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a b s t r a c t

A general modification to the kinematics model of the Atlas spherical orientation platform
is presented. The Jacobian is augmented to include the effects of dual row omnidirectional
wheels (i.e., two offset races of free spinning rollers). The results indicate that ignoring the
offset between races can result in a significant error in the evaluation of the sphere angular
velocity vector in response to a prescribed set of omnidirectional wheel velocities. The
methodology presented in this paper is general and can be applied to the analysis of other
mechanical systems employing dual row omnidirectional wheels.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The Atlas spherical motion platform [1], shown in Fig. 1, is a novel conceptual design that allows unlimited angular dis-
placements about any axis passing through the geometric centre of the sphere. Specifically, Atlas comprises a sphere resting
on three omnidirectional wheels, which have rollers on their periphery allowing free motion in the direction perpendicular
to the actuation direction (see Fig. 2). The omnidirectional wheels act as friction wheels to transmit the motion to the sphere,
while not resisting motion in the direction orthogonal to the actuation direction. The kinematics of this platform have been
derived by the authors for the case where the omnidirectional wheels are idealized to a single point of continuous contact
with the sphere [2]. In reality, practical omnidirectional wheel design does not support such convenient assumptions. The
nature of omnidirectional wheels necessitates discontinuities between the rollers that allow for the extra degree of freedom,
leading essentially to two alternatives.

1. The first consists of a single row of rollers with some space between the rollers. This results in vibration during actuation
due to changes in the local diameter of the omnidirectional wheel in gaps where no roller is present. However, the contact
point, when present, remains in a single place. This type of wheel is commonly used in mobile robots [4,5]. Some attempts
to solve the vibration issue have been made through either redesigning the omnidirectional wheels to minimize the gaps
[6] or going through another level of smooth interface between the omnidirectional wheel and the point of contact by
means of a smooth sphere between each actuating omnidirectional wheel and the other surface [7]. An alternative is
the Mecanum wheel, where the rollers are at a 45� angle with respect to the main actuation axis of the wheel, instead
of the more common 90� arrangement [8,9]. This solution, while reducing the normal vibrations, introduces more kine-
matic slip and lateral vibration into the system.
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2. The second alternative consists of two rows of rollers (as shown in Fig. 2) arranged such that a roller is always in contact
with the sphere. In this case, the point of contact on the sphere varies in time as the contact point switches from one roller
to the other and back. This introduces a stepwise oscillation in the instantaneous contact point position vector, thereby
altering the kinematics.

This paper focuses on the dual row case. Although dual row omnidirectional wheels have been used in previous applica-
tions, the shift of contact points has not been addressed, and an average contact point has always been assumed, explicitly or
implicitly [9]. While in the case of mobile robots this contact point shift may be insignificant, when it comes to actuating a
sphere, the errors in estimating the magnitude and direction of the resulting angular velocity vector of the sphere are more
significant. This paper presents a generic analytical solution for the shifting contact point problem, demonstrates it using the
current Atlas platform configuration, and formulates it in a convenient form.

Fig. 1. The Atlas spherical motion platform table-top demonstrator attached to an X � Y � Z linear motion platform.

Fig. 2. A dual row omnidirectional wheel.
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2. The problem

While the kinematics for the Atlas platform have been developed in Ref. [2] for perfectly round omnidirectional wheels,
here that basic assumption is removed. Instead, one of the more common solutions to the contact discontinuity problem, the
use of dual row omnidirectional wheels will be treated. The dual row design aligns the rollers in two parallel rows, such that
exactly when a roller on one row loses contact with the rolling surface the roller on the other row enters contact at the same
point in time, thus maintaining roller contact at all times. Fig. 3 shows an imprint of a dual row omnidirectional wheel, in use
in the Atlas demonstrator, on a flat surface. Attention is drawn to the fact that shifting one of the two parallel rows to align
with the other yields a continuous straight line. This design indeed solves the contact gap problem, but introduces a new
one: there is no longer a single point of contact. Rather, there are two alternating points of contact on the sphere. This change
in the location of the contact point on the sphere alters the kinematics of the system and modifications to the kinematic
model are necessary to improve the accuracy of the system kinematic and dynamic models. This is important for subsequent
use in model-based control.

