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Chapter 1

Introduction

In the recent past the exact definition of a robot was subject, in some circles, to
vigorous debate. A generally accepted definition today comes from the Robot
Institute of America in the US:

“A re-programmable manipulator designed to move material, parts,
tools, or other specialized devices through variable programmed mo-
tions for the performance of a variety of tasks.”

This definition distinguishes robots from other automated machines, like
NC (numerically controlled) milling machines, by the sophistication of the pro-
grammability, and range of applications of the device. For instance, an NC
milling machine can not be programmed for pick-and-place operations, or spot
welding, while a robot can.

A Little History:

� 1948 - Master-slave manipulators developed for handling radioactive ma-
terials for nuclear weapons production.

� 1949 - NC machine first developed at MIT.

� 1954 - George Devol: first industrial robot (programmable device) used for
pick and place for parts transfer. It possessed 4 DOF, tape memory, and
point-to-point control.

� 1970 - After purchasing Devol’s patents in 1959, Joe Engelberger formed
the company Unimation. In 1972, the first PUMA (programmable univer-
sal machine for assembly) robot was marketed. As a result, Engelberger
has been called the father of robotics.

Modern industrial robots have increased in capability and performance with
controller and language development, improved mechanisms, sensing and drive
systems. In the early 1980’s the robot industry grew rapidly thanks to large
investments by the automotive industry. However, the leap to “the factory of
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tomorrow” by other industries turned into a plunge when integration of systems
and their economic viability proved disastrous. Only in 1997 did the robotic
industry recover to mid 1980’s revenue levels.

Spot welding, long the “king” of robot applications has been dethroned by
material handling (George Devol’s original application). This is an indication
that the robotics industry has weaned itself from the automotive industry, since
material handling cuts across a wide range of industries. Companies that had
given up on robotics long ago are now taking a second look and discovering the
industry can now provide the solutions they need. Manufacturing executives,
who previously assailed the reliability of robots, now give testimonies about the
outstanding performance record of robot technology.

Industrial and Service Tasks Which Benefit from Robotisation:

� Material transfer.

� Spray painting.

� Welding.

� Assembly.

� Inspection.

� Manipulation in hazardous environments.

– Nuclear sector:

* waste removal;

* decommission of power plants;

* accident cleanup.

– Oceans:

* maintenance of offshore structures;

* exploration and research of ocean floor.

– Space:

* capture and repair of satellites;

* structure assembly;

* inspection and exploration of extraterrestrial objects.

� Mining.

� Forestry.

� Agriculture (planting, harvesting).

� Services (nursing, pharmacy, gas station attendant).
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Physical Components of Robotic Manipulators

� Mechanical System

– Manipulator: (hand) allows for placement of end effector in space.

– End-Effector: (what the hand is holding) task accomplishment: weld-
ing rod, laser, tool.

– Actuators: allow manipulator to move.

* electric (DC brush motors, brushless motors, AC stepper mo-
tors).

* hydraulics.

* pneumatics.

– Drives and Transmissions:

* gears;

* cables - tendon drives;

* direct drive (no transmission, directly linked to joint).

� Sensors:

– Internal State:

* encoders (binary rotation information);

* resolvers;

* potentiometers;

* gyroscopes - good, but they can drift and require re-calibration,
which is expensive;

* accelerometers - not too dependable, but cheap.

– Interaction:

* force sensors;

* strain gauges;

* load cells.

– External:

* visual sensors (digital cameras);

* acoustic rangefinders;

* lasers (triangulation).

� Controller: uses information from sensors as feedback to control position,
velocity, acceleration (i.e. motion of the manipulator).
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1.1 From Here to Dynamics

To get to the point where we have enough tools to deal with serial robot (multi-
body) dynamics, we must first consider, in the order given below, the following.

1. Description of Position and Orientation
We are constantly concerned with the position and orientation of objects
in 3-D space. The objects are the links of the robot, parts and tools with
which it deals, and other objects in the robot’s environment.

To describe the position and orientation (pose) of an object, we usually
attach a reference coordinate frame rigidly to it. We then describe the
pose of this frame with respect to some other reference frame.

Since we may be interested in representing the pose of one reference frame
with respect to more than one other frame, we have to consider transform-
ing the coordinates of points in one frame to the coordinates of the same
point expressed in another reference frame. First we will consider conven-
tions and methodologies for dealing with this description of a pose, and
the mathematics of manipulating these quantities with respect to various
coordinate frames.

2. Mappings: changing descriptions from frame to frame.

3. Operators: translations, rotations.

4. Transformation arithmetic.

5. Transformation equations.
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1.2 Manipulator Kinematics

Kinematics is the study of motion without regard to the forces which cause the
motion. We must examine the following.

1. Link description.

2. Joint description.

3. DH conventions: methods for affixing frames to links.

4. Forward Kinematics
This is the problem whereby given a set of particular variable joint inputs
(1 for each DOF of the manipulator), determine the pose of the robot.
Since we can control the joint inputs and know their values, this is known
as the forward problem.

� Position Kinematics

e.g. given

[
θ1
θ2

]
determine

[
x
y

]
.

� Differential Kinematics

– Velocity Level:

[
θ̇1
θ̇2

]
. ⇒

[
ẋ
ẏ

]
– Acceleration Level:

[
θ̈1
θ̈2

]
⇒
[
ẍ
ÿ

]
.

5. Inverse Kinematics
This is the problem whereby given a desired (feasible) pose of the manipu-
lator, determine all joint input values necessary to attain the pose, if they
exist.

� Position Level: x =


x
y
z
α
β
γ

 ⇒ θ =


θ1
θ2
θ3
θ4
θ5
θ6

 .
� Velocity Level: ẋ ⇒ θ̇.

� Acceleration Level: ẍ ⇒ θ̈.
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1.3 Jacobians: Velocities and Static Forces

It turns out that velocities as well as static forces and moments lead to a matrix
quantity called the Jacobian of the Manipulator. In this regard, manipulator
velocities and static forces are considered to be dual quantities. Thus both
velocities and static forces can be studied by considering the same Jacobian.

1.4 Dynamics

The study of motion including the forces which cause the motion.

1.4.1 Newton’s Equation for Linear Acceleration∑
F = Ġ = m

dv

dt
= ma, G = mv.

The resultant of all forces acting on a system is equivalent to the systems
time rate of change of linear momentum (G). Also, the resultant of moments
acting on a system equals the time rate of change of angular momentum (H).

1.4.2 Euler’s Equation for angular acceleration

∑
M = Ḣ =

d(Iω)

dt
, H = Icω,

= Icω̇ + ω × Icω,

= Icα+ ω × Icω,

where ω × Icω vanishes for planar systems.

� Iterative Newton-Euler Dynamic Formulation

– Outward iterations, from the base, to compute velocities and accel-
erations.

– Inward iterations, towards the base, to compute forces and torques.

� Closed Form Dynamic Equations. Obtained by applying iterative Newton-

Euler equations symbolically to θ, θ̇, θ̈ to investigate the structure of the
equations.

� The State-Space Equation.

τ = M(θ)θ̈ +V(θ, θ̇) + g(θ),

where M(θ) is the m × n mass matrix, V(θ, θ̇) is the n × 1 vector of
centrifugal and Coriolis terms, g(θ) is the n × 1 vector of gravity terms.
The term state-space is used because V(θ, θ̇) is both position and velocity
dependent.
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� The Configuration Space Equation. The velocity dependent terms may be
written in a different way, allowing us to write the dynamics equations as:

τ = M(θ)θ̈ +B(θ)[θ̇ θ̇] + c(θ)[θ̇ 2] + g(θ),

where B(θ) is an n × n(n− 1)

2
matrix of Coriolis terms, [θ̇ θ̇] is an

n(n− 1)

2
× 1 vector of joint velocity products given by:



θ̇1 θ̇2
θ̇1 θ̇3
θ̇1 θ̇4
...

...

θ̇2 θ̇3
θ̇2 θ̇4
...

...

θ̇n−1 θ̇n


,

where c(θ) is an n × n matrix of centrifugal coefficients, and [θ̇2] is an
n× 1 vector: 

θ̇21
θ̇22
...

θ̇2n

 .
This formulation is called configuration space because the coefficient ma-
trices are functions of one position only.

It is often convenient to express the dynamic equations in one of the above
ways. It hides some details, but shows the structure of the equations.

1.5 Lagrangian Formulation of Manipulator Dy-
namics

The Newton-Euler formulation is a force balance approach to dynamics, whereas
the Lagrangian formulation is an energy balance approach. Of course, for the
same manipulator, both will give identical equations of motion. For some situ-
ations one formulation may be easier to use than the other.
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Chapter 2

Descriptions of Position and
Orientation: Pose

Robotic manipulation, by definition, implies that parts and tools will be moved
around in space somehow, by some sort of mechanism. This naturally leads to
the need of representing positions and orientations of the parts, tools, and of
the mechanism itself. To define and manipulate mathematical quantities which
represent position and orientation of an object, also called the pose of the object,
we must define coordinate reference frames and develop conventions their for
representation.

Many of the ideas developed here in the context of the pose of an object form
the basis for our approach to analysis of linear and angular velocities as well as
for forces and torques.

2.1 Position of a Point

Suppose we want to describe the position of a point in space. A good way to
proceed is to first define a coordinate reference frame. To do that, we must
decide which type of coordinates to use. We have many choices.

2.1.1 Rectangular Cartesian Coordinates

These coordinates are expressed as distances along three mutually perpendicular
coordinate axes. For instance, the position of point P in frame {0} can be
expressed as a position vector whose components are the distances along the
corresponding axes, described by the unit vectors X̂0, Ŷ0, Ẑ0.
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Figure 2.1: Rectangular Cartesian coordinates.

Notation:

Unit Vector  X̂0

Ŷ0
Ẑ0


Unit vectors have a magnitude of 1. The lower right subscript indicates
the reference frame.

Position Vector

0p =

 0px
0py
0pz


The upper left superscript indicates the coordinate system to which the
point is referenced. Individual elements are given subscripts x, y, z.

Position vectors always originate at the origin of the reference frame in which
they are described. When defining a reference frame an origin must be specified
along with the unit vectors defining its axes directions. The elements of a
position vector can be regarded as the projections of the position vector onto
the corresponding axis.i.e.

0px = p · X̂0 =
[

0px
0py

0pz
]  1

0
0

 = |p| cos (θx),

0py = p · Ŷ0 =
[

0px
0py

0pz
]  0

1
0

 = |p| cos (θy),

0pz = p · Ẑ0 =
[

0px
0py

0pz
]  0

0
1

 = |p| cos (θz).
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In summary, we will describe the position of a point in space with a posi-
tion vector, whose elements are rectangular Cartesian coordinates. There are
other possibilities: cylindrical coordinates P (r, θ, z); or spherical coordinates
P (ρ, ϕ, θ). However, it is commonplace to use rectangular Cartesian coordi-
nates.

2.1.2 Important Fact of Life: Vector Addition

We will often be representing the same point in more than one coordinate sys-
tem, so we have to be careful. Consider vectors p and q. Their sum s is:

Graphical Addition: p+ q = s.

Algebraic Addition: First we must define a frame of reference in which the
vectors are represented.

0p+ 0q = 0s,

⇒

 0px + 0qx
0py +

0qy
0pz +

0qz

 =

 0sx
0sy
0sz

 ,
and 1p+ 1q = 1s.

But in general 1p+ 0q = Junk!

12



2.2 Orientation of a (Rigid) Body

A point is just a point: it has position, but its orientation is ambiguous because
it has no dimensions, only location. When we have an additional point in a
different location, and the distance between the points is frozen in time for the
instant considered, then we can consider the notion of orientation.

A rigid body may be considered to be a collection of points. To describe
the orientation of a rigid body in space, we may rigidly attach (paint on) a
coordinate system to the body and then give a description of this coordinate
system with respect to some other reference coordinate system.

Figure 2.2: Reference coordinate systems.

In Figure 2.2 coordinate system {1} has been attached to the gripper in a
known way. We also know everything about the stationary (non moving) system
{0}, rigidly attached to the ground. A description of {1} relative to {0} now
suffices to specify the orientation of the gripper, at least relative to {0}.

So far, we see that positions of points can be described with vectors, while
orientations of bodies can be described with body-fixed coordinate systems. One
way to describe coordinate system {1} is to write the unit vectors corresponding
to its three principal axes (we will always use orthogonal principal axes) in
terms of those of coordinate system {0}. We write the unit vectors of {1} as:

X̂1, Ŷ1, Ẑ1. When written in terms of {0} they are 0X̂1,
0Ŷ1,

0Ẑ1. For

example, recall the components of 0X̂1 are the projections of X̂1 on to the axes
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of {0} (i.e. the dot products X̂1 · X̂o, etc).

0X̂1 =

 X̂1
T X̂0

X̂1
T Ŷ0

X̂1
T Ẑ0

 =

 cos (X̂1, X̂0)

cos (X̂1, Ŷ0)

cos (X̂1, Ẑ0)

 ,
while 0Ŷ1 =

 Ŷ1
T X̂0

Ŷ1
T Ŷ0

Ŷ1
T Ẑ0

 =

 cos (Ŷ1, X̂0)

cos (Ŷ1, Ŷ0)

cos (Ŷ1, Ẑ0)

 ,
and 0Ẑ1 =

 Ẑ1
T X̂0

Ẑ1
T Ŷ0

Ẑ1
T Ẑ0

 =

 cos (Ẑ1, X̂0)

cos (Ẑ1, Ŷ0)

cos (Ẑ1, Ẑ0)

 .
Taken together, the set of column vectors [ 0X̂1

0Ŷ1
0Ẑ1 ] describe the ori-

entation of {1} relative to {0}, and hence the orientation of the body to which
it is attached. The result is a 3 × 3 matrix which describing the change in
orientation. Because the change in orientation requires rotations, it is called a
rotation matrix, and is indicated by 0R1. It has the form

0R1 =
[

0X̂1
0Ŷ1

0Ẑ1

]
=

 X̂1 · X̂0 Ŷ1 · X̂0 Ẑ1 · X̂0

X̂1 · Ŷ0 Ŷ1 · Ŷ0 Ẑ1 · Ŷ0

X̂1 · Ẑ0 Ŷ1 · Ẑ0 Ẑ1 · Ẑ0

 . (2.1)
It is interesting to note that since the dot product of two unit vectors yields

the cosine of the angle between them, orientation or rotationmatrix components
are sometimes referred to as direction cosines.

Closer inspection of Equation (2.1) reveals that the columns are the unit
vectors of {1} in {0}, while the rows are the unit vectors of {0} expressed in
{1}. Hence, the transpose of 1R0 is equivalent to 0R1. This suggests that the
transpose of a rotation matrix is equal to its inverse:

0R1 = 1RT
0 = 1R−1

0 .

Remember that 1X̂0,
1Ŷ0,

1Ẑ0 are all unit vectors, as are 0X̂1,
0Ŷ1,

0Ẑ1.
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Now,

0R1 =

 cos (X̂1, X̂0) cos (Ŷ1, X̂0) cos (Ẑ1, X̂0)

cos (X̂1, Ŷ0) cos (Ŷ1, Ŷ0) cos (Ẑ1, Ŷ0)

cos (X̂1, Ẑ0) cos (Ŷ1, Ẑ0) cos (Ẑ1, Ẑ0)

 ,
and 0RT

1 = 1R0 =

 cos (X̂1, X̂0) cos (X̂1, Ŷ0) cos (X̂1, Ẑ0)

cos (Ŷ1, X̂0) cos (Ŷ1, Ŷ0) cos (Ŷ1, Ẑ0)

cos (Ẑ1, X̂0) cos (Ẑ1, Ŷ0) cos Ẑ1, Ẑ0

 ,
finally, 0R1

0RT
1 = 0R1

1R0 =

 1X̂0 ·1 X̂0
1X̂0 ·1 Ŷ0

1X̂0 ·1 Ẑ0
1Ŷ0 ·1 X̂0

1Ŷ0 ·1 Ŷ0
1Ŷ0 ·1 Ẑ0

1Ẑ0 ·1 X̂0
1Ẑ0 ·1 Ŷ0

1Ẑ0 ·1 Ẑ0

 ,
=

[
1X̂0

1Ŷ0
1Ẑ0

]  1X̂0
T

1Ŷ0
T

1Ẑ0
T

 ,
=

 1 0 0
0 1 0
0 0 1

 = I.

2.2.1 Properties of 0R1

From linear algebra we know that the inverse of a matrix with orthonormal
columns is equal to its transpose. We have just shown this with geometric
arguments.

1. 0R1 is orthogonal and orthonormal because

|0X̂1| = |0Ŷ1| = |0Ẑ1| = 1 (3 conditions for orthogonality),

and 0X̂1·0Ŷ1 =0 X̂1 · 0Ẑ1 = 0Ŷ1 · 0Ẑ1 = 0 (3 conditions for orthonormality).

(6 conditions, 3 independent numbers).

2. Det(0R1) = 1 ⇒ Proper.

3. 0R−1
1 = 0RT

1 .

4. 0RT
1

0R1 = I.

Example: Consider a rotation of θ degrees about the Ẑ0 axis. We have,

X̂1 · X̂0 = cos (θ),

Ŷ1 · Ŷ0 = cos (θ),

Ŷ1 · X̂0 = cos (θ + 90o) = − sin (θ),

X̂1 · Ŷ0 = cos (90o − θ) = sin (θ),

X̂1 · Ẑ0 = Ŷ1 · Ẑ0 = Ẑ1 · X̂0 = Ẑ1 · Ŷ0 = 0,

Ẑ0 · Ẑ1 = 1.
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Figure 2.3: Rotation of θ degrees about the Ẑ0 axis.

RZ0
(θ) ⇒

 X̂1 · X̂0 Ŷ1 · X̂0 Ẑ1 · X̂0

X̂1 · Ŷ0 Ŷ1 · Ŷ0 Ẑ1 · Ŷ0

X̂1 · Ẑ0 Ŷ1 · Ẑ0 Ẑ1 · Ẑ0

 =

 cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 .
2.3 Description of a Reference Frame

The information needed to completely specify the whereabouts of a rigid body
is a position and an orientation. For position, we can choose an arbitrary point
of the rigid body. For convenience, the point whose position we will describe
shall be the origin of the body-fixed frame. The situation of a position and an
orientation set arises so often in robot kinematic/dynamic analysis that we will
define an entity called a frame, which is a set of four vectors: one specifying
position, the other three specifying orientation. Equivalently, a frame can be
thought of as a position vector and a rotation matrix.

For example, Frame 1 is described by 0R1 and 0p1ORG
, where 0p1ORG

is the
vector which locates the origin of Frame 1. So we have

{1} = {0R1,
0p1ORG

}.

For example, in Figure 2.4 we have three frames and a known reference system.
Frames {1} and {3} are known relative to {0}, and Frame {2} is known relative
to Frame {1}.

In summary, a frame can be used as a description of one coordinate system
relative to another. It may be thought of as generalizing the notions of position
and orientation, since it encompasses both. Positions could be represented by a
frame whose rotation is the identity matrix. Likewise, an orientation could be
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Figure 2.4: Reference frames.

represented by a frame whose position vector part was the zero vector.

I =

 1 0 0
0 1 0
0 0 1

 ,
0 =

 0
0
0

 .
2.4 Mappings: Changing Descriptions from One

Frame to Another

In a great many of the problems in robotics, we are concerned with expressing
the same quantity in terms of various reference coordinate systems. We have
discussed descriptions of positions, orientations, and frames, now we consider
the mathematics of mapping so we can change descriptions from frame to frame.

2.4.1 Translated Frames

We wish to change the description of point P from frame {1} to {0}. Here,
{1} differs from {0} by a translation described by 0p1ORG , a vector locating the
origin of {1} relative to {0}. Because 0p1ORG and 1p are defined in frames with
the same orientation, we can use simple vector addition to obtain

0p = 1p+ 0p1ORG
.

(Only in this special situation can we add vectors defined in different frames).
Note: The concept of mapping, changing the description from one frame to

another, is extremely important for robotics. The quantity itself (here, a point
in space) is not changed; only its description is changed.
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Figure 2.5: Translated frames.

The vector 0p1ORG defines this mapping: this, along with the knowledge that
orientation is constant, is the only information needed to perform the change in
description.

2.4.2 Rotated Frames

To change a description from one frame to another sharing the same origin,
but with a different orientation, we can use the rotation matrix R. We wish
to change the description of P from 1p to 0p. To compute the components of
0p, we project 1p onto the unit vectors of {0}. As discussed earlier, this can be
accomplished with

0p = 0R1
1p.

Figure 2.6: Rotated frames.

Note: A useful way to view the notation we have adopted is to imagine
the right subscripts “cancel” the left superscripts. For instance, in the previous
example the 1’s may be thought of as “canceling out”.
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Example: Frame {1} is rotated by 30o relative to frame {0} about Ẑ0.

0R1 =

 X̂1 · X̂0 Ŷ1 · X̂0 Ẑ1 · X̂0

X̂1 · Ŷ0 Ŷ1 · Ŷ0 Ẑ1 · Ŷ0

X̂1 · Ẑ0 Ŷ1 · Ẑ0 Ẑ1 · Ẑ0

 =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,
r11 = cos (30),

r12 = cos (30 + 90) = − sin (30),

r21 = cos (90− 30) = sin (30),

r22 = cos (30),

r33 = cos (0),

r31 = r32 = r13 = r23 = 0.

this gives 0R1 =

 cos (30) − sin (30) 0
sin (30) cos (30) 0

0 0 1

 .
Given 1p =

 0
2
0

 ,
we calculate 0p = 0R1

1p =

 −1
1.732
0

 .
2.5 General Displacements: Homogeneous Trans-

formations

For the general case of mapping, the new frame (called the image-space) has
undergone both a translation and rotation, at least as far as practical robot
joints are concerned. To map 1p to {0} we can proceed by first changing 1p
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to its description relative to an intermediate frame with the same orientation
as {0}, but whose origin is coincident with that of {1}. This is done by pre-
multiplying 1p with 0R1. We can then account for the translation component
with simple vector addition. This gives

0p = 0R1
1p+ 0p1ORG .

