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Abstract Conventional training simulators commonly
use a hexapod configuration to provide motion cues.
While widely used, studies have shown that hexapods
are incapable of producing the range of motion required
to achieve high fidelity simulation required in many
applications. A novel alternative is the Atlas motion
platform. This paper presents a new generalized kine-
matic model of the platform which can be applied to
any spherical platform actuated by three omnidirec-
tional wheels. In addition, conditions for slip-free and
singularity-free motions are identified. Two illustrative
examples are given for different omnidirectional wheel
configurations.

1 Introduction

The Atlas motion platform (Hayes and Langlois, 2005)
was introduced as a practical alternative to the Gough
hexapod architecture (Gough, 1956; Stewart, 1965). A
proof-of-concept table-top Atlas platform demonstrator
is illustrated in Figure 1. In this architecture orienting
is decoupled from positioning, and unbounded rotation
is possible about any axis. The decoupling is accom-
plished by fixing a three degree of freedom spherical
orienting platform on a linear platform with three or-
thogonal translational degrees of freedom.

The key to the design is the use of three omnidi-
rectional wheels which impart angular displacements to
the sphere, thereby providing rotational actuation. The
omnidirectional wheels used in the table-top demon-
strator have two offset races of castor rollers on their
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Fig. 1 The Atlas table-top 6-DOF demonstrator highlighting
the omnidirectional wheel actuation concept.

periphery, see Figure 2. The omnidirectional wheel cas-
tor rollers provide near friction-free motion parallel to
each omnidirectional wheel rotation axis.

The concept of a spherical actuator is not new. Spher-
ical dc induction motors were introduced in 1959 by
Williams et al. (1959). Developments continued over
the next 30 years leading to designs presented by Roth
and Lee (1995) and by Chirikjian and Stein (1999), for
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Fig. 2 The omnidirectional wheel used in the Atlas prototype.

example. However, due to physical limitations imposed
by the stator and commutator, angular displacements
are limited. Unbounded rotational motion is achieved
by the Eclipse II architecture (Kim et al., 2002), how-
ever the kinematic model leads to complicated equa-
tions requiring numerical solutions. Moreover, its orien-
tation workspace is constrained by structural interfer-
ences, and rotation limits of the spherical joints. Many
designs for wheeled platforms exist, however changes in
orientation all occur about unidirectional axes. For ex-
ample, Lauwers et al. (2005) use friction wheels to roll a
sphere along the ground, while Ferriere et al. (1998) use
a single omnidirectional wheel to rotate a sphere about
a single axis. Additionally, spherical linkages exist, the
Agile Eye by Gosselin and Hamel (1994) for example,
but all have their ranges of angular motion restricted
by joint limits and link interference.

What differentiates the Atlas sphere from its pre-
decessors is that it interacts with the omnidirectional
wheels through simple contact, there are no joints, levers,
or linkages constraining its motion. This allows full 360°
rotation about any axis in the workspace reachable by
the sphere centre. The travel limits of the linear plat-
form are bounded only by the length of the rails and di-
mensions of the scissor-jack used for vertical travel. The
result is a fully dexterous reachable workspace free from
orienting joint limits, self-collisions, or self-interference
of any kind. The only bounds on the workspace are the
limits of reach of the sphere centre.

In this paper the kinematics of the Atlas motion
platform are presented in a general form for the first
time. The general kinematic model leads to a simple Ja-
cobian whose elements are all time invariant. Because
of the time invariance, design parameters may be se-
lected such that the Jacobian is always invertible. As
a result, the forward and inverse kinematics are always
computable with a single matrix multiplication. Condi-
tions for slip-free and singularity-free orienting capabil-
ity are identified as well. These results underscore an

unexpected strength of the architecture: computation-
ally simple kinematics.

Two examples are given for different omnidirectional
wheel configurations. The first example (Section 4.1)
features an arrangement where the contact points of
the omnidirectional wheels are located where the basis
vectors of a sphere centred orthogonal inertial coordi-
nate reference system pierce the sphere. The wheels are
oriented such that individual wheel rotations produce
angular displacements in yaw, pitch, and roll. The sec-
ond example (Section 4.2) uses the original Atlas con-
figuration outlined in Robinson et al. (2005).

