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Abstract

The algebraic polynomial input-output (IO) equations relating any two of the
relative joint displacement parameters, called vi and vj , between any of the six
distinct pairs of rigid links in arbitrary planar and spherical four-bar mecha-
nisms are derived. First, the forward kinematics transformation matrices of the
corresponding serial kinematic chains are computed in terms of their Denavit-
Hartenberg parameters, but with all angles converted to tangent half-angle pa-
rameters. These matrices are mapped to their corresponding Study soma coor-
dinates. The serial kinematic chain is closed by equating the soma coordinates
to the identity array. Algebraic polynomial elimination methods are then used
to obtain a single polynomial in terms of only the design and the selected IO
joint displacement parameters. This yields six independent algebraic IO Equa-
tions for each of the planar and spherical 4R linkages; the same techniques are
applied to derive six additional algebraic IO equations for each of the RRRP
and PRRP planar linkages providing a catalogue of 24. The utility of these
IO equation sets is demonstrated via discussion of the associated mobility and
design parameter spaces.

Keywords: Planar and spherical four-bar linkages, vi-vj algebraic
input-output equations, algebraic polynomial elimination methods.

1. Introduction

Relative motion between mechanically constrained rigid bodies in the plane,
on the surface of a sphere, and in three-dimensional space has fascinated philoso-
phers, mathematicians, and engineers for millennia [1]. The design of predictable
motion of a four-bar spherical mechanism appears to have its origins in the devel-
opment of universal joints based on gimbals, which have also been investigated
since antiquity [2]. While there is a substantial volume of archival literature
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regarding planar and spherical 4R mechanisms, see [3, 4, 5, 6, 7] for a small but
relevant sample, these types of mechanical systems still excite the imagination,
see [8, 9, 10, 11, 12] for recent examples.

Eduard Study, 1868-1930, likely inspired by the earlier work of Julius Plücker,
1801-1868, and his Ph.D. student Felix Klein, 1845-1925, on the development of
line geometry [13, 14, 15], proposed the theory of mapping the special Euclidean
group of rigid body displacements, SE(3), to the points on a six-dimensional
hyper-quadric in a seven-dimensional projective space, now known as the Study
quadric S2

6 [16]. The relative displacements of rigid bodies in a plane and on
the surface of a sphere map to subspaces of S2

6 . Study called the coordinates
of points of this space soma, the Greek word for body. These soma coordinates
lead to algebraic polynomials in terms of the joint variables and design parame-
ters for the relative displacements of any particular mechanical system. Study’s
kinematic mapping image space was notably reintroduced to the research world
in [17, 18], and will be relied upon in this paper.

All moveable four-bar linkages generate six distinct functions between the
four distinct joint variable parameters taken two at a time, which we abstractly
call vi and vj . While this is common knowledge in the kinematics community,
there do not exist convenient and consistent ways to determine and express
these six functions using algebraic means. Moreover, only the v1-v4 and v1-v3 IO
equations can be found in vast body of archival literature, but they are expressed
as trigonometric implicit equations, see [3, 8] for standard examples. Hence, we
believe this is sufficient justification to present the work on the derivation of
the six vi-vj algebraic input-output (IO) equations for each of the planar 4R,
RRRP, PRRP, and spherical 4R linkages reported herein. The motivation at the
foundation of this work is to provide computational tools for mechanism design
and analysis that are less cumbersome to use than vector loop methods based
on trigonometry. Since our IO equations are algebraic polynomials of degree
4, and 3 or 2 for the PRRP, in two variables with rational coefficients, the full
power of the theory of planar algebraic curves [19] can be applied to these 24
distinct algebraic IO curves in their respective vi-vj parameter planes. This
enables one to observe significantly more and comparatively simple to obtain
information regarding all the relative motions generated by the linkage.

In this paper we present a novel algorithm, built on tools from algebraic-
geometry, that derives the algebraic polynomials which model the relative dis-
placements of all six IO joint displacement pairs in each class of arbitrary planar
and spherical single degree of freedom simple closed kinematic chains. First, the
class of open kinematic chains is parameterised using the well known notation
for lower-pair kinematic chains of arbitrary architecture: Denavit-Hartenberg
(DH) notation [4]. The resulting coordinate transformation matrix describing
the forward kinematics of the open chain is equated to the identity matrix to
conceptually close the chain [4]. Measures of angle elements in the resulting
matrix are converted to their respective tangent half-angle parameters. This
modified transformation matrix is then mapped to the coordinates of the seven
dimensional projective kinematic image space using the well known definitions
of the Study soma coordinates [16, 17, 20, 21]. Next, using an appropriate subset
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of the soma, elimination theory [22] is used to eliminate undesired variable joint
displacement parameters leaving only the implicit algebraic IO equation for the
desired IO parameter pair. The first presentation of a part of the algorithm can
be found in [23]. However, in that work we failed to understand how completely
general the algorithm is and this work will provide the generalisation. While we
have already successfully applied the algorithm to derive the algebraic IO equa-
tions for some planar and spherical four-bar linkages [24], here we will derive
the six different vi-vj IO equations for each of the planar 4R, RRRP, PRRP
and spherical 4R linkages, and thereby provide a long needed catalogue of these
24 algebraic IO equations.