Note, the 1’s “cancel”, giving all vectors in {0}, which may then be added.
However, the above displacement representation is not a linear transformation,
for the simple reason that the translation of the sum of two vectors x and y,
by the amount d is T (x + y) = x + y + d, and not the sum of the translation
of each vector separately, which is T (x) + T (y) = x + y + 2d. Thus, general
displacements in 3-D space cannot be represented by 3× 3 transformations.

The inconvenience is removed by embedding 3-D Euclidean space, E3, in E4,
as the 3-dimensional hyperplane H. Identifying E3 with H changes each 3-D
coordinate vector into one that is 4-D. We usually specify the hyperplane H by
giving a value to the fourth coordinate. This value is arbitrary. For convenience,
we choose 1. A displacement of 0p = 0R1

1p+ 0p1ORG
of E3 becomes a linear

transformation 0T1 of E4, given by[
0p
1

]
=

[
0R1

0p1ORG

0 0 0 1

] [
1p
1

]
,

= 0T1

[
1p
1

]
,

= 0T1
1p. (2.2)

When 1p is pre-multiplied by the 4×4 matrix 0T1, it is obvious from context that
1p has four coordinates, and that the fourth coordinate of (1p)4 = 1. The 4× 4
matrix T is called the homogeneous transform representing the displacement.

The term homogeneous refers to the fact that the coordinate vector

[
1p
1

]
may be interpreted as homogeneous coordinates of a 3-D projective space (4-D
homogeneous coordinate space).

Now is the perfect time for a brief review of homogeneous coordinates.

2.5.1 Homogeneous Coordinates

Let O be the origin of the Cartesian coordinate system, shown in Figure 2.7.
Let S be a distinct point in the plane. The ray passing through O and S is
described by the coordinate pair (x, y). Another distinct point Q ̸= O, on ray
OS is described by the pair (µx, µy), where µ ∈ R (ie. a real number). As
µ→ ±∞ the seemingly meaningless pair (∞,∞) is obtained.

To remedy this representational problem, the point pairs may be represented
by two ratios, given by ordered triples (x0, x1, x2). If x0 ̸= 0, then the point S
can be uniquely described as:

x =
x1
x2

, y =
x2
x0
.
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Figure 2.7: Cartesian coordinates in E2.

Then any triple of the form (λx0, λx1, λx2) (for λ ̸= 0) describes exactly the
same point S. In other words, two real points are equal if the triples representing
them are proportional. This is because

λx1
λx0

=
x1
x0

= x, and
λx2
λx0

= y.

The coordinates (x0 : x1 : x2) are called homogeneous coordinates. When x0 = 1
the Cartesian coordinate pair (x, y) is recovered.

The Cartesian coordinates (µx, µy), µ ̸= 0, of the family of points on the
ray through Q in Figure 2.7 can be expressed in homogeneous coordinates as
ratios:

(µx, µy) = (x0 : µx1 : µx2) = (
x0
µ

: x1 : x2).

In E2, as µ → ±∞, the homogeneous coordinates (0 : x1 : x2) are obtained.
There is no point on the line OS to which this triple can correspond because E2

is unbounded. However, in the projective extension of the Euclidean plane1 the
triple (0 : x1 : x2) describes the point at infinity (ideal point) on the line OS.
Since the same triple is obtained regardless if µ → +∞ or µ → −∞, a unique
point at infinity is associated with the line OS in E2. Hence, an ordinary line
adjoined by its point at infinity is a closed curve.

The triple (0 : 0 : 0) describes neither an ideal point nor a real point on OS.
(x : y : 0) = (0 : 0 : 0) seems to imply that S = O, which is a contradiction in

1The projective plane, P2, can be thought of as the unbounded Euclidean plane, E2, to
which the line at infinity has been added, thereby imposing a bound on E2.
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the construction of ray OS. The trivial triple (0 : 0 : 0) is therefore not included
in the point set comprising the projective extension of E2.

All lines in E2 which are extended to their points at infinity have the ho-
mogenizing coordinate x0 = 0. The totality of all the existing points at infinity
(with the exception of (0 : 0 : 0)) are described by x0 = 0. The extended
Euclidean plane which includes all the points at infinity is called the projective
plane P2. Since x0 = 0 is a linear equation, it represents the line at infinity.

Figure 2.8: Cartesian coordinates in E3.

Entirely analogous statements can be made for 3-D Euclidean space, E3.
This space is covered by a Cartesian coordinate system with origin O and
axes x, y, z. The axes are usually defined as orthogonal. Such an orthogo-
nal Cartesian system is illustrated in Figure 2.8. The homogeneous coordinates
(x0, x1, x2, x3) of the point S ∈ E3 are defined as:

x =
x1
x0
, y =

x2
x0
, z =

x3
x0
, x0 ̸= 0.

As in two dimensional projective space, when x0 = 1 the Cartesian coordinate
triple (x, y, z) is recovered.

It should be noted that in general the choice of homogenizing coordinate is
arbitrary. Over the course of time the following conventions have been devel-
oped:
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1. In North America and the British Commonwealth the homogenizing coor-
dinate is taken to be the last one. The coordinate indices begin with
1. In the plane (x1 : x2 : x3) represent the coordinates of a point,
with x3 the homogenizing coordinate. In space, a point is described with
(x1 : x2 : x3 : x4), with x4 being the homogenizing coordinate. In general,
the homogenizing coordinate in an n-D space has the index n+ 1.

2. In most other places the first coordinate, given the index 0, is taken to be
the homogenizing one. Thus, x0 represents the homogenizing coordinate
regardless of the dimension of the coordinate space.

Both conventions shall be employed henceforth. This is to underscore the idea
that such a restriction is arbitrary and unnecessary in the context of projec-
tive geometry. However, where required the homogenizing coordinate shall be
explicitly identified.

2.5.2 A Note on Free and Position Vectors

Free vectors represent a magnitude and direction, but represent a vector field
(i.e. couples, moments, angular velocities and accelerations, angular and linear
momentum, etc.) and hence pass through every point in space. Thus, they may
be conveniently represented by setting the homogenizing coordinate equal to
zero:

vf =


vx
vy
vz
0

 .
Position vectors locate a point in space, and thus must pass through a spe-

cific point. They my be conveniently represented by setting the homogenizing
coordinate equal to one:

vp =


vx
vy
vz
1

 .
Example: Homogeneous Transform Mapping

Consider frame {1} rotated with respect to frame {0} about Ẑ by 30o and

translated 10 units along X̂0 and 5 units along Ŷ0. Find
0p when 1p =

 3
7
0

.
Solution: The definition of Frame {1} in Frame {0} is:

0T1 =


cos(30) − sin(30) 0 10
sin(30) cos(30) 0 5

0 0 1 0
0 0 0 1

 .
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We add a fourth coordinate of 1 to 1p and pre-multiply with 0T1:

0p = 0T1
1p =


9.098
12.562

0
1

 .

2.6 Transform Operators

The same mathematical forms we have used to map points from one frame to
another can also be interpreted as operators: matrix operators, which trans-
late points and rotate vectors. We will now examine this interpretation of the
transforms we have discussed.

2.6.1 Translation Operators

Let’s first consider a simple illustration: translation of a point. Using the oper-
ator interpretation of the homogeneous transform, to translate the actual point,
we only need one coordinate system. The distinction between the two interpre-
tations is: we may consider that either an object has moved relative to a frame
(operator) or, that the frame has moved relative to the object (transform). For
instance, we may consider that a vector has moved forward relative to a frame,
or that that frame has moved backward relative to the vector.

Here, vector 0p1 is translated by vector 0q. This moves the point P1 to P2

by 0q. Because all vectors are described in {0}, no subscripts or superscripts
are needed for T. The new vector, 0p2 is calculated as

0p2 = 0p1 +
0q =


1 0 0 qx
0 1 0 qy
0 0 1 qz
0 0 0 1


 0p1

1

 = T 0p1.
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The mapping interpretation gives:

0p = 1p− 1p0ORG
= 0T1

1p.

The sign change caused by moving {0} backwards (− 1p0ORG
) is all the differ-

ence. If we use 0p1ORG
instead, the two interpretations are isomorphic!

2.6.2 Rotation Operators

A rotation matrix operates on a vector, to change it to a new vector by rotation
about some axis. When used as an operator, no subscripts or superscripts
appear since it is not seen as transforming reference frames. Hence, we write

0p2 = R 0p1.

Note: for a pure rotation:

T =


0

R 0
0

0 0 0 1

 .
As for translations, the mathematics describing a mapping involving rotation
and a rotation operator is the same, only the interpretation is different. We may
consider that a vector has been rotated about an axis in one sense (positive or
negative) or that the frame in which the vector is described has been rotated
about the same axis, but in the opposite sense.

Example: We wish to compute vector 0p2 obtained by rotating 0p1 about Ẑ0

by 30◦, where 0p1 =

 0
2
0

.
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Solution: From our earlier rotation example we know the rotation matrix
about the Ẑ-axis is:

RẐ0
=

 cos(30) − sin(30) 0
sin(30) cos(30) 0

0 0 1

 ,
⇒ 0p2 = RẐ0

(30o)0p1 =

 −1
1.732
0

 .
Note that p = R0

0p and 0p2 = R 0p1 implement the same mathematics. Only

the meaning of R is different. i.e. RẐ0
(θ) rotates frame {0} forwards by θo,

while RẐ1
(θ) rotates frame {1} backwards by θo. In this case 1R0 = R, but

0R1 = R−1.

2.6.3 Transform Operator

The matrix operatorT rotates and translates a vector 0p1 to give a new one, 0p2.
Subscripts and superscripts are not required for T because only one coordinate
frame is used:

0p2 = T0p1.

The transform which rotates the vector by R and translates it by q is the same
as the one which describes a frame rotated by R and translated by q, relative
to the same frame.

Example: Given 0p1 =

 3
7
0

, we wish to rotate it about Ẑ0 by 30o and translate

it 10 units along X̂0 and 5 units along Ŷ0. Find
0p2.
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Solution:

T =


cos(30) − sin(30) 0 10
sin(30) cos(30) 0 5

0 0 1 0
0 0 0 1

 ,
⇒ 0p2 = T 0p1 =

 9.098
12.562

0

 .
Note that T is the same as in the example from Section 2.5.1. That solution
is numerically equivalent to the one above, but the interpretations are vastly
different.

2.6.4 Summary

We have introduced the 4× 4 homogeneous transform matrix, containing orien-
tation and position data, as a general tool to describe a frame. We have further
discussed three interpretations of the homogeneous transform:

1. Description of a Frame: 0T1 describes Frame {1} relative to Frame {0}.
The columns of 0R1 are orthogonal unit vectors defining the directions of
the principal axes of {1} in {0}, and 0p1ORG locates the origin of {1} in
{0}.

2. Transform Mapping: 0T1 maps 1p → 0p.

3. Transform Operator: T operates on 0p1 to give 0p2.

The terms frame and transform are used to refer to both a position and orien-
tation. Frame is usually used for a description, while transform is usually used
when a mapping or operator is implied.
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2.7 Transformation Arithmetic

General displacements, represented by 4 × 4 homogeneous transforms, are a
mathematical group under multiplication, when considered as the set of all pos-
sible displacements in 3-D space. This means that every homogeneous transform
is invertible, and any two may be multiplied, yielding another invertible trans-
form. Additionally every set of three transforms are associative. Under addition
they are a commutative group.

2.7.1 Compound Transformations

If Frame {3} is known relative to {2}, and {2} relative to {1}, and {1} relative
to {0}, we can transform 3p into 2p into 1p into 0p.
i.e.

2p = 2T3
3p,

1p = 1T2
2p,

0p = 0T1
1p.

Combining these three equations, we get:

0p = 0T1
1T2

2T3
3p,

from which we get:
0T3 = 0T1

1T2
2T3.

Again, the subscript and superscript notation makes these manipulations easy
to follow. In general:

0Tn = 0T1
1T2 ...

n−1Tn.

2.7.2 Special Transforms

Pure translation by q:

T =


1 0 0 qx
0 1 0 qy
0 0 1 qz
0 0 0 1

 .
Pure rotation about axis k by θ:

T =


0

Rk(θ) 0
0

0 0 0 1

 .
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2.7.3 Computational Considerations

While homogeneous transforms are useful as a conceptual tool, typical transfor-
mation software used in industrial manipulation systems does not make direct
use of them since the time multiplying by 1’s and 0’s is wasted. Moreover, the
order in which transformations are applied can make a large difference in the
amount of computation required to compute the same quantity. For example,
if T is 4× 4 and the p are 4× 1 and we wish to multiply

0p = 0T1
1T2

2p.

We have two possibilities. We can transform the vectors with the matrices
one-at-a-time, or first multiply the matrices together:

1. 0p = 0T1(
1T2

2p).

2. 0p = ( 0T1
1T2)

2p.

The first option requires 32 multiplications and 24 additions, but the second
requires 80 multiplications and 60 additions. Less than half of the second’s
operations are required by the first. Of course, in some cases, some of the T’s
may be constant, and there may be many 2pi’s which need to be transformed.
Additionally, we may be looking for a symbolic solution. Here it is more efficient
to compute 0T2 once, and use it for all required transformations.

2.7.4 Inverse of a Homogeneous Transform

It is often necessary to compute the inverse of a known transform, sometimes
numerical and sometimes symbolic transforms. We want to find a computation-
ally simple method that takes advantage of the transform’s inherent structure.
Recall, the transform is a homogeneous representation of

0p = 0R1
1p+ 0b,

⇒ 0p = 0T1
1p.

Here, 0b = 0p1ORG
for short. We wish to compute 1p, so we require 0T−1

1 . Go
back to the first equation and isolate 1p:

0p− 0b = 0R1
1p,

0R−1
1 ( 0p− 0b) = 0R−1

1
0R1

1p = 1p,

⇒ 1p = 0RT
1

0p− 0RT
1

0b,

⇒ 0T−1
1 =

[
0RT

1 − 0RT
1

0b
0 0 0 1

]
,

=

[
0RT

1 − 0RT
1

0p1ORG

0 0 0 1

]
.
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Figure 2.9: Frame transformations.

2.8 Transform Equations

Figure 2.9 shows that frame {4} can be expressed as the product of transfor-
mations in many ways. In particular as:

0T4 = 0T1
1T4, (2.3)

0T4 = 0T2
2T3

3T4. (2.4)

We can combine Equations (2.3) and (2.4) to yield a single transform equation

0T1
0T4 = 0T2

2T3
3T4. (2.5)

n transform equations can be used to solve for n unknown transforms. Suppose
in (2.5) we had one unknown transform, 1T4. We easily determine its solution
as:

1T4 = 0T1
−1 0T2

2T3
3T4 = 1T0

0T2
2T3

3T4,

where we have just pre-multiplied both sides of (2.5) by 0T1
−1.

The graphical frame representation used the arrow pointing from one origin
to another. The inverse transform simply involves changing the direction of the
arrow.

2.9 Other Representations of Orientation

So far we have specified orientations with a 3× 3 rotation matrix. Is it possible
to describe an orientation with fewer than nine numbers? To answer this, we
note that a rotation matrix is proper orthogonal, ie. it’s determinant is always
+1. Cayley’s Theorem for proper orthogonal matrices states that for any proper
orthogonal matrix R, there exists a skew-symmetric matrix, S, such that

R = (I− S)−1 (I+ S),

where I is the 3×3 identity matrix. A skew-symmetric matrix has the following
properties:
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1. S = −ST .

2. A 3×3 skew-symmetric matrix is specified by three parameters (sx, sy, sz).

S =

 0 −sz sy
sz 0 −sx
−sy sx 0

 .
Hence, any 3× 3 rotation matrix can be determined by just three independent
parameters. But we already alluded to this. There are six constraints on the
nine elements of R. Each column is a unit vector orthogonal to the other two.
Hence

R = [X̂ Ŷ Ẑ],

with:

|X̂| = 1,

|Ŷ| = 1,

|Ẑ| = 1,

X̂ · Ŷ = 0,

X̂ · Ẑ = 0,

Ŷ · Ẑ = 0.

So, the next question is how do you conversely represent an orientation in 3-D
space with three parameters?

It’s important to point out that one problem representing orientations is
that rotation matrices don’t, in general, commute.

2.9.1 Fixed Angles, Euler Angles, Unit Quaternions

A human operator at a computer terminal whose job it is to type in desired
robot hand orientations doesn’t want to input nine-element proper orthogonal
matrices. The following representations require three angles, or four number
that obey one constraint.

X-Y-Z Fixed Angles

Here, the orientations of frame {1} with respect to {0} is described in the
following way: Start with the two frames coincident, then

1. Rotate {1} about X̂0 by an angle γ.

2. Rotate {1} about Ŷ0 by an angle β.

3. Rotate {1} about Ẑ0 by an angle α.
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Figure 2.10: X-Y-Z fixed angles.

The word fixed refers to the fact that the rotations are specified about the
fixed (ie. non-moving) reference frame. Some call this convention roll, pitch,
yaw angles. However, this name is frequently given to other related but different
conventions.

The equivalent rotation matrix is easily derived:

0R1XY Z
(γ, β, α) = 0R1Z (α)

0R1Y (β)
0R1X (γ),

=

 cα − sα 0
sα cα 0
0 0 1

 cβ 0 sβ
0 1 0

− sβ 0 cβ

 1 0 0
0 c γ − s γ
0 s γ c γ

 ,
=

 cα cβ cα sβ s γ − sα c γ cα sβ c γ + sα s γ
sα cβ sα sβ s γ + cα c γ sα sβ c γ − cα s γ
− sβ cβ s γ cβ c γ

 .
(2.6)

Where c = cos and s = sin in (2.6). The order of matrix concatenation results
from the order of rotation: 0R1X is operated on by 0R1Y , and the product of
0R1Y

0R1X is operated on by 0R1Z . Equation (2.6) is correct only for rotations
performed in the specified order.

The inverse problem, extracting X-Y-Z fixed angles from a rotation matrix
is also of interest. We have nine equations (with six dependencies) and three
unknowns:

0R1XY Z
(γ, β, α) =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 .
It can be shown that

β = arctan 2

(
−r31, ±

√
r211 + r221

)
,

α = arctan 2

(
r21
cosβ

,
r11
cosβ

)
,

γ = arctan 2

(
r32
cosβ

,
r33
cosβ

)
.
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Where arctan 2(y, x) is the two-argument arc-tangent function. Most program-
ming language libraries have it pre-defined. It is defined by:

arctan2(y, x) ≡ tan−1(
y

x
) = θ if x > 0,

tan−1(
y

x
) + π sgn(y) = θ + π sgn(y) if x < 0,

tan−1(∞) sgn(y) =
π

2
sgn(y) if x = 0.

where sgn(y) =

{
1 if y ≥ 0
−1 if y < 0

The troubling thing is that there are two distinct solutions. We must live
with this. Looking at α and γ, we can get into trouble if β = ± 90o, since
cos(± 90o) = 0. The solution degenerates. In these cases only the sum, or
difference, of α and γ may be computed.

Z-Y-X Euler Angles

Another possible description of orientation of {1} with respect to {0}. Start
with frames {1} and {0} coincident.

1. Rotate {1} about Ẑ1 by an angle α.

2. Rotate {1} about Ŷ1 by an angle β.

3. Rotate {1} about X̂1 by an angle γ.

Figure 2.11: Z-Y-X Euler angles.

Here, each rotation is performed about an axis of the moving frame {1},
rather than the fixed frame {0}. These rotations are called Euler Angles. Each
rotation takes place about an axis whose location depends upon the previous
rotations. Rotation matrices parameterized by Z-Y-X Euler angles are indicated
by

0RZ′Y ′X′(α, β, γ).

The primes added to the subscripts distinguishes Euler angles from fixed angles.
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To determine the equivalent rotation matrix, we use the intermediate frames
{1′} and {1′′}. Thinking of the rotations as descriptions of these frames with
{1′′′} ≡ {1} as the final pose, we have immediately:

0R1 = 0R1′
1′R1′′

1′′R1

=

 cα − sα 0
sα cα 0
0 0 1

 cβ 0 sβ
0 1 0

− sβ 0 cβ

 1 0 0
0 c γ − s γ
0 s γ c γ

 ,
=

 cα cβ cα sβ s γ − sα c γ cα sβ c γ + sα s γ
sα cβ sα sβ s γ + cα c γ sα sβ c γ − cα s γ
− sβ cβ s γ cβ c γ

 .
(2.7)

We see, by comparing Equations (2.6) and (2.7) that the Z-Y-X Euler angle
matrix is identical to the X-Y-Z fixed angle matrix!. This non-intuitive result
holds in general: Three rotations about fixed orthogonal axes yields the same
final orientation as the same three rotations taken in the opposite order about
the axis of the moving frame when both start out coincident.