The two examples serve to illustrate the elegance
of the architecture, and the simplicity of the resulting
kinematic model. They further serve to demonstrate
that the current general model offers a substantial im-
provement over the earlier configuration specific kine-
matic models formulated by Holland et al. (2005).

2 Applications

Simulator motion platforms require a high degree of re-
peatability for high fidelity. Moreover, platform motions
must be precisely timed with the graphics to avoid sim-
ulator sickness. Traditionally, hexapods have been used.
This is because of the claim that they offer greater ac-
curacy than serial kinematic chains because their errors
are averaged instead of added cumulatively (Briot and
Bonev, 2007). The primary application of the Atlas mo-
tion platform is motion simulation. A simulated vehicle
cockpit would be housed within the sphere. Projection
facilities would also be internal to the sphere. The abil-
ity to produce continuous unlimited angular displace-
ments in any combination of roll, pitch, and yaw puts
Atlas in new territory in terms of freedom of motion for
such mechanical devices.

The Atlas platform was originally designed to offer
similar stiffness and accuracy as hexapods, but to have
a larger workspace and simplified kinematics. Certain
features, primarily relating to the expanded range of
motion, have lead to a broader range of applications
than the positioning and pointing tasks assigned to
hexapods. For example, hardware-in-the-loop simula-
tion of satellite sensor packages could be performed for
manoeuvres as complex as variable-axis tumbles. Ba-
sic physiological research could benefit from the large
available range of motion for investigating issues such as
debilitating simulator sickness. Fixed wing pilot simula-
tion training could include such manoeuvres as recov-
ering from powered stall. Entertainment applications
include home gaming centres with a motion platform.
Diverse vehicle motions could be simulated: on and



off road vehicles; fixed and rotary wing aircraft; roller-
coasters. Additional applications, and associated chal-
lenges, will continue to emerge as Atlas is developed.

3 Generalized Atlas Kinematics

Generalization of the Atlas platform kinematics can be
achieved by defining the orienting platform as a sphere
actuated by three omnidirectional wheels with arbitrary
sphere contact point locations and arbitrary actuation
directions. While design optimization to achieve eco-
nomic and performance goals will follow from this gen-
eralized formulation, it will not be addressed in this
paper.

The issue of slip at the interface between the sphere
and each omnidirectional wheel is crucial for position
level control and must be addressed in formulating the
generalized kinematic model. Kinematic slip is defined
as the difference between the velocity V; induced by ac-
tuating wheel ¢ at its contact point with the sphere and
the velocity V. of the corresponding contact point on
the sphere (Holland et al., 2005). Kinematic slip must
be absent in order to achieve zero slip in the system.
This is termed the kinematic slip condition.

However, zero slip due to kinetic reasons is a differ-
ent story. One could use ball transfers to transmit an
externally applied constraint force large enough to cre-
ate normal forces at the contact points which generate
friction forces at the same contact points large enough
to overcome the resulting inertial forces. The same is
true with respect to ensuring kinematic closure, i.e.,
that there is never loss of contact between the sphere
and the omnidirectional wheels. This is achieved for the
Atlas demonstrator, shown in Figure 1, through the use
of variable load-inducing bearings. The theoretical kine-
matics problem then becomes that of determining con-
ditions which ensure the kinematic slip condition is sat-
isfied for the three omnidirectional wheels and sphere.
Current studies are examining the inertial effects on ki-
netic slip on a 1.5 m diameter 50 kg composite sphere
driven by Mecanum wheels. Regardless, in the present
work only kinematics are considered.

Here it is important to observe that the omnidi-
rectional wheels used in the Atlas platform allow free
rolling perpendicular to the actuation direction (Leow
et al., 2002; Angeles, 2003), hence the kinematic slip
condition in this direction is relaxed. This means that
the velocity component in this direction is unknown.
While a generalized approach to determining the in-
stantaneous screw, using the velocities of three points
on a rigid body, exists (Angeles, 2003, 1988), it requires
complete knowledge of these velocities. That is, the
three components of the velocity for each given point
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Fig. 3 Inertial coordinate frame with origin at the geometric
centre of the sphere.

must be known. Because of the relaxation of the kine-
matic slip condition in the free-roll direction, only two
components of the velocity at each contact point are
known. Hence the instantaneous screw based method
may not be used directly in the case of the Atlas sphere.