2. Planar Four-bar Linkages

We start with a generic 4R open kinematic chain and assign the standard DH
coordinate systems and parameters according to [4], see Table 1 and Fig. 1a. The
four link lengths are the ai, and the four joint angles are the θi, i ∈ {1, 2, 3, 4}.
While we do not require them for the planar 4R, there are non-zero link twist
angles, τi, for the RRRP, PRRP, and spherical 4R linkages, as well as link offsets,
di, for the RRRP and PRRP linkages. All measures of angle are converted to
algebraic parameters using the tangent half-angle substitutions:

vi = tan
θi
2

⇒ cos θi =
1− v2i
1 + v2i

, sin θi =
2vi

1 + v2i
,

αi = tan
τi
2

⇒ cos τi =
1− α2

i

1 + α2
i

, sin τi =
2αi

1 + α2
i

.

The transformation matrix implied by the algebrised parameters is equated
to the identity matrix thereby conceptually closing the kinematic chain. Closing
the serial 4R chain by grounding link a4 means that we may have clockwise (CW)
or counter clockwise (CCW) joint index circulation. The CW circulation means
that the origins of x4-y4 and x0-y0 are coincident, but the basis vector directions
in each coordinate system are out of phase by π radians. Whereas the CCW
circulation means the two coordinate systems are congruent, see Fig. 1b, and
we call them the x0/4 - y0/4 coordinate system. The equations that follow are
expressed in that coordinate system.

Table 1: DH parameters for an arbitrary open 4R chain.

axis i link length ai angle θi link offset di twist τi
1 a1 θ1 0 0
2 a2 θ2 0 0
3 a3 θ3 0 0
4 a4 θ4 0 0
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Figure 1: Serial and parallel planar 4R linkages.

Using the definitions found in [23], the DH transformation matrix of the
open 4R chain is mapped to the soma array of eight homogeneous coordinates

[x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3].

Since we are only considering the special Euclidean subgroup of direct planar
isometries SE(2) generated by planar 4R, RRRP, and PRRP linkages at the
moment, four of the soma coordinates always vanish and what remains are

planar 4R and RRRP: [x0 : 0 : 0 : x3 : 0 : y1 : y2 : 0]; (1)

PRRP: [x0 : x1 : 0 : 0 : 0 : 0 : y2 : y3]. (2)

Regardless, for a generic representation we use the full Study array here since
the 0 elements are also different for spherical linkages [23, 25]. To close the
planar serial 4R kinematic chain, the Study array is equated to the identity
array thus

[x0 : 0 : 0 : x3 : 0 : y1 : y2 : 0] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]. (3)

The Gröbner bases of the ideal generated by the three polynomials x3 = 0,
y1 = 0, and y2 = 0 are used to eliminate the two unwanted vi joint angle pa-
rameters leading to the desired vi-vj algebraic IO equation. For example, v2
and v4 must be eliminated to obtain the v1-v3 algebraic IO equation. Because
the soma are homogeneous coordinates, and because we are only interested in
the kinematic images of real rigid body displacements, we will not use the ho-
mogenising coordinate x0 = 1 as a polynomial in our elimination computations.

It is important to note that the IO equations may also be obtained directly
on S2

6 . In [26] the DH transformations are expressed as 8 × 8 matrices and
manipulated directly on S2

6 . When equated to the identity array, the IO equation
can be obtained with elimination methods. Similarly, in [27] dual quaternions
are used to obtain the closure equation of spatial 6R linkages. These methods
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could be applied to determine the soma coordinates, but that is not the focus of
this paper. What is important is the general unified way to model the kinematic
geometry of each of the four classes of four-bar linkage and obtain the six vi-vj
algebraic IO equations from the associated soma coordinates for each of the
planar 4R, RRRP, PRRP, and spherical 4R linkages.

2.1. Derivation of the Six Planar 4R Linkage vi-vj IO Equations

Let the input angle parameter be v1 and the output angle parameter be
v4. In [23] two elimination steps were applied to the Gröbner bases of the
ideal generated by the soma coordinates x3, y1 and y2 to eliminate the angle
parameters v2 and v3 from the equations yielding the algebraic IO equation
relating the v1 and v4 angle parameters, which we call the v1-v4 IO equation.
It has the form

Av21v
2
4 +Bv21 + Cv24 − 8a1a3v1v4 +D = 0, (4)

where

A = A1A2 = (a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4),

B = B1B2 = (a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4),

C = C1C2 = (a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4),

D = D1D2 = (a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4),

v1 = tan
θ1
2
,

v4 = tan
θ4
2
.

This algebraic equation is of degree 4 in the v1 and v4 variable parameters,
while the coefficients labelled A, B, C, and D are each products of two bilinear
factors which can be viewed as eight distinct planes treating the four ai link
lengths as homogeneous coordinates. See Section 5.2 for a detailed description
of this design parameter space.

In the approach used in [23] to obtain this IO equation from the ideal
⟨x3, y1, y2⟩ both v2 and v3 are eliminated by first computing the Gröbner bases
of the ideal using the Maple 2021 “tdeg” monomial ordering with the list se-
quence (v3, v2, v4, v1). This is graded reverse lexicographic order, also known as
degrevlex in the literature [28], with indeterminate ordering v3 > v2 > v4 > v1.
This monomial ordering sorts the terms by total degree before breaking ties be-
tween terms with identical degree by comparing the smallest indeterminate first
and considering a higher degree as smaller in the term ordering. The execution
of this step is immediate on a standard computer with an Intel Core i7-7700
CPU @ 3.60 GHz. In this case, 12 bases are computed, all functions of all four
vi. We eliminate v2 and v3 by computing the bases of these 12 with the reverse
monomial ordering by using “plex”, which is the pure lexicographic order, also
known as lex [28]. This results in 8 new bases, with one that is a function of
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only v1 and v4 and the four ai, which represents the IO equation we are looking
for.

