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Abstract

This thesis presents a detailed kinematic analysis of a 3-degree—of-freedom planar
parallel manipulator with holonomic higher pairs. The manipulator consists of a
circular disk which rolls without slip on the non—grounded rigid links of each of three

2R serial legs.

The first portion of the thesis is devoted to the review of the geometric and
mathematical tools used in the kinematic analysis. Planar isometriesand group theory
are used in the development of the inverse kinematics (IK) algorithm. Kinematic

mapping and Grébner bases are important for the forward kinematics (FK) algorithm.

After six important geometric properties of the manipulator are identified, the
IK algorithm is developed. It is based on the decomposability and commutativity of
planar displacements. The four step algorithm provides closed form analytic solutions.
The algorithm may be used on similar parallel manipulators with any number of 2R
legs, and hence, applies to a whole class of manipulators. It will be shown that there
can be no more than 4" real solutions, where n is the number of 2R legs. Three

numerical examples are given.

The FK problem is solved using kinematic mapping. To employ a technique from
the literature, pseudo inputs must be used to specify joint parameter inputs. The
resulting set of three non-linear equations in three unknowns is solved using Grobner

bases theory. A numerical example is given.

Finally, velocity and acceleration analysis are performed after the determination

of the Jacobian matrix.



Résumé

Le sujet de cette these est I’analyse cinématique d’'un manipulateur, plan et parallele, a
trois degrés de liberté muni de trois liaisons holonomiques supérieures. La poignée est
portée sur trois ou plus pattes a trois liaisons; deux liaisons rotoides et une crémaillere.
Chaque crémaillere s’engage a un seul engrenage fixé au corps rigide de la poignée
et les couples supérieurs sont formées aux points de contact entre les crémailléres et

I’engrenage.

On traite, au commencement, la mathématique et la géométrie nécessaires pour
I’analyse cinématique. L’algorithme pour la cinématique inverse est basé sur des con-
cepts de la géométrie Euclidienne et non—Euclidienne et de la théorie des groupes.
L’algorithme pour la cinématique directe est basé sur des concepts de kinematic map-

ping et de la théorie des bases de Grdibner.

Apres avoir identifié six propriétés géométriques importantes, on peut formuler
I’algorithme qui conduit a un nombre de solutions analytiques pour la cinématique
inverse. Cet nombre des solutions n’excéde pas 4™, ou n est le nombre des pattes

sérielles. Afin d’illustrer I’algorithme, on présente des exemples numeriques.

En utilisant le kinematic mapping, les équations de cinématique directe sont
obtenues. Les pseudo entrées sont nécessaires pour permettre 1'utilisation de la
méthode développée par Husty. Ces trois équations sont résolues par les calculs
symboliques qui utilisent les bases de Grobner. Finalement, Encore, on présente un

exemple.

Enfin, on accomplit 'analyse de vitesse et d’accélération est déduit les matrices

Jacobiennes.
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Claim of Originality

Certain aspects of the manipulator and its kinematic analysis are original and are
presented herein for the first time. The following contributions are of particular

interest:

(i) The 3-legged architecture.

(ii) Six “special” geometric manipulator properties.

(iii) An algorithm for the IK problem which results in closed—form solutions.

(iv) The upper bound on the number of IK solutions is 4", where n is the number
of legs.

(v) The introduction of “pseudo inputs” so a kinematic mapping can be used to

solve the FK problem.

Some of the results reported in this thesis have been partly presented in two

refereed publications: [27, 28|.



Chapter 1

Introduction

1.1. Background

This thesis is an investigation of the kinematics of a novel class of planar parallel
manipulators. The end effector is a disk which rolls without slip along the straight
lines of the non-grounded rigid links of 2R! serial legs. Pairs of two 2R serial legs
together with the disk form -R-R-G-G-R-R-? closed kinematic chains. 2R serial legs
may be added as the application requires. Two and three—legged versions will be

considered in this thesis (see Fig. 1.1).

A similar manipulator comprised of one closed chain was introduced by Vijay
Kumar at the University of Pennsylvania through the work of S.K. Agrawal and R.
Pandravada at Ohio University in [3]. An analysis of the workspace was made in
[4], and an attempt to solve the inverse kinematics (IK) problem was made in [3].
However, there is a flaw in the IK solution algorithm which may result in erroneous

solutions (see Section 1.2).

It is well known that the IK solutions are uncoupled between legs, so solution
procedures can treat each leg as a serial chain [20]. A result is that a successful 1K
solution algorithm could be used on platforms with any number of 2R legs. Prior to

L An R-pair is a revolute pair.
2A G-pair is a higher pair. Details will be presented in section 1.1.1.



1.1. BACKGROUND

FicURE 1.1. Two and three-legged planar platforms with higher pairs.

our work, the IK problem reported herein was essentially unsolved, and the forward

kinematics (FK) problem had not been addressed.

1.1.1. Lower and Higher Kinematic Pairs. The term kinematic pair, or
just pair, indicates a joint between two links. Joints involving surface contact are
called lower pairs. Those involving point, line, or curve contact are higher pairs.
Lower pairs enjoy innate practical advantages. First, applied loads are spread over
the contact surfaces, and second, they can be easily and accurately manufactured.

There are six types of lower pair, classified as follows [30]:

1. S—pair: The spherical S—pair consists of a convex or solid sphere which ex-
actly conforms with a spherical shell of identical radius. In other words, a
ball-joint. S-pairs have three rotational degrees of freedom (DOF).

2. E—pair: The planar E-pair (E stands for the German word Ebene, which
means plane) is a special S—pair comprising two concentric spheres of infinite
radius. To fix one plane relative to the other requires three generalised coor-

dinates, usually two translations and one rotation. Regardless, the E—pair has

three DOF.
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3. C—pair: The cylindrical C—pair consists of mating convex and concave cir-
cular cylinders. They can rotate relative to one another, about their common
axis, and they can translate relative to each other along that axis. Hence,
there are two DOF': one rotational and one translational.

4. R—pair: The revolute R—pair is made up of two congruent mating surfaces
of revolution. It has one rotational DOF about its axis.

5. P—pair: The prismatic P-pair comprises two congruent non-circular cylin-
ders, or prisms. It has one translational DOF whose axis is any straight line
parallel to the direction of translation.

6. H—pair: The helical H-pair, or screw, consists of two congruent helicoidal
surfaces whose elements are a convex screw and a concave nut. For an angle 6
of relative rotation about the screw axis there is a translation of distance A in
a direction parallel to the screw axis. The sense of the translation depends on
the hand of the screw threads and on the sense of the rotation. The distance
h is the pitch. When A = 0, the H-pair becomes an R-pair; when h = oo
it becomes a P—pair. The H-pair has one DOF which is either specified as a

translation or a rotation, coupled by the pitch, h.