3.1 Kinematic Model

In the Atlas platform architecture, translational dis-
placements generated with the XY Z linear platform
are completely decoupled from the rotational displace-
ments of the sphere. Modelling the linear velocity of the
geometric centre of the sphere is straightforward and
well understood and represented as a simple linear term
which must be added to the more demanding spherical
kinematic model. Therefore, without loss in generality,
only the spherical kinematics will be considered here.
An arbitrarily general configuration is assumed, and an
inertial coordinate frame is positioned at the geometric
centre of the sphere, as illustrated in Figure 3.

The omnidirectional wheels are treated as ideal. This
means that the location of the contact point is invari-
ant with respect to the inertial coordinate frame. The
change in contact point due to omnidirectional wheel
design, such as dual-row omnidirectional wheels, is be-
yond the scope of this paper. However, the effect of
the changing contact point leads to a set of simple,
constant correction matrices (Weiss et al., 2009) that
pre-multiply the Jacobian derived in this paper.

All geometric developments presented here are ref-
erenced to the inertial coordinate frame. The R; are
the position vectors of the ¢ contact points and €2 is



the angular velocity vector of the sphere. The linear
velocity of the contact point on the sphere side of the
sphere/omnidirectional wheel interface is given by

V= Q xR, (1)

where subscript ¢ € {1, 2,3} refers to a specific omnidi-
rectional wheel. The linear velocity of the contact point
on the omnidirectional wheel side can be decomposed
into two components: one in the actuation direction,
and one transverse component in the direction of the
free-roll of the castors:

Vi =VaiVai + ViV, (2)

where V,; is a unit vector in the actuation direction,
V,; is its magnitude, V,; is a unit vector in the free-roll
direction, and V,; is its magnitude. These two vectors
are orthogonal, and hence the following condition must
be satisfied:

Vai - Vs = 0. (3)
The kinematic slip condition may now be expressed as:
(2 x Ry) - Vo; = Vi (4)

Equation 4 may be stated in words as the wvelocity in
the actuation direction of a contact point on the sphere
18 required to be the same as that of the corresponding
contact point on the associated omnidirectional wheel in
the same direction. If Equation 4 is satisfied then slip
is absent and the kinematic slip condition is satisfied.
Equation (4) can be rearranged using some well known
vector product relations as:

(Q X Rl) . (\’ai = (Rz X \A’ai) Q= VM'. (5)

Since the magnitude of all position vectors is the radius
of the sphere, R, the position vectors of the contact
points can be written as

R; = RR;, (6)

where R, is a unit vector in the direction of the contact
point from the sphere centre. Equation (5) can then be
rewritten as
L @
ik

The actuation velocity of the omnidirectional wheel
may be expressed as:

(Ri X Vi) - Q =

VaiVai = w; X 1y, (8)

where w; is the angular velocity vector of omnidirec-
tional wheel ¢, and r; is the vector emanating from the
omnidirectional wheel centre to its contact point with
the sphere. The magnitude of the contact point actu-
ation velocity, V,; can be expressed as the product of
the magnitudes of w; and r;:

VM' = W;T;. (9)

Hence,

(Ri x ¥qi) - Q = %Wi- (10)
The corresponding induced unit angular velocities, €2;,
are defined to be

ﬂi = Rz X {’ai~ (1].)