There are 11 more distinct fixed angle and 11 more Euler angle representa-
tions obtained by performing three rotations about coordinate axes in a specific
order. Of the 24 sets, only 12 are distinct because of the duality between the
fixed and Euler angle sets. Thus there are 12 unique parameterizations for
orientation using three successive principal axis rotations. Usually, there is no
great reason to use one over the other, indeed various robot manufacturers and
investigators adopt different ones, so it is useful to list them all:
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Euler angle sets:

RX′Y ′Z′(α, β, γ) =

 cβ c γ − cβ s γ sβ
sα sβ c γ + cα s γ − sα sβ s γ + cα c γ − sα c γ
− cα sβ c γ + sα s γ cα sβ s γ + sα c γ cα cβ

 ,
RX′Z′Y ′(α, β, γ) =

 cβ c γ − sβ cβ s γ
cα sβ c γ + sα s γ cα cβ cα sβ s γ − sα c γ
sα sβ c γ − cα s γ sα cβ sα sβ s γ

 ,
RY ′X′Z′(α, β, γ) =

 sα sβ s γ + cα c γ sα sβ c γ − cα s γ sα cβ
cβ s γ cβ cα − sβ

cα sβ s γ − sα c γ cα sβ c γ + sα s γ cα cβ

 ,
RY ′Z′X′(α, β, γ) =

 cα cβ − cα sβ s γ + sα s γ cα sβ c γ + sα c γ
sβ cβ c γ − cβ s γ

− sα cβ sα sβ c γ + cα s γ − sα sβ s γ + cα c γ

 ,
RZ′X′Y ′(α, β, γ) =

 − sα sβ s γ + cα c γ − sα cβ sα sβ c γ + cα s γ
cα sβ s γ + sα c γ cα cβ − cα sβ c γ + sα s γ

− cβ s γ sβ cβ c γ

 ,
RZ′Y ′X′(α, β, γ) =

 cα cβ cα sβ s γ − sα c γ cα sβ c γ + sα s γ
sα cβ sα sβ s γ + cα c γ sα sβ c γ − cα s γ
− sβ cβ s γ cβ c γ

 ,
RX′Y ′X′(α, β, γ) =

 cβ sβ s γ sβ c γ
sα sβ − sα cβ s γ + cα c γ − cα cβ s γ − sα c γ
sα sβ sα cβ c γ + cα s γ − sα cβ s γ + cα c γ

 ,
RX′Z′X′(α, β, γ) =

 cβ − sβ c γ sβ s γ
cα sβ cα cβ c γ − sα s γ − cα cβ s γ − sα c γ
sα sβ sα cβ c γ + cα s γ − sα cβ s γ + cα c γ

 ,
RY ′X′Y ′(α, β, γ) =

 − sα cβ s γ + cα c γ sα sβ sα cβ c γ + cα s γ
sβ s γ cβ − sβ c γ

− cα cβ s γ − sα c γ cα sβ cα cβ c γ − sα s γ

 ,
RY ′Z′Y ′(α, β, γ) =

 cα cβ c γ − sα s γ − cα sβ cα cβ s γ + sα c γ
sβ c γ cβ sβ s γ

− sα cβ c γ − cα s γ sα sβ − cα cβ s γ + cα c γ

 ,
RZ′X′Z′(α, β, γ) =

 − sα cβ s γ + cα c γ − sα cβ c γ − cα s γ sα s γ
cα cβ s γ + sα c γ cα cβ c γ − sα s γ − cαsβ

sβ s γ sβ c γ cβ

 ,
RZ′Y ′Z′(α, β, γ) =

 cα cβ c γ − sα s γ − cα cβ s γ − sα c γ cα s γ
sα cβ c γ + cα s γ − sα cβ s γ + cα c γ sα sβ

− sβ c γ sβ s γ cβ

 .
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Fixed angle sets:

RXY Z(α, β, γ) =

 cα cβ cα sβ s γ − sα c γ cα sβ c γ + sα s γ
sα cβ sα sβ s γ + cα c γ sα sβ c γ − cα s γ
− sβ cβ s γ cβ c γ

 ,
RXZY (α, β, γ) =

 cα cβ − cα sβ s γ + sα s γ cα sβ c γ + sα c γ
sβ cβ c γ − cβ s γ

− sα cβ sα sβ c γ + cα s γ − sα sβ s γ + cα c γ

 ,
RY XZ(α, β, γ) =

 − sα sβ s γ + cα c γ − sα cβ sα sβ c γ + cα s γ
cα sβ s γ + sα c γ cα cβ − cα sβ c γ + sα s γ

− cβ s γ sβ cβ c γ

 ,
RY ZX(α, β, γ) =

 cβ c γ − sβ cβ s γ
cα sβ c γ + sα s γ cα cβ cα sβ s γ − sα c γ
sα sβ c γ − cα s γ sα cβ sα sβ s γ

 ,
RZXY (α, β, γ) =

 sα sβ s γ + cα c γ sα sβ c γ − cα s γ sα cβ
cβ s γ cβ cα − sβ

cα sβ s γ − sα c γ cα sβ c γ + sα s γ cα cβ

 ,
RZYX(α, β, γ) =

 cβ c γ − cβ s γ sβ
sα sβ c γ + cα s γ − sα sβ s γ + cα c γ − sα c γ
− cα sβ c γ + sα s γ cα sβ s γ + sα c γ cα cβ

 ,
RXYX(α, β, γ) =

 cβ sβ s γ sβ c γ
sα sβ − sα cβ s γ + cα c γ − cα cβ s γ − sα c γ
sα sβ sα cβ c γ + cα s γ − sα cβ s γ + cα c γ

 ,
RXZX(α, β, γ) =

 cβ − sβ c γ sβ s γ
cα sβ cα cβ c γ − sα s γ − cα cβ s γ − sα c γ
sα sβ sα cβ c γ + cα s γ − sα cβ s γ + cα c γ


RY XY (α, β, γ) =

 − sα cβ s γ + cα c γ sα sβ sα cβ c γ + cα s γ
sβ s γ cβ − sβ c γ

− cα cβ s γ − sα c γ cα sβ cα cβ c γ − sα s γ

 ,
RY ZY (α, β, γ) =

 cα cβ c γ − sα s γ − cα sβ cα cβ s γ + sα c γ
sβ c γ cβ sβ s γ

− sα cβ c γ − cα s γ sα sβ − cα cβ s γ + cα c γ

 ,
RZXZ(α, β, γ) =

 − sα cβ s γ + cα c γ − sα cβ c γ − cα s γ sα s γ
cα cβ s γ + sα c γ cα cβ c γ − sα s γ − cα sβ

sβ s γ sβ c γ cβ

 ,
RZY Z(α, β, γ) =

 cα cβ c γ − sα s γ − cα cβ s γ − sα c γ cα s γ
sα cβ c γ + cα s γ − sα cβ s γ + cα c γ sα sβ

− sβ c γ sβ s γ cβ

 .
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Equivalent Angle-Axis

A well known result from classical kinematics (Euler’s theorem on rotation) is
that any change in orientation of a rigid body can be represented by a rotation
through a certain angle about a certain axis. It can (and will) be shown that
the associated rotation matrix has only one real eigenvalue. The associated
eigenvector gives the direction of the rotation axis. (Note: the axis always
passes through the origin).

Any orientation may be expressed with appropriate axis and angle selection.
Consider the following description of {1}: Start with {1} and {0} coincident.
Then, rotate {1} about the vector 0k by an angle θ according to the right-hand
rule. It can be shown that the equivalent rotation matrix is:

Rk(θ) =

 kxkxνθ + c θ kxkyνθ − kz s θ kxkzνθ + ky s θ
kxkyνθ + kz s θ kykyνθ + c θ kykzνθ − kx s θ
kxkzνθ − ky s θ kykzνθ + kx s θ kzkzνθ + c θ

 .

Where νθ = 1 − cos(θ) and 0k =

 kx
ky
kz

 being a unit vector. The sign of θ

is determined by the right-hand rule with the thumb pointing in the positive
direction of 0k.

So, given any rotation axis and angle, we can construct an equivalent rotation
matrix. When the axis is one of the principal axes of {0} we get the familiar

RX(θ) =

 1 0 0
0 c θ − s θ
0 s θ c θ

 ,
RY (θ) =

 c θ 0 s θ
0 1 0

− s θ 0 c θ

 ,
RZ(θ) =

 c θ − s θ 0
s θ c θ 0
0 0 1

 .
The inverse problem of determining k and θ from a given rotation matrix is
obtained with

0R1k =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,
⇒ θ = cos−1

(
r11 + r22 + r33 − 1

2

)
,

and 0k =
1

2 sin θ

 r32 − r23
r13 − r31
r21 − r12

 .
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This gives θ as 0 < θ < 180o. For every 0k and θ there is −0k and −θ which
yields the same orientation with respect to {0} described with identical rotation
matrices. We are always faced with having to choose one. More seriously, for
small angles k becomes ill-defined. When θ = 0, k represents a line at infinity.
We are also in computational peril when θ = 180o.

Euler-Rodriguez Parameters

Another way to represent an orientation is with four numbers. In terms of the
equivalent axis k and angle θ, the Euler-Rodriguez parameters can be defined
as:

c1 = kx sin

(
θ

2

)
,

c2 = ky sin

(
θ

2

)
,

c3 = kz sin

(
θ

2

)
,

c4 = cos

(
θ

2

)
.

Recall that k is a unit vector, hence the four Euler-Rodriguez parameters are
not independent, but are related by:

c1
2 + c2

2 + c3
2 + c4

2 = 1.

Because of the parametrization, we also observe that a non-zero condition must
be satisfied

c1 : c2 : c3 : c4 ̸= 0 : 0 : 0 : 0.

So, we can visualize an orientation as a point on a unit hypersphere in a 3-D
projective (4-D homogeneous coordinate) space. Viewing the Euler-Rodriguez
parameters as a 4×1 vector, they are known as a unit quaternion. The rotation
matrix corresponding to a set of Euler-Rodriguez parameters is:

RER =

 c21−c22−c23−c24 2(c1c2 − c3c4) 2(c1c3 + c2c4)

2(c1c2 + c3c4) −c21+c22−c23+c24 2(c2c3 − c1c4)

2(c1c3 − c2c4) 2(c2c3 + c1c4) −c21−c22+c23+c24

 . (2.8)

The diagonal elements can be simplified to

RER11
= 1− 2c2

2 − 2c3
2,

RER22 = 1− 2c1
2 − 2c3

2,

RER33
= 1− 2c1

2 − 2c2
2.

 (2.9)
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The inverse problem is, given a rotation matrix the equivalent Euler-Rodriguez
parameters are

c1 =
r32 − r23

4c4
,

c2 =
r13 − r31

4c4
,

c3 =
r21 − r12

4c4
,

c4 =
1

2

√
1 + r11 + r22 + r33.

If c4 = 0, then θ = ± 180o, and we can only determine the ratios of kx, ky, kz.
Note that the Euler-Rodriguez parameters are the invariants of a rotation. That
is, when expressed as a rotation matrix, we can determine what remains invari-
ant under the rotation by determining the eigenvectors of R. It turns out that
there is only one real eigenvalue for any rotation matrix. The corresponding
single real eigenvector is the direction of the axes of rotation, k.

The real eigenvalue is always +1.

The real eigenvector is always

 kx
ky
kz

.
A Note on Line Bound and Free Vectors:

When represented by homogeneous coordinates, a line bound vector, like a force,
has a non-zero homogenizing coordinate. Free vectors, like the linear velocity
of a rigid body, are represented by setting the homogenizing coordinate to zero.
This states that only the direction (and magnitude) of the vector are important.

The Euler-Rodriguez parameters can be obtained directly from Cayley’s
Theorem for proper orthonormal matrices:

R = (I− S)−1. (2.10)

Expanding, we get matrix R in terms of S1, S2, S3. These are called the
Rodriguez parameters.  S1

S2

S3

 = tan

(
θ

2

) kx
ky
kz

 ,
with k as the rotation axis. We can homogenize R by setting

S1 =
c1
c4
, S2 =

c2
c4
, S3 =

c3
c4
,

and we obtain the rotation matrix in terms of the Euler-Rodriguez parameters.
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Chapter 3

Kinematics

Kinematics is the study of motion without regard to the forces causing the
motion. This involves working with position, velocity, acceleration, and even
higher order derivatives of the position variables with respect to time, or any
other variable(s). These are the geometric, and time-based, properties of mo-
tion. The relations between these motions and the forces and torques causing
them is dynamics. More on dynamics later. For now, we will only consider
static situations.

Figure 3.1: Spherical joint constructed from 3 R-pairs.

3.1 Link Description

A robot may be thought of as a kinematic chain, i.e., a set of rigid links con-
nected by joints which allow relative motion between the links. Joints are also
called kinematic pairs. The term lower pair is used when the relative motion
involves sliding surface contact. Higher pairs involve point, or line contact (like
a cam and follower, or mating spur gears).

We will only consider 1 DOF joints, namely prismatic (P) pairs and revolute
(R) pairs. All of the remaining lower-pairs can be constructed as combinations
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Figure 3.2: Lower kinematic pairs.

of P- and R-pairs. For example, a spherical joint is constructed with 3 R-pairs
with intersecting axes, as shown in Figure 3.1.

Any lower pair joint with n DOF can be modeled as n joints with 1 DOF
connecting n− 1 links of zero length!

3.1.1 Convention

The links are numbered starting from the fixed base, called link 0. The first
moving body is link 1, and so on, out to the free end of the “arm”, which is
link n. Attributes of a single link include material, its strength and stiffness,
the location of any type of bearings in the joint, the shape, mass and inertia,
etc. But for kinematics, a link is a simple rigid body defining the relationship
between neighboring axes. Joint axes are defined by lines.
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Figure 3.3: Convention for numbering links (joint axes are normal to the page).

3.2 Modified Denavit-Hartenberg (MDH) Link
Parameters

One of the most fundamental problems in describing a working environment
in which one or more robots operate, together with supporting equipment and
devices, is how to explain the relative positions of the various components. This
is crucial since many robot operations are pose driven. For example, a robot
has to pick up a part from a certain location at a certain time, put it down in
a clamping device, then, after collecting a tool, perform a machining operation
on the part. From a kinematics point of view, the description of this problem
reduces to determining the relationships between the reference frames attached
to each part.

The Denavit-Hartenberg (DH) parametrisation involves the allocation of co-
ordinate frames to each robot link using a set of rules to locate the origin of the
frame and the orientation of the axes. The position of consecutive links is then
defined by a homogeneous transformation matrix, which transforms coordinates
in the frame attached to link n into those of the frame attached to link n − 1.
Concatenating all n transformations maps the tool point from the tool frame
to the base frame, i.e., the forward kinematics. This transformation is obtained
from simpler ones representing translations along and rotations about the prin-
cipal axes. There are many variations on the DH method, we will examine
two.

IMPORTANT NOTE: In the textbook, Introduction to Robotics by John
J. Craig used in this course, the DH parametrisation used is modified from the
original one introduced by Denavit and Hartenberg in 1955. Hence, in these
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notes we will call the ones used by Craig the Modified Denavit-Hartenberg
(MDH) parameters to differentiate them from the original DH parameters. We
will stop making the distinction once we get to Subsection 3.3.1, and simply refer
to the MDH parameters as DH parameters, because the goal here is simply to
show that different conventions exist. Reference to the book by Craig will be
much simpler if we also call them DH parameters. But, for now we will keep
the distinction between MDH and DH parameters.

3.2.1 Link Length ai−1

The length of link i−1, indicated by ai−1, is the perpendicular distance between
axis i− 1 and axis i. If the two axes intersect, ai−1 = 0.

Figure 3.4: Link length ai−1.

3.2.2 Link Twist αi−1

This is the angle between axis i− 1 and axis i. Imagine that axis i− 1 and i, if
they don’t intersect, are in parallel planes. ai−1 is the normal distance between
the two planes. The angle between the two axes can be measured by projecting
the axes into one of those parallel planes. This angle is measured from axis i−1
to axis i in the right hand sense about ai−1 (when ai−1 is taken as the directed
line segment from axis i − 1 to axis i). If the axes intersect, twist is measured
in the plane containing the axes, but the sense is arbitrary.

Length ai−1 and twist αi−1 define the relationship between any two lines in
space, and hence, between any two joint axes.
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3.2.3 Link Offset and Joint Angle: di and θi

An additional two quantities are sufficient to completely specify how two links
are connected: the link offset di and the joint angle θi. Neighboring links have
an axis in common, and these two parameters concern this axis.

Figure 3.5: Joint axes.

Link Offset di

This is the distance, measured along the common axis from link i− 1 to link i.
Each link has a link-fixed reference frame associated with it. The pose of this
frame is the pose of the link. Depending on how the frames are attached,
there may be an offset between the origins of two neighboring link frames in a
specific coordinate direction (discussed in greater detail later). The link offset

Figure 3.6: Link offset di and joint angle θi.

distance di is the signed distance measured along axis i from the point where
ai−1 intersects axis i to the point where ai intersects axis i, see Figure 3.6.

Joint Angle θi

This parameter describes the amount of rotation about the common axis be-
tween link i− 1 and link i, which is the angle between ai−1 and ai.
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Summary

The following summarises the parameters:

di is fixed, i.e. constant, for an R-pair but variable for a P-pair;

θi is constant for a P-pair but variable for an R-pair;

ai−1 is always constant;

αi−1 is always constant.

First and Last Links in the Chain:

a0 = an = 0,

α0 = αn = 0.

If joint 1 is an R-pair: d1 = 0 and the zero for θ1 is arbitrary.

If joint 1 is a P-pair: θ1 = 0 and the zero position for d1 is arbitrary.

Analogous statements apply for joint n. The idea is to assign zero to arbitrary
quantities to simplify computations later.

3.2.4 Denavit-Hartenberg (DH) Parameters

The kinematics of any (serial) robot can be described by specifying the values of
the four numbers (ai, αi, di, θi) for each link. These are called DH parameters.
The MDH parameters are (ai−1, αi−1, di, θi). For a robot with six joints, 18
numbers completely describe the constant portions of its kinematics.

To visualize the four DH parameters, consider two arbitrary neighboring
links i− 1 and i shown in Figure 3.7.

θi = joint angle: the angle from X̂i−1 to X̂i measured about Ẑi−1.

αi = link twist: the angle from Ẑi−1 to Ẑi measured about X̂i.

ai = link length: the distance from Ẑi−1 to Ẑi measured along X̂i.

di = link offset: the distance from X̂i−1 to X̂i measured along Ẑi−1.

Convention for Affixing DH Frames to Links

The procedure for assigning the origin and axes for link i are:

1. Identify all joint axes. Consider neighbours i− 1, i and i+ 1.

2. Identify the common perpendicular between the two axes i and i + 1,
or their point of intersection. At the point of intersection, or where the
common perpendicular meets the (i+1)st joint axis, assign the link frame
origin, Oi.
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Figure 3.7: DH Parameters.

3. For {0} and {1}, ensure the axes are aligned when θ1 = 0. An n-joint
manipulator has n − 1 frames. Assign the tool frame {T} to align with
{n− 1}.

4. Assign the zi axis to point along joint axis i+ 1.

5. Assign the xi axis to point along the common normal between joint axes i
and i+1. If the axes are parallel, any convenient normal can be selected.
If the axes intersect assign xi to be perpendicular to the plane containing
zi−1 and zi.

6. Assign the yi axis to complete a right-handed coordinate system.

NOTE: the frame assignments are not unique. For instance, when the zi axis
is aligned with the (i+ 1)st joint axis there is a choice of direction for zi.

3.2.5 Modified Denavit-Hartenberg (MDH) Parameters

The four MDH parameters are the following.

θi = joint angle: the angle from X̂i−1 to X̂i measured about Ẑi.

αi = link twist: the angle from Ẑi to Ẑi+1 measured about X̂i.

ai = link length: the distance from Ẑi to Ẑi+1 measured along Ẑi.

di = link offset: the distance from X̂i−1 to X̂i measured along Ẑi.

The procedure for assigning the origin and axes for link i are:

1. Identify all joint axes. Consider neighbors i and i+ 1.
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Figure 3.8: MDH Parameters.

2. Identify the common perpendicular between the two axes, or their point of
intersection. At the point of intersection, or where the common perpendic-
ular meets the ith joint axis, assign the link frame origin, Oi. Important:
assign {0} to match {1} when θ1 = 0. Assign the axes of {T} to align
with those of {n}.

3. Assign the Ẑi axis to point along joint axis i.

4. Assign the X̂i axis to point along the common normal between joint axes
i and i+1. If axes are parallel, any convenient normal can be selected. If
they intersect, assign X̂i to be perpendicular to the plane containing Ẑi

and Ẑi+1.

5. Assign the Ŷi axis to complete a right-handed coordinate system.

MDH Example 1

Assign the link frames and MDH parameters to the planar arm (RRR) in
Figure 3.9:

Frames:

{0} Fixed to the base and aligns with {1} when θ1 = 0. Ẑ0 is aligned with
joint axes 1, pointing out of the page.

{1} Fixed to link {1}, X̂1 in direction of common perpendicular from joint axis

1 to joint axis 2. X̂1 points out of the page.
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Figure 3.9: MDH Example 1.

{2} Since the arm is planar, all Ẑ1 are parallel. Thus X̂2 points towards Ẑ3

{3} All joints are R-pairs, when at 0 degrees all X̂ axes must align. Assign X̂3

along length of last link.

Table 3.1: MDH Parameters for Example 1

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 0 l1 0 θ2
3 0 l2 0 θ3

All Ẑ axes are parallel and the arm is planar, therefore αi = di = 0, no link
twist, no offset. Note l3 is not a parameter. Final offsets of the end effector
reference points are discussed later.

MDH Example 2

Assign link frames and MDH parameters to the spatial RRP arm in Figure
3.10.

Frames:

{0} As assigned in MDH Example 1.

{1} As assigned in MDH Example 1.
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Figure 3.10: MDH Example 2.

{2} Joint axis 2 is not parallel to 1, but perpendicular. Ẑ2 may point up or

down. Let’s choose up. X̂2 points in direction of common perpendicular
with Ẑ3.

{3} Joint 3 is a P-pair whose translation direction is parallel to Ẑ2. For sim-

plicity, choose X̂3 in the same direction as X̂2.

Table 3.2: MDH Parameters for Example 2

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 −90o l1 0 θ2
3 0 l2 d3 0

Here there are link offsets (d) and twists (α). This is due to the nature of

the joints and their orientations. Because we selected X̂3 parallel to X̂2, then
θ3 = 0.
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Comparison of DH and MDH Forms

1. DH Form: The origin of frame i, Oi, is located on the axis of joint i+1.
MDH Form: The origin of frame i, Oi, is located on the axis of joint i.