Any joint that does not fall into these six classifications is a higher pair. A
few examples are mating spur gears, a rack and pinion, a cam and follower. These
pairs are important because they often offer the simplest means of achieving complex
motions. The main drawback is that they are often more complicated, and hence,
more expensive to manufacture. The higher pairs may be classified according to the

nature of the relative motion between the jointed links:

1. Pure sliding: The relative motion is pure translation as in, for example, the

finger tip of a robot hand sliding along a flat surface.
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2. Pure rolling: The relative motion involves rolling without slip. Mating sets
of spur gears, and rack and pinion systems are good examples.

3. Combination of sliding and rolling: In cam and follower systems the tip
of the follower slides along the surface of the cam. As the cam rotates and,
relative to the follower, its radius of curvature changes, the follower rotates
about some axis. As this occurs the follower tip will also roll on the cam

surface.

The subject of this thesis involves higher pairs that roll without slip on a straight
line, like rack and pinion gear sets. This type of higher pair will be abbreviated as a

G—pair (G for gear).

1.1.2. Parallel Manipulators. The recent interest in research and develop-
ment of robotic systems in general is spurred by the reality of the open market
economy wherein goods and services must be sold. A consumer base with dimin-
ishing disposable income results in more intense competition among the suppliers.
A manufacturer capable of supplying a superior product at a sufficiently high vol-
ume and relatively low cost will usually capture a larger share of the market. The
ever-growing need for greater efficiency in manufacturing leads to new production
methods. Processes that make use of robotic manipulators comprise a large part of

these new methods.

Currently, most industrial manipulators have serial architecture. Planar ones,
like that shown in Fig. 1.2, have an intermediate link with a degree of connectivity
of 2. In other words, an intermediate link of a serial arm is connected to two other
links. Terminal links, like the end effector (EE) and base (B), are exceptions. They
are jointed to only one other link, and hence, have a degree of connectivity of 1. Serial

manipulators have certain advantages because [16, 25]:



1.1. BACKGROUND

F1GURE 1.2. A planar 3R serial arm.

(i) People can readily identify with an open loop kinematic chain which may be
compared with the human arm. This is a strong advantage in programming
the arm, training operators, etc..

(ii) Each joint actuator enjoys complete independence.

(iii) The forward and inverse kinematics are well known and the dynamics have

been thoroughly analysed for many cases.

It is frequently claimed that serial architecture suffers from the following disad-

vantages [25, 20]:

(i) Serial manipulators require an actuator for each joint. The added mass of the
actuators located at intermediate joints contributes to the total inertia of the
robot.

(ii) The structural design of the links must take the above point into account. That

is, because of the cantilever—like structure of the links, flexibility is a concern.
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To control the flexibility of the system the links must be ‘over-designed’ [25].
This usually leads to still more massive links.

(iii) If high degrees of accuracy and precision in motion are required, the velocity
of the EE is limited by the above considerations.

(iv) If the actuators are located at the base, force and torque transmission become
an issue. Transmission systems reduce the absolute accuracy, precision, and

the repeatability of EE motions and add to flexibility.

Therefore, kinematic research turned to parallel architecture in the quest for
robot designs that offer more streamlined, cost—effective manufacturing processes.
This has led to efforts to develop robots that exhibit better characteristics, e.g.,
speed of operation, load carrying capacity, dynamic response, accuracy, precision, and
reliability. To this end, parallel manipulators consisting of closed kinematic chains
have been investigated. Stewart-Gough (SG) type platforms are a typical example,
see [23, 53, 19, 33, 34, 36]. This type of platform was first devised by Gough [23] in
1956 to serve as a test stand for automobile tires. The moving platform is connected
to the base by six telescoping prismatic legs. The six legs are jointed to the moving
platform, and to the base, by spherical and universal joints. This gives the moving
platform 6 DOF. The design was adapted by Stewart [53] in 1965 for use as a flight

simulator.

Since this thesis is about a particular type of planar SG platform consider Fig.
1.3. It depicts a typical planar three-legged SG type platform with nine revolute
joints. Note that each 3R serial leg is kinematically equivalent to an -R-P-R- serial
leg. This is because a change in location of a reference point on the EE corresponding
to changes in the orientation of the first link and the relative angle between the first
and intermediate links in the 3R leg can always be achieved by a telescoping -R-P-

R- leg. This concept is illustrated in Fig. 1.4. There are many other examples
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FicURE 1.4. 3R and -R-P-R- serial chains are kinematically equivalent.

of parallel architecture, see for example [27, 28, 3, 4, 10, 20, 40, 56]. Moreover,
parallel manipulators have applications in fields other than manufacturing. These
include aircraft, ship, and automobile simulators, ambulatory, or walking machines,

and robot hands.

Parallel manipulators are characterized by the fact that the EE is attached to the
base, or ground, by more than one kinematic chain; an architecture with closed—loops.

General advantages of parallel architectures were cited in [25, 20]:

(i) It is not necessary for each joint to be actuated directly by individual motors,
hence a smaller contribution to the mass of the links. The links, in turn, can

be made lighter.
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(ii) By allowing at least some motors to be fixed, they can be larger and more
powerful. Thus, the load—carrying capacity versus the mass of the robot can
be increased, along with the speed of operation.

(iii) The ensuing reduction in gear drives and transmission systems increases the
inherent accuracy of the robot while simultaneously lowering the cost to make

one.
A few of the potential drawbacks are:

(i) The workspace is limited.
(ii) The workspace may contain many singularities.

(iii) Simultaneous control is required for some or all of the drive motors.

1.1.3. Planar Parallel Systems with Pure—Rolling Higher Pairs. Planar
parallel manipulators with higher pairs restricted to pure rolling, such as that shown
in Fig. 1.1, constitute an important and unique sub—class. They are important
because they have an inherently sound architecture and unique because the pure
rolling constraint forces a kinematic dependency on the initial assembly configuration
(IAC). That is, displacement analysis requires the presence of initial conditions in the
kinematic closure equations. This dependency on the IAC means that analysis is not
possible using the conventional techniques employed on lower pair jointed SG type

platforms.

1.2. Motivation

Research issues concerning general 3 DOF manipulators form an important sub—
group of the problems of manipulator kinematics. Planar 3 DOF manipulators are a
special case because the freedoms consist of two linearly independent translations in

the plane and rotations about an axis normal to the plane. All planar displacements
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belong to the group of isometries of the plane. It is commonly believed that there is

no group for general 3 DOF rigid body displacements in space.