Substituting Equation (11) into Equation (10) yields

~ r

Q,-Q="2uw,. 12
i (12)

Equation (12) defines the relationship between the
angular velocity of the sphere, €2, and the actuation an-
gular velocities of the omnidirectional wheels, w;. Pop-
ulating Equation (12) for each of the three omnidirec-
tional wheels leads, after some algebraic manipulation,
to the Jacobian of the system. The resulting mapping
between velocities remains useful as long as the sys-
tem of three equations represented by Equation (12)
possesses a real solution. Rewriting Equation (12) in
component form for each omnidirectional wheel leads
to:

Q{ Qm 1 00 w1
{Zg Qy = E 0 T2 0 w2 . (13)
Qg: 02, 0 0 rs w3

The induced unit angular velocity matrix, Q, is defined
to be

Q=0 O OQ3]. (14)
Given the finite limits for dimensions of a real plat-
form, the only way for Equation (13) to be inconsistent
and possess no finite solution is if the transpose of the
induced unit angular velocity matrix, Q7 is rank de-
ficient. This is a restatement of the expression for the
kinematic slip condition. In order for the induced unit
angular velocity matrix to retain full rank requires that
the three unit vectors €; be linearly independent. If
this is true the kinematic slip condition will be satis-
fied and the system will be enabled to have zero slip in
every orientation.

The Jacobian is, by definition, a mapping between
time rates of change. By convention in robotics it is the
mapping between the time rates of change of the joint
variables to the time rates of change of the position
and orientation of the end effector. The orienting Jaco-
bian of the generalized Atlas architecture is derived by
rewriting Equation (13) in the following way:

~ -1
1 Q,{ 1 00 w1
Q= E Qg 0 T2 0 w2 . (15)
Qg 00 rs w3

Equation (15) relates the angular velocity of the sphere
to the three angular velocity inputs of the actuating



omnidirectional wheels. The terms which pre-multiply
the omnidirectional wheel angular velocities represent
the Jacobian. Hence, the generalized Atlas Jacobian is
defined such that

Q=Jo, (16)
where the magnitudes of the individual omnidirectional
wheel angular velocities are collected in the array
w:{wl woy wg}T. (17)
Therefore, the Atlas Jacobian is defined to be:
ARG
JZE S}zT 0r O . (18)
Q?; 0 0 r3

Inspection of the system Jacobian defined by Equa-
tion (18) reveals that, unlike typical manipulator Jaco-
bians, J is time invariant and depends only on design
constants. Hence, these constants can be chosen such
that the Jacobian has full rank so that the orienting
workspace of the sphere is configurationally singularity
free. Moreover, because the sphere can have any ori-
entation about any point within reach of the sphere
centre, the reachable workspace is fully dexterous.

Because the Jacobian of the system is time invari-
ant and constant, once the configuration has been de-
termined, acceleration-level kinematics can be obtained
by simple differentiation of the expression, yielding;:
Q=Jo. (19)

Obtaining the expression for the orientation of the
platform, however, is not as simple. This can be ac-
complished in several ways. In this work quaternions
are employed because the unbounded and singularity-
free nature of the design calls for a singularity-free rep-
resentation. Integration of the quaternionic differential
equation is required (Schwab et al., 2006):

.1

where ¢ is the unit quaternion describing the orientation
of the system, and 2 o ¢ is a quaternionic product.

Finally, the inverse kinematics of the Atlas platform
architecture are straightforward using the generalized
kinematic model. At the velocity level, the inverse kine-
matics problem may be stated as determine the mag-
nitudes of the individual omnidirectional wheel angular
velocities required to attain a prescribed sphere angu-
lar velocity. Owing to the simplicity of the generalized
kinematic model all that is required is to invert Equa-
tion (16):

w=J19Q, (21)
where
00710l
J'=R|l0 L o] [OQF]. (22)
T2 N
002L][OF
3

4 Examples

Two velocity level kinematics examples with different
arrangements of omnidirectional wheels are now pre-
sented to illustrate the generality of the kinematic model.
The first example features an arrangement where the
contact points are located at the piercing points of the
inertial coordinate reference system basis vectors. The
actuation directions are selected such that changes in
orientation of one wheel, while the other two remain
stationary, produce sphere rotations about one of the
basis vector directions. These rotations can be defined
as yaw, pitch, and roll. The second example illustrates
the new generalized kinematic model applied to the
original Atlas configuration (Hayes and Langlois, 2005).