However, we have since discovered that a single application of the elimina-
tion monomial ordering called “lexdeg” in Maple 2021 leads directly to the
desired planar 4R v1-v4 IO equation. When the ideal generated by the system
of polynomials contains coefficients that are not too large or complicated, as for
the planar 4R linkages, this elimination monomial ordering is very efficient, in
the sense that it does not compute an entire “plex” basis. For the two disjoint
lists of variables, those to be eliminated and those to be retained, the “lexdeg”
ordering is equivalent to a product order which uses “tdeg” on each of the two
disjoint lists of variables. All six of the distinct IO equations for each of the
planar 4R, RRRP, and PRRP kinematic architectures are easily computed us-
ing the “lexdeg” elimination monomial ordering. This is how the IO equations
for these planar four-bar linkages have been derived. For the planar 4R, the
five remaining vi-vj IO equations each contain all eight of the bilinear factors
of the coefficients labelled A1, A2, B1, B2, C1, C2, D1, and D2 in Eq. (4), but in
different permutations. This means that the design parameter space, as defined
in [29], is the same for all six of these IO equations. The execution of the code is
immediate for all six IO equations for each of the three kinematic architectures.

By applying the “lexdeg” monomial term orderings to the planar 4R vari-
ables in the appropriate disjoint lists, the v1-v2, v1-v3, v2-v3, v2-v4, and v3-v4
IO equations are obtained and listed as follows.

A1B2v
2
1v

2
2 +A2B1v

2
1 + C1D2v

2
2 − 8a2a4v1v2 + C2D1 = 0, (5)

A1B1v
2
1v

2
3 +A2B2v

2
1 + C2D2v

2
3 + C1D1 = 0, (6)

A1D2v
2
2v

2
3 +B2C1v

2
2 +B1C2v

2
3 − 8a1a3v2v3 +A2D1 = 0, (7)

A1C1v
2
2v

2
4 +B2D2v

2
2 +A2C2v

2
4 +B1D1 = 0, (8)

A1C2v
2
3v

2
4 +B1D2v

2
3 +A2C1v

2
4 + 8a2a4v3v4 +B2D1 = 0. (9)

Eqs. (4), (5), (7), and (9) all contain a bilinear quadratic term because they
relate adjacent angle pairs, while Eqs. (6) and (8) relate opposite angle pairs,
and hence do not possess a bilinear quadratic term.

Each of these six IO equations is of degree 4 in the two variable angle pa-
rameters, defining quartic curves in the planes spanned by the different vi-vj
angle parameter pairs. They also all have genus 1 meaning that there is a
maximum number of two assembly modes. This is so because of a theorem on
algebraic curves proved by Axel Harnack in 1876 [30] which relates the circuits
of an algebraic curve to its genus. Each of the vi-vj algebraic IO equations are
quartic curves of genus 1, therefore, following Harnack, each can have at most
two circuits. Each circuit of a particular vi-vj IO curve corresponds to one of
the mechanisms assembly modes. In essence, Harnack’s theorem states that an
algebraic curve of genus n can have at most n+ 1 circuits. One may therefore
immediately conclude that a planar 4R mechanism can never have more than
two assembly modes.
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Figure 2: Planar RRRP linkage with Denavit-Hartenberg coordinate system and parameter
assignments.

2.2. Six Planar RRRP Linkage vi-vj IO Equations

Next we shall list the six algebraic IO equations for planar RRRP mecha-
nisms obtained using our technique employing the “lexdeg” elimination mono-
mial ordering. An arbitrary RRRP linkage is illustrated in Fig. 2. The P-pair
z3-axis induces the two link twist angles and a link offset listed in Table 2.

Table 2: DH parameters for the RRRP.

i θi di ai τi αi

1 θ1 0 a1 0 0

2 θ2 0 a2 0 0

3 θ3 0 0 π/2 1

4 0 d4 a4 -π/2 -1

Applying the methods in [23] to the DH parameters by algebraising the
angle parameters with tangent half-angle equivalents, projecting the DH closure
equation into Study’s kinematic mapping image space as soma coordinates, then
eliminating the intermediate joint variable parameters v2 and v3 using “lexdeg”
leads to the RRRP v1-d4 algebraic IO equation:

v21d
2
4 +Rv21 + d24 − 4a1v1d4 + S = 0, (10)
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where

R = R1R2 = (a1 + a2 − a4)(a1 − a2 − a4),

S = S1S2 = (a1 + a2 + a4)(a1 − a2 + a4),

v1 = tan
θ1
2
.

The four bilinear factors R1, R2, S1, and S2 can be regarded as four planes
intersecting in the faces of a four-sided pyramid in the design parameter space
orthogonally spanned by the three lengths a1, a2, and a4, see [31] for a detailed
description.

Using the same approach, the five remaining joint variable parameter pair-
ings lead to the following five additional RRRP algebraic IO equations:

R2v
2
1v

2
2 +R1v

2
1 − S2v

2
2 + 4a2v1v2 − S1 = 0; (11)

R1v
2
1v

2
3 +R2v

2
1 − S2v

2
3 − S1 = 0; (12)

S2v
2
2v

2
3 −R2v

2
2 −R1v

2
3 − 4a1v2v3 + S1 = 0; (13)

v22d
2
4 −R2S2v

2
2 + d24 −R1S1 = 0; (14)

v23d
2
4 −R1S2v

2
3 + d24 + 4a2v3d4 −R2S1 = 0. (15)

All six of the RRRP algebraic IO equations are of degree 4, representing quartic
curves in the respective joint variable parameter planes. These six IO equations
also all possess genus 1 meaning again that there is a maximum number of two
assembly modes.