The problems of planar manipulators, both serial and parallel, are mostly well
documented and understood. Closed form solutions exist for the FK and IK problems
of most serial planar manipulators [16, 42]. The kinematics of many parallel manip-
ulators are also well understood. For instance, the IK problem of a lower pair jointed
SG type platform is identical to the IK problem of a serial manipulator architecturally
equivalent to one of each of the kinematic sub—chains of the parallel manipulator [20].
On the other hand, the FK problem of parallel platforms is generally more complex
than that of serial manipulators. Due to the nature of the problem, much of the ear-
lier research concentrated on numerical solutions [44, 45]. While numerical methods
are well suited to certain conditions, they yield no insight into theoretical issues, such
as the size of the solution space, i.e., the number of assembly modes. Furthermore,
these methods rely on an initial guess which must be fairly close to the solution in
order to converge [45, 21]. Many efforts have been made to provide some theoretical
insight by viewing the problem from a different perspective. Gosselin and Sefrioui
[21] investigated polynomial solutions of the planar SG platform. An algebraic ap-
proach was used in [54] to derive a degree 6 input—output equation for the same type

of platform. Both confirm the well known results of Hunt [31].

The success of most of these methods depends largely on the fact that the plat-
forms are jointed with lower pairs. This allows the platform geometry to be readily
determined. This is a critical point, since the above methods require knowledge of
the platform geometry. However, when the EE is replaced with a disk (pinion gear)
and the three revolutes joining the EE to the legs are replaced with racks, along

with the condition that contact is always maintained between the racks and pinion,

10
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the geometry suddenly becomes complicated, particularly in the context of the FK

problem.

The problem common to all three legged planar platforms with 3 DOF is that,
unless redundant actuators are used, only three joint inputs can be specified. The
problem unique to the pure rolling contact platform is how the change in location of
the contact point between each rack and the pinion affects the displacement. If the
pinion remains stationary while a rack moves, it must be that the rack rolls on the
disk. Conversely, the pinion can roll on a stationary rack. In the above situations, if
the change in location of the contact point along the rack is identical, the displacement
of the disk centre will be different. In the first case, the location of the pinion centre
is constant. In the second case, it translates along a line parallel to the stationary
rack. Most displacements, however, require a combination of the two types of relative
rolling. Keeping track of the proportions is critical to both the IK and FK problems.
It also appears to be a formidable task. Regardless, all methods thus far depend on

the geometry of the platform.

In 1994 a new approach to the kinematic analysis of three legged planar SG
platforms jointed with lower pairs was revealed. Husty [34] used kinematic mapping
to solve the FK problem of such platforms. The importance of this approach is that
it produces an algorithm which is independent of the platform geometry. Moreover, it
was confirmed that there are a maximum of six real solutions using a simple geometric
argument [31].The same mapping was used to determine the workspace of 3-legged
planar platforms in [35]. Clearly, kinematic mapping is worthy of study because of

its potential as an analytic tool.

The literature on the kinematics of planar parallel manipulators has largely been
restricted to manipulators jointed exclusively with lower pairs. The main exceptions

being work on rolling contact in the context of grasp and control. Extensive recent

11
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research has been done in connection with grasping and fine-motion manipulation
by multi-fingered robotic hands [40]. The Utah/MIT dextrous hand is an example.
Various types of contact between hand and object have been studied extensively in
[61]. But, even here the robotic hands are jointed with lower pairs only. The rolling
contact is merely an approximation of contact between the EE and workpiece. Con-
tinuing in this vein, the kinematics of rolling contact for two surfaces of arbitrary
shape were examined in [12]. Control schemes for parallel manipulators with rolling
constraints were put forward in [55, 12]. However, rolling systems are not peculiar to
robotic hands. Automatic Guided Vehicles (AGV) are an important class for indus-
trial applications, dangerous materials handling, etc.. The kinematics and dynamics
of a three wheeled 2 DOF AGV were studied in great detail in [49]. However, in the
case of the AGV, continuous rolling contact is a by—product of constraints imposed
by the operating environment. It is not a design parameter affecting control (except

to detect wheel slip) or kinematic synthesis.

With the exception of cams and gears, which are not considered to be robotic
mechanical devices, research on mechanisms containing higher pairs is rare. The
roll-without—slip pair is considered in this thesis partly because it can be effectively
modelled as a mating gear pair. Gears are common, efficient and reliable machine
elements but they are unusual as robotic joints. One intriguing possibility involves
the planar parallel systems with the pure rolling higher pairs in Fig. 1.1. If the initial
[AC were adjustable then the reachable workspace would be dynamic. This could be
accomplished by allowing one rack at a time to disengage and reposition itself on the

disk. Such a manipulator has industrial potential.

The effects of the IAC on the reachable workspace of a similar planar rolling
system were examined in [4]. Previously, the same authors described an algorithm

based on vector analysis for the IK problem of the same manipulator [3]. However,
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they failed to account for the orientation of the end—effector in the inertial reference
frame. That is, a relative angle was used to specify the disk orientation, which is
a necessary result when a vector approach is employed. The main problem is that
there are some displacements where this angle changes, yet the orientation of the end
effector remains constant. So, erroneous solutions can arise. No other reference to
the IK problem of such a planar manipulator was found. No references, whatsoever,
were found in connection with the FK problem of planar parallel manipulators with

holonomic higher pairs.

Optimal trajectory planning and obstacle avoidance in a crowded workspace re-
quires fast computation of IK solutions. Control of the robot requires the availability

of FK solutions. Hence, this thesis addresses these issues in some detail.

1.3. Thesis Overview

In Chapter 2 the geometry and mathematics relevant to the kinematic analysis
used in subsequent chapters will be reviewed. Subjects range from the basic concepts
of isometries in the Euclidean plane, which aid in the solution of the IK problem, to
the more esoteric notions of kinematic mapping and Grobner bases, a relatively new

tool from computational algebra, for use in solving the FK problem.

Chapter 3 introduces the planar manipulator along with the necessary nomencla-
ture. The mobility is examined and the commutativity of the disk displacements is

explained. Finally, six special geometric manipulator properties are given.

In Chapter 4 the development of the IK algorithm is outlined. The four-step

algorithm will then be introduced. It is illustrated with three numerical examples.

Chapter 5 contains a discussion of the problems involved in formulating the FK
problem. Pseudo inputs are introduced and an adapted version of Husty’s algorithm

is given, illustrated with a numerical example.
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Chapter 6 includes topics beyond static positioning problems. The velocity analy-
sis is necessary for trajectory planning and as the first step in the acceleration analysis.

The latter is required for the investigation of manipulator dynamics.

Finally, Chapter 7 contains conclusions and suggestions for future research.
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Chapter 2

Mathematical Background

2.1. Isometries

2.1.1. The Group of Isometries of the Euclidean Plane. An isometry of
the Euclidean Plane is a one-to—one mapping of the plane onto itself which leaves
distance invariant. The isometries consist of rotations, translations, reflections, and
glide reflections. They are congruent transformations that are also called motions of
the plane [14]. However, the use of the term motion is misleading. An isometry of the
plane is the correspondence between the initial and final positions of an object in the
plane displaced in a way that leaves the distance between every pair of points in the
object unchanged. Although a motion takes place, the motion is not the isometry. A

motion is a continuous series of infinitesimal displacements.