3. Refined kinematics model

The kinematics for the ideal case have been developed in Ref. [2]. The underlying concept there was to obtain a relation-
ship between ~X, the angular velocity vector of the sphere, and xi, the angular speeds of the three omnidirectional wheels,
that would account for zero kinematic slip between the sphere and the omnidirectional wheels. The condition is met by
requiring that the projection of the velocities of the sphere at all contact points in the actuation direction of the omnidirec-
tional wheel be the same, or, expressed mathematically

ð~X�~RiÞ � v̂i ¼ Vi; ð1Þ

where ~Ri is the position vector of contact point i, v̂i is the vector of direction cosines of the omnidirectional wheel contact
point velocities in the actuation directions, and Vi is the speed of omnidirectional wheel i at the contact point. This condition
resulted in the following relationship

~X ¼ J~x; ð2Þ

where ~x was defined as

~x ¼
x1

x2

x3

8><>:
9>=>; ð3Þ

and J is the Jacobian of the architecture that, in the most general form, is

J ¼ 1
R

bXT
1bXT
2bXT
3

2664
3775
�1

r1 0 0
0 r2 0
0 0 r3

264
375; ð4Þ

where ri are the radii of the omnidirectional wheels and bXi are defined as the unit induced angular velocities, and defined as

bXi ¼ bRi � v̂i ð5Þ

with bRi being the direction cosines of the omnidirectional wheel contact point position vectors.
In the case of dual row omnidirectional wheels, the position vector ~Ri of the contact points alternates between two loca-

tions. We define six contact points (two per omnidirectional wheel) ~Rij, where the first index marks the omnidirectional
wheel, and the second index marks the point of contact of a specific row on the wheel. This results in eight different com-
binations of possible simultaneous contact points:

Fig. 3. The trace of a dual row omnidirectional wheel left when it rolls on a flat surface.
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R11 R21 R31

R11 R21 R32

R11 R22 R31

R11 R22 R32

R12 R21 R31

R12 R21 R32

R12 R22 R31

R12 R22 R32

:

Now, since v̂i remains the same as with the single-row case, the only change to bXi is due to the change from bRi to bRij, thus

bXij ¼ bRij � v̂i ð6Þ

and so, we obtain eight Jacobians for the eight combinations above:

Jlmn ¼
1
R

bXT
1lbXT

2mbXT
3n

2664
3775
�1

r1 0 0
0 r2 0
0 0 r3

264
375 l;m;n ¼ 1;2; ð7Þ

where the indices l, m, n determine the row in contact with the sphere on omnidirectional wheels 1, 2, and 3, respectively.
Determining l, m, and n could be performed directly using sensors, or by simply integrating the angular velocities of each
omnidirectional wheel independently, such that:

/i ¼
Z t

0
xi dt ð8Þ

and for 2N rollers per omnidirectional wheel, the indices may simply be calculated, using the integer floor values, as

l ¼ floor
N/1

p
mod 2

� �
þ 1; ð9Þ

m ¼ floor
N/2

p
mod 2

� �
þ 1; ð10Þ

n ¼ floor
N/3

p
mod 2

� �
þ 1: ð11Þ

This approach would require first evaluating the indices l, m, and n, and then calculating the angular velocity of the sphere,
using the appropriate Jacobian.

4. Examples

The following examples show architectures that satisfy the necessary no-slip condition. The sphere has radius R, and each
of the omnidirectional wheels has radius r, while the free-spinning rollers have radius rr . The contact point details are illus-
trated in Fig. 4, where the dimensions of the rollers are exaggerated for clarity.

There is a deviation of �Dh from the ideal contact point used in the evaluation of the Jacobian of the ideal case. It is clear
from Fig. 4 that

Fig. 4. The actual contact points on the Atlas sphere.
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sin Dh ¼
d
2

Rþ rr
¼ d

2ðRþ rrÞ
; ð12Þ

thus

cos Dh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 Dh

p
¼ 1

2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
: ð13Þ

Utilizing these relations, it is clear that for any arbitrary angle h

sinðh� DhÞ ¼ 1
2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
sin h� d cos h

� �
;

cosðh� DhÞ ¼ 1
2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
cos h� d sin h

� �
:

