

2 cosα +

[

j

h
+

k

h

(

1− 2 cos2 θ
)

]

sinα

+
r

h

[(

1− 2 cos2 θ
)

sinα cos β − cosα sin β
]

= 0, (11)

2 cos β +

[

k

h
+

j

h

(

1− 2 cos2 θ
)

]

sin β

+
R

h

[(

1− 2 cos2 θ
)

cosα sin β − sinα cos β
]

= 0. (12)

The following dimensionless ratios are defined thus.

ρ1 ≡
j

h
, ρ2 ≡

k

h
, ρ3 ≡

r

h
, ρ4 ≡ (1− 2 cos2 θ),

ρ5 ≡
R

h
, ρ6 ≡ ρ1 + ρ2ρ4, ρ7 ≡ ρ2 + ρ1ρ4, ρ8 ≡ ρ3ρ4, ρ9 ≡ ρ5ρ4.

So Eq. 11 and Eq. 12 become Eq. 13 and Eq. 14.

2 cosα + ρ6 sinα + ρ8 sinα cos β − ρ3cosα sin β = 0, (13)

2 cos β + ρ7 sin β + ρ9 cosα sin β − ρ5 sinα cos β = 0. (14)

Now the following polynomial ratios are introduced.

cosα =
1− u2

1 + u2
, sinα =

2u

1 + u2
, u ≡ tan

α

2
,
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cos β =
1− v2

1 + v2
, sin β =

2v

1 + v2
, v ≡ tan

β

2
.

Substituting these into Eq. 13 and Eq. 14 and multiplying out denominators with the product
(1 + u2)(1 + v2)/2 produce two polynomials in u and v.

(1− u2)(1 + v2) + ρ6u(1 + v2)

+ρ8u(1− v2)v − ρ3(1− u2)v = 0, (15)

(1− v2)(1 + u2) + ρ7v(1 + u2)

+ρ9v(1− u2)v − ρ5(1− v2)u = 0. (16)

Collecting v in Eqs. 15 and 16 produces Eqs. 17 and 18.

[(ρ6 − ρ8)u+ (1− u2)]v2 − ρ3(1− u2)v + [(ρ6 + ρ8) + (1− u2)] = 0, (17)
[

ρ5u− (1 + u2)
]

v2 +
[

ρ7(1 + u2) + ρ9(1− u2)
]

v −
[

r5u− (1 + u2)
]

= 0, (18)

which may be abridged as

j1v
2 + j2v + j3 = 0, k1v

2 + k2v + k3 = 0. (19)

The parameter v may be eliminated with Eq. 20

(j1k2 − k1j2)(j2k3 − k2j3)− (j3k1 − k3j1)
2 = 0, (20)

which can be collected on u to produce an eighth order univariate, Eq. 21, in u.

a0u
8 + a1u

7 + a2u
6 + a3u

5 + a4u
4 + a5u

3 + a6u
2 + a7u+ a8 = 0, (21)

where coefficients are expressed below in terms of the dimensionless ratios ρi and some
intermediate combinations thereof which will be tabulated first.

t1 ≡ ρ7 − ρ9 t2 ≡ ρ3 − t1 t3 ≡ ρ3 + t1

t4 ≡ ρ5 + ρ6 t5 ≡ ρ3ρ5 t6 ≡ ρ6 − ρ8

t7 ≡ ρ6 + ρ8 t8 ≡ ρ6 − ρ5 t9 ≡ ρ7 + ρ9

t10 ≡ ρ5 + ρ6 t11 ≡ ρ5ρ6 t12 ≡ −ρ3 + t9

t13 ≡ ρ3 + t0 t14 ≡ t5 − t1t6 t15 ≡ t5 + t1t7

t16 ≡ t5 + t6t9 t17 ≡ t5 − t7t9 (22)

a8 ≡ t2t3 − 4

a7 ≡ 8t4 − t3t14 − t2t15

a6 ≡ −8t11 − 4ρ9t1 − 4t2
4
+ t14t15

a5 ≡ 8t8 + 4ρ6ρ9t1 + 8t10t11 + t2t17 + t3t16

a4 ≡ t3t12 − 4ρ2
9
− t15t16 − t14t17 − t2t13 + 8− 8t8t10 − 4t2

11

a3 ≡ −8t4 + 4ρ6ρ9t9 + 8t8t11 − t12t15 + t13t14

a2 ≡ 8t11 + 4ρ9t9 − 4t2
8
+ t16t17

a1 ≡ −8t8 + t12t17 − t13t16

a0 ≡ −t12t13 − 4. (23)
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5.4 Solution

Eight values of tan α
2
are computed with Eq. 21. Then the unique corresponding values of

tan β

2
are available, after eliminating v2 from Eqs. 19, to produce the linear equation in v,

Eq. 24.
(j1k2 − k1j2)v − (j3k1 − k3j1) = 0. (24)

Finally the coordinates of the desired connecting points P and Q are evaluated with Eq. 7
and Eq. 8.

Figure 6: Circle-Circle: checking the four real solutions for circle axis intersection.

5.5 An Example

The example shown in Figure 5 was solved using the approach described above and for the
parameters shown. Only four of the eight roots are real values of tan α

2
. These produce the

following corresponding values of α and β.

α β
−24.768◦ −68.088◦

−9.467◦ 11.234◦

158.063◦ −30.001◦

168.035◦ 144.196◦

Shown in Figure 6 is constructive verification of these results. Note that in all four cases,
lines PQ intersect the circle axes.
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6 Conclusion

In this paper we have presented closed form algebraic solutions to a set of four spatial shortest
distance problems between: a circle and point not in the plane of the circle; a circle and
a plane; a circle and line not in the plane of the circle; and two non coplanar circles. The
algebraic results have been confirmed with descriptive geometric constructions. Future work
requires a careful examination be carried out to identify, with relations among the coefficients
of Eq. 23, various geometric conditions pertaining to circle disposition which give rise to:

• a unique shortest distance PQ;

• a pair of identical minimum distances;

• algebraic conditions producing a one parameter ruling set of equal minimum distances;

and provide answers to:

• when are minimal distances zero?

• Are there ever more than four real roots (it is most doubtful based on the evidence of
the line to circle case)?

Our results have led us to the following question: is there a rapid, sure way to recognize and
select true minima among real multiple distinct roots?
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