
Kinematic geometry of spatial RSSR mechanisms

Mirja Rotzolla, Margaret H. Reganb, Manfred L. Hustyc, M. John D. Hayesa,∗

aCarleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
bDuke University, 120 Science Drive Physics 117, Durham, NC 27708, U.S.A.

cUniversity of Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria

Abstract

Two different novel methods to derive the input-output (IO) equation of ar-
bitrary RSSR linkages are described. Both methods share some common ele-
ments, i.e., they use the standard Denavit-Hartenberg notation to first describe
the linkage as an open kinematic chain, and Study’s kinematic mapping to de-
scribe the displacement of the coordinate frame attached to the end-effector of
the chain with respect to the relatively non-moving base frame. The kinematic
closure equation is obtained in the seven-dimensional projective kinematic map-
ping image space by equating the eight Study soma coordinates to the identity
array. Then two methods are successfully applied to eliminate the intermediate
joint angle parameters leading to the degree four biquadratic implicit algebraic
IO equation: a) the linear implicitisation algorithm, which can be applied after
rearranging the closure equation such that the linkage can be viewed as two
serial RS chains, and b) numerical elimination theory using pseudowitness sets.
Both approaches lead to the same IO equation. The utility of this algebraic
form of the IO equation is illustrated with three detailed application examples.

Keywords: RSSR linkage, Study soma coordinates, algebraic input-output
equation, linear implicitisation algorithm.

1. Introduction

The RSSR mechanism has been investigated since 1955 [1], if not earlier.
It has been broadly used in modern applications ranging from hinging to land-
ing gear deployment systems so there has long been a need for design tools
for synthesis and analysis. The earliest works considering mobility limits date5

from as early as 1969, see [2, 3, 4, 5]. Displacement and dynamic analysis of
the RSSR dates from 1972, if not earlier [6, 7]. Optimal synthesis of RSSR
linkages for various objectives can be traced to the early 1980s [8], but there
is also modern interest, see [9] for example. Rigid body motion synthesis us-
ing Study’s kinematic mapping [10] was elegantly developed for planar four-bar10
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linkages in [11]. Motivated by this, a derivation algorithm that describes the
linkage using Denavit Hartenberg (DH) parameters, projects the displacement
transformation matrix into Study’s kinematic image space, and manipulates the
resulting equations via Gröbner bases to obtain the algebraic input-output (IO)
equation for planar, spherical, and Bennett linkages has been investigated with15

results reported in the literature by the authors of this paper. A natural exten-
sion of this algorithm to general motion in three dimensional space is to apply it
to another well-investigated spatial linkage, the RSSR, which will be the main
focus of this paper. In addition, the results obtained using the polynomial elim-
ination method [12] are supported by a numerical method [13] leading to an20

identical algebraic IO equation, as well as a verification of the equation using
an animated example linkage that was created in the GeoGebra software.

It is important to note that we make no claims regarding the relative ease
or difficulty of the method presented in this paper for deriving the RSSR alge-
braic IO equation compared to any existing method, we simply claim that it is25

different. However, to underscore the utility of this form of the algebraic RSSR
IO equation as the cornerstone for development of powerful novel mechanical
design tools for synthesis and analysis, three detailed example applications are
presented: continuous approximate synthesis for function generation minimising
the design and structural errors; mobility limits; and extreme values of angular30

velocity and acceleration.
The RSSR linkage consists of two revolute (R) and two spherical (S) joints

and following the Kutzbach criterion, possesses 2 degrees of freedom (dof). How-
ever, one dof that does not influence the IO equation corresponds to the rotation
of the coupler link between the two spherical joints about its own longitudinal35

axis. This so-called idle dof can have a positive effect on the durability of the
linkage in engineering applications, as it helps to evenly wear the S joints. Gen-
erally, the IO equation of the RSSR is much more involved compared to the
planar, and spherical ones, as in addition to the link lengths between the four
joints, the linkage further possesses three additional design parameters between40

the revolute joints, i.e., two link offsets and a link twist. Previous trigonometric
derivations of the RSSR IO equation are available, for example, in [1, 14, 15].
Hartenberg and Denavit’s derivation of the IO equation [14] uses their well-
known parameters and trigonometric relations, while the derivation in [15] leads
to an equation that resembles a more complex version of the Freudenstein equa-45

tion [16]. This is not entirely surprising given that the planar four-bar is a
special case of the RSSR linkage.

2. Denavit-Hartenberg (DH) Parametrisation

The literature contains many variations of the original Denavit-Hartenberg
(DH) coordinate system and parameter assignment convention. For example,50

subtly different coordinate frame attachment rules and parameter definitions
have been devised for mechanical system calibration, dynamic analysis, account-
ing for misalignment of joint axis directions, etc., see [17, 18, 19, 20] for several
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different examples. Therefore, it is important to precisely define the conven-
tion used in this work to avoid confusion and misinterpretation since the corre-55

sponding coordinate transformations are all different from those of Denavit and
Hartenberg.
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Figure 1: DH parameters in a general serial 3R kinematic chain.

To visualise the four DH parameters, consider two arbitrary sequential neigh-
bouring links, i − 1 and i. Two such links are illustrated, together with their
DH coordinate systems and parameters, in Fig. 1. The DH parameters [21] are60

defined in the following way.

θi, joint angle: the angle from xi−1 to xi measured about zi−1.

di, link offset: the distance from xi−1 to xi measured along zi−1.

τi, link twist: the angle from zi−1 to zi measured about xi.

ai, link length: the directed distance from zi−1 to zi measured along xi.65

Each of the two S joints of the RSSR can be modelled as three R joints whose
rotation axes are mutually orthogonal and intersect at the sphere centre. Hence,
eight coordinate frames are attached to the linkage. The chosen coordinate
systems are illustrated in Fig. 2 and the corresponding DH parameters are to
be found in Table 1. Note that the only link twist that is a design parameter is70

τ8. The twists between the three mutually orthogonal R joint axes comprising
the S joints are ±π. We arbitrarily use the positive value, as the sign has no
impact on the resulting algebraic IO equation.

In the remainder of this paper, the tangent half angle substitutions for the
angle parameters vi = tan(θi/2) and αi = tan(τi/2) will be used in order to75
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Figure 2: An arbitrary RSSR mechanism.