2. ai is always the length of link i, but it is the distance from Ẑi−1 to Ẑi in
the DH form, and the distance from Ẑi to Ẑi+1 in the MDH form. Similar
for αi.

Example 3 - Planar RPR

Figure 3.11: DH and MDH Example 3.

Table 3.3: DH Parameters for Example 3

i αi ai di θi
1 −π/2 0 0 θ1
2 π/2 0 d2 0
3 0 0 0 θ3

Table 3.4: MDH Parameters for Example 3

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 −π/2 0 d2 0
3 π/2 0 0 θ3
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Example 4 - Planar RRR:

Figure 3.12: DH and MDH Example 4.

Table 3.5: DH Parameters for Example 4

i αi ai di θi
1 0 a1 0 θ1
2 0 a2 0 θ2
3 0 0 0 θ3

Table 3.6: MDH Parameters for Example 4

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 0 a1 0 θ2
3 0 a2 0 θ3

51



3.3 MDH Parameters in Transformations

The goal is to determine the individual transforms which describe {i} with
respect to {i− 1}. In general, i−1Ti is a function of the four MDH parameters
(ai−1, αi−1, di, θi). However, if each joint permits only one DOF, then i−1Ti

depends on the single joint variable (either θi or di), the others being fixed
design parameters.

The forward kinematics problem involves determining the pose of the end-
effector given a set of values for the joint variables. Having defined n frames
for each of the robot’s n links, we have broken the forward kinematics problem
into n sub-problems. To solve the sub-problems, i.e. find each i−1Ti, we will
further sub-divide each problem into four sub-problems - one for each MDH
parameter (only one being variable). Each sub-transform is a function of one
MDH parameter and is simple enough that it can be determined by inspection!
We begin by introducing three intermediate frames {P}, {Q}, and {R}.

Figure 3.13: Derivation of MDH form transformations.

Frame {R} differs from {i − 1} by only rotation αi−1. Frame {Q} differs
from {R} by a transformation ai−1. Frame {P} differs from {Q} by a rotation
θi. Frame {i} differs from {P} by a translation di. To write the transformation
which transforms vectors in {i} to {i− 1}, we can write

i−1p = i−1TR
RTQ

QTP
PTi

ip,

or
i−1p = i−1Ti

ip,
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where:

i−1Ti = i−1TR
RTQ

QTP
PTi,

= RX̂i−1
(αi−1) τ X̂i−1

(ai−1) RẐi
(θi) τ Ẑi

(di),

= SX̂i−1
(ai−1, αi−1) SẐi

(di, θi).

Where SQ̂(r, θ) is screw notation, meaning a translation along axis Q̂ by distance
r, and a rotation about the same axis by angle θ. Transforming coordinates from
i to i− 1 may be thought of as

i−1TR: Rotate about X̂R(xi−1) by αi−1.

RTQ: Translate along X̂Q(xi−1) by θi.

PTi: Translate along Ẑi a distance di.

We can write out the transformations by inspection, easily.

i−1Ti =
1 0 0 0

0 cαi−1 − sαi−1 0

0 sαi−1 cαi−1 0

0 0 0 1




1 0 0 ai−1

0 1 0 0

0 0 1 0

0 0 0 1




c θi − s θi 0 0

s θi c θi 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

 ,

=


c θi − s θi 0 ai−1

s θi cαi−1 c θi cαi−1 − sαi−1 − sαi−1di
s θi sαi−1 c θi sαi−1 cαi−1 cαi−1di

0 0 0 1

 .
Because of the recursive relationship among the parameter indices, this for-

mulation is particularly well suited to the derivation of the manipulator dynam-
ics equations.

3.3.1 The Forward Kinematics Problem

IMPORTANT NOTE: For the remainder of this course we will use the MDH
parameters as they are found in Craig’s book. Henceforth we shall refer to
them only as DH parameters, bearing in mind we really mean the modified DH
parameters.

The forward kinematics problem for a serial manipulator reduces to, at worst,
n matrix multiplications, one for each DOF. Using DH notation, we can sum-
marize the procedure in 7 steps:

1. Identify and draw joint axes.

� R-pair: axis of rotation.
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� P-pair: direction of translation

2. Determine link lengths
(common normals between adjacent axes), ai−1, a0 = an = 0.

3. Affix the DH frames to the links.

� If ai−1 = 0 (intersecting i − 1 and i axes), then X̂i−1⊥(Ẑi−1, Ẑi).

Place Oi−1 at the intersection of Ẑi−1 and Ẑi.

� Measure angles according to right-hand rule.

4. Determine link twists, αi−1, α0 = αn = 0
(angle between Ẑi−1 and Ẑi measured about X̂i−1).

5. Determine link offsets, di.
(Distance from X̂i−1 to Ẑi measured along Ẑi).

6. Determine joint angles θi.
(Angle between X̂i−1 and X̂i measured about Ẑi).

� if joint 1 = R-pair, then di = 0 and θi has arbitrary zero position.

� if joint 1 = P-pair, then θ1 = 0 and di has arbitrary zero.

7. Determine transforms i−1Ti and multiply to obtain 0Tn.

Joint Limits

Real joints have limits: angular for R-pairs; length for P-pairs. The are also not
perfect, but we will assume the errors to be negligibly small.

Figure 3.14: Joint limits.
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3.3.2 Actuator, Joint, Cartesian Space

Joint Space

A serial manipulator with n DOF has a position and orientation that can be
specified by n joint variables. Joint space is the coordinate space whose com-
ponents are the joint variables, e.g. [θ1, θ2, d3, θ4].

Figure 3.15: 4D joint space.

Cartesian Space

The space where position of the end-effector is measured along orthogonal axes
and orientation is measured according to the connections discussed earlier.

Actuator Space

Sometimes two differential actuators are used to move one joint, or a linear
actuator is used to move an R-pair through a 4-bar. This is the space where
pose has been specified with actuator values. The components are actuator
positions/angles recorded by sensors.

Figure 3.16: Actuator space.
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3.3.3 Standard Frames

The base frame {B}

{B} is located at the base of the manipulator. It is merely another name for
frame {O}. It is affixed to a non-moving part of the robot, sometimes called
link 0.

The station frame {S}

{S} is located in a task-relevant location. In Figure 3.17 it is at the corner of a
table upon which the robot is to work. As far as the user of this robot system
is concerned, {S} is the universe frame and all actions of the robot are made
relative to it. It is sometimes called the task frame, the world frame, or the
universe frame. The station frame is always specified with respect to the base
frame, that is, BTS .

The wrist frame {W}

{W} is affixed to the last link of the manipulator. It is another name for frame
{N}, the link frame attached to the last link of the robot. Very often {W} has
its origin fixed at a point called the wrist of the manipulator, and {W} moves
with the last link of the manipulator. It is defined relative to the base frame,
that is, {W} = BTW = 0TN .

The tool frame {T}

{T} is affixed to the end of any tool the robot happens to be holding. When
the hand is empty, {T} is usually located with its origin between the fingertips
of the robot. The tool frame is always specified with respect to the wrist frame.
In Figure 3.17 the tool frame is defined with its origin at the tip of a pin that
the robot it holding.

The goal frame {G}

{G} is a description of the location to which the robot is to move the tool.
Specifically this means that at the end of the motion, the tool frame should be
brought to coincidence with the goal frame. {G} is always specified relative to
the station frame. In Figure 3.17 the goal is located at a hole into which we
want the pin to be inserted. All robot motions may be described in terms of
these frames without loss of generality. Their use helps to give us a standard
language for talking about robot tasks.

3.3.4 The Inverse Kinematics Problem

As we have seen, the forward kinematics problem for serial manipulators reduces
to matrix multiplication. That is, given a set of feasible joint variables, we
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Figure 3.17: The standard frames.

can find the position and orientation of the end-effector by concatenating the
appropriate matrices.

Now we have to consider a somewhat nastier problem: Given the position
and orientation of the tool relative to the work station, determine the joint
variables which achieve the desired result. Depending on the kinematic archi-
tecture of the manipulator, this can be an extremely difficult problem from a
computational point of view.

Existence of Solutions

Solutions to the inverse kinematics problem don’t always exist. This raises the
issue of the workspace. There are two main definitions, one more inclusive than
the other:

1. Reachable Workspace: The volume of space the end-effector can reach in
at least one orientation.

2. Dextrous Workspace: The volume of space the end-effector can reach with
any orientation.

The dextrous workspace, if it exists, is clearly a subset of the reachable workspace.

1. If l1 ̸= l2, dextrous workspace = {0}.

2. If l1 = l2, dextrous workspace = 1 point, (0, 0).

3. If a zero-length 3rd link is connected to the free end of l2 with an R-
pair, then dextrous workspace = reachable workspace. (i.e. can move
end-effector to any point in workspace and give it any orientation).

4. As l3 increases in length, the dextrous workspace decreases in size.
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Figure 3.18: Planar 2R linkage.

Joint Limits

Due to design limitations, it may be that some joints in a manipulator will have
a restricted range of motion. Sometimes, joint limits are imposed, designed-in,
to avoid singularities (more on that later). Joint limits reduce both dextrous
and reachable workspace. When a manipulator has less than 6 DOF it cannot

Figure 3.19: Joint limits.

attain general goal poses in 3-D space. In many real industrial applications,
manipulators with 4 or 5 DOF are used. They cannot attain general poses.
The workspaces of such manipulators must be carefully studied so that the con-
troller can be programmed to avoid inaccessible poses. This raises an interesting
question: What is the nearest attainable pose?

Another point of interest is that the workspace depends on the tool frame,
since the end-effector reference point used to specify the workspace is usually
on the tool. Usually, the tool transformation is computed independently of the
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forward kinematics and the inverse kinematics, so, often we must consider the
workspace of the wrist frame. Hence, the workspace computed by the designer
is different from the one imagined by the user.

Multiple Solutions

A problem encountered in solving the inverse kinematics problem is the existence
of multiple solutions. This fact may cause problems when the controller has to
choose one. How should the decision be made? A very reasonable choice is the
closest solution.

If the manipulator is to move from A to B, a good choice might be the
solution that minimizes the amount each joint must move. This suggests we
should use the present position as an input parameter to our inverse kinematics
algorithm.

But how do you define close? Most serial arms have three bit rough position-
ing links, then three small orienting links near the end-effector. Here, weights
would be used so that the selection favors moving smaller joints rather than
larger ones, when a choice exists. Of course, the closer solution may cause a
collision (see Figure 3.20). Sadly, this means we need to calculate all possible
real solutions.

Figure 3.20: Here, the closer solution causes a collision with the rock.

Method of Solution

Solvability: A manipulator is solveable if all inverse kinematics solutions can be
determined for a given pose.

An important condition in this definition is that we require all solutions.
Some iterative numerical procedures may not be able to find all solutions. Those
that can, like Morgan’s Polynomial Continuation Method, are mathematically
well beyond the scope of this course. So let’s split all solution strategies into
two classes:

1. Closed form solutions.

2. Numerical solutions.
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For some applications, like path planning, the inverse kinematics must be com-
puted at rates on the order of 30Hz, often faster. So, iterative numerical solu-
tions, are in general, too slow compared to a corresponding closed form solution.
Hence, we will only consider closed form solutions.

Here, that means solutions based on analytic equations of degree 4 or less.
Otherwise we’re back to numerical methods anyway. A major recent result in
kinematics is that all 6 DOF serial manipulators (most general) are solvable (R
and P pairs only).

There are two main philosophies for developing closed form solutions:

1. Algebraic.

2. Geometric.

Of course, the algebra is based on geometry and the geometry requires some
algebra, but they present two distinct approaches to the problem.

Comparing Algebra and Geometry: Forward Kinematics Example

Figure 3.21: Planar 3R linkage.

1. By inspection and straight matrix multiplication:
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0T1 =


c θi − s θi 0 0
s θi c θi 0 0
0 0 1 0
0 0 0 1

 ,

1T2 =


c θi − s θi 0 l1
s θi c θi 0 0
0 0 1 0
0 0 0 1

 ,

2T3 =


c θi − s θi 0 l2
s θi c θi 0 0
0 0 1 0
0 0 0 1

 .
Useful Identities:

c(θ1 + θ2) = c12 = c1c2 − s1s2,

s(θ1 + θ2) = s12 = c1s2 + c2s1,

c(θ1 − θ2) = c1c2 + s1s2,

s(θ1 − θ2) = s1c2 − s2c1.

Combine:

0T3 = 0T1
1T2

2T3,

=


c1c2 − s1s2 −(c1s2 + c2s1) 0 l1c1
c2s1 + c1s2 −s1s2 + c1c2 0 l1s2

0 0 1 0
0 0 0 1

 2T3,

=


c12 −s12 0 l1c1
s12 c12 0 l1s2
0 0 1 0
0 0 0 1

 2T3,

=


c12c3 − s12s3 −(c12s3 + s12c3) 0 l2c12 + l1c1
s12c3 + c12s3 −s12s3 + c12c3 0 l2s12 + l1s1

0 0 1 0
0 0 0 1

 ,

=


c123 −s123 0 l1c1 + l2c12
s123 c123 0 l1s1 + l2s12
0 0 1 0
0 0 0 1

 .
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2. DH Parameters:

Table 3.7: DH Parameters

i αi−1 ai−1 di θi
1 0 0 0 θ1
2 0 l1 0 θ2
3 0 l2 0 θ3

i−1Ti =


c θi − s θi 0 ai−1

s θi cαi−1 c θi cαi−1 − sαi−1 − sαi−1di
s θi sαi−1 c θi sαi−1 cαi− 1 cαi−1di

0 0 0 1

 ,

0T1 =


c θ1 − s θ1 0 0
s θ1 c θ1 0 0
0 0 1 0
0 0 0 1

 ,

1T2 =


c θ2 − s θ2 0 l1
s θ2 c θ2 0 0
0 0 1 0
0 0 0 1

 ,

2T3 =


c θ3 − s θ3 0 l2
s θ3 c θ3 0 0
0 0 1 0
0 0 0 1

 .
Let’s consider the end-effector reference point to be the origin of the wrist

frame, in this case, {3} (O3). The tool point is known with respect to {3} and
is a constant job-specific transformation. If the tool can reach its point, the
wrist will be in a necessary corresponding pose. Without loss of generality, the
inverse kinematics problem then involves determining all sets of joint angles
given a pose of {3}. That is, given the (x, y) coordinates of O3 in {0}, and the
orientation of {3} in {0}, indicated by ϕ. So, all attainable poses must have the
form implied by the transformation

BTW =


cϕ − sϕ 0 x
sϕ cϕ 0 y
0 0 1 0
0 0 0 1

 .
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Equating 0T3 and BTW we get four non-linear equations:

cϕ = c123, (3.1)

sϕ = s123, (3.2)

x = l1c1 + c2c12, (3.3)

y = l1s1 + l2s12. (3.4)

x, y, ϕ are given, determine θ1, θ2, θ3.

Algebraic Solution:

1. Clearly, from (3.1) and (3.2),

ϕ = θ1 + θ2 + θ3 (3.5)

2. Square and add (3.3) and (3.4):
Right Hand Side:

l1
2 c1

2 + l2
2 c12

2 + 2l1l2c1c12 + l1
2 s1

2 + l2
2 s12

2 + 2l1l2s1s12

= l1
2 + l2

2 + 2l1l2(c1c12 + s1s12),

= l1
2 + l2

2 + 2l1l2(c1(c1c2 − s1s2) + s1(c1s2 + c2s1)),

= l1
2 + l2

2 + 2l1l2(c1
2 c2 − c1s1s2 + c1s1s2 + c2s1

2),

= l1
2 + l2

2 + 2l1l2c2(c1
2 + s1

2),

⇒ l1
2 + l2

2 + 2l − 1l2c2 = x2y2.

Solve for c2:

c2 =
x2 + y2 − l1

2 − l2
2

2l1l2
,

⇒ θ2 = c−1

(
x2 + y2 − l1

2 − l2
2

2l1l2

)
. (3.6)

Equation(3.6) must have a value −1 ≤ c2 ≤ 1. In the solution algorithm
this physical constraint would be checked to determine if any real solutions
exist. If (3.6) is not viable, this means that the desired pose is too far away
for the manipulator to reach.

3. Assuming (3.6) is viable we can always write

s2 = ±
√
1− c2.

Then
θ2 = arctan2(s2, c2),

by using the sine and cosine of the joint angle and then using arctan2
we ensure we have all solutions, and the solved angle is in the correct
quadrant.
Note: the (+) means elbow-up and (-) means elbow-down.
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4. Now that we have θ2, we can solve Equations (3.3) and (3.4) for θ2. Rewrit-
ing, we have:

x = l1c1 + l2(c1c2 − s1s2) = (l1 + c2c2)c1 − (l2x2)s1,

y = l1s1 + l2(c1s2 + c2s1) = (l1 + l2c2)s1 + (l2s2)c1.

These equations are linear in c1 and s1:

x = k1c1 − k2s1,

y = k2c1 + k1s1,

where k1 = l1 + l2c2,

k2 = −l2s2.

Using Cramer’s Rule:

c1 =

[
x −k2
y k1

]
[
k1 −k2
k2 k1

] , s1 =

[
k1 x
k2 y

]
[
k1 −k2
k2 k1

] .
θ1 = arctan2(s1, c1).

5. Finally,
θ3 = ϕ− θ1 − θ2.

Note that in this equation and the one above it, there are two values, one
for each θ2, and hence, two solutions.

An algebraic approach to solving the inverse kinematics problem involves ma-
nipulating the system of equations into a form for which a solution is known.

Geometric Solution:

In the general 3-D case we try to decompose the inverse kinematics problem
into several planar problems. But for our example, we are already in the plane.
We are given the pose of link 3. We must determine all solutions for θ1, θ2, θ3.

1. Use law of cosines to solve for θ2:

A2 = B2 + C2 − 2BC cosα,

cos(θ2 + 180o) = cos(θ2 − 180o) = − cos θ2,

⇒ l2 = l1 + l2 − l1l2 cos(θ ± 180o),

x2 + y2 = l1
2 + l2

2 + sl1l2c2,

⇒ c2 =
x2 + y2 − l1

2 − l2
2

2l1l2
⇒ θ2.

(3.7)

64



Figure 3.22: IK example.

Figure 3.23: Law of cosines.

For this triangle to be real, the distance
√
x2 + y2 must be less than or

equal to l1 + l2. This condition fails when the goal point is out of the
workspace.

The second solution is found by symmetry:

θ2 = −θ2 ′.

2. Now we must determine θ1. This can be done by first finding β, then ψ.
Then we have:

θ1 = β ± ψ ⇔
{

+ if θ2 < 0
− if θ2 > 0

Since we are given the (x, y) coordinates of O3,

β = arctan2(y, x).

Again we use the law of cosines to find ψ:

ψ = cos−1

(
x2 + y2 − l1

2 − l2
2

2l1
√
x2 + y2

)
.
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3. Angles in the plane add linearly. So the sum of the three joint angles must
be the orientation of link 3. This gives:

θ3 = ϕ− θ1 − θ2.

Polynomial Method:

Transcendental equations can, sometimes, be more trouble than they are worth.
We can use the half-angle substitutions to transform the system into polynomi-
als, which may, or may not be “easier” to solve. But, this is beyond the scope
of this course.

µ = tan
θ

2
,

1− µ2

1 + µ2
= cos θ,

2µ

1 + µ2
= sin θ.

Pieper’s 3-Intersecting-Axes Solution

Generally, a 6 DOF serial robot does not have closed form inverse kinematics
solutions, but some important special cases do. We will look at a method,
developed by D.Pieper in his Ph.D. thesis from 1968 (his Ph.D. supervisor was
Bernie Roth), that can be used in the case where all six joints are R-pairs with
the last three having mutually intersecting axes.

Pieper’s solution works in the following way: When axes of {4}, {5}, {6}
intersect, O4, O5, O6 are all located at the point of intersection.

Figure 3.24: Pieper’s 3 intersecting axes solution.

The orientation of {4} depends on the previous joints only, θ1, θ2, θ3.
0T6

is given:

0T6 =

[
0R6

0p6ORG

0 0 0 1

]
,
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but,

0p6ORG
= 0p5ORG

= 0p4ORG
,

⇒ 0p4ORG
= f(θ1, θ2, θ3),

⇒ 0p4ORG
= 0T3

3p4ORG
.

Which gives three equations and 3 unknowns, so we can find θ1, θ2, θ3. So

0R3 = g(θ1, θ2, θ3)

is now known, and thus 0R6 = 0R3
3R6 and 3R6 = 3R0

0R6. Thus we can
find θ4, θ5, θ6 since

3R6 = h(θ4, θ5, θ6).

3.4 Differential Kinematics

So far, we have examined the issues surrounding static positioning problems:
position level kinematics. If we want to consider motions, ie. how the manipu-
lator gets from A to B and examine some details of how it gets there we have to
consider linear and angular velocities of the links. We will assume our transfor-
mations to be smooth functions of time. Hence, the position vector of a point
P will be mapped smoothly into a new position. For the position level, we had
the:

1. Forward Kinematics Problem: Given the joint variables vector q =

 θ1
...
θ6

,

determine the end-effector pose vector x =


x
y
z
α
β
γ

, x = f(q).

At the velocity level, this translates to: Given the joint rate vector q̇
determine the end-effector velocity vector v = ẋ.

2. Inverse Kinematics Problem: Given the end-effector velocity vector v, de-
termine the joint rate vector q̇.

We will also look at the effects of static forces applied to the end-effector on
the joint torques required to maintain static equilibrium. A nice result is that
v and q̇ are related by the same matrix operator, a Jacobian, as are f and τ .

v = Jq̇, τ = JT f .
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Figure 3.25: Linear velocity v caused by angular velocity ω: v = ω × r.

Figure 3.26: Displacement of point p after time interval ∆t.

