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ABSTRACT
Planar kinematic mapping is applied to the five-position

Burmester problem for planar four-bar mechanism synthesis.
The problem formulation takes the five distinct rigid body poses
directly as inputs to generate five quadratic constraint equations.
The five poses are on the fourth order curve of intersection of up
to four hyperboloids of one sheet in the image space. Moreover,
the five poses uniquely specify these two hyperboloids. So, given
five positions of any reference point on the coupler and five corre-
sponding orientations, we get the fixed revolute centres, the link
lengths, crank angles, and the locations of the coupler attachment
points by solving a system of five quadratics in five variables that
always factor in such a way as to give two pairs of solutions for
the five variables (when they exist).

1 Introduction
The determination of a planar four-bar mechanism that can

guide a rigid-body through five finitely separatedposes(position
and orientation) is known as thefive-position Burmester prob-
lem, see Burmester (1888). It may be stated as follows. Given
five positions of a point on a moving rigid body and the corre-
sponding five orientations of some line on that body, design a
four-bar mechanism whose coupler crank pins are located on the
moving body and is assemblable upon these five poses. The cou-
pler must assume the five required poses, however sometimes not

∗Address all correspondence to this author.

all five may lie in the same assembly branch.

The problem formulation engenders as many variables as
equations so the synthesis is exact. However, most approaches to
synthesizing a mechanism that can guide the rigid body exactly
through the five positions are rooted in the Euclidean geometry
of the plane in which the rigid body must move. From time to
time this problem has been revisited (Chang,et al, 1991). Read-
ers are refered to this document which contains a recent solution
method and a quite adequate and relevant bibliography. More
recently, classical finite position synthesis has been reviewed by
McCarthy (2000).

We propose a solution obtained in a three-dimensional pro-
jective image space of the rigid body motion. An algebraic ap-
proach to this exact problem based on quaternions is to be found
in Murray and McCarthy (1996). Instead, we use planar kine-
matic mapping. The planar kinematic mapping was introduced
independently by Blaschke and Grünwald in 1911 (Blaschke,
1911; Gr̈unwald, 1911). But, their writings are difficult. In North
America Roth, De Sa, Ravani (De Sa and Roth, 1981; Ravani and
Roth, 1983), as well as others, have made contributions. How-
ever, we choose to build upon interpretations by Husty (1995,
1996), who used the accessible language of Bottema and Roth
(1990).

Kinematic synthesis of four-bar mechanisms using kine-
matic mapping was discussed in Bottema and Roth (1990), origi-
nally published in 1979, and expanded upon in great detail by Ra-
vani (1982), and Ravani and Roth (1983). In this early work, Ra-
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Figure 1. A FOUR-BAR LINKAGE.

vani and Roth developed the framework for performingapprox-
imatedimensional synthesis. Whileexactdimensional synthesis
for the Burmester problem may have been implied, it has never,
to our knowledge, been implemented. Results are so elegantly
obtained in the kinematic mapping image space that we are com-
pelled to expose the methodology and procedure by which these
are produced.

In this image space, the kinematic constraint implied by the
motion of a point bound to move upon a circle of fixed centre and
radius maps to a hyperboloid of one sheet. Thus, the motion of
the coupler of a planar four-bar mechanism connected with four
revolute (R) pairs can be characterized by the fourth order curve
of intersection of two distinct hyperboloids of one sheet in the
image space.

When the kinematic constraint dictates a point moving on
a line with fixed line coordinates, as with a prismatic (P) pair,
the constraint surface is a hyperbolic paraboloid. Hyperboloids
of one sheet and hyperbolic paraboloids are the only types of
constraint surfaces associated with planar mechanisms contain-
ing only lower pair joints (Hayes and Husty, 2001). Here, we as-
sume solutions of the five-position Burmester problem confined
to four-bar mechanisms jointed with four R-pairs, not slider-
cranks. Thus only image space hyperboloids of one sheet will
apply.

2 Planar Kinematic Mapping
One can consider the relative displacement of two rigid-

bodies in the plane as the displacement of a Cartesian reference
coordinate frameEE attached to one of the bodies with respect to
a Cartesian reference coordinate frameFF attached to the other.
Without loss of generality,FF may be considered as fixed while
EE is free to move, as is the case with the four-bar mechanism
illustrated by Figure 1. Then the position of a point inEE in

terms of the basis ofFF can be expressed compactly as

p′ = Rp+d, (1)

where,p is the2×1 position vector of a point inEE, p′ is the
position vector of the same point inFF , d is the position vector
of the origin of frameEE in FF , andR is a2×2 proper orthog-
onal rotation matrix (i.e., its determinant is+1) defined by the
orientation ofEE in FF indicated byφ.