4.1 Orthogonal Omnidirectional Wheel Configuration

This example illustrates an orthogonal arrangement of
omnidirectional wheels such that each contact point
with the sphere is located on the piercing point of one of
the inertial coordinate reference system basis vector di-
rections. The omnidirectional wheels are oriented such
that when two of the wheels are held fixed, rotations
of the remaining wheel produce sphere rotations about
one of the basis vectors. As illustrated by Figure 4, rota-
tions of the omnidirectional wheel whose contact point
is on the X-axis produce sphere rotations about the
Y -axis; rotations of the omnidirectional wheel whose
contact point is on the Y-axis produce sphere rota-
tions about the Z-axis; rotations of the omnidirectional
wheel whose contact point is on the Z-axis produce
sphere rotations about the X-axis. This configuration
of the three omnidirectional wheels leads to the kine-
matic slip condition being satisfied in every orientation
of the sphere.

All vectors in the following discussion are referenced
to the inertial coordinate system shown in Figure 4.
The velocity level kinematics are completely described
by populating the Jacobian defined by Equation (18).
The orientation level and acceleration level kinematics
can then be determined using Equations (20) and (19),
respectively.

The basis direction vectors for the coordinate axes
{X,Y,Z} are {i,j, R} The sphere contact points of om-
nidirectional wheel {1, 2,3} are located on the piercing
points of basis direction vectors {i,],k}, respectively.
The sphere has radius R and each of the omnidirec-
tional wheels have identical radii, so r;1 =ry =r3 = 7.
Now all that remains is to populate the unit induced
angular velocity matrix whose elements are defined by
Equation (11). In order to proceed cross products are
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Fig. 4 Kinematic architecture for the orthogonal case.

required of the unit position vectors of the sphere con-
tact points and the unit induced linear velocity vectors
in the actuation direction of the omnidirectional wheels,
all relative to the sphere centre. The position vectors of
the three sphere contact points are:

R: = Ri; R, = Rj; R; = Rk.

The corresponding unit vectors are:

R; = [1,0,0]";
RQ = [OvlaO]T7
Rs = [0,0,1]7.

Positive omnidirectional wheel rotations obey the
right-hand-rule. That is, rotations of each omnidirec-
tional wheel in the positive sense induce associated lin-
ear velocity components in the positive direction of the
associated basis vector. Examining Figure 4 it is evident
that induced unit linear velocity vectors are:

‘A’al = [Oa 07 1]Ta
Va2 = [1,0,0]";
{’a3 = [Oa l»O]T'

The cross products required by Equation (11) can
now be evaluated:

1 [0 0
Ql =10| x |0 = -1 ;
1 0] | 1] L 0]
A (0] 17 [0 ]
Qz =1l x 1|0 = 0 N
| 0] 1 0 | -1
(0] [0 [—17
93 = 10| x 1 = 0
| 1] 1 0 | 0 |

Hence
0 —-10
Q=10 0 -1},
-10 0
and
X 0 0 -1
Q@Ht=|-10 0
0 —-10

In this case Q = (QT)_l, but in general this is not
the case. Substituting these results directly into Equa-
tion (18) yields

0 0 —1

~10 0 |. (23)
0 -10

,
J=—
R

Note the pleasing simplicity of the Jacobian expressed
by Equation (23). Because its elements are all time in-
variant a quick examination by inspection reveals the
unbounded and singularity free orienting workspace.
Moreover, the rows are all linearly independent, and
hence the kinematic slip condition is satisfied in every
orientation. This is so because the induced unit angular
velocity matrix, Q, always possesses full rank.

4.2 The Original Atlas Configuration

The original configuration of the Atlas motion plat-
form (Hayes and Langlois, 2005) has the three omni-
directional wheels arranged on the edges of an equi-
lateral triangle giving an angular separation of 120° in
the XY -plane, see Figure 5(b). The elevation angle of
each omnidirectional wheel relative to the XY -plane is
40°. The reason for the equilateral configuration is to
achieve even force and torque distribution on the om-
nidirectional wheels, however the elevation angle of 40°
was selected for ease of manufacturing and assembly. To
generalize this equilateral configuration an arbitrary el-
evation angle 6 is used, and illustrated in Figure 5(a).
In this case

R; = [c0s6,0,—sin 0]T ,
1 T
R, = 5 [— cos b, —V/3cos 0, —2sin 9} ,

T
Rs; = % [— cos0,v/3 cos b, —ZSinQ] .