ð14Þ

4.1. The orthogonal case

Fig. 5 shows a case, where the omnidirectional wheels are mutually orthogonal. Thus, the position vectors of the three
contact points for the ideal case are

~R1 ¼ R̂i; ~R2 ¼ R̂j; ~R3 ¼ Rk̂: ð15Þ

However, accounting for the angular deviation from the ideal contact point, the position vectors become:

~R11 ¼ Rðcos Dĥiþ sin DĥjÞ ¼ R
2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
îþ d̂j

� �
;

~R12 ¼ Rðcos Dĥi� sin DĥjÞ ¼ R
2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
î� d̂j

� �
;

~R21 ¼ Rðcos Dĥjþ sin Dhk̂Þ ¼ R
2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
ĵþ dk̂

� �
;

~R22 ¼ Rðcos Dĥj� sin Dhk̂Þ ¼ R
2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
ĵ� dk̂

� �
;

~R31 ¼ Rðsin Dĥiþ cos Dhk̂Þ ¼ R
2ðRþ rrÞ

d̂iþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
k̂

� �
;

~R32 ¼ Rð� sin Dĥiþ cos Dhk̂Þ ¼ R
2ðRþ rrÞ

�d̂iþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
k̂

� �
:

ð16Þ

The direction cosines of the omnidirectional wheel contact point velocities in the actuation directions are [2]:

Fig. 5. Kinematic architecture for the orthogonal case.
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v̂1 ¼ k̂;

v̂2 ¼ î;

v̂3 ¼ ĵ:

ð17Þ

Using these relations in Eq. (6), yields:

bX11 ¼
1

2ðRþ rrÞ
ðd̂i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
ĵÞ;

bX12 ¼
1

2ðRþ rrÞ
�d̂i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
ĵ

� �
;

bX21 ¼
1

2ðRþ rrÞ
d̂j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
k̂

� �
;

bX22 ¼
1

2ðRþ rrÞ
�d̂j�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
k̂

� �
;

bX31 ¼
1

2ðRþ rrÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
îþ dk̂

� �
;

bX32 ¼
1

2ðRþ rrÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
î� dk̂

� �
:

ð18Þ

Finally, the inverse Jacobian becomes:

J�1
lmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
2ðRþ rrÞ

J�1
id þ

Rd
2rðRþ rrÞ

ð�1Þlþ1 0 0

0 ð�1Þmþ1 0

0 0 ð�1Þnþ1

264
375; ð19Þ

where Jid is the Jacobian for the ideal case:

J�1
id ¼

R
r

0 �1 0
0 0 �1
�1 0 0

264
375: ð20Þ

The orthogonal case is presented for discussion as it is convenient to study the essential difference between the single-race
and dual race omnidirectional wheels. The first term in Eq. (19) indicates a slight reduction of the magnitude of ~X in the ori-
ginal direction, while the second term reveals a more significant change in direction.

4.2. The Atlas platform

The current configuration of the Atlas spherical motion platform has the three omnidirectional wheels arranged on the
edges of an equilateral triangle with an elevation angle of h, as illustrated in Fig. 6. In this case:

Fig. 6. Kinematic architecture for the Atlas sphere [3].
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~R1 ¼ Rðcos ĥi� sin hk̂Þ;

~R2 ¼ R �1
2

cos ĥiþ
ffiffiffi
3
p

2
cos ĥj� sin hk̂

 !
;

~R3 ¼ R �1
2

cos ĥi�
ffiffiffi
3
p

2
cos ĥj� sin hk̂

 !
:

ð21Þ

Accounting for the change in the contact points, the new position vectors may be expressed as:

~R11 ¼ Rðcosðh� DhÞ̂i� sinðh� DhÞk̂Þ;
~R12 ¼ Rðcosðhþ DhÞ̂i� sinðhþ DhÞk̂Þ;

~R21 ¼ R �1
2

cosðh� DhÞ̂iþ
ffiffiffi
3
p

2
cosðh� DhÞ̂j� sinðh� DhÞk̂

 !
;

~R22 ¼ R �1
2

cosðhþ DhÞ̂iþ
ffiffiffi
3
p

2
cosðhþ DhÞ̂j� sinðhþ DhÞk̂

 !
;