3.4.1 Differentiation of Vectors, Matrices, Representation
of Angular Velocity, Notation

Linear Velocity of One Point

As with any vector, a velocity may be described in any frame. The velocity of a
position vector of a point is the (here, linear) velocity of the point represented
by the position vector. Suppose point p is moving relative to frame {1}. The
velocity of 1p with respect to {1} is obtained by differentiation:

vp =
d

dt
1p = lim

∆t→0

1p(t+∆t)− 1p(t)

∆t
.

If p is not changing relative to {1}, but {1} is changing relative to {0}, then:
d

dt
1p = 0 ̸= d

dt
0p

in general.
Thus it is important to indicate the frame in which the vector is differenti-

ated. But we may want to express this velocity in some other frame. So, we also
have to indicate the frame of reference. Let’s adopt the following convention:

avp
b.
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It is the velocity of point p relative to frame {b}, but expressed in frame {a}.
Where a is the frame in which the velocity vector is expressed, b is the frame of
differentiation, and p indicates it is the velocity of point p. If {a} and {b} are
the same, the upper-right superscript is not always needed. This is also true if
{b} = {0}, this should be clear from context. Also:

ap b,

where a denotes “expressed in frame {a}”, and b indicates the position vector
is relative to {b}.

In order to add vectors, they MUST be expressed in the same frame.

Angular Velocity of One Body

Figure 3.27: Angular velocity.

Linear Velocity describes a property of a point.

Angular Velocity describes a property of a body.

Note that all lines in a rigid body have the same ω.

0ω1
2 = k̂ lim

∆t→0

∆θ

∆t
= k̂θ̇.

In words, we can say 0ω1
2 = angular velocity of {1} relative to {2}, expressed

in {0}.
The physical meaning of the angular velocity vector ω is that the change

in orientation about a particular axis k̂. Vector k̂ is the instantaneous axis of
rotation. Taking k̂ as a unit vector scaled by the speed of rotation, θ̇, yields ω.

Derivative of a Rotation Matrix

When two frames, with coincident origins, rotate with respect to each other,
the rotation matrices change with respect to time. The question is: What is the
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time derivative of an orthogonal matrix?

d

dt

0

R1(t) = 0Ṙ1.

For an n× n proper orthogonal matrix R, we know that:

RRT = In. (3.8)

Differentiating (3.8) with respect to time gives:

ṘRT +RṘ = 0n. (3.9)

We can rearrange (3.9) as:

ṘRT + (ṘRT )T = 0. (3.10)

Since:

R =

[
cos θ − sin θ
sin θ cos θ

]
,

then Ṙ =

[
− sin θ − cos θ
cos θ − sin θ

]
,

RṘT =

[
0 cos(θ)2 + sin(θ)2

− sin(θ)2 − cos(θ)2 0

]
=

[
0 1
−1 0

]
,

ṘRT =

[
0 cos(θ)2 + sin(θ)2

− sin(θ)2 − cos(θ)2 0

]
=

[
0 1
−1 0

]
,

(RṘT ) + (ṘRT )T =

[
0 1
−1 0

]
+

[
0 −1
1 0

]
= 0.

Let’s call Ω = ṘRT , and then from (3.10):

Ω+ΩT = 0. (3.11)

Equation (3.11) is the definition of a skew-symmetric matrix. Also we see that,
by the definition of ω:

Ṙ = ωR. (3.12)

This is very nice, but now, what are the elements of ω? Let’s directly differen-
tiate R:

Ṙ = lim
∆t→0

R(t+∆t)−R(t)

∆t
, (3.13)

but,

R(t+∆t) = Rk(∆θ)R(t), (3.14)

where a rotation of δθ has occurred about axis k̂ over the interval ∆t. We can
use (3.14) to rewrite (3.13) as:

Ṙ =

(
lim

∆t→0

Rx(∆θ)− I

∆t

)
R(t). (3.15)

70



Then, what does a differential rotation matrix about an arbitrary axis k̂ look
like? Consider the following rotation matrices:

1. Small rotation about X̂ by δx:

RX̂(δx) =

 1 0 0
0 c δx − s δx
0 s δx c δx

 .
2. Small rotation about Ŷ by δy:

RŶ(δy) =

 c δy 0 s δy
0 1 0

− s δy 0 c δy

 .
3. Small rotation about Ẑ by δz:

RẐ(δz) =

 c δz − s δz 0
s δz c δz 0
0 0 1

 .
For differential rotations, δx ≃ δy ≃ δz ≃ 0.

⇒ cos δx ≃ cos δy ≃ cos δz ≃ 1,

sin δx ≃ δx; sin δy ≃ δy sin δz ≃ δz,

RX̂(δx) =

 1 0 0
0 1 −δx
0 δx 1

 , RŶ(δy) =

 1 0 δy
0 1 0

−δy 0 1

 , RẐ(δz) =

 1 −δz 0
δz 1 0
0 0 1

 .
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When higher order products of differentials are ignored, differential rotation
matrices are commutative. i.e.:

RX̂(δx) =

 1 0 0
0 1 −dx
0 dx 1

 ,
RŶ(δy) =

 1 0 dy
0 1 0

−dy 0 1

 ,
RẐ(δz) =

 1 −dz 0
dz 1 0
0 0 1

 ,
Let P1 = RX̂(δx)RŶ(δy)RẐ(δz) =

 1 −dz dy
dxdy + dz −dxdydz + 1 −dx
−dy + dxdz dydz + dx 1

 .
After setting higher order differentials to zero
(i.e. products of differential angles):

P1 =

 1 −dz dy
dz 1 −dx
−dy dx 1

 .
Ignoring products, any rearrangement of the three differential rotation matrices
yields the same result:

P2 =

 1 −dz + dxdy dxdz + dy
dz 1 −dx
−dy dydz + dx −dxdydz + 1

 =

 1 −dz dy
dz 1 −dx
−dy dx 1

 .
Thus, we can represent the differential rotation matrix about an arbitrary axis
k̂ as the product of the components of the differential rotation matrices about
the X̂, Ŷ, Ẑ axes:

Rk̂(∆θ) = RX̂(δx)RŶ(δy)RẐ(δz). (3.16)

When higher order products are ignored, multiplication in any order in (3.16)
yields:

Rk̂(∆θ) =

 1 −δz δy
δz 1 −δx
−δy δx 1

 . (3.17)

Now substitute (3.17) into (3.15) and set δx = kX̂∆θ, δy = kŶ∆θ, δz = kẐ∆θ
and take the limit. We get:

Ṙ =

 0 −kẐθ̇ kŶ θ̇

kẐθ̇ 0 −kX̂θ̇
−kŶ θ̇ kX̂θ̇ 0

R(t) = θR(t). (3.18)
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Since ω = k̂θ̇, we see that Ω is the angular velocity cross-product matrix opera-
tor.

Ω = ṘRT =

 0 −ωẐ ωŶ

ωẐ 0 −ωX̂

−ωŶ ωX̂ 0

 , (3.19)

and hence Ṙ = ΩR = ω ×R, where ω ×R is the angular velocity operator.

0R1 =

 cosϕ − sinϕ 0
sinϕ − cosϕ 0
0 0 1

 ,
ω × 0R1 =

 −ωz sinϕ −ωz cosϕ ωy

ωz cosϕ −ωz sinϕ −ωx

ωx sinϕ− ωy cosϕ ωx cosϕ+ ωy sinϕ 0

 ,
Ω0R1 =

 −ωz sinϕ −ωz cosϕ ωy

ωz cosϕ −ωz sinϕ −ωx

ωx sinϕ− ωy cosϕ ωx cosϕ+ ωy sinϕ 0

 .
Relative Linear Velocity (time derivative) Transformations

The velocity of 1p with respect to {1}, expressed in {1}, 1vP
1 is known. We

know how {1} is translating and rotating with respect to {0}. What does the
total velocity of 1p look like to a stationary observer in {0}? i.e., what is 0vP ?

At any time t, the position of 0p is:

0p = 0p1ORG
+ 0R1

1p1,

where the first superscript 1 in 1p1 indicates that this is expressed in {1}, and
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the second superscript indicates that it is relative to frame {1}. Then:

⇒ d

dt
0p =

d

dt
0p1ORG

+
d

dt
(0R1

1p1),

⇒ 0vP = 0v1ORG
+ 0R1

1vP
1 + 0Ṙ1

1p1, (3.20)

= 0v1ORG
+ 0R1

1vP
1 + 0Ω1

0R1
1p1,

= 0v1ORG
+ 0R1

1vP
1 + (0ω1 × 0R1)

1p1,

= 0v1ORG
+ 0R1

1vP
1 + 0ω1 × (0R1

1p1),

where Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .
Where:

0vP is the velocity of P expressed in {0},
0v1ORG is the velocity of origin of {1} expressed in {0},
1vP

1 is the velocity of P relative to {1} expressed in {1},
0ω1 is the angular velocity of {1} with respect to {0} expressed in {0},
1p is the position of P expressed in {1}, and
0R1

1vP
1 is the relative velocity of p with respect to {1} expressed in {0}.
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Velocity Propagation

Now we examine the problem of determining the relative velocities (linear and
angular) of the links of a serial robot. We consider the propagation of velocity
between adjacent links i and i + 1 starting from the base, link 0. The velocity
of link i is specified by vectors vi and ωi, which may be expressed in any frame,
even {i}. The velocity of link i + 1 will be that of link i plus new components
added by joint i+ 1(i.e. the relative velocity of {i+ 1} in {i}).

We can use Equation (3.20) with point P = Oi+1. Then set {0} = {i+ 1},
{1} = {i}:

i+1vi+1 = i+1vi +
i+1Ri

ivi+1
i + i+1Ωi

i+1Ri
ipi+1

i. (3.21)

But i+1Ωi = i+1ωi
x, (i.e. CPM of i+1ωi). A theorem from linear algebra

says if:

0a = 0R1
1a,

⇒ 0ax = (0R1
1a)x,

= 0R1
1ax 0R1

T ,

= 0R1
1ax 1R0. (3.22)
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As shown below:

Let1a =

 1ax
1ay
1az

 ,
0R1 =

 cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

 ,
0a = 0R1

1a =

 cosϕ 1ax − sinϕ 1ay
sinϕ 1ax + cosϕ 1ay

1az

 ,
1ax =

 0 −1az
1ay

1az 0 −1ax
−1ay

1ax 0

 ,
0ax =

 0 −1az sinϕ 1ax + cosϕ 1ay
1az 0 − cosϕ 1ax + sinϕ 1ay

− sinϕ 1ax − cosϕ 1ay cosϕ 1ax − sinϕ 1ay 0

 ,
0R1

1ax 0R1
T =

 0 −1az sinϕ 1ax + cosϕ 1ay
1az 0 − cosϕ 1ax + sinϕ 1ay

− sinϕ 1ax − cosϕ 1ay cosϕ 1ax − sinϕ 1ay 0

 .
⇒ i+1Ωi = i+1Ri

iΩi
iRi+1.

Also,
i+1vi = i+1Ri

ivi,
i+1vi+1

i = i+1Ri
ivi+1,

and sub this into (3.21):

i+1Ri(
iωi × ipi+1

i) = i+1Ri
iΩi

ipi+1
i,

then

i+1vi+1 = i+1Ri
ivi +

i+1vi+1
i + i+1Ri

iΩi
ipi+1

i. (3.23)

Relative Angular Velocities

These, like any vector, can only be added when expressed in the same frame.
The angular velocity of link i + 1 is the same as that of link i plus a new
component caused by the angular velocity at joint i+1, of link i+1 relative to
link i.

We can write this as:

i+1ωi+1 = i+1ωi+1
i + i+1ωi. (3.24)

Remember, we can represent a vector in any frame. The absolute angular
velocity of link i+ 1 in {i+ 1} equals the absolute angular velocity of link i in
{i + 1} plus the relative angular velocity of link i + 1 with respect to link i in
{i+ 1}.
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If Joint {i+ 1} is an R-Pair

i+1vi+1
i = 0, i.e. no relative linear velocity between Oi and Oi+1. The relative

angular velocity of link i+1 relative to i: i+1ωi+1
i = i+1Ẑi+1θ̇i+1,⇒ link i is

fixed.

⇒ i+1vi+1 = i+1Ri(
ivi +

iωi × ipi+1),

= i+1Ri (
ivi +

iΩi
ipi+1),

i+1ωi+1 = i+1Ẑi+1θ̇i+1 +
i+1Ri

iω̇i,

=

 0
0

θ̇i+1

+ i+1Ri
iωi.

(3.25)

If Joint {i+ 1} is a P-Pair

i+1Rivi+1
i = ḋi+1

i+1Ẑi+1 =

 0
0

ḋi+1

 and i+1ωi+1
i = 0 because θ̇i+1 = 0

⇒ i+1vi+1 = i+1Ri (
ivi +

iωi × ipi+1) + ḋi+1
i+1Ẑi+1,

i+1ωi+1 = i+1Ri
iωi.

(3.26)

Applying Equations (3.25) and (3.26) iteratively from link to link, we can
compute nvn and nωn. The fact that they are in terms of the end-effector frame
turns out to be useful. In terms of the base frame, one multiplication - that of
0Rn is required.
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Example: Compute the velocity of the tip of the 2R manipulator as functions

of joint rates. Supply 3v3,
3ω3,

0v3, and
0ω3.

Solution: We first assign frames.
Since all joints are revolute, we need Equations (3.25).

0T1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 ,

1T2 =


c2 −s2 0 l1
s2 c2 0 0
0 0 1 0
0 0 0 1

 ,

2T3 =


1 0 0 l2
0 1 0 0
0 0 1 0
0 0 0 1

 ,

And 0p1 =

 0
0
0

, 1p2 =

 l1
0
0

, 2p3 =

 l2
0
0

.
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Angular Velocities:

i = 0 : i+1ωi+1 = 1ω1 =

 0
0

θ̇1

+ 0,

⇒ 1ω1 =

 0
0

θ̇1

 .

i = 1 : 2ω2 =

 0
0

θ̇2

+ 2R1
1ω1

=

 0
0

θ̇2

+

 c2 −s2 0
−s2 c2 0
0 0 1

 0
0

θ̇2

 ,
⇒ 2ω2 =

 0
0

θ̇1 + θ̇2


3ω3 = 2ω2.

Note on homogeneous transforms:

ipOi+1
=i Ti+1

i+1p =


x

iRi+1,3×3 y
z

0 0 0 1

 i+1p,

where x, y, z are the coordinates of the origin of {i+ 1} expressed in {i}.
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Linear Velocities:

i = 0 : i+1vi+1 = 1v1 = 1R0(
0v0 +

0ω0 × 0p1),

=

 0
0
0

 ,
i = 1 : 2v2 = 2R1 (1v1 +

1ω1 × 1p2),

=

 c2 s2 0
−s2 c2 0
0 0 1

 0
0
0

+

 0 −θ̇1 0

θ̇1 0 0
0 0 0

 l1
0
0


=

 c2 s2 0
−s2 c2 0
0 0 1

 0

l1θ̇1
0

 ,
=

 l1θ̇1s2
l1θ̇1c2

0

 ,
i = 2 : 3v3 = 3R2(

2v2 +
2ω2 × 2p3),

=

 1 0 0
0 1 0
0 0 1

 l1θ̇1s2
l1θ̇1c2

0

+

 0 −θ̇1 − θ̇2 0

θ̇1θ̇2 0 0
0 0 0

 l2
0
0

 ,

=

 l1θ̇1s2
l1θ̇1s2 + l2(θ̇1 + θ̇2)

0

 .
Next: 0R3 = 0R1

1R2
2R3,

=

 c1 −s1 0
s1 c1 0
0 0 1

 c2 −s2 0
s2 c2 0
0 0 1

 I3×3,

=

 c1c2 − s1s2 −(c1s2 + c2s1) 0
s1c2 + c1s2 c1c2 − s1s2 0

0 0 1

 ,
=

 c12 −s12 0
s12 c12 0
0 0 1

 ,
where c12 = c1c2 − s1s2 = cos(θ1 + θ2),

and s12 = c1s2 + s1c2 = sin(θ1 + θ2).
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Finally,

0ω3 = 0R3
3ω3 =

 0
0

θ̇1 + θ̇2

 ,
0v3 = 0R3

3θ3 =

 −l1s1θ̇1 − l1s12(θ̇1 + θ̇2)

l1c1θ̇1 + l2c12(θ̇1 + θ̇2)
0

 .
after some manipulation.

The main thing to notice is that we obtain the linear and angular end-effector
velocities in terms of the joint rates!

3v3

3ω3

 =


l1s2 0

l1c2 + l2 l2
0 0
0 0
0 0
1 1


[
θ̇1
θ̇2

]
.

Of course, this planar manipulator has only 2 DOF. The linear velocity has only
X and Y components, and is related to the joint rates by:[

3v3X
3v3Y

]
=

[
l1s2 0

l1c2 + l2 l2

] [
θ̇1
θ̇2

]
.

The angular velocity is clearly the sum of the joint rates.
We can also write:[

0v3X
0v3Y

]
=

[
−l1s1 − l2s12 −l2s12
l1c1 − l2c12 l2c12

] [
θ̇1
θ̇2

]
.

3.4.2 Jacobians

A Jacobian is a time-varying transformation that relates Cartesian end-effector
velocities to the joint rates. It is a multi-dimensional derivative. Suppose we
had six functions, each a function of six independent variables:

y1 = f1(x1, . . . , x6)
...

y6 = f6(x1, . . . , x6)

⇔ y = F (x).

To compute the differentials of the yi as a function of the differentials of the xj ,
we use the chain rule and get:

δy1 = δf1
δx1

(δx1) + . . .+ δf6
δx6

(δx6)
...

δy6 = δf6
δx1

(δx1) + . . .+ δf6
δx6

(δx6)

⇔ δy =
δF

δx
(δx)
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δF

δx
= J(x).

Dividing both sides by the differential time element, we get:

ẏ = J(x)ẋ.

Because they depend on x, and x changes with time when the robot moves,
Jacobians vary with time.

The Jacobian of a manipulator transforms the vector of joint rates, q̇, to the
Cartesian velocities of the end-effector, v.

0vE = 0J(q)q̇,

0vE =



0vx
0vy
0vz
0ωx
0ωy
0ωz

 , q̇ =


q̇1
q̇2
q̇3
q̇4
q̇5
q̇6

⇒ for example:



θ̇1
ḋ2
ḋ3
ḋ4
θ̇4
θ̇5
θ̇6


.

The Jacobian is determined by applying Equations (3.25) and (3.26). In general,
they are m× n matrices.

n = the number of columns = the number of joints.

m = the number of rows = DOF in Cartesian space

(in the largest square sub-matrix, if not square).

Partition

J6×n =

[
JL3×n

JA3×n

]
,

where JL3×n is the effect of q̇ on linear end-effector velocity 0vE ,and JA3×n is
the effect of q̇ on the angular velocity of the end-effector, 0ωE .

Using the Velocity Propagation Equations (3.25) and (3.26), we can obtain:

EvE = EJLq̇
EωE = EJAq̇

}
⇔ EvE = EJq̇.

The first issue is how to transform a Jacobian (because we get EJ, but need
0J). We have seen that we change reference frames for v and ω by rotations:

0vE = 0RE
EvE

0ωE = 0RE
EωE

}
⇔
[

0vE
0ωE

]
=

[
0RE 0
0 0RE

] [
EvE
EωE

]
,

0vE =

[
0RE 0
0 0RE

]
EvE .

But, EJq̇ = EvE , and
0Jq̇ = 0vE , so

0J =

[
0RE 0
0 0RE

]
EJ.
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Computing the Jacobian

Each column of the Jacobian is associated with one joint velocity. Consider the
2R planar platform we looked at: each column of the Jacobian maps a particular
joint rate onto the velocity of the end-effector.

0pE
i = Position vector of OE with respect to frame {i} but expressed in

terms of frame {0}.

vector scalar vector

↓ ↓ ↙
0vE,1 = q̇1 JL,1,
0vE,2 = q̇2 JL,2,
0vE = 0vE,1 +

0vE,2.

General Derivation of J:

In the figure on the next page,

[
0vE
0ωE

]
= 0Jq̇. Find J.

We construct the Jacobian by considering each joint rate starting from i = 1.

0vE = JL,1 q̇1 + . . .+ JL,n q̇n,

=

 JL11 JL12 JL13

JL21 JL22 JL23

JL31 JL32 JL33

 q̇1
q̇2
q̇3

 ,
=

 JL11

JL21

JL31

 q̇1 +
 JL12

JL22

JL32

 q̇2 +
 JL13

JL23

JL33

 q̇2,
0ωE = JA,1q̇1 + . . .+ JA,nq̇n.
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If the ith joint is an R-pair:

0vE,i = (0Ẑi × 0pE
i) q̇i = JL,i q̇i,

0ωE,i = 0Ẑi q̇0 = JA,i q̇i.

Note that in the above equations, q̇i is scalar, since it is the angular velocity
imparted by the R-pair, θ̇i.

If the ith joint is a P-pair:

0vE,i = 0Ẑi q̇i = JL,i q̇i,
0ωE,i = JA,i q̇i.

Note that in the above equations, q̇i is scalar, since it is the linear velocity
imparted by the P-pair, ḋi.

Assemble 0J:

0J6×n =

[
JL1 JL2 . . . JLn

JA1 JA2 . . . JAn

]
,

=

[
0Ẑ1 × 0pE

1 0Ẑ2 × 0pE
2 0Ẑ3 . . . 0Ẑn × 0pE

n

0Ẑ1
0Ẑ2 0 . . . 0Ẑn

]
,

(R-pair R-pair P-pair . . . R-pair) .

0Ẑi and
0pE

i can be obtained directly from the homogeneous transformations,
0Ti.

0Ti =

[
ri r2 r3

0pi

0 0 0 1

]
.
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0Ẑi: 3
rd column of rotation matrix embedded in 0Ti (r3)

0pi: 4
th column of 0Ti (ignore 4th row).