Equation (1) can always be represented as a linear transfor-
mation by making ithomogeneous(see McCarthy (1990), for ex-
ample). Let the homogeneous coordinates of points in the fixed
frameFF be the ratios[X : Y : Z], and those of points in the mov-
ing frameEE be the ratios[x : y : z]. Then Equation (1) can be
rewritten as




X
Y
Z


 =




cosφ −sinφ a
sinφ cosφ b

0 0 1







x
y
z


 . (2)

Equation (2) clearly reflects the fact that a general displacement
in the plane is fully characterized by three parameters, in this
casea, b, andφ.

2.1 Image Space Coordinates and Pole Position
The essential idea of the kinematic mapping introduced by

Blashke (1911) and Grünwald (1911)is to map the three homoge-
neous coordinates of the pole of a planar displacement, in terms
of (a,b,φ), to the points of a three dimensional projective image
space.

The pole,P, of a planar displacement may be described in
the following way. Any planar displacement that is a combina-
tion of translation and rotation may be represented by a single
rotation through a finite angle about a unique fixed axis normal
to the plane. Even a pure translation can be considered a rotation
through an infinitesimal angle about a point at infinity on a line
perpendicular to the direction of the translation. The coordinates
of the piercing point of this axis with the plane of the displace-
ment describe the pole,P. If EE andFF are initially coincident,
then the coordinates ofP are invariant under the its related dis-
placement. That is,P has the same coordinates in bothEE and
FF . This is illustrated in Figure 2.

By using the dehomogenized form of Equation (2) one may
immediately write, after settingXP = xP andYP = yP and solving
the resulting two simultaneous equations

xP =
a
2
− bsinφ

2(1−cosφ)
; yP =

asinφ
2(1−cosφ)

+
b
2
.

The value of the homogenizing coordinate is arbitrary and may,
without loss of generality, be set toz= 2sinφ/2. This means that
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Figure 2. POLE POSITION.

both xP andyP must also be multiplied by this value. Then the
double angle relationships

sin2φ = 2sinφcosφ; cos2φ = cos2 φ−sin2 φ

can be used to obtain the following homogeneous coordinates of
the pole:

XP = xP = asin(φ/2)−bcos(φ/2)
YP = yP = acos(φ/2)+bsin(φ/2)
ZP = zP = 2sin(φ/2) (3)

The kinematic mapping image coordinates are defined, with
respect to the poleP as follows.

X1 = asin(φ/2)−bcos(φ/2)

X2 = acos(φ/2)+bsin(φ/2)

X3 = 2sin(φ/2)

X4 = 2cos(φ/2). (4)

Since each distinct displacement described by(a,b,φ) has
a corresponding unique image point, the inverse mapping can be
obtained from Equation (4): for a given point of the image space,
the displacement parameters are

tan(φ/2) = X3/X4,

a = 2(X1X3 +X2X4)/(X2
3 +X2

4 ),
b = 2(X2X3−X1X4)/(X2

3 +X2
4 ). (5)

Equations (5) give correct results when eitherX3 or X4 is zero.
Caution is in order, however, because the mapping is injective,

not bijective: there is at most one pre-image for each image
point. Thus, not every point in the image space represents a dis-
placement. It is easy to see that any image point on the real line
X3 = X4 = 0 has no pre-image and therefore does not correspond
to a real displacement ofEE. From Equation (5), this condition
rendersφ indeterminate and placesa andb on the line at infinity.

Armed with Equations (4) and (5) any displacement in terms
of X1,X2,X3,X4 can be conveniently converted to the displace-
ment ofEE in terms ofFF .

2.2 Representing Planar Displacements in Terms of
Image Space Coordinates

By virtue of the relationships expressed in Equation (4), the
transformation matrix from Equation (2) may be expressed in
terms of the homogeneous coordinates of the image space. This
yields a linear transformation to express a displacement ofEE
with respect toFF in terms of the image point:

λ




X
Y
Z


 =




X2
4 −X2

3 −2X3X4 2(X1X3 +X2X4)
2X3X4 X2

4 −X2
3 2(X2X3−X1X4)

0 0 X2
3 +X2

4







x
y
z


 , (6)

whereλ is a proportionality constant arising from the use of ho-
mogeneous coordinates. The inverse transformation can be ob-
tained with the inverse of the3× 3 matrix in Equation (6) as
follows.