For the RRRP linkages that are rocker-sliders, each distinct circuit of the
IO curve also contains two branches, one for each working mode. When the in-
put angle reaches minimum or maximum values the mechanism instantaneously
stops moving as the coupler becomes perpendicular to the direction of travel
of the P-pair. In this singular configuration, unless mechanical constraints are
imposed, the slider may move in one of two directions as the rocker input link
begins to move again in the opposite sense. These are defined as the working
modes of the particular assembly mode. Each working mode traces a distinct
branch in the particular circuit of the IO curve. Together, both branches cover
the entire circuit.

2.3. Six Planar PRRP Linkage vi-vj IO Equations

An identical approach is used for the planar PRRP linkages. Referring to
Fig. 3, it is to be seen that general PRRP elliptical trammel linkages have but
two design parameters, namely a2 and τ4, the coupler length, and the twist
angle between the two P-pairs. The twist angle is typically τ4 = π/2, though it
can be any other value. The DH parameters for an arbitrary PRRP are listed
in Table 3. Again we apply the methods in [23] and the “lexdeg” monomial
ordering to the DH parameters of the PRRP by algebraising the angle parame-
ters with tangent half-angle equivalents, projecting the DH closure equation into
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Figure 3: Planar PRRP linkage with Denavit-Hartenberg coordinate systems and parameter
assignments.

Table 3: DH parameters for the PRRP.

i θi vi di ai τi αi

1 −π/2 -1 d1 0 −π/2 -1

2 θ2 v2 0 a2 0 0

3 θ3 v2 0 0 π/2 1

4 π/2 1 d4 0 τ4 α4

Study’s kinematic mapping image space as soma coordinates, then eliminating
the intermediate joint variable parameters leading to the PRRP algebraic IO
equations. The symmetry of the six algebraic IO equations is clearly revealed
when we define the following three coefficients:

T = a22(α
2
4 + 1);

U = a2(α
2
4 − 1);

V = a2(α
2
4 + 1).
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Using these coefficients the six algebraic IO equations are:

(α2
4 + 1)(d21 + d24)− 2(α2

4 − 1)d1d4 − T = 0; (16)

2α4d1v
2
2 + Uv22 + 2α4d1 − 4a2α4v2 − U = 0; (17)

2α4d1v
2
3 − V v23 + 2α4d1 + V = 0; (18)

α4v2v3 − v2 − v3 − α4 = 0; (19)

2α4v
2
2d4 + V v22 + 2α4d4 − V = 0; (20)

2α4v
2
3d4 − Uv23 + 4a2α4v3 + 2α4d4 + U = 0. (21)

It is to be seen that Eqs. (17), (18), (20), and (21) are of degree 3, representing
cubic curves in their respective joint variable parameter planes, while Eqs. (16)
and (19) are of degree 2, and are different conics. When the respective quadratic
forms are diagonalised it is easy to show that Eq. (16) is an ellipse, while Eq. (19)
is an hyperbola which depends only on the link twist α4. Moreover, each of the
six PRRP algebraic IO equations, Eqs. (16-21) possess genus 0, unlike the planar
4R and RRRP IO equations. According to Harnak’s theorem we conclude that
the PRRP linkage has at most one assembly mode since each IO equation has
a single circuit.

3. Spherical 4R Linkages

z0,4

z1
z3

z2

4

1

2

3

x0,4

1x

x2

1 x3

4

2

3

Figure 4: Spherical 4R DH reference frames and parameters.

Consider the arbitrary spherical 4R linkage illustrated in Fig. 4. The general
IO equation expresses the implicit functional relationship between the input
and output angles, θi and θj , in terms of the constant twist angles between
the four R-pair centres, τi. For a unit sphere, the twist angles are equivalent
to the corresponding arc lengths. The derivation of the algebraic form of the
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spherical IO equation [23] also makes use of the original Denavit-Hartenberg
(DH) parametrisation of the kinematic geometry [32].

The forward kinematics of an arbitrary serial 4R spherical kinematic chain
is obtained as a linear transformation matrix in terms of the DH parameters.
This linear transformation can then be mapped to the corresponding eight Study
soma coordinates [23]. For spherical kinematic chains there are also only four
homogeneous soma coordinates since the displacement group contains only ro-
tations about a fixed point. The corresponding Study array is:

[x0 : x1 : x2 : x3 : 0 : 0 : 0 : 0]. (22)

The ideal generated by the three non-trivial soma that equate to zero, namely
x1, x2, and x3 are used to derive the algebraic IO equations relating the six
distinct edges of an arbitrary spherical quadrangle.

Algebrising the joint angles and link twists with the tangent half-angle pa-
rameters vi = tan (θi/2) and αi = tan (τi/2) leads to the algebraic form of each
vi-vj IO equation. The v1-v4 algebraic IO equation is

Av21v
2
4 +Bv21 + Cv24 + 8α1α3

(
α2
4 + 1

) (
α2
2 + 1

)
v1v4 +D = 0, (23)

where

A = A1A2 = (α1α2α3 − α1α2α4 + α1α3α4 − α2α3α4 + α1 − α2 + α3 − α4)

(α1α2α3 − α1α2α4 − α1α3α4 − α2α3α4 − α1 − α2 − α3 + α4) ,

B = B1B2 = (α1α2α3 + α1α2α4 − α1α3α4 − α2α3α4 + α1 + α2 − α3 − α4)

(α1α2α3 + α1α2α4 + α1α3α4 − α2α3α4 − α1 + α2 + α3 + α4) ,

C = C1C2 = (α1α2α3 − α1α2α4 − α1α3α4 + α2α3α4 − α1 + α2 + α3 − α4)

(α1α2α3 − α1α2α4 + α1α3α4 + α2α3α4 + α1 + α2 − α3 + α4) ,

D = D1D2 = (α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4 − α1 − α2 − α3 − α4)

(α1α2α3 + α1α2α4 − α1α3α4 + α2α3α4 + α1 − α2 + α3 + α4) .