Planar isometries constitute a group. A group consists of a set, G, together with

a binary operator, *, defined on G which satisfies the following axioms [7]:

1) [closure] rxy €g Vr,yeg

2) [associativity] (z*xy)*xz=xx%x(yxz) Vz,y,2€G

3) [identity] 17Ieg: Ixz=xxI=uz,
Veegd

4) [inverse] Jz7'eg: rxr = v =1,

Vzxeg



2.1. ISOMETRIES

If in addition to axioms 1) through 4), the elements in G are commutative (i.e.,
rxxy=y*x, VYr,y € G) then G is an Abelian, or commutative group. The Abelian
group axioms of closure and commutativity will prove to be indispensable in the

development of a solution procedure for the IK problem.

2.1.2. The Sub—Group of Direct Isometries. A subset of G which is a
group under the binary operator defined on G is a sub—group # [9]. It is well known
[14] that the isometries of the plane are a group. Let Z be this group. A planar
displacement consists of the direct isometries only. The direct isometries are transla-
tions and rotations. Let D be the sub—group of planar displacements of group Z. The
manipulator under study has 3 DOF. Two are translations in the directions of the
basis vectors of a non—moving reference frame (the inertial reference frame), the third
consists of rotations about the centre of the disk. The group operator in D, called
“product”, is denoted by the symbol *. It represents successive implementations of
given isometries and hence is not an algebraic product. By virtue of the axiom of
closure, all the products of all translations and all rotations are also in D. Hence,
the disk can move in any combination of translation and rotation within the physical

limits of its workspace.

Since direct isometries preserve sense, as well as distance, the product of any
number of direct isometries is another direct isometry. It is easy to show that the
associativity axiom holds for the product of three direct isometries. It is equally
simple to show the existence of an identity displacement and that there is an inverse
for every displacement in the plane. Hence, D is indeed a sub—group of Z. However,
the indirect, or opposite, isometries do not preserve sense and therefore do not form
a sub—group since the product of opposite isometries is not necessarily opposite. For
example, the product of two reflections in parallel lines is a translation through twice

the distance between the lines. The product of two reflections in intersecting lines is
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a rotation through twice the angle between the lines. In both cases, the product of
two opposite isometries is a direct isometry. Since direct isometries are not opposite,

closure is violated, hence the opposite isometries do not form a sub—group of Z.

2.2. Projective Geometry

2.2.1. Five Axioms. Some concepts from projective geometry are introduced
here primarily to provide background for the kinematic mapping, which is later used
to solve the FK problem. Kinematic mapping involves the transformation of given
displacement parameters from the Euclidean plane to a three dimensional projective

image space.
The following axioms are extracted from Euclidean geometry [5]:

(1): Any two distinct points determine one and only one line.

(2): Any three distinct non—collinear points, also any line and a point not on the
line, determine one and only one plane.

(3): Two distinct coplanar lines either intersect in a point or are parallel.

(4): A line not in a given plane either intersects the plane in a point or is parallel
to the plane.

(5): Two distinct planes either intersect in a line or are parallel.

Note that these propositions deal only with the connection of points and the inter-

sections of lines and planes. They are entirely free of metric notions.

The space in which projective geometry operates is constructed by expanding
Euclidean geometry. That is, certain objects are adjoined to the Euclidean plane
and space. These objects are the ideal points, lines and planes. For purposes of
distinction, let the Euclidean counterparts be called ordinary. The last three of the

previously stated five axioms from Euclidean geometry are amended such that they
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2.2. PROJECTIVE GEOMETRY

hold true for all combinations of ideal and ordinary quantities. The space that results

is called projective space.

(1): Any two distinct points determine one and only one line.

(2’): Any three distinct non—collinear points, also any line and a point not on
the line, determine one and only one plane.

(3”): Any two distinct coplanar lines intersect in one, and only one point.

(4”): Any line not in a given plane intersects the plane in one, and only one
point.

(5”): Any two distinct planes intersect in one, and only one line.

Consider first the projective plane, P?. The ordinary lines are adjoined with
an ideal point (called the point at infinity) to become projective lines. Two distinct
intersecting ordinary lines will have distinct points at infinity. Two ordinary parallel
lines will share the same point at infinity. The ordinary plane together with the
totality of the points at infinity of its ordinary lines constitutes the projective plane,
P?. A projective line has but one point at infinity, not two (one for each direction).
That is, a projective line is closed, this idea is discussed at length in subsection 2.2.2.
Also, all the points at infinity of a given projective plane lay on the same line at

infinity.

Projective space, P? consists of the totality of projective planes. The lines at
infinity associated with each plane in the projective space are coplanar. The plane in

which they lie is called the plane at infinity.

2.2.2. Homogeneous Coordinates. Let O be the origin of the Cartesian
coordinate system, {O : z,y} shown in Fig. 2.1. Let @ be a distinct point in the
plane. The ray passing through O and @ is described by Q(ux,py), where p € R

(ie., a real number). Conversely, for a given point S # O the pair (ux, uy) describes
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f Yy
Q x, [Ly)
MY
S(x,Y)
Y
_ X
©) X MUX

FIGURE 2.1. Cartesian coordinates in E2.

a distinct point @ on OS. As u — +oo the seemingly meaningless pair (0o, c0) is

obtained.

If S=(z,y) € E*> and (7,15, 23) is an ordered triple with z;, # 0, then the

point S can be uniquely described by the triple if the point S is represented as:

p=2t  y=22 (2.2.1)
Th Th

Then any triple of the form (Azy, Azo, Azy) (for A # 0) describes exactly the same

point S. In other words, two real points are equal if their homogeneous coordinates

are proportional. This is because

A$1 T A$2
— — .’L‘, and _— = y
Axh

A%h Th

The coordinates (1 : x3 : xp,) are called homogeneous coordinates, where xy, is
the homogenizing coordinate. Note that when x;, = 1 the Cartesian coordinate pair

(x,y) is recovered.
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The Cartesian coordinates (uz, uy), g # 0, of the family of points on the ray
through @ in Fig. 2.1 can be expressed in homogeneous coordinates as follows:

T
(M‘Tauy) - (Mxl Ny VA ) IZL‘h) = (;Ul DTy ;h)

In E?, as u — +oo the homogeneous coordinates (xy : 23 : 0) are obtained. There is
no point on the line OS to which this triple can correspond because E? is unbounded.
In the extended Euclidean plane the triple (x; : 25 : 0) describes the point at infinity
(ideal point) on the line OS. Since the same triple is obtained regardless if y — +oo
or ;1 — —o0, a single, unique point at infinity is associated with the line OS in EZ.

Hence, an ordinary line adjoined by its point at infinity is a closed curve.

The triple (0 : 0 : 0) describes neither an ideal point or a real point on OS.
(x:y:0)=1(0:0:0) seems to imply that S = O, which is a contradiction in
the construction of the line segment OS. The trivial triple (0 : 0 : 0) is therefore

discounted.