Table 1: DH parameters for the RSSR mechanism.

joint axis i joint angle θi link offset di link length ai link twist τi

1 θ1 d1 a1 0

2 θ2 0 0 π/2

3 θ3 0 0 π/2

4 θ4 0 a4 0

5 θ5 0 0 π/2

6 θ6 0 0 π/2

7 θ7 0 a7 0

8 θ8 d8 a8 τ8

algebraise the transformations. This implies that

cos θi =
1− v2i
1 + v2i

, sin θi =
2vi

1 + v2i
, (1)

cos τi =
1− α2

i

1 + α2
i

, sin τi =
2αi

1 + α2
i

. (2)

We begin with a serial RSSR kinematic chain and determine the forward kine-
matics following [21]. The required multiplication of the individual DH trans-
formation matrices from one coordinate frame to another yields the overall ho-
mogeneous transformation matrix that describes the relationship between the80

first and last coordinate frames. To close the kinematic chain, we want the
first and last coordinate systems to align in both their orientation and origin.
Algebraically, this is specified using the kinematic closure equation, where the
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overall transformation equates to the identity [21]

8∏
i=1

i−1
i T = I. (3)

The elements of this algebraic DH transformation matrix are then directly85

mapped into Study’s kinematic image space where the constraint manifold could
be analysed as it has already been successfully demonstrated for the planar 4R,
spherical 4R, and Bennett linkage by the authors. However, applying Gröbner
bases or other elimination methods to the eight Study soma coordinates to sym-
bolically obtain the IO equation for the RSSR linkage is computationally too90

demanding for an algebraic geometry approach. While very computationally
demanding, a numerical approach that uses the forward kinematics of the serial
RSSR chain mapped to the eight soma coordinates, described in Section 5, us-
ing pseudowitness sets leads directly to the desired IO equation. Still, there are
algebraic approaches.95

A well known algebraic geometry approach to obtain an expression for the
forward and inverse kinematics of a serial kinematic chain is to split it into
two subchains, thereby conceptually splitting the closure equation in two by
multiplying both sides by the inverses of half of the DH transformations. In the
case of the RSSR, the closure equation becomes100

0
1T

1
2T

2
3T

3
4T = I 7

8T
−1 6

7T
−1 5

6T
−1 4

5T
−1. (4)

This step essentially divides the linkage into two serial chains joined at the 4th
coordinate frame located in the second S joint, i.e., one serial chain between
the coordinate frames 0 and 4, and one serial chain between the coordinate
frames 4 and 8, which correspond to the expressions on the left and right sides
of Eq. (4), respectively, which we call the left RS and right RS dyads. Eq. (4)105

will be used in Section 4 to obtain the algebraic IO equation by projecting it
to the image space. However, before we proceed we will briefly recall Study’s
kinematic mapping [10].

3. Study’s Kinematic Mapping

The homogeneous transformation matrices in Eqs. (3) and (4) represent a110

subgroup of the group of spatial Euclidean displacements, SE(3), with respect
to a relatively non-moving coordinate frame. There are several possibilities to
parameterise this rigid body displacement group, one of them being the kine-
matic mapping that was originally formulated by Eduard Study and reported
in an appendix of his book “Geometrie der Dynamen” [10] in 1903. It defines115

every distinct Euclidean displacement as a distinct point on a six-dimensional
quadric hyper-surface in a seven-dimensional projective space P7 now known as
the Study quadric, S2

6 . A point on S2
6 consists of eight homogeneous coordinates,

not all zero, [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3] which Study called a “soma”, a
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Greek word meaning “body”. The hyper-surface is a seven-dimensional bilinear120

hyper-quadratic equation given by

x0y0 + x1y1 + x2y2 + x3y3 = 0, (5)

excluding the exceptional generator, which we call A∞, where x0 = x1 = x2 =
x3 = 0, having the parametric representation

[0 : 0 : 0 : 0 : y0 : y1 : y2 : y3].

A∞ does not represent any real displacement, but it nonetheless plays an im-
portant role as a generator space. For a soma to represent a real displacement125

in SE(3), it must satisfy two conditions: the first being Eq. (5); the second
being the inequality

x2
0 + x2

1 + x2
2 + x2

3 ̸= 0. (6)

Eq. (5) contains only bilinear cross terms. This implies that the quadric has been
rotated out of its standard position, or normal form. It is straightforward to
diagonalise the quadratic form of Eq. (5) which reveals that this six-dimensional130

quadric in P7 has the normal form

x2
0 + x2

1 + x2
2 + x2

3 − y20 − y21 − y22 − y23 = 0, (7)

which is analogous to the Plücker quadric, P 2
4 , of line geometry. The normal

form of S2
6 shows that it is a six-dimensional hyperboloid of one sheet doubly-

ruled by special 3-space generators in two opposite reguli, which we call A-planes
and B-planes, after [22].135

It can be shown that lines on S2
6 represent either a one parameter set of

translations or rotations. The lines which contain the 1 × 8 identity array
[1 : 0 : 0 : . . . : 0], which Study called the “protosoma”, are either the one
parameter rotation or translation subgroups. The exceptional generator A∞
is an A-plane. In general, two different A-planes do not intersect, nor do two140

different B-planes, but there are exceptions [23]. An A-plane corresponds to
SO(3) if it contains the identity and its intersection with A∞ is the empty set,
and to SE(2) if it contains the identity and intersects A∞ in a line. These two
types ofA-planes intersect each other in lines on S2

6 . Each of these lines represent
rotations about the line orthogonal to the plane of the planar displacement and145

through the centre point of the spherical displacement [23, 24]. The only B-
planes that intersect A∞ correspond to the subgroup of all translations, while
in general the intersection of an A-plane and a B-plane is either a point, or a
two dimensional plane [25].

Given a homogeneous transformation matrix T whose 3×3 rotation subma-150

trix elements are denoted as A = (aij) with i, j ∈ {1, 2, 3} and whose transla-
tion vector elements are denoted as tk with k ∈ {1, 2, 3}, then the corresponding
Study soma coordinates, also known as Study parameters, are obtained in the
following way. The homogeneous quadruple x0 : x1 : x2 : x3 can be obtained
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from at least one of the following ratios:155

x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12;

= a32 − a23 : 1 + a11 − a22 − a33 : a12 + a21 : a31 + a13;

= a13 − a31 : a12 + a21 : 1− a11 + a22 − a33 : a23 + a32;

= a21 − a12 : a31 + a13 : a23 + a32 : 1− a11 − a22 + a33. (8)

The remaining four coordinates y0 : y1 : y2 : y3 are linear combinations of the
xi and ti and are computed as

y0 = 1
2 (t1x1 + t2x2 + t3x3), y1 = 1

2 (−t1x0 + t3x2 − t2x3),

y2 = 1
2 (−t2x0 − t3x1 + t1x3), y3 = 1

2 (−t3x0 + t2x1 − t1x2).
(9)

Study developed the method to compute the four xi parameters directly
from the 3× 3 rotation submatrix A via one of the four sets of ratios expressed
in Eq. (8). In general each of the four yield the same ratios. But in certain160

instances, for example when A describes a rotation through angle π, one or
more of the four ratios in Eq. (8) result in x0 : x1 : x2 : x3 = 0 : 0 : 0 : 0,
the exceptional generator. But for every rotation matrix A at least one of the
four ratios does not result in four zeros. Study also showed that the mapping is
bijective, meaning that for each point on S2