0pE
i = 0pE − 0pi,

⇒

 0pE

−

 0pi

 ,
0TE

0Ti

Let i = 2 : 0pE
2 + 0p2 = 0pE ,

0pE
2 = pE − 0p2,

0vE,2 = ω2 × 0pE
2,

= (0Ẑ2 × 0pE
2)θ̇2.
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Jacobian Example:

Velocity of interest: 0vE =

[
0vEx
0vEy

]
. Determine 0J such that:

Figure 3.28: 2R planar manipulator.

[
0vEx
0vEy

]
= 0J

[
θ̇1
θ̇2

]
.

Solution:

1. To assemble 0J = [0Ẑ1 × 0pE
1 0Ẑ2 × 0pE

2] we need 0T1,
0T2,

0TE .

0T1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 , 1T2 =


c2 −s2 0 l1
s2 c2 0 0
0 0 1 0
0 0 0 1

 , 2TE =


1 0 0 l2
0 1 0 0
0 0 1 0
0 0 0 1

 .

Compute 0TE = 0T1
1T2 =


c12 −s12 0 l1c1
−s12 c12 0 l1s1
0 0 1 0
0 0 0 1

 .

Compute 0TE = 0T2
2T3 =


c12 −s12 0 l1c1 + l2c2
s12 c12 0 l1s1 + l2s12
0 0 1 0
0 0 0 1

 .
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2. Obtain 0Ẑ1,
0Ẑ2,

0pE
1 = 0pE − 0p1,

0pE
2 = 0pE − 0p2,

0Ẑ1 = 0Ẑ2 =

 0
0
1

 ,
0Ẑ1,2

x =

 0 −1 0
1 0 0
0 0 0

 ,
CPM =

 0 −z y
z 0 −x
−y x 0

 ,

0pE
1 =

 l1c1 + l2c12
l1s1 + l2s12

0

 ,
0pE

2 =

 l2c12
l2s12
0

 ,
3. Assemble 0J:

0J =

[
−l1s1 − l2s12 −l2s12
l1c1 + l2c12 l2c12

]
,

EJ =

[
l1s2 0

l1c2 + l2 l2

]
,

from: EJ = ER0
0J.

Compare this with the previous example.

3.4.3 Singularities

Using 0J we can compute 0vE given any prescribed joint rate vector q̇. If we
want to determine the joint rates for a given 0vE , we must determine the inverse
of 0J.

0J becomes non-invertible if it loses full rank (if it is square). The determi-
nant of a rank-deficient matrix is always 0. Since J is a function of the joint
variables, this means there may be some poses which cause Det(J) = 0. Such
poses are called singular poses or singularities.

Without being too rigorous, we can classify singularities with two categories:

1. Workspace Boundary Singularities: These occur when the manipulator is
fully stretched out, or folded back on itself to that the end-effector is at
the boundary of the workspace.

2. Workspace Interior Singularities: These occur within the workspace. They
can be due to many things, but are typically caused when two or more
joint axes become coincident.
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To obtain an expression for 0J, we must transform 3v3 to the fixed frame {0}.
This is accomplished by left-multiplying 3v3 by the rotation matrix embedded
in 0T3.

0v3 = 0R3
3v3 =

 vx
vy
vz

 =

 −(l1s1 + l2s1c2)θ̇1 − l2c1s2θ̇2
(l1c1 + l2c1c2)θ̇1 − l2s1s2θ̇2

−l2c2θ̇2

 .
This system contains three equations and two unknowns, θ̇1 and θ̇2, given

the linear velocity vector 0v3, as expected.
We can re-express the right hand side of the above equation as: vx

vy
vz

 =

 −(l1s1 + l2s1s2) −l1c1s2
l1c1 + l2c1c2 −l2s1s2

0 −l2c2

[ θ̇1
θ̇2

]
= 0Jθ̇.

The 3 × 2 matrix is not immediately invertible, but to obtain the joint rates
in terms of 0v3, we must invert it. This can be accomplished with the Moore-
Penrose generalized inverse. We have an over-determined system of equations:
three equations and two unknowns. In general, no exact solutions exist to such
a system, and we find approximate solutions that minimize the error. This can
be done with a least squares approach. This is exactly what the Moore-Penrose
generalized inverse does!

It is defined to be:
JT = (JT J)−1 JT .

In our case, this gives:

JT =

[
− s1

l1+l2c2
c1

l1+l2c2
0

− c1s2
l2

− s1s2
l2

− c2
l2

]
.

When a serial robot is in a singular configuration, it loses one or more DOF.
There is some direction(s), or subspace in Cartesian space in which the end-
effector can not move, regardless of what the joint rates are. Clearly, this
happens at the boundary of the workspace.
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Example: Determine an expression describing the singularities of the 2R
robot from the previous example (Figure 3.28).

Solution: We have two Jacobians. 0J and EJ. If a matrix is rank-deficient,
the deficiency won’t change if it is multiplied by any other matrix. This is a
property of determinants:

Det(AB) = Det(A)Det(B),

If Det(B) = 0, ⇒ Det

([
0RE 0
0 0RE

]
EJ

)
= 0,

In general Det(EJ) = 1Det(0J),

⇒ Det(EJ) = Det(0J),

⇒ if Det(EJ) = 0, then Det(0J) = 0.

(Note, in general, Det(EJ) = Det(nJ), since Det(R) = 1.) It’s easier to compute
Det(EJ):

Det

(
l1s2 0

l1c2 + l2 l2

)
= l1l2s2.

The robot is in a singular configuration when l1l2s2 = 0. This happens if l1 or
l2 = 0, or s2 = 0. sin θ2 = 0 when θ2 = 0, π.

� θ2 = 0 ⇒ boundary E can only move perpendicular to the line of l1+ l2.

� θ2 = π ⇒ boundary same condition on motion of E.

Singularities should be avoided. Also, using the inverse Jacobian in the control
system may be a bad idea. If J becomes singular, the joint rates become infinite!
For 2× 2 matrices:

A =

[
a b
c d

]
, A−1 =

1

ad+ bc

[
a b
c d

]
.

q̇ = J−1v,

=
Adj(J)

Det(J)
v,

=
Adj(J)

0
v = ∞.
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Example: Determine the joint rates of the 2R manipulator in the figure

below, so the end-effector has a constant velocity of 1 m/s along X̂0. What
happens when the end-effector is close to the workspace boundary?

[
θ̇1
θ̇2

]
=

1

l1l2s2

[
l2c12 l2s12

−l1c1 − l2c12 −l1s1 − l2s12

] [
1
0

]
,

=
1

l1l2s2

[
l2c2l1c1 − l2c12

]
.

As θ2 → 360o(0o), s2 → 0, θ̇1, θ̇2 → ∞.

Obtaining the Jacobian by Differentiating the Closure Equations

Assume the kinematic closure equations exist, i.e.

0pE =0 TE
EpE ,

with

0TE =


0xE

Rk(θ)
0yE
0zE

0 0 0 1

 .
Here it is normal to select Euler angles to describe the orientation, although
the fixed angles could also be used. However, it seems that unit quaternion or
element-angle-axis representations could be difficult to use.

Let’s choose Euler angles, it doesn’t matter which. So

0RE = F (αE , βE , γE) = F (θE1, θE2, θE3).

So 0TE gives the position vector, and we can extract the Euler Angles from R.
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So we have:

0xE = fx(q)
0yE = fy(q)
0zE = fz(q)
αE = fαE(q)
βE = fβE(q)
γE = fγE(q)


⇒

0ẋE = δfx
δq1

q̇1 + . . .+ δfx
δqn

q̇n
0ẏE =

δfy
δq1
q̇1 + . . .+

δfy
δqn

q̇n
0żE = δfz

δq1
q̇1 + . . .+ δfz

δqn
q̇n

α̇E = δfα
δq1

q̇1 + . . .+ δfα
δqn

q̇n

β̇E =
δfβ
δq1

q̇1 + . . .+
δfβ
δqn

q̇n

γ̇E =
δfγ
δq1

q̇1 + . . .+
δfγ
δqn

q̇n

.

Note that αE , βE , γE depend on the Euler angle representation.
We define:

0ẋE =
d

dt


0xE
...

0γE

 ,
=

[
0vE

θ̇E

]
,

=


δfx
δq1

. . . δfx
δqn

...
...

δfγ
δq1

. . .
δfγ
δqn

 q̇,

= JD q̇.

Where 0vE and 0θE are the Euler rates, and the subscriptD in JD stands for
differentiation.

2R Example:
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0xE = l1c1 + l2c12,
0yE = l1s1 + l2s12,
0ẋE = −l1s1θ̇1 − l2s12(θ̇1 + θ̇2),
0ẏE = l1c1θ̇1 + l2c12(θ̇1 + θ̇2).

Here,

0JD = 0J =

[
−l1s1 − l2s12 −l2s12
l1c1 + l2c12 l2c12

]
.

This is always true in the plane. This may be a better way to obtain the
Jacobian, depending on the complexity of the closure equations.

Relationship Between Angular Velocities

We want the relationship 0ωE = 0JE θ̇E for any Euler (or fixed angle) set.
Recall that:

ṘRT = Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (3.27)

From the matrix in Equation (3.27), we easily obtain, with R in terms of the
appropriate angle set:

ωx = ṙ31r21 + ṙ32r22 + ṙ33r23,

ωy = ṙ11r31 + ṙ12r32 + ṙ13r33,

ωz = ṙ21r11 + ṙ22r12 + ṙ23r13.

But this is a lot of computation. Consider the following geometric derivation.
Suppose we are using Z-Y-Z Euler angles (α, β, γ). The first Euler rate, α̇, is

an angular velocity of the end-effector about the Ẑ0 axis. The next, β̇, is about
the Ŷ0

′ axis that has been transformed by the rotation matrix RẐ0
(α). The

third, γ̇ is about the Ẑ0
′′ axis that has been transformed by the rotation matrix

RŶ0
′(β), which in turn had been transformed by RẐ0

(α). So we can write 0ωE

in terms of α̇, β̇, γ̇ as:

0ωE =

 0
0
α̇

+RẐ0
(α)

 0

β̇
0

+RẐ0
(α)RŶ0

′(β)

 0
0
γ̇

 , (3.28)
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with:

RẐ0
(α) =

 cα − sα 0
sα cα 0
0 0 1

 ,
RŶ0

′(β) =

 cβ 0 − sβ
0 1 0

− sβ 0 cβ

 ,
RẐ0

(α)RŶ0
′(β) =

 cα cβ − sβ cα sβ
sα cβ cα sα sβ
− sβ 0 cβ

 .
Expanding (3.28), then rewriting it in matrix form operating on the vector of

Euler rates in order

 α̇

β̇
γ̇

, we obtain:

0ωE =

 0 − sα cα sβ
0 cα sα sβ
1 0 cβ

 α̇

β̇
γ̇

 ,
= JEZ′Y ′Z′ (α, β, α)

 α̇

β̇
γ̇

 .
This gives exactly the same results as explicitly performing the differentiations
of ṘRT , but is significantly easier to compute. In general we have:[

0vE
0ωE

]
=

[
0vE

0JE θ̇E

]
,

=

[
0I3×3 0
0 0JE

] [
0vE
0θ̇E

]
,

=

[
0I3×3 0
0 0JE

]
0JD q̇,

0JD =

[
0I3×3 0
0 0JE

−1

]
0J.

Note that 0JE
−1 may lead to representational singularities, therefore JD may

not be always obtainable, but J is.
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Chapter 4

Static Forces in Serial
Robots

Statics is the study of force systems acting on stationary structures. There is no
motion. When all the joints in a robot are locked, it should become a structure.
If the task is to apply a force, or support a load while maintaining static equi-
librium, the problem at hand is to compute the joint forces and torques which
must be supplied in order to keep the system in static equilibrium.

When locked in a desired pose, we write a force-moment balance for each link
in terms of the link frames. However, here we start where the force is applied:
the end-effector. We compute the static torque acting about the joint axis to
maintain equilibrium. We need the following definitions:

fi = force exerted on link i by link i− 1.

ni = torque exerted on link i by link i− 1.

pCGi

i = position vector of center of gravity of link i with respect to i.

pi+1
i = position vector of Oi+1 with respect to i.

The above figure shows the free body diagram of the ith link. fi is the force
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exerted on i by i − 1. fi+1 is the reaction experienced by i due to the force it
exerts on i+ 1. The same applies for ni and ni+1.

Force Balance:

ifi − ifi+1 +mig = 0.

Condition for Force Equilibrium:

ifi = iRi+1
i+1fi+1 −mig. (4.1)

The recursion is arranged to go from the end-effector to lower numbered links
to the base.

Moment Balance With Respect to the Center of Gravity (CG):
(no mg contribution)

ini = ini+1 +
0pCGi

i × ifi + (ipi+1
i − ipCGi

i)× fi+1.

Conditions for Moment Equilibrium:
With respect to CG:

ini = iRi+1
i+1ni+1 +

ipCGi

i × ifi + (ipi+1
i − ipCGi

i)× iRi+1
i+1fi+1.

(4.2)

With respect to Oi:

ini = iRi+1
i+1ni+1 − ni(

ipCGi

i × ig) + ipi+1
i × iRi+1

i+1fi+1.

(4.3)

If we start with a (known) description of the resultant force and moment, due
to the actions contributed by each link from n to 0, i.e. from the end-effector
to the base. To do this, we iteratively apply Equation (4.1) and either (4.2) or
(4.3) from higher to lower numbered links.

Note: ifi and
ini are the total forces and moment that the ith link experiences

due to the other bodies connected to it, including the effects of gravity. It does
not explicitly include the motor torques required to balance the ifi and

ini to
maintain static equilibrium.

4.1 Actuator Torques (Forces)

All components of force and moment vectors are resisted by the structure of the
robot itself, except for those components in the direction of the Ẑi, the joint
axes. To determine the joint torque, or force, τi, (we’ll use the same symbol for
both) required to maintain static equilibrium, we only need the projection of
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the resultant moment, or force vector acting on that joint onto the joint axes.
We generally only care about the magnitude of the torque, so all we need are
the following dot products:

For R-Pairs: τi = ini
T iẐi. (4.4)

For P-Pairs: τi = ifi
iẐi. (4.5)

4.2 Ignoring the Effect of Gravity on Link Mass

If the applied end-effector forces and link reactions are far in excess of the link
weights, we may ignore the gravity terms. Furthermore, a moment balance
about the CG does nothing for us.

Equations (4.1) and (4.3) simplify to:

ifi = iRi+1
i+1fi+1 (4.6)

ini = ipi+1
i × iRi+1

i+1fi+1 +
iRi+1

i+1ni+1. (4.7)

Note: Equation (4.6) simply states that ifi =
ifi+1. Equations (4.6) and (4.7)

can be rewritten as:[
ifi
ini

]
=

[
iRi+1 0

(ipi+1
i)× iRi+1

iRi+1

]
. (4.8)

4.3 Jacobians in the Force Domain

When a force acts on a mechanism, work is done on the mechanism by the force
in proportion to the amount of displacement the mechanism has undergone.
Work is defined as the scalar product of the force and displacement magnitudes.
Work has units of energy: J = N·m.

dW = F · ds,

⇒ W =

∫
F · ds.
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2R Planar Example:
The manipulator applies f3 to its environment. Determine the joint torque
required to maintain static equilibrium. Ignore gravity effects.

Solution 1: Direct application of[
ifi
ini

]
=

[
iRi+1 0

ipi+1
i × iRi+1

iRi+1

] [
i+1fi+1
i+1ni+1

]
.

2R3 =

 1 0 0
0 1 0
0 0 1

 ,
⇒ wf2 =

 fx
fy
0

 ,
2n2 =

 l2
0
0

×

 fx
fy
0

 =

 0
0
l2fy

 ,
1f1 = 1R2

2f2 =

 c2 −s2 0
s2 c2 0
0 0 1

 fx
fy
0

 =

 c2fx − s2fy
s2fx + c2fy

0

 ,
1n1 = 1p2 × 1R2

2f2 +
1 R2

2n2,

=

 l1
0
0

×

 c2 −s2 0
s2 c2 0
0 0 1

 fx
fy
0

+

 c2 −s2 0
s2 c2 0
0 0 1

×

 0
0
l2fy

 ,
=

 0
0

l1s1fx + l1c2fy + l2fy

 .
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Because we have a 2R linkage, τi =
ini · iẐi:

τ1 = l1s2fx + (l1c2 + l2)fy
τ2 = l2fy

}
⇒ τ =

[
l1s2 l1c2 + l2
0 l2

] [
fx
fy

]
.

Solution 2: We could also use the Jacobian τ =0 JT 0F[
τi
τ2

]
=

[
−l1s1 − l2s12 l1c1 + l2c12

−l2s12 l2c12

]
0T3

[
3f3x
3f3y

]
,

=

[
k1s2 l2 + l1c2
0 l2

] [
3f3x
3f3y

]
.

4.4 Virtual Work

A mechanical system is in a state of static equilibrium if the virtual work van-
ishes for arbitrary virtual displacements which conform to geometric constraints.

Any assumed small displacement δs away from the steady-state pose deter-
mined by constraints and forces acting on a body in static equilibrium is called
a virtual displacement. The term virtual is used to indicate the displacement
does not really exist. It is used to compare various possible equilibrium posi-
tions in the process of determining the true one, to within a desired error. The
difference is (for (1) in the above figure):

δW = F · δs = Fδs cosα.

Where α is the angle between F and δs. Whereas ds represents a real infinites-
imal change in actual position and can be integrated, δs is a virtual quantity
and cannot be integrated.

We may also have virtual rotations and moments (i.e. in (2)):

δW = Nδθ.
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For an arbitrary manipulator, we have:

0 = δW : τiδqi + . . .+ τnδqn − fT δxEE − nT δθEk̂, (4.9)

Let τ =

 τ1
...
τn

 ,

δq = δ

 q1
...
qn

 ,
F =

[
f
n

]
,

δx = δ

[
xE

θE

]
.

We can write (4.9) as:

τT δq− Fδx = 0,

⇒ FT δx = τT δq. (4.10)

By definition, the Jacobian is:

δx = Jδθ. (4.11)

Note (δθ = δq).
Substitute (4.11) into (4.10)

FT Jδθ = τT δθ. (4.12)

Equation (4.12) is valid for all δθ due to the fact that J is a continuous function,
or can be regarded that way. We can factor out δθ, giving:

FT J = τT . (4.13)

Transposing both sides of (4.13) (when g is ignored) gives:

τ = JT F, (4.14)

where τ is the restoring actuator torques and forces, and F is the forces and
moments applied to the environment.

The transpose of the Jacobian maps the Cartesian forces and moments ap-
plied by the end-effector into the joint torques and/or forces required to maintain
the system in static equilibrium. To transform 0F, we also require 0J, to give

τ = 0JT 0F.

When the Jacobian is singular, along with the inability of the manipulator to
move in a certain way, there are also directions in which the end-effector cannot
exert static force. That is, F could be increased or decreased in directions
defining the null-space of JT with no effect on the calculated τ .

Thus, singularities can manifest themselves in force and velocity domains.
This is why kinematics and statics are dual in nature.
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Chapter 5

Manipulator Dynamics

So far, we have examined position, velocity, and static forces and torques in
manipulators. Next we consider motions and the forces causing the motions:
dynamics. The study of the dynamics of mechanisms is a huge field. We can’t
even approach the surface to scratch it in the course of these lectures. But,
several formulations for obtaining the equations of motion are well suited to our
study of serial manipulators.

As for the position and velocity level dynamics, we have two main problems
of interest:

1. Inverse Dynamics: Given the vectors of joint angles (positions), joint rates,
and joint accelerations, determine the joint torques required (useful for
control).

q
q̇
q̈

⇒ τ

2. Forward Dynamics: Given τ , determine the motion q, q̇, q̈ (useful for sim-
ulation).

τ ⇒

 q
q̇
q̈

5.1 Rigid Body Acceleration

Before we look at dynamics, we must first look at the acceleration level of
kinematics. As with velocities, the frame of differentiation, in general, is frame
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{0} unless otherwise indicated:

0v1 = 0v1
0,

and 0 d

dt
0v1 = 0v̇1 = 0a1 = 0a1

0,

and 0 d

dt
0ω1 = 0ω̇1 = 0α1 = 0α1

0.

5.1.1 Linear Acceleration

The velocity of a point P , described by position vector 1p in {1} as seen from
frame {0}. Recall,

0vP = 0v1ORG
+ 0R1

1vP
1 + 0ω1 × 0R1

1p1,

where

0vP = relative velocity of P with respect to {0}.
0v1ORG

= velocity of O1 in frame {0}.
0R1

1vP
1 = linear velocity of P with respect to {1} in frame {0}.

0ω1 × 0R1
1p1 = due to the angular velocity of frame {1} in {0}.

The relative acceleration of P in {1} with respect to {0} due to its own
acceleration and the acceleration of the moving axes {1} is thus obtained by
differentiating the relative velocity equation:

d

dt
0vP =

d

dt
0v1ORG

+
d

dt
(0R1

1vP
1) +

d

dt
(0ω1 × 0R1

1p1),

⇒ 0aP = 0a1ORG
+ 0R1

1aP
1 + 0Ṙ1

1vP
1 + 0α1 × 0R1

1v1 (5.1)

+ 0ω1 × 0R1
1vP + 0ω1 × 0Ṙ1

1p1.

Recall that 0Ṙ1 = 0ω1 × 0R1. This gives:

0aP = 0a1ORG + 0R1
1aP

1 + 0α1 × 0R1
1p1 + 0ω1 × 0R1

1vP
1 + 0ω1 × 0Ṙ1

1p1,

+ 0ω1 × (0ω1 × 0R1
1p1),

= 0a1ORG + 0R1
1aP

1 + 0α1 × 0R1
1p1 + 2(0ω1 × 0R1

1vP
1),

+ 0ω1 × (0ω1 × 0R1
1p1).

Where:

0a1ORG
= linear acceleration of 01 in {0}.

0R1
1aP

1 = relative acceleration of p with respect to {1} expressed in {0}.
0α1 × 0R1

1p1 = due to angular acceleration of {1} in {0} perpendicular to both α

and P . (i.e. tangent to circle centered at O1 with radius 1p1).