Entirely analogous statements can be made for the three-dimensional Euclidean
space, E3. This space is covered by a Cartesian coordinate-system {O : x,y, z} with
the origin O and axes x,y, 2. The axes are usually defined as orthogonal. Such an
orthogonal Cartesian system is illustrated in Fig. 2.2. As Fig. 2.2 shows, a unique
triple, (z,v, z) can be assigned to every point S € E3. The converse is also true. A
point @ € [ = OS has the coordinates Q(ux, py, pz), where u € R. As p — +oo the

triple (oo, 00, 00), is obtained.

The projective homogeneous coordinates (x; : x5 : x3 : x;,) of the point S € E3

are defined as:
r=—,y=—,z2=— , x #0. (2.2.2)
T

As in two dimensional projective space, when x;, = 1 the Cartesian coordinate triple

(x,y, z) is recovered.

20



2.3. A KINEMATIC MAPPING OF PLANAR DISPLACEMENTS

/bLZ
S(x,y,z) O iz, Ly, [L2)

FIGURE 2.2. Cartesian coordinates in E3.

2.3. A Kinematic Mapping of Planar Displacements

2.3.1. Planar Displacements. A general displacement in the plane requires
three independent coordinates to fully characterize it. In other words, a position of
one rigid body relative to another is given by three numbers. Typically, a displacement
is described by D(a, b, ¢), where a and b are the components of a position vector in
the directions of linearly independent basis vectors, and ¢ is a rotation angle about
some fixed axis normal to the plane, see Fig. 2.3. In 1911, Griinwald and Blaschke
independently suggested using the three numbers which describe a planar position
as the coordinates of the points in a three dimensional projective space, called the
image space [33, 8]. This was done originally to gain a deeper insight, and to derive

new theorems, of plane kinematics.

A planar motion is a continuous series of displacements, hence a complete motion
in the plane is mapped to a curve of the image space. One, two, and three degree of

freedom planar motions are represented respectively by curves, surfaces, and solids
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a

FIGURE 2.3. A planar displacement described by D(a,b, ¢).

in the image space [39]. The classification of planar motions can be reduced to the

classification of curves, surfaces, and solids [46].

It is convenient to think of the relative planar motion between two rigid bodies
as the motion of a Cartesian reference coordinate system, E, attached to one of the
bodies, with respect to the Cartesian coordinate system, ¥, attached to the other
[8]. Without loss of generality, ¥ may be considered as fixed while F is free to move.

Then the position of a point in E relative to ¥ can be given by
X"l | cos¢ —sing x! a
[Y’] - [sind) cos¢][y’]+[b]’ (2:3.1)
where

(i) («',y') are the Cartesian coordinates of a point in F.
(ii) (X', Y") are the Cartesian coordinates of the same point in 3.
(iii) (a,b) are the Cartesian coordinates of the origin of F measured in ¥, i.e., the

components of the position vector of the origin of F in X.
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(iv) ¢ is the rotation angle measured from the X'-axis to the ’'—axis, the positive

sense being counter—clockwise.

Equation (2.3.1) does not represent a linear transformation. This fact is compu-
tationally inconvenient, and can be remedied by the use of homogeneous coordinates,

(x:y:z)and (X : Y :Z), where [52]

,_ T P Y
UU—Za?J Z,
X Y
X'==,Y =
Z Z

Substituting these homogeneous coordinates in equation (2.3.1) gives for X'

X
7 = %cos¢— %sinqﬁ—i—a. (2.3.2)

Without loss of generality, the homogenizing coordinates may be set to be equal since

their value is arbitrary, i.e. set Z = z. Multiplying through by 2 gives
X = zcos¢p—ysing+ az.

Similarly, the Y’ expression becomes
Y = zsin¢g+ycoso+ bz.

The following linear transformation is obtained:

X cos¢p —sing a x
Y = sing cos¢p b y |, (2.3.3)
Z 0 0 1 z

which may be expressed very compactly as the vector-matrix equation

X = Ax. (2.3.4)

Equation (2.3.4) represents a displacement of E with respect to ¥. If A is a
continuous function of a parameter, such as time, then equation (2.3.4) represents a

motion of F with respect to X.
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ﬂ
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FIGURE 2.4. The pole is an invariant of a planar displacement.

2.3.2. The Pole of a Displacement. All general planar displacements that
are not translations may be represented by a single rotation through a finite angle
about a fixed axis normal to the plane [15]. Even a pure translation can be considered
a rotation through an infinitesimal angle about a point at infinity on a line perpendic-
ular to the direction of the translation. The coordinates of the piercing point of this
axis describe the pole of the displacement. If £ and ¥ are initially coincident, then
after the displacement the pole has the same coordinates in both F and . This is
illustrated in Figure 2.4, where P represents the pole and the p—subscripted quantities

are the pole coordinates in their respective coordinate systems.

To prove that the pole is an invariant of the displacement, the eigenvalues of
the 3 x 3 homogeneous transformation matrix A are examined [39]. The eigenvalue

problem is stated as follows:

Ax = Ax,

(A—-X)x = 0,

where x is column vector, A is a scalar constant, and I is the 3 x 3 identity matrix.
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The system of equations has non—trivial solutions if, and only if

det (A — M) = 0.

The 3rd order characteristic polynomial for this 3 x 3 matrix is found by the

Laplacian expansion of the above determinant:
(1= A)([cos ¢ — A][cosp — A] +sin® @) = 0,
(1= XA)(A\* —2X\cos ¢+ cos® ¢ +sin’ ¢) = 0,
(1 =N\ —2\cosp+1) = 0.

Since the characteristic is 3rd order, there must be three eigenvalues. By inspection,

the first eigenvalue is Ay = 1. The second and third are from

Aoz = %(2005¢i V4cos? ¢ — 4),
= cos¢+t m,
= cos¢ =+ y/—sin’ ¢,
= cos¢ +singdv/—1,
= cos¢ L ising,
+ig

= €

Hence, for any general planar displacement the homogeneous transformation matrix
has only one real eigenvalue, A = 1. Corresponding to this eigenvalue, the eigenvalue—

matrix equation is quite similar to equation (2.3.4)

x = Ax.
Now, re—consider equation (2.3.4). It can be de-homogenized and expressed as
X"l _ | cos¢ —sing x! a
[Y’] N [sind) Ccos ¢ ][y’]+[b]' (2.3.5)
If it is true that the pole is an invariant, then its coordinates must be the same in F

and in X, i.e., X] =z}, and Y| = y. Substituting these into the previous equation
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gives
x cos¢p —sing x! a
p — p
) -l ][] e
This is compactly expressed as
x', =Bx', +d, (2.3.7)

where the components of the vector x, are z;, and y,, B is the 2 x 2 rotation matrix

and d is the translation vector whose components are a and b.