µ




x
y
z


 =




X2
4 −X2

3 2X3X4 2(X1X3−X2X4)
−2X3X4 X2

4 −X2
3 2(X2X3 +X1X4)

0 0 X2
3 +X2

4







X
Y
Z


 , (7)

with µ being another proportionality constant. The product of
these matrices is homogeneously proportional to a unit matrix:




(X2
3 +X2

4 )2 0 0
0 (X2

3 +X2
4 )2 0

0 0 (X2
3 +X2

4 )2


 .

Clearly, by construction in Equation (4),X2
3 +X2

4 ≡ 2.

2.3 Planar Constraint Equations
Consider the case of an R-R joint dyad. A point onEE

moves on a circle onFF , whose homogeneous equation may
be expressed by:

C0(X2 +Y2)+2C1XZ+2C2YZ+C3Z2 = 0. (8)
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Figure 3. A HYPERBOLOID OF ONE SHEET.

In Equation (8)C0 = k, an arbitrary constant, whileC1 =
−Xm, C2 = −Ym, the circle centre coordinates, andC3 = X2

m +
Y2

m− r2 with r being the circle radius.

Expanding Equation (6) and substituting the expressions for
X, Y, andZ into Equation (8) produces a hyperboloid of one
sheet in the image space, see Figure 3. The hyperboloid takes
the form:

C0z2(X2
1 +X2

2 )+(−C0x+C1z)zX1X3

+(−C0y+C2z)zX2X3 +(−C0y−C2z)zX1X4

+(C0x+C1z)zX2X4 +(−C1y+C2x)zX3X4

+
1
4
[C0(x2 +y2)−2C1xz−2C2yz+C3z2]X2

3

+
1
4
[C0(x2 +y2)+2C1xz+2C2yz+C3z2]X2

4 = 0. (9)

Recall that the coordinates of a point in the moving frame
EE are(x : y : z). The hyperboloid is specified when a reference
point (x : y : z) is given together with the circle coordinates(C0 :
C1 : C2 : C3). The points(X1 : X2 : X3 : X4) represent all possible
displacements ofEE relative toFF under the constraint that one
point inFF moves on a circle inEE.

We can generalize the constraint hyperboloid by considering
the kinematic inversion: a point onFF bound to move on a circle
in EE. We thus expand Equation (5) and substitute the expres-
sions forx, y, andz into Equation (8) and make the following
simplifications. For the given circular constraint it is clear that
C0 = 1. We may also setz = X4 = 1. The general constraint
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Figure 4. A HYPERBOLIC PARABOLOID.

hyperboloid then becomes

(X2
1 +X2

2 )+(C1−x)X1X3 +(C2−y)X2X3

∓(C2 +y)X1± (C1 +x)X2± (C2x−C1y)X3

+
1
4
[(x2 +y2)−2C1x−2C2y+C3]X2

3

+
1
4
[(x2 +y2)+2C1x+2C2y+C3] = 0. (10)

When(x,y) are the coordinates of the moving point expressed in
EE with z= 1 theuppersigns apply. If the constraint is intended
to express the inverse, a point onFF bound to a circle inEE,
then thelower signs applyandx, y or z is substituted wherever
X, Y or Z appears. The situation of a circle moving on a point is
never required in problem formulation.

However if a point is bound to a line,i.e., in the case of a
prismatic joint, and if one desires to treat inversions, the line may
be either onFF or EE. Equation (10) reduces to Equation (11) if
a point is bound to a line andC0 = 0. This produces a hyperbolic
paraboloid in the image space, see Figure 4:

C1X1X3 +C2X2X3∓C2X1±C1X2± (C2x−C1y)X3

−1
4
[2C1x+2C2y−C3]X2

3 +
1
4
[2C1x+2C2y+C3] = 0. (11)

The above constraint surfaces completely describe the dis-
placements of all possible planar dyads constructed with lower
pairs.

3 The Five-Position Burmester Problem
The goal of the dimensional synthesis problem for rigid

body guidance of a 4R planar mechanism is to find themoving
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circle points, M1 andM2 of the coupler, i.e., the revolute cen-
tres that move on fixed centred, fixed radii circles as a reference
coordinate system,EE, attached to the coupler, passes through
the desired poses. Thefixed centre pointsfor each circle are the
fixed, or grounded revolute centres,F1 andF2, respectively. The
circle and centre points are illustrated with the four-bar mech-
anism shown in Figure 1. For these constraints, the synthesis
equations are determined using Equation (10).