2(0ω1 × 0R1
1vP

1) = Coriolis acceleration.
0ω1 × (0ω1 × 0R1

1 1p1) = centripetal acceleration: towards axis of ω.

101



Whenever there is angular velocity there is centripetal acceleration (not to be
confused with centrifugal acceleration). This comes from D’Alembert’s Princi-
ple: When a particle is observed from fixed frame {0} its absolute acceleration

is obtained from
∑

0F = m 0a. When the particle moves with O1, and is
observed in {1}, the particle appears to be at rest, or in a state of static equilib-
rium in {1}. The observer, who is accelerating with {1}, concludes that a force
−m1a acts on the particle to balance

∑
1F. This perspective allows a dynam-

ics problem to be treated by the method of statics. An important philosophical
contribution contained in D’Alembert’s Traité de Dynamique, published in 1743,
simply amounts to rewriting: ∑

F = ma,

as:
∑

F−ma = 0,

which is a force balance if −ma is considered as a “force”. This “imaginary”
force, or “pseudo” force, or “virtual” force, is known as the inertia force and
the acceleration as the centrifugal acceleration. The centrifugal acceleration has
the same magnitude, but opposite sense as the centripetal acceleration. The
artificial state of equilibrium is called dynamic equilibrium and is central to the
Kane’s Equations of Motion approach to multi-body dynamics (more on that
later).

5.1.2 Coriolis Acceleration

This term represents the difference between the acceleration of P measured with
respect to {1} expressed in {0}, and the acceleration of P measured with respect
to {1} but expressed in {1}. Its direction is perpendicular to 0vP

1 and 0ω1.
It is difficult to imagine Coriolis acceleration because it is a combination of

two physical properties of the motion (that accounts for the 2 in
2(0ω1 × 0R1

1vP
1)).

Consider a particle P constrained to move in the radial slot of a rotating
disk. Let 0ω1 = constant and 1vP

1 = constant. The velocity of P has
components due to ẋ1 and to ωx1, i.e. due to the velocity along the slot and
to the angular velocity of the disk. Now, let’s consider the changes in these
velocity components after time dt.
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The changes in ẋ1 due to rotation after an infinitesimal rotation ωdt = dθ
which cause the axes to rotate through angle dθ to a new set X̂1

1 − Ŷ1
1.

The velocity increment due to the change in direction of 1vP
1 is ẋ1dθ. The

change due to the magnitude of x1ω is ωdx, both being in the Ŷ1 direction. We
get after dividing by dt:

ẋ1
dθ

dt
+ ω

dx1
dt

= ẋ1ω + ẋ1ω = 2ẋ1ω.

This gives the magnitude of the Coriolis acceleration

|2(0ω1 × 0R1
1vP

1)| = 2ẋ1ω.

5.1.3 Link-to-link Propagation of Linear Acceleration

Relative acceleration between links:

0aP = 0a1ORG
+ 0R1

1aP
1 + 0α1 × 0R1

1p1 + 2(0ω1 × 0R1
1vP

1),

+ 0ω1 × (0ω1 × 0R1
1p1). (5.2)
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Find i+1ai+1. To do this, use the above equation with subscripts 0 = i + 1,
P = 0i+1 = i+ 1, and 1 = i. This gives:

i+1ai+1 = i+1a1 +
i+1Ri

iai+1
i + i+1αi × i+1Ri

ipi+1
i + 2(i+1ωi × i+1Ri

ivi+1
i),

+ i+1ωi × (i+1ωi × i+1Ri
ipi).

iai+1 = 0 for R-pairs.

= iẐi+1d̈i+1 for P-pairs.

= relative acceleration of Oi+1 with respect to

{i} expressed in {i}.
ivi+1

i = 0 for R-pairs.

= iẐi+1ḋi+1 for P-pairs.

= relative velocity of Oi+1 with respect to

{i} expressed in {i}.

For R-Pairs:

i+1ai+1 = i+1Ri[
iai+

iαi × ipi+1
i+ iωi × (iωi× ipi+1

i)] =i+1 ai+1,R-PAIR.

For P-pairs:

i+1ai+1 = i+1ai+1,R-PAIR + 2(i+1RI
iωi × i+1Ẑi+1 ḋi+1) +

i+1Ẑi+1 d̈i+1.

5.1.4 Angular Acceleration

Suppose we know 0ωi and
iωi+1

i,but want 0ωi+1. We can write:

0ωi+1
i = 0ωi +

0Ri
iωi+1

i. (5.3)

The relative angular velocity is simply

iωi+1
i = iẐi+1 θ̇i+1 for R-pairs.

= 0 for P-pairs.

Now, differentiate (5.3) with respect to time, together with the relative angular
velocity, and express in {i+ 1}, we get, after setting superscript to 0 = i+ 1:
R-pairs:

i+1ω̇ = i+1Ri
iω̇i +

i+1Ri
iẐi+1 θ̈i+1 +

i+1Ri(
iωi × iẐi+1θ̇i+1),

Which is: i+1αi+1 = i+1Ri
iαi + i+1Ẑi+1θ̈i+1 + ((i+1Ri

iωi)× i+1Ẑi+1θ̇i+1).

P-pairs:

i+1αi+1 = i+1Ri
iαi.
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5.2 Distribution of Mass: The Inertia Tensor

The linear equation of motion (Newton’s equation) states that the resultant of
all forces acting on a body equals the time rate of change of linear momentum.
Since the linear velocity is the same for all points of a rigid body, we can express
linear momentum as:

Figure 5.1: Space potato.

G = mvCG

[
kg m

s

]
= [Ns],

=
∑

Gi,

=
∑

mivi.

Without loss of generality, we can consider all the elements of mass mi to be
collected at the center of gravity.
We can write: Newton’s Equation (for a single body)∑

F =
d

dt
G = m

dvCG

dt
= maCG.

Just as the mass m of a rigid body is a measure of its resistance to linear
acceleration, the moment of inertia is a measure of the resistance of the rigid
body to angular acceleration.

The rotational equations of motion (Euler’s Equation) states that the mo-
ment about a fixed point of all forces acting on a rigid body equals the time rate
of change of angular momentum of the body about the point. If the reference
point is the center of gravity (CG), we have:

Angular momentum = HCG =

∫
m

(ri × vi)dm

[
kg m2

s

]
= [Nms].

Euler’s Equation, for the rotational equation of motion with respect to the CG
is:

d

dt
HCG =

d

dt

∫
m

(ri × vi)dm.
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If the body is rigid, then at STP (standard temperature and pressure) its mass
properties will be constant. Since vi = ω × ri, we can write for each element
of mass:

ri × vi = ri × (ω × ri). (5.4)

There is a useful identity for the triple cross product:

a× (b× c) = b(a · c)− c(a · b),

so we may rewrite the right hand side of (5.4) as:

ri × (ω × ri) = ω(ri · ri)− ri(ri · ω),

= ωri
T ri − riri

T ω),

= (ri
T ri − riri

T )ω.

Note: ri
T ri is a scalar, while riri

T is a 3× 3 matrix.
Hence,

HCG =

[∫
m

(ri
T ri I3×3 − riri

T )dm

]
ω.

We can take the angular velocity vector out of the integrand because it is the
same for every line in the rigid body. The sum of all mass elements multiplied
by a matrix (or tensor) function of each from the reference point, (here, CG) is
called the inertia tensor. It is obtained by expanding the integrand:

ICG =

∫
m

 rx
2 + ry

2 + rz
2 0 0

0 rx
2 + ry

2 + rz
2 0

0 0 rx
2 + ry

2 + rz
2

 ,
−

 rx
2 rxry rxrz

ryrx ry
2 ryrz

rzrx rzry rz
2

 dm,

=

∫
m

 ry
2 + rz

2 −rxry −rxrz
−ryrx ry

2 + rz
2 −ryrz

−rzrx −rzry ry
2 + rz

2

 dm,
=

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx Izy Izz

 .
Note: in the above equation, clearly rzry = ryrz, rxrz = rzrx, and ryrz = rzry.

If the density is constant throughout, then dm = ρdV , and ICG defines a
geometric property of the rigid body since the integral depends on radii and
volume. With each element defined as:
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Mass Moments of Inertia:

Ixx =

∫∫∫
V

(ry
2 + rz

2)ρdV,

Iyy =

∫∫∫
V

(rx
2 + rz

2)ρdV,

Izz =

∫∫∫
V

(rx
2 + ry

2)ρdV.

Mass Products of Inertia:

Ixy = Iyx =

∫∫∫
V

(rxry)ρdV,

Iyz = Izy =

∫∫∫
V

(ryrz)ρdV,

Ixz = Izx =

∫∫∫
V

(rxrz)ρdV.

Now we can write Euler’s Equation (for a single body) as:∑
NCG =

d

dt
HCG = ICGα+ ω × ICGω,

= ICGα+ ω ×HCG.

Notes:

1. For planar systems, the second term vanishes.

2. If we assume mass is concentrated in one point, then I = 0 because
ρdV = 0 for a point.

5.2.1 Principal Axes and Principal Moments of Inertia

The inertia tensor elements are reference frame dependent. If we are free to
choose, there is in general, one orientation of the reference frame such that the
products of inertia, the off-diagonal elements in the inertia tensor vanish. When
so aligned, the axes of the reference frame are called the principal axes of inertia.
The corresponding mass moments are called the principal moments of inertia.

Important Facts of I

1. The eigenvalues of an arbitrary inertia tensor are the principal moments for
the rigid body. The associated eigenvectors are the principal axes. Owing
to the symmetry of the inertia tensor, it may always be diagonalized.

2. Moments of inertia are always positive. Products of inertia may be positive
or negative.

3. The sum of the three moments of inertia of an arbitrary inertia tensor are
invariant under rotations of the reference frame.
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5.2.2 Parallel Axis Theorem

The inertia tensor depends on the location and orientation of the reference
frame. The parallel axis theorem allows us to compute the change in I under a
translation of the reference frame. It relates I in a frame with origin at CG to
the corresponding I with respect to a translated reference frame.

Let ApCG be the position vector of CG in the translated frame {A}. Then

IA = m(ApCG
T ApCG I3×3 − ApCG

ApCG
T ) + ICG.

5.2.3 Rotating Axes

We may also see how I is affected by pure rotations of the reference frame, say
from {1} to {0}. That is, we change axes of ICG from being parallel with those
of {1} to those of {0}.

0I1
CG = 0R1

1I1
CG 0R1

T .

The above equation is important for Lagrange dynamics.
Most robots have links with relatively complicated shapes, so analytically

determining I is difficult at best. Usually I is measured for each link with
measurement instruments such as an inertia torsion pendulum. There are many
examples of how to calculate I in every engineering mechanics textbook, in
particular, Engineering Mechanics, Vol 2: Dynamics By Meriam and Kraige
Wiley. So we’ll stop here with I.
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5.3 Iterative Newton-Euler Dynamics
(Inverse Dynamics)

This technique allows us to compute the joint torques and forces necessary
to generate a desired trajectory. We assume the joint position, velocity, and
acceleration variables q, q̇, q̈ are known. This, together with kinematics and
mass data, is enough information to compute the joint torques.

� Equations are written in successive frames.

� Constraint forces are propagated.

� Efficient: the number of computations increases linearly with the number
of DOF.

� Well suited to programming.

� Two forms:

– Numerical: plug in values.

– Closed form: leave symbolic.

Step 1: Outward Iterations to Compute Velocities and Accelerations

We start at the base, i = 0, and move outward to the end-effector, link by
link. The goal is to compute the inertial force and torque (i.e. related to mass
properties) acting at the center of gravity of each link. Recall the Newton-Euler
Equations for link i+ 1.

i+1Fi+1 = mi+1
i+1aCGi+1 ,

i+1Ni+1 = i+1Ii+1
CGi+1 i+1αi+1 +

i+1ωi+1 × i+1Ii+1
CGi+1 i+1ωi+1.

For n links we go from i = 0 to i = n − 1. Additionally, we need the linear
acceleration of the CG:

i+1aCGi+1
= i+1αi+1 × i+1pCGi+1

i+1+ i+1ωi+1(
i+1ωi+1× i+1pCGi+1

i+1)+ i+1ai+1.

We also need in general:

i+1ωi+1 = i+1Ri
iωi + θ̇i+1

i+1Ẑi+1,
i+1αi+1 = i+1Ri

iαi + θ̈i+1
i+1Ẑi+1 +

i+1Ri
iωi + θ̇i+1

i+1Ẑi+1,
i+1ai+1 = i+1Ri[

iαi × ipi+1
i + iωi × (iωi × ipi+1

i)] + 2(i+1Ri
iωi,

+ḋi+1
i+1Ẑi+1) + d̈i+1

i+1Ẑi+1.

We need these to compute the internal forces and torques from the Newton-Euler
Equations.
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Initial Conditions

The internal effects of gravity can be included in the initial conditions. That
is, set 0a0 = −g. That is, assume the base accelerates upward at 1g. This
“virtual” acceleration causes exactly the same effect on each link as including a
gravity vector in the propagation equations, but with minimal computation!

So we have:

0ω0 = 0α0 = 0v0 = 0,

and 0a0 = −g.

Now use the Newton-Euler Equations to compute i+1Fi+1 and i+1Ni+1, the
inertial force and torque acting at the center of mass of each link.

Step 2: Inward Iterations to Compute Joint Forces and Torques

Now that we have computed the internal forces and torques acting on each link,
we must determine the joint forces and torques which cause the inertial link
forces and torques. This is done by writing a force and moment balance on the
free-body diagram of each link.

Each link has forces exerted on it by neighbors and experiences its own
inertial forces and torques caused by its motion.
Inertial Forces and Torques:

Fi, Ni.

Forces and Torques Exerted by Neighbors:

Figure 5.2: For a FBD, fi+1 is replaced with the reaction link i experiences in
causing fi+1, i.e., −fi+1.

fi = force exerted on link i by link i− 1.

ni = torque exerted on link i by link i− 1.

Summing the forces acting on link i:

iFi = mi
iaCGi

= ifi − Ri+1
i+1fi+1. (5.5)
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Summing the moments about CG:

iNi = iICGi iαi +
iωi × iICGi iωi,

= ini − ini+1 − ipCGi

i × iFi −i pi+1
i × iRi+1

i+1fi+1. (5.6)

Now we can rearrange (5.5) and (5.6), after including some additional rota-
tions to adjust the superscripts, so that they are recursive from higher to lover
numbered links. We get:

ifi = iFi +
iRi+1

i+1fi+1, (5.7)
ini = iNi +

iRi+1
i+1ni+1 + (ipCGi

i × iFi) + (ipi+1
i × iRi+1

i+1fi+1).

(5.8)

In order to move the links they must be accelerated and decelerated. These are
equations of motion because they equate forces required to cause the motion in
terms of acceleration.

For the end-effector, link n, we know n+1fn+1 = n+1nn+1 = 0 if the robot
is moving free in space. If the end-effector has contact with the environment,
they are non-zero in value, but are known (measured with load cell, for example).

Step 3

The structure of the robot resists all components of the above forces and mo-
ments with the exception of those in the direction of the joint axes. These forces
and torques must be supplied by the actuators. So, as in the static force case,
the required joint torques are the Ẑ components of the torque or force applied
by the neighboring link.

For R-pairs:

τ i = ini
T iẐi = (ini)Z .

For P-pairs:

τ i = ifi
T iẐi = (ifi)Z .

Observations

The Newton-Euler formulation for serial robot dynamics is numerically very
efficient. The computational complexity is the same for each link. The number
of equations grows linearly with each increase in DOF. The equations apply to
any serial manipulator.

They are also useful for writing the equations of motion in closed form. This
is done by applying the Newton-Euler formulation symbolically, instead of using
numerical values for m, I, ipCGi

i, i+1Ri, etc.
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5.3.1 The State-space Representation

When the Newton-Euler Equations are evaluated symbolically we can collect
the terms as follows:

τ = M(q)q̈+V(q, q̇)+G(q)+N(q), or τ −N(q) = M(q)q̈+V(q, q̇)+G(q).

Where

� M(q) is a square, symmetric, positive definite matrix (i.e. all its eigenval-
ues are positive). It is called the mass matrix, and is composed of terms
which multiply q̈i. The mass matrix depends on position qi.

� V(q, q̇) is an n × 1 vector of centrifugal and coriolis force terms, i.e. its
elements are those terms multiplying q̇i

2 and q̇iq̇j . It depends on position
and velocity.

� G(q) is an n × 1 vector of gravity terms. It contains all those terms
in which the gravitational constant, g appears. It is also dependent on
position.

� N(q) are terms due to the applied forces. They are, in this case, what’s
left over. They are equal to JT Fapplied, where Fapplied are forces and
moments applied to the environment, or by changing, forces and moments
applied to the end-effector by the environment.

5.3.2 Forward Dynamics

Given τ , compute q, q̇, q̈. This problem is important for simulation of robot
arms. We write the dynamics in closed form and solve the equations for q̈ with
symbolic computer algebra software.

q̈ = M−1(τ −V −G− . . .). (5.9)

Then if we want a computer simulation of the dynamics, we can numerically
integrate q̈ to obtain q̇ and q, given a set of initial conditions.

q(t = 0) = q(0) = q0,

q̇(t = 0) = q̇(0) = 0.

Then, numerically integrate (5.9) in time steps ∆t We can use Euler integration
starting at t = 0 and iteratively compute

q̇(t+∆t) = q̇(t) + q̈(t)∆t,

q(t+∆t) = q(t) + q̇∆t+
1

2
q̈(t)∆t2.

At each iteration, q̈ is computed from (5.9). Thus, position, velocity, and ac-
celeration of the end-effector caused by certain input torque can be computed
numerically.
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5.4 Lagrangian Formulation of Dynamics

The Newton-Euler formulation is based on force balance to determine the equa-
tions of motion. It is said to be force based. The Lagrangian formulation depends
on the energy balance of the manipulator and is said to be energy based. Both
formulations must yield identical equations of motion for a given manipulator.

To use the Lagrange equations, positions must be described by a set of inde-
pendent generalized coordinates. They must uniquely specify a pose. They can
be translational or rotational displacement variables. Additionally, in general, a
set of generalized coordinates for a mechanical system need not be unique, but
the set must uniquely describe the pose. The set of joint angles and offsets for
a serial manipulator uniquely specify a pose and are thus a set of generalized
coordinates.

Let T be the kinetic energy of a mechanical system and let U be its potential
energy. Lagrange’s Equation of motion for each link can be written as:

d

dt

(
δTi
δq̇i

)
− δTi
δqi

+
δUi

δqi
= Qi, i = 1, . . . , n,

where

� qi = generalized coordinates.

� Qi = generalized forces. These account for all forces acting on the system
except for inertial [(F = mg) and (N = Iα+ ω × Iω)] forces and gravity
forces. Thus,

Q = τ + τ ext − τ friction = τ + 0JT Fext − τ friction,

= τ − τ app − τ friction = τ − 0JT Fapp − τ friction,

where τ are the torques required to cause the motion, τ app are torques
required to apply forces and moments to the environment, τ friction are
joint torques required to overcome coulomb and viscous friction.

There are other effects in Q that are being neglected. For instance, link defor-
mations, bearing and gear eccentricity all have to be accounted for to obtain a
tremendously accurate model, but are extremely difficult to model. So we settle
for a reasonably accurate model.

Kinetic Energy (T ) of a Manipulator

The kinetic energy of the ith link can be expressed as

Ti =
1

2
[mi

0vCGi

T 0vCGi
+ iωi

iIi
CGi iωi].

Also the total kinetic energy of the manipulator is the sum of the kinetic energy
of each link:

T =

n∑
i=1

Ti.
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But recall we can express velocities of the links in terms of joint rates using
Jacobians:

0vCGi
= 0JL

(i)q̇,
0ωCGi

= 0JA
(i)q̇.

Recall that

0J =

[
0JL
0JA

]
=

[
0JL,1

0JL,2 . . . 0JL,n
0JA,1

0JA,2 . . . 0JA,n

]
.

The Jacobian for the ith link is not affected by the i+ 1 . . . n links. So:

0JL
(i) =

[
0JL,1

(i) 0JL,2
(i) . . . 0JL,i

(i) 0i+1 0i+2 . . . 0n

0JA,1
(i) 0JA,2

(i) . . . 0JA,i
(i) 0i+1 0i+2 . . . 0n

]
.

Further recall: (for the ith link and jth column)

0JL,j
(i) =

{
0Ẑj × 0pCGi

j , j = i, . . . , i For R-pairs.
0Ẑj , j = 1, . . . , i For P-pairs.

0JA,j
(i) =

{
0Ẑj , j = i, . . . , i For R-pairs.
0, j = 1, . . . , i For P-pairs.

So we can rewrite the kinetic energy of the ith link as:

Ti =
1

2
q̇ T [mi (

0JL
(i))T 0JL

(i) + (0JA
(i))T 0Ii

CGi 0JA
(i)] q̇.

Since T is a function of q̇, the time derivative of δT
δq̇ will depend on q̈. Since a

mass or inertia is always associated with each q̈, we can write:

d

dt

(
δTi
δq̇i

)
=

n∑
j=1

Mij q̈j ⇒ M(q)q̈.

Mass Matrix:

M(q) =

n∑
i=1

{mi (
0JL

(i)) 0JL
(i) + (0JA

(i))T 0Ii
CGi 0JA

(i)}.

We can also write:

T =
1

2
q̇M(q)q̇ =

1

2

n∑
i=1

n∑
j=1

Mij q̇i q̇j .

Additionally:

δT

δq
=

n∑
j=1

n∑
k=1

mijk q̇k q̇j ,
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where:

mijk =
δMij

δqk
− 1

2

δMjk

δqi

Because of their dependency on q̇2 or q̇q̇, the δT
δq terms equate to the velocity

terms:

V(q, q̇)i =

n∑
j=1

n∑
k=1

mijkq̇k q̇j , i = 1, . . . , n.