It is a simple matter to solve for x',:
x, —Bx', = d,
1-B)x, = d
x', = (I-B)'d.
The last equation may be rearranged as
x, = —(B-I)"'d. (2.3.8)
These are the Cartesian coordinates of the pole.
Return now to the eigenvalue problem,
(A—-X)x = 0.
Setting A = 1, the only real eigenvalue for the matrix A,
(A—I)x = 0.

The matrix (A — I) can be partitioned as

[(%1:31) g}x _o. (2.3.9)

Equation (2.3.9) may be de-homogenized and expanded giving
B-Dx'+d = 0.
Solving for the eigenvector, x’ yields

x = —(B-I)"'d. (2.3.10)
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Comparing equations (2.3.8) and (2.3.10) it is seen that the eigenvector which
corresponds to the sole real eigenvalue shared by all planar homogeneous displacement
transformation matrices is identical to the pole of the displacement. Since it is an

eigenvector, the pole is coordinate system independent, and hence, invariant.

2.3.3. Pole Coordinates in Terms of a,b and ¢. Given that the pole P is
defined as the point where Xp = xp and Yp = yp, asin Fig. 2.4, one may immediately
write a = a(zp,yp, ¢) and b = b(zp,yp, d) as

a=2xp+ypsing — xpcos ¢,
b=1yp — ypcos¢ — xpsin ¢.
Solving for zp and yp yields
a bsin ¢
2 2(1—cos¢)

Tp

and

_ asing n b
= 2(1 —cos¢) 2
The homogenizing coordinate is z and its value may now, without loss of generality,

be set to z = sin % xp and yp must also be multiplied by this value. Then the double

angle relationships
sin20 = 2sinf cosf, cos 20 = cos’f — sin? §

are used to obtain the following:

X, = = %asin (6/2) — %bcos (6/2),
Y,= y,= %a cos (¢/2) + %b sin (¢/2), (2.3.11)
Z,= z,= sing/2.

Hence, the homogeneous coordinates of the pole, which are identical in each of
the two coordinate systems Y and F, in terms of the three displacement parameters

a,b, and ¢ are determined by the three equations (2.3.11).
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2.3.4. The Image Point and Image Space. The location of the pole of a
displacement along with the rotation angle convey sufficient information to charac-
terize the displacement. The image of the pole under the kinematic mapping is called
the image point. Many mappings can be defined that map a position (a,b, ¢) of the
moving coordinate system E with respect to the fixed system ¥ in the plane to a point
described by the homogeneous coordinates (X; : Xy : X3 : Xy) of a three dimensional

projective image space, '. The mapping used here is
(X1 :Xo: X3:Xy) = (X,:Y,:2,:72,), (2.3.12)
where

(X7:Xo:X3:Xy) # (0:0:0:0),

T = cot(¢/2),

0< ¢ <2m,

and X, : Y, : Z, depend on (a, b, ¢) as given by the set of equations 2.3.11. The image

point is given by

(X1:Xo:X3:Xy) = [(asin(¢/2) —bcos(¢p/2) :
(acos (¢/2) + bsin (¢/2) :
2sin (¢/2) : 2cos (¢/2)]. (2.3.13)

By virtue of the relationships expressed in (2.3.13), the linear transformation
operator, the matrix A from equation (2.3.4), may be expressed in terms of the
homogeneous coordinates of the image space, >'. Recall that

[ cos¢ —sing a -|

A = [sir(;qﬁ COS¢ Il)J
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Ay and Ay, may be re-expressed using the identities cos? (¢/2) = (1 + cos ¢)/2 and
sin® (¢/2) = (1 — cos ¢)/2. This gives

Xi—X; = (2cos(¢/2))" — (2sin(/2))",
4+cosg) 4-—cosg)

4 4 ’
= 4cos . (2.3.14)

Ajy and Ay are related by A;9 = —As;. Ajs may be obtained from

2X;Xy = 2[(2sin (¢/2))(2cos (¢/2))]. (2.3.15)
The identity
is used to get
2 %QCOSWQ) = 4sing. (2.3.16)

A3 is obtained from

2(X1Xs + XoX4) = 2[(asin(¢/2) — beos (¢/2))(2sin (¢/2))
+(acos (¢/2) + bsin (¢/2))(2 cos (¢/2))],
= 4(asin® (¢/2) — beos (¢/2)sin (¢/2)) +
A(acos® (¢/2) + beos (¢/2) sin (¢/2)),
= da. (2.3.17)
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Ays is obtained from

2(X2 X3 = X1 Xy) = 2[(acos (¢/2) + bsin (¢/2))(2sin (¢/2))
—(asin (¢/2) — beos (¢/2))(2 cos (¢/2))],
= 4(acos (¢/2)sin (4/2) + bsin® (¢/2)) —
4(acos (¢/2)sin (¢/2) — beos® (¢/2)),
= 4b. (2.3.18)

Ass is obtained from

Xs+ X = (2sin(¢/2))* + (2cos (4/2))?,

= 4 (2.3.19)

Notice that 4 is a factor common to all non zero terms of A. Since homogeneous

coordinates are used,
X = Ax =4Ax.

So, equation (2.3.3) may be re-expressed using the homogeneous coordinates of the
image space. This means that we now have a linear transformation, or a kinematic
mapping, to express a position of E with respect to ¥ in terms of the image point as

given by (2.3.13):

X (XZ — X;) —2X3X4 2(X1X3 + X2X4) T
7z 0 0 (X2 +X2) 2

It may now be said that for each unique displacement described by (a, b, ¢) there is a
corresponding unique point in the image space, because equation (2.3.20) is a linear
transformation. From equation (2.3.13), the inverse mapping is obtained. That is,

for a given point of the image space, the displacement parameters, or pre—image are
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obtained from

tan (¢/2) = X3/X4,
a = 2(X1X3+X2X4)/(X§+XZ)7

b = 2(XoX3 — X1 Xy) /(X3 + X7). (2.3.21)

The geometry of the image space is discussed in detail in appendix A.

2.4. Displacements With One Point Bound to a Circle

2.4.1. Planar SG Type Platforms. A planar SG type platform is a manipu-
lator that consists of a movable platform connected to a base by three legs of variable
length. Each leg is either an R-P-R or a 3R leg. Figure 2.5 shows the 3R variety.
The lengths, r;, j € {A, B,C} between the platform connection points, A, B, C' and
corresponding base points, Ay, By, Cy is varied directly with the prismatic pair in the
R-P-R type, or by changing the relative angle, ¥;, j € {A, B,C} between the two
links in the 3R leg. If the r; are fixed the platform points must be on corresponding

circles centred at Ay, By, and Cj with radii ;.