What we set out to do here is to use the methods of planar
kinematic mapping outlined in (Zsombor-Murray,et al, 2002)
and set up five simultaneous constraint equations, each of which
represents the image space constraint surface for a rigid body
moving freely in the plane except that one point is bound to the
circumference of a fixed circle. These equations are expressed in
terms of the following eight variables.

i. X1, X2, X3, X4 = 1, the dehomogenized coordinates of the
coupler pose in the image space.

ii. C1, C2, C3, the coefficients of a circle equation (C0 = 1).
iii. x, y, z= 1,the coordinates of the moving crank-pin revolute

centre, on the coupler, which moves on a circle.

SinceX1, X2, X3 are given for five desired coupler poses, one
may in principle solve for the remaining five variables (C1, C2,
C3, x, y) . The geometric interpretation is, five given points in
space are common to, at most, four hyperboloids on one sheet.
Each hyperboloid represents a 2R dyad. If two real solutions oc-
cur then all 4R mechanism design information is available (there
are two circles in a feasible mechanism design result):

i. Circle centre is atXm =−C1, Ym =−C2.
ii. Circle radius is given byr2 = C3− (X2

m+Y2
m).

iii. Coupler length is given byL2 = (x2−x1)2 +(y2−y1)2.

4 Analysis
4.1 Converting Pose to Image Space Coordinates

Examine Equations (4) and divide byX4.

X1 =

(
atanφ

2−b)
)

2
, X2 =

(
a+btanφ

2

)

2
, X3 = tan

φ
2
, X4 = 1.

The five given poses being specified as(ai ,bi ,φi), i ∈ {1, ...,5},
the planar coordinates of the moving point and the orientation
of a line on the moving rigid body, all with respect to(0,0,0◦)
expressed inFF . Note that the location of the origin ofFF is
arbitrary, it is only shown on the fixed revolute centre in Figure 1
for convenience.

4.2 Crank Angles
If the desired five poses can be realized with a planar

4R four-bar mechanism, then at least two real solutions in

Figure 5. GENERATING THE FIVE DESIRED POSES.

(C1, C2, C3, x, y) will be obtained, defining two 2R dyads shar-
ing the coupler. To construct the mechanism in its five configu-
rations the crank angles must be determined. To obtain the crank
angles one just takes(x1,y1) and(x2,y2) and performs the linear
transformation, expressed in image space coordinates, five times.




X
Y
1


 =




1−X2
3 −2X3 2(X1X3 +X2)

2X3 1−X2
3 2(X2X3−X1)

0 0 1+X2
3







x
y
1


 .

(X,Y) come in five pairs because five poses are specified.
These are the Cartesian coordinates of the moving revolute cen-
tres expressed inFF , and implicitly define the crank angles. For
a practical design one must check that the solution did not sepa-
rate crank pin coordinates in unconnected mechanism branches.

4.3 Pose Constraint Equation
Given the constraints imposed by four revolute joints, the

pose constraint equation (synthesis equation) is given by Equa-
tion (10) with the upper signs used. For each of the five poses we
obtain:

(X2
1 +X2

2 )+(C1−x)X1X3 +(C2−y)X2X3

−(C2 +y)X1 +(C1 +x)X2 +(C2x−C1y)X3

+1
4[(x2 +y2)−2C1x−2C2y+C3]X2

3
+1

4[(x2 +y2)+2C1x+2C2y+C3] = 0.

(12)
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Figure 6. THE FIVE DESIRED POSES.

5 Example and Verification
The kinematic mapping solution to the five-position

Burmester problem is illustrated with the following example
problem. In order to verify our synthesis results, we started with
Figure 5, wherein one sees a four-bar mechanism design repre-
sented by dotted crank pin circles and a couplerCD which has
been placed in five feasible poses. Then an arbitrary pointA and
orientation lineAB were specified. These were used to specify
the given five poses, listed in Table 2. The fixed revolute centres
and link lengths of the four-bar mechanism used to generate the
poses, which we can check for verification, are listed in Table 1,
all coordinates given relative toFF . The coordinate information
obtained from these were inserted into the five synthesis equa-
tions. The results at the end constitute obvious confirmation con-
cerning the effectiveness of the kinematic mapping approach to
solving the Burmester problem.

Given the Cartesian coordinates of five positions of a refer-
ence point on a rigid body, together with five orientations of the
rigid body which correspond to the positions, all relative to an
arbitrary fixed reference frame,FF . The reference point is the
origin of a coordinate system,A, attached to the rigid body. In
Figure 6 the five poses are indicated by the position ofA and the
orientation of a line in the directionxA axis. The coordinates and
orientations are listed in Table 2.