The coefficients A, B, C, and D all have two bicubic factors. It can be shown
that when the radius of the sphere is infinite then Eqs. (23) and (4) are func-
tionally identical [23], hence the same coefficient names A, B, C, and D are
used. While the derivation of this algebraised v1-v4 IO equation is novel and far
from intuitive, the algebraic form of this fourth degree polynomial in the v1-v4
IO angle parameters is not. The earliest derivations of similar equations repre-
senting manipulatable octahedra, identical in form, are due to Raoul Bricard in
1897 [33]. This fascinating similarity between movable octahedral and spherical
linkage algebraic IO equations is not at all a coincidence, as will be illustrated
in Section 5.2.

4. Derivation of the Six Spherical vi-vj IO Equations

Using the eight bicubic coefficient definitions from Eq. (23), the remaining
five vi-vj equations contain all eight of the bicubic coefficients, but in different
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permutations:

A1B2v
2
1v

2
2+A2B1v

2
1+C1D2v

2
2+8α2α4

(
α2
1+1

)(
α2
3+1

)
v1v2+C2D1 = 0; (24)

A1B1v
2
1v

2
3 +A2B2v

2
1 + C2D2v

2
3 + C1D1 = 0; (25)

A1D2v
2
2v

2
3+B2C1v

2
2+B1C2v

2
3−8α1α3

(
α2
2+1

)(
α2
4+1

)
v2v3+A2D1 = 0; (26)

A1C1v
2
2v

2
4 +B2D2v

2
2 +A2C2v

2
4 +B1D1 = 0; (27)

A1C2v
2
3v

2
4+B1D2v

2
3+A2C1v

2
4+8α2α4

(
α2
1+1

)(
α2
3+1

)
v3v4+B2D1 = 0. (28)

As for the planar 4R and RRRP linkage algebraic IO equations, we see that
Eqs. (25) and (27) do not contain a bilinear quadratic term because they relate
angle parings between the spherical quadrangle edges that intersect in opposite
vertices. Each of Eqs. (23)-(28) has genus 1.

The v1-v4 IO Equation. The soma coordinates representing the forward kine-
matics of the spherical 4R are polynomials containing coefficients are already
to complicated to efficiently use the “lexdeg” elimination monomial ordering.
To obtain this IO equation from the ideal generated by the three soma coor-
dinates that equate to zero, both v2 and v3 are eliminated by first comput-
ing the Gröbner bases using the Maple 2021 “tdeg” monomial ordering with
the list sequence (v3, v2, v4, v1), meaning that the indeterminate ordering is
v3 > v2 > v4 > v1. In this case, 12 bases are computed, all functions of all
four vi. We eliminate v2 and v3 by computing the bases of these 12 with the
reverse monomial ordering by using “plex”. This results in 10 new bases, with
one that is a function of only v1 and v4 and the four αi, which represents the IO
equation we are looking for. This polynomial splits into three factors. The first
two are (1 + v21)(1 + v24), a product that is always greater than zero, and can
be safely factored out, leaving us with Eq. (23). This, and some of the other
spherical 4R IO equations are computable in one application of the “lexdeg”
elimination monomial ordering, but the computation time is more than an order
of magnitude greater, about 3500 s, than the 120 s for the sequential application
of “tdeg” and “plex” on an Intel Core i7-7700 CPU @ 3.60 GHz.

It is important to note that we are using the standard Denavit-Hartenberg [32]
relative joint angle parameters, which are each a measure of the relative angle
a link makes with the previous link in the kinematic chain. This fact enables
us to derive the remaining five IO equations such that the same eight bicubic
coefficient factors characterise all six IO equations. This is generally not the
case when vector loop methods are used together with trigonometry, see [34] for
a detailed example.

The v1-v2 IO Equation. The derivation steps are precisely the same as for the
v1-v4 IO equation. Eliminating v3 and v4 from the same three soma coordinates,
the resulting v1-v2 IO equation splits into three similar factors. The first two,
(1 + v21)(1 + v22), can be safely factored out, leaving us with Eq. (24).

The v1-v3 IO Equation. The derivation steps are precisely the same as for
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the previous two IO equations. But, after the elimination of v2 and v4 from
the same three soma coordinates, the resulting v1-v3 IO equation splits into five
factors. The first two are (1 + v21)(1 + v23), and can be safely factored out. The
next two are

(α2
2α

2
3 + 2α2α3 + 1)v23 + α2

2α
2
3 − 2α2α3 + 1, (29)

(α2
2 − 2α2α3 + α2

3)v
2
3 + α2

2 + 2α2α3 + α2
3. (30)

In order for either, or both, of Eqs. (29) or (30) to be identically zero the arc
length parameters α2 and α3 must be complex. This means these two factors
may also eliminated since we are only interested in real linkages, leaving us with
Eq. (25).