6 there is one and only one Euclidean165

displacement represented by the homogeneous 4× 4 transformation matrix T:

T =
1

δ


x2
0 + x2

1 + x2
2 + x2

3 0 0 0

2(−x0y1 + x1y0 − x2y3 + x3y2) x2
0 + x2

1 − x2
2 − x2

3 2(−x0x3 + x1x2) 2(x0x2 + x1x3)

2(−x0y2 + x1y3 + x2y0 − x3y1) 2(x0x3 + x1x2) x2
0 − x2

1 + x2
2 − x2

3 2(−x0x1 + x2x3)

2(−x0y3 − x1y2 + x2y1 + x3y0) 2(−x0x2 + x1x3) 2(x0x1 + x2x3) x2
0 − x2

1 − x2
2 + x2

3


where δ = x2

0+x2
1+x2

2+x2
3. The first column is the associated translation of the

Euclidean displacement and the elements of the lower right 3× 3 submatrix are
the nine aij of the associated rotation matrix A. Hence, the mechanical con-
straints imposed by the type of joints used in the kinematic chains of the RSSR170

are mapped onto Study’s quadric. The result is a parametric representation in
terms of Study soma coordinates of the constraint manifold.

The image of the overall DH transformation matrix T of the RSSR linkage,
Eq. (3), in terms of Study parameters yields

x0 = 2v1v2v3v4v5v6v7v8 − 2v1v2v3v4v5v6 + ...+ 2α8v6v8 + 2v7v8 − 2,

x1 = 2α8v1v2v3v4v5v6v7v8 − 2α8v1v2v3v4v5v6 + ...+ 2α8v7v8 − 2α8,

x2 = − 2α8v1v2v3v4v5v6v7 − 2α8v1v2v3v4v5v6v8 + ...− 2α8v7 − 2α8v8,

x3 = − 2v1v2v3v4v5v6v7 − 2v1v2v3v4v5v6v8 + ...+ 2α8v6 − 2v7 − 2v8, (10)

y0 = − a1α8v1v2v3v4v5v6v7v8 + a4α8v1v2v3v4v5v6v7v8 + ...− α8a8,

y1 = a1v1v2v3v4v5v6v7v8 − a4v1v2v3v4v5v6v7v8 + ...+ a1 + a4 + a7 + a8,

y2 = − α8d1v1v2v3v4v5v6v7v8 − α8d8v1v2v3v4v5v6v7v8 + ...+ α8d8,

y3 = − d1α8v1v2v3v4v5v6v7v8 − d8v1v2v3v4v5v6v7v8 + ...+ d1 + d8.
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As these polynomials are extremely large, each containing 128 very large terms,175

only the beginning and end of the expressions sorted using graded lexicographic
ordering with v1 > v2 > . . . > v8 are displayed here. These polynomials will be
solved numerically in Section 5, but are otherwise too cumbersome to deal with
using algebraic geometry and computer algebra software, such as Maple 2021.
For this we require a different approach.180

As mentioned earlier, one well known different approach involves conceptu-
ally splitting the RSSR into two serial RS chains. In this way, mapping the
left hand side of Eq. (4), the left RS chain, into Study’s kinematic image space
yields eight significantly smaller polynomials

x0 = 4v1v2v3v4 − 4v1v3 − 4v2v3 − 4v3v4,

x1 = − 4v1v2 + 4v1v4 + 4v2v4 + 4,

x2 = 4v1v2v4 + 4v1 + 4v2 − 4v4,

x3 = − 4v1v2v3 − 4v1v3v4 − 4v2v3v4 + 4v3, (11)

y0 = − 2d1v1v2v3 − 2d1v1v3v4 − 2d1v2v3v4 + 2a1v1v2 − 2a4v1v2 − 2a1v1v4

+ 2a4v1v4 + 2a1v2v4 + 2a4v2v4 + 2d1v3 + 2a1 + 2a4,

y1 = 2a1v1v2v3v4 − 2a4v1v2v3v4 + 2d1v1v2v4 − 2a1v1v3 + 2a4v1v3 + 2a1v2v3

+ 2a4v2v3 + 2a1v3v4 + 2a4v3v4 + 2d1v1 + 2d1v2 − 2d1v4,

y2 = 2a1v1v2v3 + 2a4v1v2v3 + 2a1v1v3v4 + 2a4v1v3v4 − 2a1v2v3v4 + 2a4v2v3v4

+ 2d1v1v2 − 2d1v1v4 − 2d1v2v4 + 2a1v3 − 2a4v3 − 2d1,

y3 = − 2d1v1v2v3v4 + 2a1v1v2v4 + 2a4v1v2v4 + 2d1v1v3 + 2d1v2v3 + 2d1v3v4

+ 2a1v1 + 2a4v1 − 2a1v2 + 2a4v2 + 2a1v4 − 2a4v4.

And finally, mapping the right hand side of Eq. (4), the right RS chain, into185

Study’s kinematic image space yields eight additional smaller polynomials

x0 = 4v5v6v7v8 − 4v5v6 − 4α8v5v7 − 4α8v5v8 − 4v6v7 − 4v6v8 + 4α8v7v8 − 4α8,

x1 =− 4α8v5v6v7v8 + 4α8v5v6− 4v5v7− 4v5v8 + 4α8v6v7 + 4α8v6v8 + 4v7v8− 4,

x2 = 4α8v5v6v7 + 4α8v5v6v8 + 4v5v7v8 + 4α8v6v7v8 − 4v5 − 4α8v6 + 4v7 + 4v8,

x3 = 4v5v6v7 + 4v5v6v8 − 4α8v5v7v8 + 4v6v7v8 + 4α8v5 − 4v6 − 4α8v7 − 4α8v8,

y0 =− 2a7α8v5v6v7v8 + 2a8α8v5v6v7v8 − 2d8v5v6v7 − 2d8v5v6v8 − 2α8d8v5v7v8

− 2d8v6v7v8 − 2a7α8v5v6 − 2a8α8v5v6 + 2a7v5v7 + 2a8v5v7 − 2a7v5v8

+ 2a8v5v8 − 2a7α8v6v7 − 2a8α8v6v7 + 2a7α8v6v8 − 2a8α8v6v8 + 2a7v7v8

− 2a8v7v8 + 2α8d8v5 + 2d8v6 − 2α8d8v7 − 2α8d8v8 + 2a7 + 2a8, (12)

y1 =− 2a7v5v6v7v8 + 2a8v5v6v7v8 + 2α8d8v5v6v7 + 2α8d8v5v6v8 − 2d8v5v7v8

+ 2α8d8v6v7v8 − 2a7v5v6 − 2a8v5v6 − 2a7α8v5v7 − 2a8α8v5v7 + 2a7α8v5v8

− 2a8α8v5v8 − 2a7v6v7 − 2a8v6v7 + 2a7v6v8 − 2a8v6v8 − 2a7α8v7v8

+ 2a8α8v7v8 + 2d8v5 − 2α8d8v6 − 2d8v7 − 2d8v8 − 2a7α8 − 2a8α8,

y2 = 2α8d8v5v6v7v8 − 2a7v5v6v7 − 2a8v5v6v7 + 2a7v5v6v8 − 2a8v5v6v8

− 2a7α8v5v7v8 + 2a8α8v5v7v8 + 2a7v6v7v8 − 2a8v6v7v8 − 2α8d8v5v6
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− 2d8v5v7 − 2d8v5v8 − 2α8d8v6v7 − 2α8d8v6v8 + 2d8v7v8 − 2a7α8v5