The given five poses are mapped to five sets of coordinates in
the image space. Using a computer algebra software package, we
substitute the corresponding values forX1, X2, X3, together with
X4 = 1 into Equation (12) yields the following five quadratics in

Parameter Value

F1 (-8,0)

F2 (8,0)

F1F2 16

F1C 8

CD 10

DF2 14

Table 1. THE GENERATING MECHANISM

ith Pose,Ai a b ϕ (deg)

1 -3.339 1.360 150.94

2 -2.975 7.063 114.94

3 -3.405 9.102 100.22

4 -7.435 11.561 74.07

5 -9.171 11.219 68.65

Table 2. FIVE RIGID BODY POSES IN FF .

C1, C2, C3, x, andy:

51.62713350−26.52347891C1 +28.43187273x

+3.439909575y+10.80321393C2 +3.971769828y2

+3.971769828x2−6.943539655C1x+3.971769828C3−
6.943539655C2y−3.858377808C1y+3.858377808C2x = 0 (13)

50.78111719−5.144112496C1 +13.24300208x

−.485305000y+12.21272826C2 + .8645567222y2

+.8645567222x2− .7291134440C1x+ .8645567222C3

−.7291134440C2y−1.567873365C1y+1.567873365C2x = 0 (14)

57.40558942−4.139456673C1 +11.62418825x

+2.110482435y+11.06529652C2 + .6078497318y2

+.6078497318x2− .2156994635C1x+ .6078497318C3

−.2156994635C2y−1.196410852C1y+1.196410852C2x = 0 (15)

74.12376162−5.833830775C1 +7.121746695x

+8.099525062y+9.071273378C2 + .3923221773y2

+.3923221773x2 + .2153556452C1x+ .3923221773C3

+.2153556452C2y− .7545122328C1y+ .7545122328C2x = (16)

76.96602922−6.723290851C1 +5.212549019x

+9.256210937y+8.224686519C2 + .3665516768y2

+.3665516768x2 + .2668966465C1x+ .3665516768C3

+.2668966465C2y− .6827933120C1y+ .6827933120C2x = 0 (17)

6 Copyright  2002 by ASME



Solving the system of Equations (13)-(17) yields four sets of
values forC1, C2, C3, x, andy, two being real, and the remaining
two being complex conjugates. The two real sets of hyperboloid
coefficients are listed in Table 3. The corresponding synthesized
four-bar fixed revolute centres and link lengths are listed in Ta-
ble 4, rounded to same three decimal places as the graphically
determined generating mechanism listed in Table 1.

Coefficient Solution 1 Solution 2

C1 -7.983138944 7.997107716

C2 -.027859304 -.000953257

C3 -131.4773813 -.022545268

x 2.932070052 -3.579426217

y -8.023883728 -.435620093

Table 3. THE HYPEBOLOID COEFFICIENTS

Parameter Value

F1 (-7.997,0.001)

F2 (7.983,-0.023)

F1F2 15.980

F1C 7.999

CD 10.003

DF2 13.972

Table 4. THE SYNTHESIZED MECHANISM

While the synthesized mechanism link lengths and centre
coordinates are affected by the numerical resolution of the graph-
ical construction of the generating mechanism, we believe this
example demonstrates the utility of kinematic mapping to solv-
ing the five-position Burmester problem.

6 Computational Pathology
Notice that feasible slider-crank solutions were implicitly

excluded by choosing to setC0 = z = 1 rather than, say,C2 =
y = 1. This is similar to excluding half-turnEE orientations by
settingX4 = 1 rather than, say,X3 = 1. It is recommended that

algorithmic implementation should retainX4 = 2cos(φ/2) and
contain features to replaceC0 = 1 with C1,C2 orC3 = 1 andz= 1
with x or y = 1 should results wherex→ y→ ∞ with C0 = z= 1
occur.

7 Conclusions
We have used kinematic mapping to solve the five position

planar Burmester problem. Five rigid body poses are mapped
to points in a three dimensional projective image space and are
used directly as inputs to generate five quadratic constraint sur-
face equations in that space. The solutions, when they exist,
give the coefficients of the hyperboloids having the five points
in common. Each hyperboloid yields a fixed revolute centre,
link lengths, crank angles, and coupler attachment points. This
method is elegant in that the design task for any composition of
R and P joints (open RR, PR, and RP chains) can be treated with
a single formulation with no special cases.
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