The gravity terms are:

Gi = −gT
n∑

j=1

mj
0JL,i

(j).

These come from d
dt

(
δTi

δq̇i

)
and δUi

δqi
, and also note that ∆Ui = mig∆hi.

Assembling everything, we get:

Qi =
d

dt

(
δTi
δq̇i

)
− δTi
δqi

+
δUi

δqi
, i = 1, . . . , n,

=

n∑
j=1

Mij q̈j +

n∑
j=1

n∑
k=1

mijk q̇k q̇j − gT
n∑

j=1

mj
0JL,i

(j).

Since Q =
∑

Qi, we finally get:

M(q)q̈+V(q, q̇) +G(q) = τ joint − τ applied − τ friction.
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Newton-Euler Example:

Table 5.1: DH Parameters

i αi−1 ai−1 di θi
1 0 0 0 0θ1
2 −90 l1 0 0θ2
3 0 l2 0 0
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0R1 =

 c1 −s1 0
s1 c1 0
0 0 1

 ,
0R2 =

 1 0 0
0 cα1 − sα1

0 sα1 cα1

 c θ2 − s θ2 0
s θ2 c θ2 0
0 0 1

 ,
=

 1 0 0
0 0 1
0 −1 0

 c θ2 − s θ2 0
s θ2 c θ2 0
0 0 1

 =

 c θ2 − s θ2 0
0 0 1

0− s θ2 − c θ2 0

 ,
0T1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 ,

1T2 =


c2 −s2 0 l1
0 0 1 0

−s2 −c2 0 0
0 0 0 1

 ,

2T3 =


1 0 0 l2
0 1 0 0
0 0 1 0
0 0 0 1

 .

0p1
0 = Position vector of O1 measured from O0 expressed in {0} =

 0
0
0

 ,
1p2

1 =

 l1
0
0

 , 2p3
2 =

 l2
0
0

 , 1pCG1

1 =

 lCG1

0
0

 , 2pCG2

2 =

 lCG2

0
0

 ,
0a0 = 0g =

 0
−g
0

 .

1ICG1 =

 Ixx1
0 0

0 Iyy1
0

0 0 Izz1

 ,
2ICG2 =

 Ixx2
0 0

0 Iyy2
0

0 0 Izz2

 .
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Initial Conditions:

0a0 =

 0
−g
0

 , 0ω0 = 0ω̇0 = 0v0 =

 0
0
0

 .

4f4 =

 4f4x
4f4y
4f4z

 = Force exerted on environment by link 3,

4n4 =

 4n4x
4n4y
4n4z

 = Moment exerted on environment by link 3.

Outward Iterations to Compute Velocity and Acceleration:
All joints are R-pairs, so:

i+1ai+1 = i+1Ri[
iai +

iαi × ipi+1 + ωi × (iωi × ipi+1
i)],

i+1αi+1 = i+1Ri
iai +

i+1Ẑi+1θ̈i+1 + (i+1Ri
iωi)× i+1Ẑi+1θ̇i+1,

i+1ωi+1 = i+1Ẑi+1θ̇i+1 +
i+1Ri

iωi.

Joint 1: (i = 0)

1ω1 =

 0
0

θ̇1

+

 0
0
0


1R0 = 0R1

T =

 c1 s1 0
−s1 c1 0
0 0 1

 ,
0a0 =

 0
−g
0

 ,
0α0 =

 0
0
0

 ,
0ω0 =

 0
0
0

 ,
1a1 =

 c1 s1 0
−s1 c1 0
0 0 1

 0
−g
0

 =

 −s1g
−c1g
0

 ,
1α1 =

 0
0
0

+

 0
0

θ̈1

+

 0
0
0

 =

 0
0

θ̈1

 .
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The mass matrix is:

M(θ)θ̈ =


m2[l1(l1 − lCG2

)− lCG2
c2(l1lCG2

)] 0
+lCG1

2m1 + Izz1 − Iyy2c2

0 lCG2
2m2 + Izz2

[ θ̈1
θ̈2

]
.

The velocity vector of centrifugal and Coriolis forces terms depends only on
velocities: their squares and products:

V(θ, θ̇) =

[
[s2(Iyy2

− Izz2 − l1lCG2
m2)− c2s2(Iyy2

+ lCG2
2m2)]θ̇1 θ̇2 − Ixx2

s2θ̇1
2

l1lCG2
m2s2θ̇1

2

]
.

The gravity vector, G(θ), contains all terms in which the gravitational constant
appears:

G(θ) =

[
−g[(lCG1

m1 + l1m2)c2 + lCG2
m2c1c2]

glCG2
m2s1s2

]
.

The remaining terms are moments caused by the applied force and moment at
the end-effector. They are collected in:

N =

[
(l1 + l2c2)

3f3z − 3n3xs2 − 3n3yc2
l2

3f3y +
3n3z

]
.

For Lagrange

The Jacobian that relates end-effector forces to joint torques is:

0J =

[
0Ẑ1 × 0pE

1 0Ẑ2 × 0pE
2

0Ẑ1
0Ẑ2

]
=

[
0JL,1

0JL,2
0JA,1

0JA,2

]
.

Since the force vector is given with respect to frame {3}, which is also frame
{E}, we need EJ. Recall:

EJ =

[
ER0 0
0 ER0

]
,

then
3N3 = EJ 3F3.

Recall
0pE

i = 0pE − 0pi
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Newton-Euler and Lagrange Example

The iterative Newton-Euler Equations are employed to compute the closed-form
equations of motion of the planar 2R manipulator.

Initial Conditions:
The angular velocity and angular acceleration of the fixed base is:

0ω =

 0
0
0

 , 0α =

 0
0
0

 .
The forces and moments that link 2 (at the end-effector reference point, the
origin of {3}) applies to the environment are:

3f3 =

 3f3x
3f3y
3f3z

 , 3n3 =

 3n3x
3n3y
3n3z

 .
All of the Z-axes in their respective frames are described by the unit vector

Ẑ =

 0
0
1

 .
. The magnitude of the angular velocity is ω. So, in the direction of the Z-axis
it is:

ωẐ =

 0
0
ω

 .
The magnitude of the angular acceleration is α. So in the direction of the Z-axis
it is:

ωẐ =

 0
0
α

 .
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Position vectors locating relative positions of reference frame origins:

0p1 =

 0
0
0

 , 1p2 =

 11
0
0

 , 2p3 =

 12
0
0

 .
Position vectors locating relative locations of centers of gravity:

1p1CG =

 l1CG

0
0

 , 2p2CG =

 l2CG

0
0

 .
The effects of gravity on each link is accounted for by assuming an imaginary
acceleration of the base upwards by an amount equal to the magnitude −g:

0a0 =

 0
g
0

 .
The inertia tensors assume that the coordinate reference frames are also the
principal axes:

1ICG1 =

 0 0 0
0 0 0
0 0 lzz1

 ,
2ICG2 =

 0 0 0
0 0 0
0 0 lzz2

 .
Rotation matrices:

0R1 =

 cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1

 ,
1R2 =

 cos(θ2) − sin(θ2) 0
sin(θ2) cos(θ2) 0

0 0 1

 ,
2R3 =

 1 0 0
0 1 0
0 0 1

 .
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Application of Iterative Newton-Euler Equations:
Outward iterations to compute velocities and accelerations use the following
recursive equations:

Frame 1 (i = 0):

1a1 = 0R1
T (0a0 + (0α0 × 0p1) + (0ω0 × (0ω0 × 0p1))),

=

 sin(θ1)g
cos(θ1)g

0

 ,
1ω1 =

 0
0
ω1

+0 R1
0ω0 =

 0
0
ω1

 ,
1α1 = 0R1

0α0 +

 0
0
α1

+ (0R1
1ω1) ×

 0
0
ω1

 ,
=

 0
0
α1

 ,
1aCG1 = (1α1 × 1pCG1) + (1ω1 × ( 1ω1 × 1pCG1)) +

1a1,

=

 −ω1
2lCG1

+ sin(θ1)g
−α1

2lCG1
+ cos(θ1)g
0

 .
Frame 2 (i = 1):

2a2 = 1R2
T (1a1 + (1α1 × 1p2) + (1ω1 × (1ω1 × 1p2))),

=

 cos(θ2)(sin(θ1)g − ω1
2 l1) + sin(θ2)(cos(θ1)g + α1 l1)

− sin(θ2)(sin(θ1)g − ω1
2 l1) + cos(θ2)(cos(θ1)g + α1 l1)

0

 ,
2ω2 =

 0
0
ω2

+1 R2
1ω1 =

 0
0

ω1 + ω2

 ,
2α2 = 1R2

1α2 +

 0
0
α2

+

(1R2
2ω2) ×

 0
0
ω2

 ,

=

 0
0

α1 + α2

 ,
2aCG2

= (2α2 × 2pCG2
) + (2ω2 × ( 2ω2 × 2pCG2

)) + 2a2,

=

 −(ω2 + ω1)
2 lCG2 + cos(θ2)(sin(θ1)g − ω1

2 l1) + sin(θ2)(cos(θ1)g + α1 l1)
(α1 + α2)lCG2

− sin(θ2)(sin(θ1)g − ω1
2 l1) + cos(θ2)(cos(θ1)g + α1 l1)

0

 .
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Frame 3 (i = 2):

3a3 = 2R3
T (2a2 + (2α2 × 2p3) + (2ω2 × (2ω2 × 2p3))),

3ω3 = 2ω2,
3α3 = 2α2,

3aCG3
=

 0
0
0

 .
Inward iterations to compute joint forces and torques use the following re-

cursive equations:

Frame 3 (i = 2): 3f3 and 3n3 are given as initial conditions.

Frame 2 (i = 1):

2F2 = 2aCG2
·m2,

=

 m2[−(ω2 + ω1)
2 lCG2 + cos(θ2)(sin(θ1)g − ω1

2 l1) + sin(θ2)(cos(θ1)g + α1 l1)]
m2[(α1 + α2)lCG2

− sin(θ2)(sin(θ1)g − ω1
2 l1) + cos(θ2)(cos(θ1)g + α1 l1)]

0

 ,
2f2 = 2F2 +

2R3
3f3,

=

 m2[−(ω2 + ω1)
2 lCG2 + cos(θ2)(sin(θ1)g − ω1

2 l1) + sin(θ2)(cos(θ1)g + α1 l1)] +
3f3x

m2[(α1 + α2)lCG2 − sin(θ2)(sin(θ1)g − ω1
2 l1) + cos(θ2)(cos(θ1)g + α1 l1)] +

3f3y
3f3z

 ,
2N2 = 2ICG2 2α2 + (2ω2 × (2ICG22ω2)),

=

 0
0

Izz2(α1 + α2)

 ,
2n2 = 2N2 +

3 R2
3n3 + (2pCG2

× 2F2) + (2p3 × 2R3
3f3),

=



3n3x

3n3y − l2
3f3z

(Izz2(α1 + α2) +
3n3z + lCG2

m2((α1 + α2)lCG2

− s θ2(s θ1 g − ω1
2 l1) + c θ2(c θ1 g + α1 l1)) + l2

3f3y)

 ,
τ 2 = 2n2[3],

= Izz2(α1 + α2) +
3n3z + lCG2

m2((α1 + α2)lCG2
− s θ2(s θ1 g − ω1

2 l1)

+ c θ2(c θ1 g + α1 l1)) + l2
3f3y.
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Frame 1, (i = 0):

1F1 = 1aCG1m1,

=

 m1[−ω1
2lCG1

+ sin(θ1)g]
m2[−α1

2lCG1
+ cos(θ1)g]

0

 ,
1f1 = 1F1 +

1R2
2f2,

=



(m1(−ω1
2 lCG1

+ s θ1 g) + c θ2(m2[−(ω2 + ω1)
2 lCG2

+c θ2(s θ1 g − ω1
2 l1) + s θ2(c θ1 g + α1 l1)] +

3f3x)− s θ2 (m2[(α1 + α2)lCG2

− s θ2(s θ1g − ω1
2 l1) + c θ2(c θ1 g + α1 l1)] +

3f3y))

(m1(−α1 lCG1
+ c θ1 g) + s θ2(m2[−(ω2 + ω1)

2 lCG2

+c θ2(s θ1 g − ω1
2 l1) + s θ2(c θ1 g + α1 l1)] +

3f3x)− c θ2 (m2[(α1 + α2)lCG2

− s θ2(s θ1 g − ω1
2 l1) + c θ2(c θ1 g + α1 l1)] +

3f3y))

3f3z


,

1N1 = (1ICG1 1α1) + (1ω1 × (1ICG1 1ω1)),

=

 0
0

Izz1 α1

 ,
1n1 = 1N1 + ( 1R2

2n2) + (1pCG1
× 1F1) + (1p2 × 1R2

2f2),

=



c θ2
3n3x − s θ2(

3n3y − l2
3f3z)

s θ2
3n3x + c θ2(

3n3y − l2
3f3z)− l1

3f3z

(Izz1α1 + Izz2(α1 + α2) +
3n3z + lCG2

m2((α1 + α2)lCG2

− s θ2(s θ1 g − ω1
2 l1) + c θ2(c θ1 g + α1l1)) + l2

3f3y + lCG1
m1(α1 lCG1

+ c θ1 g)
+ l1 s θ2(m2(−(ω2 + ω1)

2 lCG2
+ c θ2(s θ1 g − ω1

2 l1) + s θ2(c θ1 g + α1 l1)) +
3f3x)

+ c θ2(m2((α1 + α2)lCG2 − s θ2(s θ1 g − ω1
2 l1) + c θ2(c θ1 g + α1 l1)) +

3f3y))


.
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τ1 = 1n1[3],

= Izz1α1 + Izz2(α1 + α2) +
3n3z + lCG2

m2((α1 + α2)lCG2

− s θ2(s θ1 g − ω1
2 l1) + c θ2(c θ1 g + α1l1)) + l2

3f3y + lCG1
m1(α1 lCG1

+ c θ1 g)

+ l1 s θ2(m2(−(ω2 + ω1)
2 lCG2

+ c θ2(s θ1 g − ω1
2 l1) + s θ2(c θ1 g + α1 l1)) +

3f3x)

+ c θ2(m2((α1 + α2)lCG2
− s θ2(s θ1 g − ω1

2 l1) + c θ2(c θ1 g + α1 l1)) +
3f3y),

1τ 1 = (Izz1 + Izz2 + lCG1

2 m1 + lCG2
m2(lCG2

+ c θ2 l1) +

l1 (m2 sin θ2
2 l1 − c θ2 m2(lCG2

+ c θ2 l1)))α1 − l1 s θ2 lCG2
m2 ω2

2 −
2l1 s θ2 m2ω1lCG2

ω2 + (l1 s θ2 lCG2
m2 + l1(s θ2 m2 (−lCG2

− c θ2 l1) + c θ2 m2 s θ2 l1))ω1
2

+lCG2
m2(α2 lCG2

− s θ2 s θ1 g + c θ2 c θ1 g)

+l1(s θ2(m2(c θ2 s θ1 g + s θ2 c θ1 g) +
3f3x) +

c θ2(m2(α2 lCG2
− s θ2 s θ1 g + c θ2 c θ1 g) +

3f3y))

+Izz2α2 + l2
3f3y +

3 n3z + lCG1
m1 c θ1 g,

2τ 2 = (lCG2

2 m2 + Izz2)α2 + (Izz2 + lCG2
m2(lCG2

− c θ2 l1))α1

+l1 s θ2 lCG2
m2 ω1

2 + l2
3f3y +

3n3z + lCG2
m2(− s θ2 s θ1 g + c θ2 c θ1 g).

State-space representation:

M =


(Izz1 + Izz2 + lCG1

2 m1 + lCG2
2 m2 (lCG2

2 m2 + l1 c θ2 lCG2
m2

+2l1 c θ2 lCG2
m2 +m2l1

2) +Izz2)

lCG2
2 m2 + l1 c θ2 lCG2 m2 + Izz2 lCG2

2 m2 + Izz2

 .

V =


((l1 s θ2 lCG2

m2 + l1(s θ2 m2(−lCG2
− c θ2 l1)

+ c θ2 m2 s θ2 l1))ω1
2 − l1 s θ2 lCG2 m2 ω2

2

+(l1 s θ2 lCG2 m2 + l1(s θ2 m2(−lCG2 − c θ2 l1)
+ c θ2 m2 s θ2 l1))ω1 ω2)

l1 s θ2 lCG2
m2 ω1

2

 .

G =


(lCG2

m2(− s θ2 s θ1 + c θ2 c θ1) + l1(s θ2 m2(c θ2 s θ1
+s θ2 c θ1) + c θ2 m2(− s θ2 s θ1 + c θ2 c θ1))) + lCG1

m1 c θ1 g

lCG2 m2(− s θ2 s θ1 + c θ2 c θ1)

 .
N = 1τ 1

2τ 2 −M

[
α1

α2

]
−V −G

=


(l1 s θ2

3f3x + l1 c θ2
3f3y

+l2
3f3y +

3n3z − 2l1 s θ2 m2 ω1 lCG2
ω2)

l2
3f3y +

3 n3z

 .
Now if we let l1 = 2, l2 = 2, lCG1 = 1, lCG2 = 1, m1 = 2, m2 = 1, Ixx1 = 1,
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Iyy1 = 2, Izz1 = 3, Ixx2 = 3, Iyy2 = 2, Izz2 = 1, θ1 = π
6 , θ2 = π

3 , then:

M =

[
13 3
3 2

]
.

And the eigenvectors are (using Matlab’s eigenvectors(M) command):[
−0.9689931823
−0.2470874613

]
,

[
0.2470874613
−0.9689931823

]
.

Or, using Lagrange:

0T1 =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

 ,

1T2 =


cos θ2 − sin θ2 0 l1
sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

 ,
0T2 = 0T1

1T2,

=


cos(θ1 + θ2) − sin(θ1 + θ2) 0 cos θ1 l1
sin(θ1 + θ2) cos(θ1 + θ2) 0 sin θ1 l1

0 0 1 0
0 0 0 1

 ,
0R1 =

 cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1

 ,
0R2 =

 cos(θ1 + θ2) − sin(θ1 + θ2) 0
sin(θ1 + θ2) cos(θ1 + θ2) 0

0 0 1

 .
The inertia tensors assume that the coordinate reference frames are aligned with
principal axes:

1ICG1 =

 0 0 0
0 0 0
0 0 Izz1

 ,
1ICG2 =

 0 0 0
0 0 0
0 0 Izz2

 .
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Now these inertia tensors must be rotated to align with the base frame:

0ICG1 = 0R1
1ICG1 0R1

T ,

=

 0 0 0
0 0 0
0 0 Izz1

 ,
0ICG2 = 0R2

2ICG2 0R2
T ,

=

 0 0 0
0 0 0
0 0 Izz2

 .

0Ẑ1 =

 0
0
1

 ,
0Ẑ2 =

 0
0
1

 ,
pCG1

=


lCG1

0
0
1

 ,
0pCG1

= 0T1 pCG1
,

=


cos θ1 lCG1

sin θ1 lCG1

0
1

 ,
pCG2

=

 lCG2

0
0

 ,
0pCG2

2 = 0R2 pCG2
,

=

 cos(θ1 + θ2)lCG2

sin(θ1 + θ2)lCG2

0

 ,
pCG2

1 =


l1 + lCG2

cos(θ2)
lCG2

sin(θ2)
0
1

 ,

0pCG2

1 =


cos θ1 l1 + cos(θ1 + θ2)lCG2

sin θ1 + sin(θ1 + θ2)lCG2

0
1

 .
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Jacobians:

1JL1
=

 sin θ1 lCG1

cos θ1 lCG1

0

 ,
JL1

=

 sin θ1 lCG1
0

cos θ1 lCG1
0

0 0

 ,
JA1

=

 0 0
0 0
1 0

 ,
1JL2

=

 − sin θ1 l1 − sin(θ1 + θ + 2)lCG2

cos θ1 l1 + cos(θ1 + θ2)lCG2

0

 ,
JL2 =

 sin θ1 l1 − sin(θ1 + θ2)lCG2
− sin(θ1 + θ2)lCG2

cos θ1 l1 − cos(θ1 + θ2)lCG2
− cos(θ1 + θ2)lCG2

0 0

 ,
JA2 =

 0 0
0 0
1 1

 .
Mass matrix M:
For i = 1:

M1L = JL1

T JL1
m1,

=

[
m1 lCG1

2 0
0 0

]
,

M1A = JA1

T 0ICG1 JA1 ,

=

[
Izz1 0
0 0

]
.
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For i = 2:

M2L = JL2

T JL2
m2,

=


(m2 l1

2 + 2m2 lCG2
sin(θ1 + θ2) sin θ1 l1 (m2 lCG2

sin(θ1 + θ2) sin θ1 l1
+m2 lCG2

2 + 2m2 lCG2
cos(θ1 + θ2) cos θ1 l1) +m2 lCG2

cos(θ1 + θ2) cos θ1 l1)

m2 lCG2 sin(θ1 + θ2) sin θ1 l1 +m2 lCG2
2 m2 lCG2

+m2lCG2 cos(θ1 + θ2) cos θ1 l1

 ,
M2A = JA2

T 0ICG2 JA2 ,

=

[
Izz2 Izz2
Izz2 Izz2

]
,

M =


(m1I

CG1 2 + Izz1 +m2 l1
2 m2 lCG2 l1 cos θ2 +m2 lCG2

2 + Izz2
+2m2 lCG2

l1 cos θ1 +m2 lCG2
2 + Izz2)

m2 lCG2
l1 cos θ2 +m2 l

2
CG2

+ Izz2 m2 lCG2
2 + Izz2

 .
And if we sub in the same values as before, we get:

M =

[
13 3
3 2

]
.

And the same eigenvectors:[
−0.9689931823
−0.2470874613

]
,

[
0.2470874613
−0.9689931823

]
.
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