− 2a8α8v5 +2a7v6 +2a8v6 +2a7α8v7 +2a8α8v7 −2a7α8v8 +2a8α8v8−2d8,

y3 = 2d8v5v6v7v8 + 2a7α8v5v6v7 + 2a8α8v5v6v7 − 2a7α8v5v6v8 + 2a8α8v5v6v8

− 2a7v5v7v8 + 2a8v5v7v8 − 2a7α8v6v7v8 + 2a8α8v6v7v8 − 2d8v5v6

+2α8d8v5v7 +2α8d8v5v8 −2d8v6v7 −2d8v6v8 −2α8d8v7v8 −2a7v5 −2a8v5

− 2a7α8v6 − 2a8α8v6 + 2a7v7 + 2a8v7 − 2a7v8 + 2a8v8 + 2α8d8.

The polynomials of Eqs. (11) and (12) will be manipulated in Section 4 using the
linear implicitisation algorithm [12] to reveal the algebraic RSSR IO equation.

4. Algebraic Geometry Approach

To obtain the RSSR algebraic IO equation, the parametric equations of the190

Study coordinates of Eqs. (11) and (12) need to be expressed implicitly as a
single polynomial equation in the desired motion parameters v1 and v8 in the
seven-dimensional kinematic mapping image space. This requires an algorithm
that eliminates the unwanted motion parameters vi where i ∈ {2, . . . , 7}. One
implicitisation algorithm that allows for the transformation from the explicit195

parametric Study representation into a set of implicit polynomial equations is
known as the linear implicitisation algorithm. The resulting constraint equa-
tions are implicit polynomials that form an algebraic variety in P7 and can be
manipulated with different tools to obtain the IO equation. A detailed descrip-
tion of the linear implicitisation algorithm, together with illustrative examples200

is to be found in [12, 26].
The two serial RS chains of the RSSR linkage consist of one revolute and

one spherical joint each. Clearly, the S joint spherical displacements, SO(3),
are completely contained on sub-spaces of the Study quadric as there is no
translation involved and thus, all four yi Study coordinates are identically zero.205

In other words, the displacements constrained by the S joints form special A-
planes on the Study quadric. Further, the R joint in the serial RS chain rotates
the S joint in a planar displacement thereby moving this special A-plane on S2

6 .
It is well known that a 3-space can be represented by the intersection of four
hyperplanes in the kinematic image space. To determine the RSSR algebraic IO210

equation we must identify these hyperplanes, one set for each serial RS chain.
To obtain their implicit equations the linear implicitisation algorithm will be
employed. The main goal of the linear implicitisation algorithm is to find the
minimal number of implicit equations that describe the mechanical constraints
in the image space. It allows for the elimination of motion parameters which, in215

the case of the RSSR, correspond to the variables v2, v3, . . . , v7. On the other
hand, the design parameters ai, di and αi are fixed values that depend on the
chosen linkage. However, to obtain the implicit polynomials for the spherical
special 3-spaces v1 and v8 are temporarily also considered as design parameter
constants.220

To begin, we assume that the resulting variety is defined by linear constraint
equations, and hence a general linear ansatz polynomial can be written, using
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the graded reverse lexicographic monomial ordering [27], as

C1y3 + C2y2 + C3y1 + C4y0 + C5x3 + C6x2 + C7x1 + C8x0 = 0. (13)

This linear ansatz polynomial has eight unknown coefficients Ci, i ∈ {1, · · · , 8}.
In the case of the left hand side of the RSSR chain, Eq. (11) is substituted into225

Eq. (13) and after reorganising such that the variable angle parameters of the
spherical displacement are collected, yields

(−2C1d1v1 + 2C3a1v1 − 2C3a4v1 + 4C8v1 − 2C4d1 − 2C2a1 + 2C2a4 − 4C5)v2v3v4

+ (2C2a1v1 + 2C2a4v1 − 2C4d1v1 − 4C5v1 + 2C1d1 + 2C3a1 + 2C3a4 − 4C8)v2v3

+ (2C1a1v1 + 2C1a4v1 + 2C3d1v1 + 4C6v1 − 2C2d1 + 2C4a1 + 2C4a4 + 4C7)v2v4

+ (2C2d1v1 + 2C4a1v1 − 2C4a4v1 − 4C7v1 − 2C1a1 + 2C1a4 + 2C3d1 + 4C6)v2

+ (2C2a1v1 + 2C2a4v1 − 2C4d1v1 − 4C5v1 + 2C1d1 + 2C3a1 + 2C3a4 − 4C8)v3v4

+ (2C1d1v1 − 2C3a1v1 + 2C3a4v1 − 4C8v1 + 2C2a1 − 2C2a4 + 2C4d1 + 4C5)v3

+ (−2C2d1v1 − 2C4a1v1 + 2C4a4v1 + 4C7v1 + 2C1a1 − 2C1a4 − 2C3d1 − 4C6)v4

+ (2C1a1v1 + 2C1a4v1 + 2C3d1v1 + 4C6v1 − 2C2d1 + 2C4a1 + 2C4a4 + 4C7) = 0.
(14)

To fulfil this equation, the coefficients of the motion parameters in Eq. (14)
must vanish since the v2, v3, and v4 orientation angle parameters are, in general
non-zero. In matrix form, this can be expressed as230



2a1v1 + 2a4v1 −2d1 2d1v1 2a1 + 2a4 0 4v1 4 0
−2d1v1 −2a1 + 2a4 2a1v1 − 2a4v1 −2d1 −4 0 0 4v1

−2a1 + 2a4 2d1v1 2d1 2a1v1 − 2a4v1 0 4 −4v1 0
2a1v1 + 2a4v1 −2d1 2d1v1 2a1 + 2a4 0 4v1 4 0

2d1 2a1v1 + 2a4v1 2a1 + 2a4 −2d1v1 −4v1 0 0 −4
2d1 2a1v1 + 2a4v1 2a1 + 2a4 −2d1v1 −4v1 0 0 −4

2d1v1 2a1 − 2a4 −2a1v1 + 2a4v1 2d1 4 0 0 −4v1
2a1 − 2a4 −2d1v1 −2d1 −2a1v1 + 2a4v1 0 −4 4v1 0





C1

C2

C3

C4

C5

C6

C7

C8


=



0
0
0
0
0
0
0
0


.