The v2-v3 IO Equation. To derive this IO equation using elimination methods
on the three soma coordinates we have been using requires a very different ap-
proach. We were successful by first applying the graded reverse lexicographical
order “tdeg” to the three soma coordinates using the list sequence (v1, v4, v2, v3),
then applying graded lexicographic order using “grlex” to the bases identified
with “tdeg”. After each computation we obtain 12 bases, all in terms of the
four αi and the four vi, with the exception of one in the graded lexicographic
order set of bases, which is in terms of the four αi, but only v1, v2, and v3, and
is used in the elimination steps. Next, resultants are used to eliminate v4 first,
then v1. We obtain a v2-v3 IO equation that splits into nine factors.

The first five of these factors are simple to divide out since they are trivially
non-zero: the first is -1; the other four are the squares of a single αi added to a
positive integer. The next three factors are functions of v2 and v3, but only α1,
α2, and α3:

(α1α2 − α1α3 + α2α3 + 1)2v22v
2
3 + (α1α2 + α1α3 − α2α3 + 1)2v22+

8α1α3(α
2
2+1)v2v3+(α1α2−α1α3−α2α3−1)2v23+(α1α2+α1α3+α2α3−1)2; (31)

(α1α2α3 + α1 − α2 + α3)
2v22v

2
3 + (α1α2α3 − α1 + α2 + α3)

2v22−
8α1α3(α

2
2+1)v2v3+(α1α2α3+α1+α2−α3)

2v23+(α1α2α3−α1−α2−α3)
2; (32)

α3(α1α2+1)(α1−α2)v
2
2+2α1α3(α

2
2+1)v2v3−α1(α2α3+1)(α2 − α3)v

2
3+

α2(α1 + α3)(α1α3 − 1). (33)

In order for Eqs. (31), (32), and/or (33) to be identically zero the arc length
parameters α1, α2, and/or α3 must be complex numbers, so we may safely
divide these three factors out, leaving only Eq. (26) as the desired IO equation.

The v2-v4 IO Equation. The derivation steps for the v2-v4 IO equation are the
same as those for the v1-v4, v1-v2, and v1-v3 IO equations. The the second set of
Gröbner bases computed using the pure lexicographic order with list sequence
(v3, v1, v2, v4) lead to an IO equation that splits into five factors, the first two
are trivial. The next two are

(α2
1α

2
2 + 2α1α2 + 1)v22 + α2

1α
2
2 − 2α1α2 + 1, (34)

(α2
1 − 2α1α2 + α2

2)v
2
2 + α2

1 + 2α1α2 + α2
2. (35)
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For either, or both of Eqs. (34) and (35) to equate to zero, it requires both α1

and α2 to be complex. We can therefore factor both of these out, leaving only
the desired v2-v4 IO, Eq. (27).

The v3-v4 IO Equation. Finally, the derivation steps for the v3-v4 IO equation
are precisely the same as for the v2-v4 IO equation. After the elimination of v1
and v2 from the same three soma coordinates, the resulting v3-v4 IO equation
splits into three factors. The first two are safely divided out, leaving us with
Eq. (28).

5. Applications

5.1. Mobility Classification

Treating each pair of vi-vj to be coordinate axes in the plane spanned by
the two, then each IO equation for a pair of joint angle parameters contains two
double points at infinity1, one on each of the vi and vj axes. The double points
at infinity belonging to each of the four distinct vi coordinate axes together
with the type of points at vi = 0 completely define the mobility limits, if they
exist, between each vi-vj angle parameter pair. For a planar algebraic curve to
possess a double point, it’s degree must be n > 3. Hence, this analysis does not
apply to PRRP linkages, but it does apply to the R-pairs in an RRRP linkage.
The double point at infinity on the d4 axis is always an acnode independent
of the lengths of the links and offsets, which is reassuring as this means the
travel of the prismatic slider is always finite. But, for R-pairs, the nature of the
double points determine if extreme orientations exist that are implied by the vi
where the two corresponding links can align. Hence, the examination of these
two points is sufficient to determine whether a particular joint enables a crank,
a rocker, a π-rocker, or a 0-rocker relative link motion [35, 36].

For example, let us determine the double points for the v1-v4 IO curve for
a planar 4R. First homogenise Eq. (4) using the homogenising coordinate v0,
then redefine the IO equation as

k := Av21v
2
4 +Bv20v

2
1 + Cv20v

2
4 − 8a1a3v

2
0v1v4 +Dv40 = 0. (36)

Then compute the partial derivatives of k with respect to the three homogeneous
coordinates, giving

∂k

∂v0
:= 2Bv0v

2
1 + 2Cv0v

2
4 − 16a1a3v0v1v4 + 4Dv30 = 0, (37)

∂k

∂v1
:= 2Av1v

2
4 + 2Bv20v1 − 8a1a3v

2
0v4 = 0, (38)

∂k

∂v4
:= 2Av21v4 + 2Cv20v4 − 8a1a3v

2
0v1 = 0. (39)

1The maximum number of double points for a planar algebraic curve of degree n is
(n−1)(n−2)

2
.
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Finally solve the system of four equations (36)-(39) for v0, v1, and v4. In
this case, similar for all the IO equations, there are two solutions which are
independent of the design parameters a1, a2, a3, and a4. These two solutions
are double points at infinity on the v1 and v4 axes, named DP1 and DP2:

DP1 = {v0 = 0, v1 = v1, v4 = 0}; (40)

DP2 = {v0 = 0, v1 = 0, v4 = v4}. (41)

One possibility to determine the type of double point, i.e., whether it is a
crunode (regular double point), acnode (isolated double point), or cusp, is to
evaluate whether the double point has a pair of real, or complex conjugate tan-
gents. If the double point has two real distinct tangents, it is a crunode; if it has
two real coincident tangents, it is a cusp; and if the tangents are both complex
conjugates, the double point is an acnode [21, 37]. Thus, after homogenising
each vi-vj angle pair IO equation using the homogenising coordinate v0, leading
to IOh, the following discriminant yields information on the double point at
infinity on the vj axis:

∆ :=

(
∂2IOh

∂vi∂v0

)2

− ∂2IOh

∂v2i

∂2IOh

∂v20


> 0 ⇒ crunode;
= 0 ⇒ cusp;
< 0 ⇒ acnode.