~R31 ¼ R �1
2

cosðh� DhÞ̂i�
ffiffiffi
3
p

2
cosðh� DhÞ̂j� sinðh� DhÞk̂

 !
;

~R32 ¼ R �1
2

cosðhþ DhÞ̂i�
ffiffiffi
3
p

2
cosðhþ DhÞ̂j� sinðhþ DhÞk̂

 !
:

ð22Þ

The direction cosines of the omnidirectional wheel contact point velocities in the actuation directions are [2]:

v̂1 ¼ ĵ;

v̂2 ¼ �
ffiffiffi
3
p

2
î� 1

2
ĵ;

v̂3 ¼
ffiffiffi
3
p

2
î� 1

2
ĵ:

ð23Þ

Utilizing the relations shown in Eqs. (14), (22), and (23) in Eq. (6), the expressions for the unit vectors identifying the direc-
tions of the sphere’s angular velocity components induced by the individual omnidirectional wheels are

bX11 ¼
1

2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
sin h� d cos h

� �
îþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
cos hþ d sin h

� �
k̂

� �
;

bX12 ¼
1

2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
sin hþ d cos h

� �
îþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
cos h� d sin h

� �
k̂

� �
;

bX21 ¼
1

2ðRþ rrÞ
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
sin h� d cos h

� �̂
iþ

ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
sin h� d cos h

� �
ĵ

"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
cos hþ d sin h

� �
k̂
�
;

bX22 ¼
1

2ðRþ rrÞ
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 þ d2

q
sin hþ d cos h

� �̂
iþ

ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 þ d2

q
sin hþ d cos h

� �
ĵ

"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
cos h� d sin h

� �
k̂
�
;

bX31 ¼
1

2ðRþ rrÞ
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
sin h� d cos h

� �̂
i�

ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
sin h� d cos h

� �
ĵ

"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
cos hþ d sin h

� �
k̂
�
;

bX32 ¼
1

2ðRþ rrÞ
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 þ d2

q
sin hþ d cos h

� �̂
i�

ffiffiffi
3
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
sin hþ d cos h

� �
ĵ

"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
cos h� d sin h

� �
k̂
�
:

ð24Þ

Finally, the inverse Jacobian becomes:

J�1
lmn ¼

R
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
2ðRþ rrÞ

sinh 0 cosh

� 1
2 sinh

ffiffi
3
p

2 sinh cosh

� 1
2 sinh �

ffiffi
3
p

2 sinh cosh

264
375þ R

r
d

2ðRþ rrÞ

ð�1Þl cosh 0 ð�1Þlþ1 sinh

ð�1Þmþ1 1
2 cosh ð�1Þm

ffiffi
3
p

2 cosh ð�1Þmþ1 sinh

ð�1Þnþ1 1
2 cosh ð�1Þnþ1

ffiffi
3
p

2 cosh ð�1Þnþ1 sinh

2664
3775:
ð25Þ
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The inverse Jacobian for the ideal system is [2]

J�1 ¼ R
r

sin h 0 cos h

� 1
2 sin h

ffiffi
3
p

2 sin h cos h

� 1
2 sin h �

ffiffi
3
p

2 sin h cos h

264
375: ð26Þ

For the dual row system the inverse Jacobian is

J�1
lmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q
2ðRþ rrÞ

J�1 þ R
r

DJ0; ð27Þ

where J�1 is the inverse of the Jacobian for the ideal case and DJ0 is the correction component for the contact point change,
such that

DJ0 ¼ d
2ðRþ rrÞ

ð�1Þl cos h 0 ð�1Þlþ1 sin h

ð�1Þmþ1 1
2 cos h ð�1Þm

ffiffi
3
p

2 cos h ð�1Þmþ1 sin h

ð�1Þnþ1 1
2 cos h ð�1Þnþ1

ffiffi
3
p

2 cos h ð�1Þnþ1 sin h

2664
3775: ð28Þ

This last term is the only one required to be reevaluated as it is the only one that may vary in time. The Jacobian of the system
is therefore