Solving for the unknown Ci and back-substituting their solutions into the general
linear ansatz polynomial Eq. (13) reveals all four hyperplanes that satisfy the
variety in P7. The solution shows that C1, C3, C4, and C8 are all free parameters
with arbitrary values while C2, C5, C6, and C7 are expressions containing only
v1 and the design parameters and, after simplifying, are each linear in four of the235

Study parameters, and therefore hyperplanes. These four hyperplanes collected
in terms of the Study parameters are

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x3 + (−2d1v

2
1 − 2d1)y0

+ 4a1v1y1 + (2a1v
2
1 − 2a4v

2
1 − 2a1 − 2a4)y2, (15)

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x2 − 4a1v1y0 + (−2d1v

2
1 − 2d1)y1

+ (−2a1v
2
1 + 2a4v

2
1 + 2a1 + 2a4)y3, (16)

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x1 + (2a1v

2
1 + 2a4v

2
1 − 2a1 + 2a4)y0

+ (2d1v
2
1 + 2d1)y2 − 4a1v1y3, (17)
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0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x0 + (−2a1v

2
1 − 2a4v

2
1 + 2a1 − 2a4)y1

+ 4a1v1y2 + (2d1v
2
1 + 2d1)y3. (18)

The same procedure can be done with the right hand side of the RSSR
by substituting Eq. (12) in the general linear ansatz polynomial, Eq. (13). In
this case, the motion parameters to be eliminated are v5, v6 and v7. Solving240

the resulting homogeneous matrix equation for the new unknown Ci yields the
following four hyperplanes in a similar way. They are

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x3

+ (−2α2
8d8v

2
8 + 2d8v

2
8 + 8a7α8v8 − 2α2

8d8 + 2d8)y0

+ (−4d8α8v
2
8 − 4α2

8a7v8 + 4a7v8 − 4d8α8)y1

+ (−2a7α
2
8v

2
8 + 2α2

8a8v
2
8 − 2a7v

2
8 + 2a8v

2
8 + 2a7α

2
8 + 2α2

8a8 + 2a7 + 2a8)y2,
(19)

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x2

+ (4d8α8v
2
8 + 4α2

8a7v8 − 4a7v8 + 4d8α8)y0

+ (−2α2
8d8v

2
8 + 2d8v

2
8 + 8a7α8v8 − 2α2

8d8 + 2d8)y1

+ (2a7α
2
8v

2
8 − 2α2

8a8v
2
8 + 2a7v

2
8 − 2a8v

2
8 − 2a7α

2
8 − 2α2

8a8 − 2a7 − 2a8)y3,
(20)

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x1

+ (−2a7α
2
8v

2
8 + 2α2

8a8v
2
8 − 2a7v

2
8 + 2a8v

2
8 + 2a7α

2
8 + 2α2

8a8 + 2a7 + 2a8)y0

+ (2α2
8d8v

2
8 − 2d8v

2
8 − 8a7α8v8 + 2α2

8d8 − 2d8)y2

+ (4d8α8v
2
8 + 4α2

8a7v8 − 4a7v8 + 4d8α8)y3, (21)

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x0

+ (2a7α
2
8v

2
8 − 2α2

8a8v
2
8 + 2a7v

2
8 − 2a8v

2
8 − 2a7α

2
8 − 2α2

8a8 − 2a7 − 2a8)y1

+ (−4d8α8v
2
8 − 4α2

8a7v8 + 4a7v8 − 4d8α8)y2

+ (2α2
8d8v

2
8 − 2d8v

2
8 − 8a7α8v8 + 2α2

8d8 − 2d8)y3. (22)

Solving Eqs. (15), . . ., (18) for the four yi and substituting these expressions into
Eqs. (19), . . . , (22) leaves four equations in the four unknown Study parameters
xi. This suggests solving the system of four equations for the four unknown xi.245

However, doing so leads only to the trivial solution xi = yi = 0, i ∈ {0, 1, 2, 3},
which we call the null point. This result can be explained geometrically in P7 as
follows: the two special 3-spaces representing the displacements of the S joints
are two SO(3) A-planes that are moved around on S2

6 under the action of the
two R joints, and only ever intersect in the null point.250
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But, there is a solution. Further inspection of the four equations shows
that the equations form a homogeneous system of linear equations. Expressing
this linear homogeneous system in matrix-vector form Cx = 0, we know that
this system only has a nontrivial solution when the determinant of the 4 × 4
coefficient matrix C with respect to the xi vanishes [28]. Thus, after computing255

the determinant and omitting the factors that can never vanish, the general
algebraic IO equation of the RSSR linkage arises directly from the determinant
as

Av21v
2
8 + 8d1α8a7v

2
1v8 + 8d8α8a1v1v

2
8 +Bv21

+8a1a7(α8 − 1)(α8 + 1)v1v8 + Cv28 + 8d8α8a1v1 + 8d1α8a7v8 +D = 0,
(23)

where

A = (α2
8 + 1)A1A2 +R,

B = (α2
8 + 1)B1B2 +R,

C = (α2
8 + 1)C1C2 +R,

D = (α2
8 + 1)D1D2 +R,

and260

A1 = (a1 − a4 + a7 − a8), A2 = (a1 + a4 + a7 − a8),

B1 = (a1 + a4 − a7 − a8), B2 = (a1 − a4 − a7 − a8),

C1 = (a1 − a4 − a7 + a8), C2 = (a1 + a4 − a7 + a8),

D1 = (a1 + a4 + a7 + a8), D2 = (a1 − a4 + a7 + a8),

with

R = (d1 − d8)
2α2

8 + (d1 + d8)
2.

Eq. (23) is an implicit biquadratic algebraic curve of degree 4 in the joint angle
parameters v1 and v8, as one would expect.