(42)

Proceeding with the double point analysis of all six vi-vj equations, the
points at infinity on each axis result in 12 discriminants. However, as the vi-vj
equations are all dependent on each other, only four are distinct. Each one
describes the nature of the double point at infinity of each vi for i ∈ {1...4}:

∆v1 = −4(a1 + a2 − a3 − a4)(a1 + a2 + a3 − a4)

(a1 − a2 + a3 − a4)(a1 − a2 − a3 − a4);

∆v2 = −4(a1 − a2 − a3 + a4)(a1 − a2 + a3 + a4)

(a1 − a2 + a3 − a4)(a1 − a2 − a3 − a4);

∆v3 = −4(a1 − a2 + a3 + a4)(a1 + a2 − a3 + a4)

(a1 + a2 − a3 − a4)(a1 − a2 + a3 − a4);

∆v4 = −4(a1 + a2 − a3 + a4)(a1 − a2 − a3 + a4)

(a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4).

Using the bilinear factors defined by Eq. (4) these discriminants can be rewritten
compactly as

∆v1 = −4 A1A2B1B2, (43)

∆v2 = −4 A1B2C1D2, (44)

∆v3 = −4 A1B1C2D2, (45)

∆v4 = −4 A1A2C1C2. (46)

15



From these conditions we can extract the following information. If ∆v1 ≥ 0,
then the double point at infinity on the v1 axis is either a crunode or a cusp.
Knowing that v1 = ∞ corresponds to θ1 = 180◦, which implies that the link
a1 can physically reach the extreme position where a1 aligns with and overlays
the previous link a4. Similarly, if ∆v1

< 0, then the double point at v1 = ∞ is
an acnode which in turn indicates that a1 can not physically reach the extreme
position where a1 aligns with and overlays a4. Analogous conclusions can be
drawn from Equations (44), (45), and (46).

As previously mentioned, to fully understand the mobility of every link, it
equally requires the analysis of whether the other extremes where the link under
investigation aligns with, but does not overlay, the previous link. We need to
investigate whether the linkage is assemblable at vi = 0. Clearly, one possibility
to obtain a condition with this information can be derived using the six vi-vj
equations by substituting vi = 0 and solving for vj . Again, due to the equations’
dependencies, we obtain four distinct conditions, one for each vi:

Ωv1
= [−(a1 − a2 − a3 + a4)(a1 − a2 + a3 + a4)

(a1 + a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv2
= [−(a1 + a2 − a3 − a4)(a1 + a2 + a3 − a4)

(a1 + a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv3
= [−(a1 + a2 + a3 − a4)(a1 − a2 − a3 − a4)

(a1 − a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv4
= [−(a1 − a2 − a3 − a4)(a1 + a2 − a3 − a4)

(a1 − a2 + a3 + a4)(a1 + a2 + a3 + a4)]
1
2 .

Using the bilinear factors from Eq. 4 these expressions can be rewritten com-
pactly as:

Ωv1 =
√
−C1C2D1D2; (47)

Ωv2 =
√

−A2B1C2D1; (48)

Ωv3 =
√

−A2B2C1D1; (49)

Ωv4 =
√

−B1B2D1D2. (50)

With this information we can establish a completely generic classification
scheme to determine the relative mobilities of every link in the simple closed
kinematic chain. Using the bilinear factors the classification can be constructed
according to Tables 4-7. The beauty of this classification scheme lies in its
completely generic nature, covering both positive and negative values for the
ai. This result requires the ai to be considered as directed line segments. For
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example a1 > 0 means that it is directed from the join with a4 to a2, a1 < 0
means a1 points in the opposite direction. Moreover, the classification scheme
is directly linked to the algebraic IO equations. We are now able to explain the
different spatial sections that are spanned by the linear factors in the design
parameter space reported in [36].

Table 4: Mobility of a1 relative to a4.

A1A2B1B2 C1C2D1D2 mobility of a1
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

Table 5: Mobility of a2 relative to a1.

A1B2C1D2 A2B1C2D1 mobility of a2
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

Table 6: Mobility of a3 relative to a2.

A1B1C2D2 A2B2C1D1 mobility of a3
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

Table 7: Mobility of a4 relative to a3.

A1A2C1C2 B1B2D1D2 mobility of a4
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

It is straightforward to use this same analysis applied to the spherical 4R as
well as the planar RRRP linkages to determine the relative mobility conditions
for each link in the chain. However, in the interest if brevity, we will not include
these results in this paper.
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(a) Planar 4R stellated octahedron.(a)

a1a2

a3

(b)

a1a2

a3

(b) Spherical 4R degenerate bicubic surfaces.

Figure 5: Planar and spherical 4R design parameter spaces.