A moving reference frame E, which moves with the triangular platform, has its
origin incident on the platform point A. A non—moving reference frame X, with
origin incident on the point Ay, is fixed to the base of leg A. Each leg consists of
a 2R grounded leg connected to the triangular platform by another R-pair. What
remains when legs B and C' are disconnected from the platform is a single 2R open
chain. Since r4 is fixed in magnitude, the two leg links behave as a single rigid body.
They can only rotate about the point Ay. The platform can rotate about A. It is
clear that all allowable displacements of this 3R chain require that the point A remain
bound to the circle centred at Ay with radius r4. Thus, two parameters are required

to describe a displacement of the moving frame F with respect to X, the fixed frame.
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FIGURE 2.5. A planar SG type platform with three 3R legs.

For a given set of input angles, 9;, the platform points must be on circles of radii r;.

Thus, the locations of the platform on the respective circles are the FK solutions.

Husty [34] showed that kinematic mapping is a good tool for solving the FK
problem for SG type platforms because of the condition that one point of the moving
system is bound to a circle. This gives a quadratic condition for the corresponding
image points of the possible positions of the platform. Moreover, the mapping does

not depend on the platform geometry.

2.4.2. The Hyperboloidal Constraint Manifold. The image of the possi-
ble displacements has to be a two parameter set of points, which is a surface in the
image space. Bottema and Roth [8] show that it is a quadric surface, specifically a
hyperboloid. The points on this hyperboloid correspond to all possible positions of
the 2R open sub—chain, hence all image points are constrained to lie on this surface.

McCarthy [39] points out that these constraint hyperboloids are manifolds. Husty
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2.4. DISPLACEMENTS WITH ONE POINT BOUND TO A CIRCLE

FIGURE 2.6. A planar 2R serial kinematic chain.

[35] demonstrates that the constraint manifolds are skew hyperboloids, not neces-
sarily hyperboloids of revolution. Furthermore, Husty shows the intersection curve
of the hyperboloid with planes X3 = constant are circles, and that the axis of the

hyperboloid is independent of link length.

Consider the 2R serial chain in Fig. 2.6. ¥ and F are arbitrary fixed and moving
coordinate reference frames, respectively. Without loss of generality, ¥ is fixed to
the grounded base with its origin incident on Ay, and E is attached to link [, with
its origin at the point A. The point A is constrained to move on a circle of radius
l;. Furthermore, link [, is free to rotate about point A. The positions of this two
parameter system map to a hyperboloid in the image space. Each possible assembly
mode of the 2R chain corresponds to a point on the hyperboloid. Since all positions

are constrained to be on this quadric, it is called the constraint hyperboloid, H.

The equation of this quadric, H (which is derived in Section 5.2) is found using

equation (2.3.20) and the fact that the moving point A is bound to a circle with
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2.4. DISPLACEMENTS WITH ONE POINT BOUND TO A CIRCLE

radius r, and centre described by the homogeneous coordinates (X, : Y. : Z) with

respect to the fixed reference frame Y. The standard hyperboloid equation is

H: 0=722(X?+X3)+ (1/4)[(2* + y*) — 2C 2z — 2Cyy2 + C32%] X3 +
(1/4)[(z* + y*) + 20122 + 2Coyz + C32°] X7 + (C12 — 1) 2 X1 X5 +

(CQZ - y)ZXQXg - (y + CQZ)ZX1X4 + (Clz + 1‘)ZX2X4 +

(OQZU — Cly)ZX3X4, (241)
where
Ol = _X67
02 = _cha
Cg = X02 + Y;Q - 7”2.
For example, suppose C; = Cy = 0 and C3 = —16. Furthermore, let the ho-

mogenizing coordinates have the values z = X; = 1. With these simplifications, the

equation of the constraint surface H is reduced to

H: 0=X{+X;—4X]—4. (2.4.2)

This surface is clearly a hyperboloid of one sheet in the variables X, X3, X3, see Fig.
2.7.

The essential idea of Husty’s FK solution algorithm [33, 34] is to determine
the constraint surfaces for each 2R sub-chain. The assembly modes are the posi-
tions which are common to all three constraint surfaces, i.e., the intersections of the

hyperboloids. The algorithm is discussed in greater detail in Section 5.2.
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FIGURE 2.7. The constraint hyperboloid, H in the image space.
2.5. Grobner Bases

Determining the intersections of the three hyberboloids requires the solution of a
system of three non-linear equations in three unknowns. Common tools for solving
such systems are the iterative (Newton—Raphson, etc.), continuation, and elimination
methods [44, 45]. However, one thing shared by these methods is that they ignore
the geometric properties of the solution space and do not take possible alternate

descriptions of the system into account [1].

Grobner bases were introduced in the Ph.D. thesis of Bruno Buchberger, written
in 1965 at the University of Innsbruck, Austria. They were named in honour of Wolf-
gang Grobner, Buchberger’s research supervisor. The essential idea is a generalisation
of the theory of univariate polynomials and finite systems of linear equations to mul-
tivariate and non-linear systems. The Buchberger algorithm [1, 6], which computes
Grobner bases, is an extension of the division algorithm for polynomial long division,
the method of determining least common multiples (lem) of certain terms of two poly-

nomials, and the Fuclidean algorithm for determining the greatest common divisor
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(ged) of two polynomials. Thus, given a finite set of multivariate polynomials over a
field, the Buchberger algorithm computes a new set of polynomials, called Grébner

bases, which are generators of the same ideal as the original.

The minimal Grobner basis of a given ideal can be thought of as basis vectors.
That is, every polynomial in the ideal is generated by a linear combination of the
minimal Grébner basis. The variety, or solution space, of the Grobner basis is iden-
tical to the variety of the ideal. It is important to note that a variety is determined
by an ideal, not by a particular set of equations, or polynomials. Depending on the
given ideal, it may be that the set of equations which comprise the Grobner basis are

‘easier’ to solve than the given set of the ideal.

The advantage of using Grobner bases theory over numerical methods, such as the
Newton-Raphson or secant methods, is that the reduction is algebraic, not numeric.
The potential advantage over the continuation and elimination methods is that the
reduced system may require less effort to solve. The biggest potential drawback is
that for difficult problems intermediate results can become very large, which usually

leads to excessive computational time [44, 45].

A very detailed description of Grobner bases theory may be found in [1] and [6].
Most of the notation from [1] will be used here so that additional information will be

easily accessible from that reference.

2.6. Term Orders

Systems of linear equations can be transformed using Gauss—Jordan elimination
to the reduced row echelon form. This is the form of the coefficient matrix where

Y

every row has a leading ‘1’ with zeros directly beneath and above it. This system
has the same solutions as the original but, in general, requires less computational

effort to solve. Grobner bases theory offers an analogous procedure for non-linear
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systems. This method involves finding a ‘better’ representation for the corresponding
variety (solution space), meaning that the original non-linear system is now ‘easier’
to solve. The desired ‘better’ representation for the variety V(fi,..., fs) will be a
‘better’ generating set for the ideal I = (fi,..., fs). ‘Better’, in this case, means
the new set of generators give a better understanding of the algebraic structure of

I={f1,...,fs), and the geometric structure of V(f1,..., fs).