5. Numerical Approach

The degree four algebraic IO equation for the RSSR expressed as Eq. (23)265

will be compared to the result from a concomitant numerical method. The
aim for the numerical method is to compute an eliminant with the general
approach of numerical elimination theory [29, Ch. 16]. This involves perform-
ing computations using the given polynomial system from Eq. (10) and geo-
metrically projecting points via pseudowitness sets [30]. For this problem, the270

pseudowitness set provided that the degree of the eliminant is 8 in 9 variables
(v1, v8, α8, a1, a4, a7, a8, d1, d8). Since there are a total of

(
9+8
8

)
= 24310 mono-

mials of degree at most 8 in 9 variables, the approach is to use the pseudowitness
set to generate at least 24310 sample points and then to use interpolation to

12



recover the eliminant [31, Ch. 6]. To gather these sample points, one randomly275

fixes values of the parameters α8, a1, a4, a7, a8, d1, d8, and solves for the angle
parameter values, v1 and v8 using any of a variety of sampling methods within
numerical algebraic geometry [32, Sec. 2.3]. This yields precisely the same IO
equation as the linear implicitisation approach, Eq. (23).

6. Geometric Verification280

To verify both the algebraic and numerical results, the IO equation of an
arbitrary linkage was animated in GeoGebra. The model enabled measurement
of the output angle for any given input angle. Tracing the locus of each input-
output pair results in a curve which is compared with the herein derived IO
equation, Eq. (23). The chosen design parameters for the example linkage are285

a1 = 3, a4 = 5, a7 = 9, a8 = 11, d1 = 1, d8 = 3, and τ8 = 60◦. While the

v8

v1

(a) IO equation generated in GeoGebra. (b) Derived IO equation according to Eq. (23).

Figure 3: Example RSSR function generator with a1 = 3, a4 = 5, a7 = 9, a8 = 11, d1 = 1,
d8 = 3, and τ8 = 60◦.

result of the GeoGebra file is displayed in Fig. 3a, substituting the same design
parameters into Eq. (23) yields the curve in Fig. 3b. As can be seen, the curves
are congruent which further suggests that Eq. (23) is indeed correct.

7. Applications290

To demonstrate how the form of the algebraic IO equation for the RSSR
linkage that has been obtained by the methods outlined in this paper is partic-
ularly useful for mechanical design by way of synthesis and analysis of RSSR
mechanisms, several applications will be summarised and illustrated with exam-
ples. While it must be acknowledged that the IO equation itself is not new, see295

the 1955 book by J.S. Beggs for example [1], the algebraic form leads to compu-
tationally efficient and mathematically elegant tools for synthesis and analysis
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of RSSR linkages that are entirely new, and will be reported for the first time
in what follows.

7.1. Continuous Approximate Synthesis of RSSR Function Generators Min-300

imising the Design and Structural Errors

For an RSSR function generator linkage, the synthesis equation will contain
six of the seven DH design parameters a1, a4, a7, d1, and d8, all normalised by
a8 = 1, along with the twist parameter α8. Exact synthesis results in a linkage
that precisely generates the prescribed function, but only for the six precision305

IO pairs, which are used to generate a set of six synthesis equations linear in
the six unknown DH link design parameters. In a highly relevant paper from
1973 [15], the trigonometric form of the RSSR IO equation is derived in the style
of Freudenstein for the first time, leading to a synthesis equation with all seven
of the DH design parameters which was successfully applied to exact function310

generator synthesis.
Whereas, approximate synthesis uses n > 7 precision IO pairs to create an

overconstrained set of synthesis equations leading to a linkage that generates the
desired function, in general, but only approximately over the desired displace-
ment range due to errors induced by the number of precision pairs as well as their315

spacing. Design and structural errors [14] are important performance indica-
tors used in the assessment and optimisation of mechanical systems intended as
function generating linkages designed by means of approximate synthesis. The
design error is the residual of the identified linkage in satisfying the synthesis
equation [16], and is evaluated at each of n > 7 precision points in a discrete set320

satisfying the prescribed function. Minimising the Euclidean norm of the design
error leads to a linear least-squares problem. The structural error, on the other
hand, is defined as the difference between the prescribed output angle, and the
output angle that is generated by the linkage at each precision point [33]. This
problem is typically solved by minimising the norm of the array of the structural325

error evaluated at each precision point using some form of Gauss-Newton non-
linear minimisation, requiring an iterative solution procedure that terminates
when a desired minimum norm threshold is obtained. The structural error is
arguably the metric that truly matters since it is directly related to the physical
performance of the linkage.330

However, it was observed in [34] that as the cardinality of the data set used
to compute the design error minimising linkage becomes large, on the order of
n ≥ 40, the design error minimising linkage tends to converge to the structural
error minimising linkage. Hence, one may avoid the non-linear structural er-
ror computation provided a sufficient number of precision points are specified.335

Continuous approximate synthesis eliminates the problem of determining an ap-
propriate cardinality for the data-set because it evaluates the case for n → ∞.
Hence there is no need to search for some convergence in order to set an appro-
priate value of n, which eliminates a source of error. Unfortunately, while it was
demonstrated in [35] that this extension is possible through the integration of340

the trigonometric Freudenstein equation for planar 4R linkages, the generalisa-
tion of the process is computationally prohibitive and any advantage obtained
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through the elimination of the need for an explicit solution to the non-linear
structural error problem is lost to the numerical complexity of the integration.
The planar 4R continuous approximate synthesis example presented in [35] em-345

ployed the Matlab function quadl, which employs recursive adaptive Lobatto
quadrature [36], and the computation time to approximately evaluate the inte-
gral required more than four hours on an Intel 32-bit dual-core x86 CPU @ 3.10
GHz. The relative complexity involved in integrating the trigonometric RSSR
IO equation would likely require an order of magnitude more computation time350

than that required to integrate that of the 4R IO equation.
While there are many algebraic, meaning non-trigonometric, methods for

approximate synthesis in the vast body of literature, see [37] for but one ex-
ample, there are none which integrate the synthesis equations, thereby making
the cardinality of the IO data set tend towards infinity. The following method355

integrates the square of Eq. (23) between the lower and upper input angular
range limits generating a continuous infinite set of IO angle pairs. We partition
the result into a 25x1 array of angle parameters which we call the synthe-
sis array s, and a 25x1 array of the seven associated DH link coefficients of
a1, a4, a7, a8, d1, d8 and the twist parameter α8, which we call the design param-360

eter array p. Substitute the prescribed function v8 = f(v1) into the synthesis
array, s. To establish the synthesis equation, which is now a function of only v1,
take the Euclidean inner product of p with the integral of s over the prescribed
bounds for v1. The result of this inner product is then minimised over the real
numbers. The output of this method is the seven link DH parameters that min-365

imise both the design and structural errors for the RSSR linkage in generating
the prescribed v8 = f(v1) function, which is summarised by

min
(a1,a4,a7,a8,d1,d8,α8)∈R

(
p ·
∫ v1max

v1min

s(v1, f(v1))dvi

)
= 0. (24)

The Minimize command used in Maple 2021 to solve the problem computes
a local minimum of an objective function subject to constraints. If the prob-
lem is convex, as when the objective function and constraints are linear, for370

example, the solution will also be a global minimum. The algorithms that this
command use assume the objective function and constraints are twice continu-
ously differentiable. In this context, the Euclidean norm of the structural error
over every point in the generated function is nothing more than the area be-
tween the prescribed function and the generated function in the variable angle375

parameter plain, which is equivalent to the design error.
An example will now be considered. Let the prescribed function be

v8 = 2 + tan

(
v1

v12 + 1

)
, 0 ≤ v1 ≤ 2. (25)

The first step is to compute Eq. (24). Then, to obtain a reasonable initial
guess for the Minimize command used in Maple 2021, six IO pairs [v1, v8] were

15



specified for the exact synthesis problem with a8 = 1 as

[0, 2],

[
1

5
,
6560

2989

]
,

[
1

4
,
30055

13419

]
,

[
1

3
,
31661

3710

]
,

[
1

2
,
49597

0471

]
,

[
1,

64699

25409

]
.