Jlmn ¼ ðJ�1 þ R
r

DJ0Þ�1: ð29Þ

5. Numerical results

Some numerical examples have been performed in order to demonstrate the importance of the suggested correction to
the Jacobian. The program developed for this purpose evaluates the resulting angular velocity vector for a few sets of time-
varying inputs, for both the original Jacobian developed for the ideal case, and for the corrected Jacobian suggested in this
paper. The magnitude and the direction of the resulting angular velocity vectors are evaluated and compared for both cases.
The reference platform for the numerical experiment is an Atlas platform as described in the previous section, with an ele-
vation angle of h = 40�, and the following design parameters:

R ¼ 15 cm; rr ¼ 4:85 mm; d ¼ 12:5 mm; r ¼ 25 mm; 2N ¼ 16:

The input is a set of angular speeds of the three omnidirectional wheels, prescribed to illustrate a variety of cases. The inputs
are described in Table 1.

The prescribed input was selected to demonstrate cases with various ratios among the omnidirectional wheels’ angular
speeds. The first step was intended for creating a slight misalignment such that the experiment will have a starting point
where not all omnidirectional wheels are in the same phase.

Fig. 7 shows the orientation error [�] of the angular velocity vector ~X of the sphere and the error [%] in the magnitude of ~X.
The orientation error is defined as the angle between the two resulting angular velocity vectors:

� ¼ cos�1
~Xid � ~X
k~Xidkk~Xk

 !
; ð30Þ

Table 1
Prescribed omnidirectional wheel inputs

Time (s) x1 (rad/s) x2 (rad/s) x3 (rad/s)

0 1 0 0
0.1 1 1 1
1 1 2 2
2 2 1 1
3 2 1 2
4 0 0 1
5 1 0 0
6 0 1 0
7 1 2 3
8 2 1 3
9 1 3 2

10 2 3 1
11 3 1 2
12 3 2 1
13 0 0 0
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where ~Xid is the resultant angular velocity vector for the ideal single-row case. It is clear from the results that there are both
magnitude and direction errors that are generally non-zero. The magnitude error peaks at 3.8%, for the selected input set. The
angular deviation, which is the angle between the angular velocity vector of the sphere, calculated using the augmented
Jacobian, and the angular velocity vector of the sphere calculated using the ideal case Jacobian, as demonstrated in Eq.
(30) is also generally non-zero, and peaks at an angle of 3.2�. The zero case only exists when the prescribed angular speeds
of all three omnidirectional wheels are the same, which translates to a rotation about the Z-axis of the sphere, as long as all
omnidirectional wheels are touching with the same race. The initial intentional misalignment is used to prevent this unique
case, and demonstrate the more general case for which the augmented Jacobian presented above was developed.

6. Conclusion

The problem of shifting contact points because of the nature of the dual row omnidirectional wheels in current use in the
Atlas spherical orienting platform has a closed form solution, which is presented in this paper for the first time. The solution
requires either a sensing process or an integration process to determine the current contact points, which determines the
correct Jacobian to be used. In the case of the Atlas configuration, the eight Jacobian matrices could be reduced to an ideal
matrix J and a correction matrix DJ0 that needs to be reevaluated after each integration step. This correction matrix can either
be viewed as an actual correction term, or as the error in the evaluation of ~X using the ideal Jacobian developed in Ref. [2]. It
is also worth noting that the presented solution reduces to the ideal solution for the case of d ¼ 0, so that it can be used as a
more general expression for the kinematics of the system.

A closer look at Eqs. (19) and (25) from the examples reveals that one can generalize the Jacobian of a system comprising
of three identical dual row omnidirectional wheels:

J�1
lmn ¼

R
r

1
2ðRþ rrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðRþ rrÞ2 � d2

q bXT
1bXT
2bXT
3

2664
3775� d

ð�1ÞlbRT
1

ð�1ÞmbRT
2

ð�1ÞnbRT
3

2664
3775

8>><>>:
9>>=>>; l;m; n ¼ 1;2: ð31Þ

Since bRi is orthogonal to bXi by definition, the only way to avoid the directional error of ~X is to set d ¼ 0, thereby reducing the
solution to a single row.

While in the case of mobile robots this problem is rarely considered, the results presented herein suggest that the effects
may cause non-negligible errors. These results suggest that when actuating a sphere, the errors in estimating the magnitude
and direction of the resulting angular velocity vector of the sphere may be significant.
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