5.2. Design Parameter Spaces

The first graphical representation of the design parameter space of planar
and spherical 4R linkages can be found in [38, 39, 40]. In the case of the pla-
nar 4R it reveals plane bound regions in a three-space having the Freudenstein
parameters as mutually orthogonal basis vectors. However, the full symmetry
of the group of planar 4R linkages is obscured by the trigonometric descrip-
tion of the IO equation. The symmetries of the algebraic IO equations for the
spherical and planar 4R and the planar RRRP and PRRP linkages are fully
revealed graphically when one considers the link lengths ai, link offsets di, and
link twist angle parameters αi as design parameters, see [25, 36, 31]. For pla-
nar and spherical 4R function generators the scale of the linkage is irrelevant.
We can consider these four ai and four αi design parameters as homogeneous
coordinates, and assign a4 and α4 to normalise the four coordinates, thereby
setting a4 = 1 for the planar and α4 = 1 as the spherical design space parameter
coordinates and treat the remaining three lengths or twist angles as mutually
orthogonal basis vectors.

In the planar 4R design parameter three-space, each of the distinct eight
bilinear factors in Eqs. (4)-(9) represent eight distinct planes. These eight planes
intersect in 12 lines which are the edges of a setllated octahedron having order
48 octahedral symmetry [41], which Johannes Kepler named “stella octangula”,
which is Latin for “eight-pointed star”, referring to the eight vertices, see Fig. 5a.
In the entire universe of polytopes, it is the only regular compound of two
tetrahedra [41]: two tetrahedra which intersect in an octahedron! Each distinct
point in the design parameter space represents a distinct planar 4R linkage. The
eight planes segment the design parameter space into regions that represent the
mobility of the linkages contained in that region [36, 42].

For the spherical 4R, the eight bicubic factors in the four coefficients A, B, C,
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α1
α2

α3

(a) In the range −25 ≤ αi ≤ 25.

α1
α2

α3

(b) In the range −1 ≤ αi ≤ 1.

Figure 6: Eight cubic surfaces in the spherical 4R design parameter space.

and D in Eq. (23) are symmetric singular cubic surfaces, see Fig. 5b, which each
possess three distinct finite lines and three common lines at infinity [25]. Note
that a cubic surface can contain as many as 27 lines [43]; those that contain less
than 27 are called singular, while those that contain exactly 27 are non-singular.
Each of these cubic surfaces possess three ordinary double points [25]. It is also
shown in [43] that a cubic surface possessing three ordinary double points can
have, at most, 12 lines, which is the case for these eight cubic surfaces. Of these
12 lines on each surface, six are complex and six are real. Of the six real lines
three are at infinity. The remaining three lines on each surface intersect each
other in an equilateral triangle.

Different pairs of the eight cubic surfaces have one finite line in common,
meaning there are 12 distinct finite lines among the eight surfaces. The finite
lines contain the twelve edges of another stellated octahedron. The faces of the
same stellated octahedron are also found in the design parameter space of planar
4R linkages. The edges of this regular double tetrahedron can be regarded
as the intersection of the bilinear factors of the coefficients of the planar 4R
and the singular cubic surfaces formed by the coefficients of the spherical 4R
IO equations in the design parameter spaces. This is as remarkable as it is
fascinating! Fig. 6 illustrates the eight cubic surfaces and the three finite lines
on each. This illustrates the connection between Bricard’s movable octahedra
mentioned at the end of Section 3 and the intersection of the spherical 4R and
planar 4R design parameter spaces.

With the six algebraic vi-vj equations, and the previously identified mobility
classification using double points and discriminants, it becomes evident that
the planes containing the faces of the stellated octahedron contain even more
mobility information than stated in [36], namely, information on the relative
mobility of every link in the chain! In fact, the stellated octahedron face planes
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Figure 7: Intersection of the planar 4R stellated octahedron in the design parameter space
with the plane a1 = 0.5.

segment the design parameter space into distinct regions which each describes
the relative mobility of a1, a2, a3 and a4. Since a complete analysis of the design
parameter space would go well beyond the scope of this paper, we will limit the
discussion herein to one short example as follows.

Consider the intersection traces of the bilinear factors in the parameter plane
a1 = 0.5 spanned by a2 and a3 in the design parameter space where a2 and a3
are the horizontal and vertical axes, respectively. Here the bilinear factors are
parallel and orthogonal plane trace lines. Together with Tabs. 4-7, the mobility
of all a2 and a3 of any length can now be identified, resulting in Fig. 7 where r
indicates that the corresponding link is a rocker, c a crank, π a π-rocker, and
0 a 0-rocker, while NA indicates the linkage is not assemblable. This analysis
can be conducted for every area separated by the bilinear factors in the design
parameter space, resulting in a complete geometric mobility classification of
planar four bar linkages which is directly linked to the six algebraic vi-vj IO
equations.
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6. Conclusions

In this paper we have derived the six possible planar 4R, RRRP, PRRP,
and spherical 4R algebraic IO equations that describe the relative input and
output joint displacement parameters between different pairs of edges of planar
and spherical quadrangles providing a catalogue of 24 IO equations. They were
derived using Study’s soma coordinates that represent the displacement space
of all kinematic chains, and polynomial elimination methods to reveal the de-
sired algebraic IO equations. We showed that these algebraic polynomials define
design parameter spaces, where distinct points represent distinct four-bar link-
ages. The location of the point in that space determines the linkage mobility
characteristics. We showed that evaluating the nature of the double points at
infinity in each of the vi-vj planes gives conditions on the relative mobility of
each link in the kinematic chain.
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