The exact synthesis results are listed in Table 2. Using those design param-
eters as initial guesses for the Minimize command lead to the parameter values
also listed in Table 2. The run time needed by Maple 2021 to integrate Eq. (24)380

on a 64-bit Intel Core i7-7700 CPU @ 3.60 GHz was 9.23 seconds, while the time
required to run the Minimize command was less than 0.01 seconds. This run-
time is impressive given that the computations were preformed using symbolic
computer algebra compared to the 4 hours to run the numerical integration for
a planar 4R linkage using Matlab; granted that this computation was performed385

on a much older Intel 32-bit dual-core x86 CPU @ 3.10 GHz. Regardless, the
trigonometric integration required three orders of magnitude more computation
time for the planar 4R synthesis compared to time required for the spatial RSSR
synthesis.

Table 2: Synthesis results.

DH parameters Exact synthesis Continuous approximate synthesis
a1 -0.5469961643 -0.481883141397214
a4 3.760575070 3.76405010790231
a7 1.349675373 1.35343558991690
a8 1 0.957062422213279
α8 0.8098696692 0.807467792413472
d1 -4.899249807 -4.89575807959238
d8 1.499319150 1.58161616407823

Table 3: Structural error generating Eq. (25).

Structural error Exact synthesis Continuous approximate synthesis

0.011635738 -0.000261858

A comparison of the prescribed function Eq. (25) with the exact and contin-390

uous approximate synthesis generated functions in the v1-v8 plane are shown in
Fig. 4. The structural and design errors are simply the difference of the areas
under the IO curves. It is to be seen that the structural error for the continu-
ous approximate synthesis linkage is two orders of magnitude smaller that the
structural error for the linkage generated using exact synthesis, see Table 3.395

7.2. Mobility Limits

With the algebraic IO equation, it is a very simple matter to determine gen-
eral conditions for the relative mobility of the two ground fixed links. Treating
the v1-v8 IO pair to be coordinate axes in the plane spanned by the two, then
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Figure 4: The prescribed, exact, and continuous synthesis approximation of Eq. (25) in the
v1-v8 plane.

the IO equation contains two double points at infinity on the v1 and v8 axes.400

The double points at infinity belonging to each of the coordinate axes together
with the ability of links a1 and a7 to reach v1 = 0 and v8 = 0 completely define
the mobility limits, if they exist, between the v1-v8 angle parameter pair. The
examination of this is sufficient to determine whether a particular joint enables
a crank, a rocker, a π-rocker, or a 0-rocker link motion. See [4] from 1971 for405

the first double point analysis of the RSSR, but only for a simplified special
case, where mobility criteria, though incomplete, are reported.

We proceed by evaluating whether each double point has a pair of real, or
complex conjugate tangents. If the double point has two real distinct tangents,
it is a crunode; if it has two real coincident tangents, it is a cusp; and if the410

tangents are both complex conjugates, the double point is an acnode. Thus,
after homogenising the v1-v8 IO equation using the homogenising coordinate
v0, leading to IOh, the following discriminant yields information on the double
point at infinity on the vi axis:

∆vi =

(
∂2IOh

∂vj∂v0

)2

− ∂2IOh

∂v2j

∂2IOh

∂v20


> 0 ⇒ crunode;
= 0 ⇒ cusp;
< 0 ⇒ acnode.

(26)

The values for ∆v1 and ∆v8 are obtained by substituting values for the seven415

variable link DH design parameters into the following two discriminants:

∆v1 = 32a27α
2
8d

2
1 −AB; (27)

and

∆v8 = 32a21α
2
8d

2
8 −AC, (28)
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Table 4: Mobility of a1 and a7.

∆v1
Ωv1 mobility of a1 ∆v8 Ωv8 mobility of a7

≥ 0 ≥ 0 crank ≥ 0 ≥ 0 crank

≥ 0 < 0 π-rocker ≥ 0 < 0 π-rocker

< 0 ≥ 0 0-rocker < 0 ≥ 0 0-rocker

< 0 < 0 rocker < 0 < 0 rocker

where A, B, and C are all defined in Eq. (23).
From these conditions we can extract information on the ability of the input

and output links to rotate through π. For example, if ∆v1 ≥ 0, then the double420

point at v1 = ∞ is either a crunode or a cusp. Knowing that v1 = ∞ corresponds
to θ1 = 180◦, this implies that the link a1 can rotate through π. Similarly, if
∆v1 < 0, then the double point at v1 = ∞ is an acnode which in turn indicates
that a1 has a rotation limit less than π.

425

It is equally required to investigate whether the linkage is assemblable at
vi = 0. Clearly, one possibility to obtain a condition with this information can
be derived using the v1-v8 equation by substituting vi = 0 and solving for vj .
For each of v1 and v8 we obtain a radicand Ωv whose value must be Ωv ≥ 0 if
the link can rotate through 0:430

Ωv1 = −α2
8 (d1 − d8)

2
(
α2
8 (d1 − d8)

2
+ 2 (d1 + d8)

2
)
− (d1 + d8)

4
+

2
(
a21+2a1a8−a24+a27+a28

)[
4d8
(
α4
8d1−α2

8d8−d1
)
−
(
d21+d28

) (
α4
8+1

)]
+

4
(
a21 + 2a1a8 − a24 − 3a27 + a28

)
α2
8d

2
1 − C1C2D1D2

(
α2
8 + 1

)2
; (29)

Ωv8 = −α2
8 (d1 − d8)

2
(
α2
8 (d1 − d8)

2
+ 2 (d1 + d8)

2
)
− (d1 + d8)

4
+

2
(
a21−a24+a27+2a7a8+a28

)[
4d1
(
d8α

4
8−α2

8d1−d8
)
−
(
d21+d28

) (
α4
8+1

)]
+

4
(
3a21 + a24 − a27 − 2a7a8 − a28

)
α2
8d

2
8 −B1B2D1D2

(
α2
8 + 1

)2
; (30)

where B1, B2, C1, C2, D1, and D2 are all defined in Eq. (23). With this
information we have a completely general classification scheme to determine the
relative mobilities of the RSSR, see Table 4.