The induced unit linear velocity vectors in the actuation
directions are:

Va1 = [0,-1,0]";

1 T
5 I:_\/§717Oj| ;
2

1

2

vagz—[ﬁ,l,or.

Va2 =
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Fig. 5 Configuration of the original Atlas spherical platform: (a) front view; (b) bottom view.

The cross products required by Equation (11) yield:

cosf 0 —sinf
1= 0 x | —1] = 0 ;
—sin@ 0 —cosf
—cosf -3 sin 6
1 1 .
2=5 |~ 3cos b ><§ 1 =2 |+3sind ;
| —2sind 0 —2cosf
[ —cos@ V3 sin @
1 1 1 .
325 V3 cosb ><§ 1 :5 —+/3sinf
| —2sind 0 —2cosf
Hence
—sinf 0 —cosf
Of = 3 sinf ?sin@ —cosf |,
%sinG —§ sinf — cos
and
—2cscl cscl csc
~ 1
Q= = 3 0  V3csch —v/3csch
—secl —secl —secl

It is clear that if a square matrix is rank deficient,
then its inverse will also be rank deficient. The matrix
will lose full rank if its determinant vanishes, and it will
no longer be invertible. If Q7 is invertible, then

A 1 3
detQF = ———— = “\/3cosfsin b
det (QT)-1 2
While the unit induced angular velocity matrix contains
no time varying terms, the design parameter 6 can be

chosen such that it will become rank deficient. The ma-
trices QT and (Q7)~! possess two such values, namely
6 = /2 and @ = 0. The Jacobian can be evaluated for
all other values of 0 sufficiently different from the lim-
iting values. For this configuration of omnidirectional
wheels the resulting Jacobian is:

—2csch csch csc
J= é 0  V3csch —/3esch | . (24)
—sec —secl —secl

This result is in agreement with those reported by Robin-
son et al. (2005) and Holland et al. (2005).

If the design parameter 6 is suitably chosen then
the kinematic slip condition will be satisfied for every
orientation of the sphere, and the mechanical system
will be enabled to have zero slip. As is the case for
the orthogonal configuration in Section 4.1, this is so
because the induced unit angular velocity matrix, Q,
always possesses full rank.

5 Conclusions

In this paper a novel generalized kinematic model for
the Atlas spherical platform has been presented for the
first time. The model is formulated at the velocity level,
and is based on orthogonal decomposition of actuation
and free rolling velocities of the castors on the three om-
nidirectional wheels. The kinematic model is general,



and a significant improvement over those presented by
Robinson et al. (2005) and Holland et al. (2005) be-
cause it can be applied to any arrangement of three
omnidirectional wheels that result in three orientational
degrees of freedom. The utility and simplicity of the
model is demonstrated with two examples.

An important result of this work is the identification
of the kinematic slip condition, which is a necessary
condition for eliminating kinematic slip, and should be
used in the detail design phase of such motion plat-
forms. The kinematic slip condition is simply that the
three omnidirectional wheel-induced angular velocity
direction vectors, €;, must be linearly independent.
This means that the singularities and slip issues that
result from kinematic sources may be eliminated at the
design stage, rather than relying on real-time control
solutions. The simplicity of the generalized kinematic
model of the platform will be advantageous when it
comes to formulating a motion control system and the
associated computations required.

These results do not eliminate the need to evaluate
and minimize kinetically-induced slip, i.e., slip that re-
sults from contact forces and moments. Rather, the for-
mulation presented herein reveals necessary conditions
which lead to kinematic slip-free configurations of om-
nidirectional wheels. Design optimization of such plat-
forms can be approached using these results for prac-
tical criteria. For example, elimination of kinetically-
induced slip, minimization of reaction forces, or actua-
tion power requirements could serve as design optimiza-
tion criteria.
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