We will verify the mobility classification with an example. Let the DH pa-435

rameters be a1 = 1/8, a4 = 4, a7 = 1, a8 = 1/8, α8 = tan((60π/180)/2), d1 = 2,
d8 = 2. Evaluating the discriminants with these DH link design parameters re-
veals that ∆v1 = 10.6667 and Ωv1 = 6.437500000, indicating that a1 has no
mobility limits while ∆v8 = −36 and Ωv8 = −12.6667, indicating that a7 is a
rocker in each assembly mode. It is a simple matter to determine the config-440

uration and the extreme values of v8 by evaluating the appropriate derivatives
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of Eq. (23) for each assembly mode. The corresponding IO curves in both the
v1-v8 and θ1-θ8 planes are illustrated in Fig. 5 which validates the classification.

(a) IO curve in v1-v8 plane. (b) IO curve in θ1-θ8 plane.

Figure 5: RSSR mobility for a1 = 1/8, a4 = 4, a7 = 1, a8 = 1/8, α8 = tan((60π/180)/2),
d1 = 2, d8 = 2.

7.3. Differential Kinematics445

Finally, we will determine the extreme output angular velocities and accel-
erations for a constant input angular velocity. These are important for bearing
sizing, among other design considerations that are vital to robust mechanical
design of RSSR linkages. While there have been some investigations in the
literature examining the dynamics of the RSSR, there are no straightforward450

methods to be found that give explicit algebraic equations for computing the
angular velocity and acceleration extrema for the RSSR, see [6, 38] for example.
In [6] the time derivatives of the Cartesian coordinates of the joint centres are
used instead of the angles that define the orientation of the links, meaning the
equations are not IO equations per se. We therefore believe that the algebraic455

RSSR IO equation derived in this paper is best suited for such computations.
However, to identify extreme angular velocity and acceleration outputs for a con-
stant input angular velocity requires that the angle parameters be transformed
back into angles. While θ̇1 may be constant the corresponding parameter v̇1 is
not since it is configuration dependent. That is460

v̇1 =
d tan (θ1/2)

dt
=

θ̇1
(
tan2 (θ1/2) + 1

)
2

=
θ̇1(v

2
1 + 1)

2
. (31)

The first step is to take the first two time derivatives of Eq. (23), which will
not be listed here in the interest of brevity. The extreme angular velocities
and accelerations, along with the configurations in which they occur in both
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assembly modes can be easily obtained computationally with the following two
algorithms.465

Extreme RSSR angular velocity algorithm.

If values for a1, a4, a7, a8, d1, d8, and α8 are specified and the input angular
velocity is a constant specified value, we wish to determine the critical values
θ1crit that result in θ̇8min/max

, so we need to eliminate θ8 from both the position
and angular velocity IO equations.470

1. Convert v1 and v8 in the IO equation to angles as vi = tan (θi/2) and
solve for θ8.

2. Substitute the expression for θ8 from Step 1 into the θ̇1-θ̇8 equation and
solve for θ̇8, which gives θ̇8 = f(θ1) since θ̇1 is a specified constant.

3. Solve
dθ̇8
dθ1

= 0 for θ1crit and determine the values of θ̇8min/max
corresponding475

to each distinct value of θ1crit .

Extreme RSSR angular acceleration algorithm.

If values for a1, a4, a7, a8, d1, d8, and α8 are specified and the input angular
velocity is a constant specified value, we wish to determine the critical values
θ1crit that result in θ̈8min/max

, so we need to eliminate θ8 and θ̇8 from the position,480

angular velocity, and acceleration IO equations.

1. Convert v1 and v8 in the IO equation to angles as vi = tan (θi/2) and
solve for θ8.

2. Substitute the expression for θ8 from Step 1 into the θ̇1-θ̇8 equation and
solve for θ̇8, which gives θ̇8 = f(θ1) since θ̇1 is a specified constant.485

3. Substitute the expressions for θ8 and θ̇8 into the θ̈1-θ̈8 equation.

4. Solve the resulting equation for θ̈8, which gives θ̈8 = f(θ1) since θ̈1 = 0.

5. Solve
dθ̈8
dθ1

= 0 for θ1crit and determine the values of θ̈8min/max
corresponding

to each distinct value of θ1crit .

For an example, again let the DH parameters be a1 = 1/8, a4 = 4, a7 = 1,490

a8 = 1/8, α8 = tan((60π/180)/2), d1 = 2, d8 = 2 and the constant input an-
gular velocity be θ̇1 = 10 rad/s. Using the two algorithms above the output
angular velocity and acceleration are expressed in terms of the input angle, see
Figs. 6. To the best of the authors collective knowledge, the extreme angular
accelerations for an RSSR linkage have not been reported in the literature until495

now. Even if this is not precisely so, it is clear that the algebraic form of the
RSSR equation in the form presented herein has distinct advantages for compu-
tation compared to any other representation. The extreme angular accelerations
θ̈8min/max

and critical input angles are computed and listed in Table 5.

500
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.

(a) RSSR angular velocity profile.

..

(b) RSSR angular acceleration profile.

Figure 6: RSSR angular velocity and acceleration profiles for a1 = 1/8 ,a4 = 4, a7 = 1,
a8 = 1/8, α8 = tan((60π/180)/2), d1 = 2, d8 = 2, θ̇1 = 10 rad/s.

Table 5: θ̈8min/max
and θ1crit for θ̇1 = 10 rad/s.

Assembly Mode θ̈8min/max
rad/s2 θ1crit rad

1
-30.06554948 4.506090280

18.91834314 0.8463167974

2
-17.03055542 2.201742476

27.91274981 4.631288097

8. Conclusions

Recently it has been shown that Study’s kinematic image space and elim-
ination theory provide an excellent, straight forward tool to derive algebraic
IO equations for planar, spherical, and Bennett linkages. In this paper, the
same method was extended to arbitrary spatial RSSR four-bar linkages. After505

describing the linkage with standard DH parameters and mapping the closure
equation into Study’s kinematic image space, the intermediate motion param-
eters were eliminated with two concomitant methods: algebraically using the
linear implicitisation algorithm; and numerically using pseudowitness sets to
generate points and then interpolation to recover the eliminant. Both methods510

lead to the same IO equation containing four more complicated coefficients of
the input and output angles compared to the planar 4R, but clearly containing
the algebraic IO equation of planar 4R linkages as a subset. This IO equation
was additionally verified using a geometric animation in GeoGebra. Finally,
three applications were discussed and illustrated with examples to underscore515
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the utility of the RSSR algebraic IO equation as derived in this paper for four-
bar synthesis and analysis.
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