Buchberger’s algorithm for computing Grobner bases is essentially a generalisa-
tion of the Euclidean algorithm for determining the gcd of two univariate polynomials.
It may also be viewed as Gauss-Jordan row reduction for systems of non—linear equa-
tions. Employing Gauss-Jordan elimination or the Euclidean algorithm requires a
certain ordering of terms. For example, univariate polynomials are ordered by term
degree, with the leading term having the highest degree if the division or Euclidean
algorithms are to be used. For solving linear systems, the order is unimportant, but

it must be specified. For multivariate systems, an analogous order is required.
Recall that the set of power products is denoted by
B" = {x’fl,... |G e Nyi=1,...,n}.

Let P = xfl, ooyl where B = (By,...,3,) € N™. It will be assumed that the
different terms in a polynomial have different power products, so 3z?y would never
be written as 2z%y + z%y. The terms in a polynomial are arranged in increasing or
decreasing order, hence there must be a way to compare any two power products.

The order must be a total order. That is, given any =%, x® € B, exactly one of the

following must be true:

z® < xP, z*=2xP orxz*> P

The following three total term orders are used effectively in determining Grobner

bases [1, 6].
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DEFINITION 2.6.1. Let lex denote the lexicographical order on B™ with

T > X9 > ... > x, and be defined as follows: If

a:(ala"' 7an)713:(/817"' 7577,) e N"

then
the first coordinates o; and 3; in o and 3
<P — from the left which are different satisfy a; < ;.
“From the left” means starting with the largest variables.
For example, in the commutative polynomial ring k[z,y] with lex z < y, the

following order is implied

2

l<o<at<a® <. . <y<ay<aly<...<y’<....

DEFINITION 2.6.2. Let deglex denote the degree lexicographical order on B™ with

Ty > Xy > ... >, and be defined as follows: If

a:(ala"' 70571)718:(617"' 7571,) € N"

then
Z?:l «; < Z?:l /67'

wa < éBﬁ PR or
Yoy =" B and &* < xP

with respect to lex with x1 > ... > x,

In the commutative polynomial ring k[z,y] the degree lexicographical ordering

deglex with x < y is
l<o<y<z’<ay<y’<r®<r®y<ay’<y’<...
The final term ordering is the degree reverse lexicographical order.

DEFINITION 2.6.3. Let degrevlex denote the degree reverse lexicographical order

on B™ with x1 > x93 > ... > x, and be defined as follows: If

a:(ala"' 70571)718:(617"' 7571,) € N"

then
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2.6. TERM ORDERS

n
o 3 or
TT<T Yo o= > B; and the first coordinates o; and (3; in

a and B3 from the right, which are different, satisfy a; > 3.

In this case, “from the right” means that the smallest variables are compared

until a set of corresponding exponents are found that have different values.

In the case of two variables, deglex and degrevlex are identical. But, if there are
three or more variables in the ring this is no longer the case. This can be seen in the

following example:
l‘%le'g > xlxg for deglex with x; > x9 > x3

but, if the degrevlex order is used the opposite is true:

riwyxy < wiwy  for degrevlex with x> zy > 3.
Using degrevlex the exponents of x3 are compared because they are the first from the
right that are different. That is, on the left hand side the exponent of z3 is 1, on the

right hand side is exponent is 0. The tie is broken because 1 > 0, hence 2 < .

To compare the three term orderings, consider the polynomial in k[z,y, 2], de-
scribed by f = 42%y?z — 10xy* + 224,
lex with x > y > 2z =  ay* < 2%y%2 < 2,
= f=2z"+ 42%y%2 — 10zy™.

deglex with z >y > z = 2% < ay* < 2%y?2,
= f =42z — 10ay* + 22*.
degrevlex with z > y > z = 2% < 22y%2 < 2y*,
— = —10zy* + 42%y%z + 22,
Again, note that for the degrevlex ordering, to break the tie the first set of different

exponents from the right are those of 2. Since 1 > 0 then 22y?z < zy*.
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2.7. The Univariate Case

2.7.1. The Euclidean Algorithm. The algorithm attributed to Euclid is for
determining the gcd of two positive integers. Suppose a and b are positive integers

with a > b. Then for some integers ¢; and rq, 0 < r; < b,
a = qib+ry.

Since r; < b, we also have
b = qri+r,

where g5 and ry are integers, with 0 < 7y < 7.

Successive divisions produce the sequence of equations

a:q1b+r1, 0<r <b
b=riqy+ry, 0<r<nr

T1 = T2q3 + T3, 0<r3<mry

Tn—9 = Tn 1Gn + Tn, 0= Tp <Tpo1 <Tp_2.
Since the successive remainders are decreasing non—negative integers, the remainder
r, = 0 must be obtained after a finite number of divisions. The gcd of a and b is the
last positive remainder in the sequence. This is so because r,_; is a divisor of each
divisor and of each remainder. It must, therefore, be a divisor of each dividend, and

the ged of @ and b is the same as that of r,_5 and r,_1, namely, r,_; [18].

The operations used in the Euclidean algorithm are addition and division. These
operators may also be used on polynomials. Hence, the Euclidean algorithm may
be used to determine the gcd of two polynomials. The main tool in the Euclidean

algorithm is the division algorithm.

2.7.2. The Univariate Polynomial Division Algorithm. The degree of a
polynomial f, denoted by deg(f), is the largest exponent of x in f. The leading term
of f,1t(f), is the highest degree term of f. The leading coefficient of f, lc(f), is the
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2.7. THE UNIVARIATE CASE

TABLE 2.1. Polynomial term reference terminology.

Symbol Meaning
deg(f) Degree of polynomial f

1t(f) The leading term of polynomial f
le(f) The leading coefficient of polynomial f
Ip(f) The leading power product of polynomial f

coefficient of 1t(f). The leading power product of f, 1p(f), is the power product of the

leading term, 1t(f). These are summarised in Table 2.1.

The polynomial f is divisible by the polynomial g if and only if deg(g)<deg(f).
Consider the two polynomials
f = apa" +ap 12"+ .. Fax+ag

g = bpx™ 4 by 1™+ .+ bz + by,

with n = deg(f) > m = deg(g). If this is so, then ¢ divides f.

The first step in the division of f by ¢ is to subtract from f the product g—”xn,mg.

The factor of ¢ in this product is }EEJ; ; . The remainder after the first division step is

denoted by r; and is given by

_ 1t(f)
= f—@g-

ry is called a reduction of f by g and the process of computing r; is indicated by

fg — 1.

deg(r) is necessarily less than deg(f) due to the subtraction of a suitable multiple
of g, which eliminates 1t(f). If deg(r;) >deg(g) the process continues, reducing r; by

g to obtain ry as

lt(Tl)
" i)

The division algorithm continues until the final remainder equals zero, or the degree

Ty

of the remainder is less than deg(g). At this point lt(g) can no longer be used to
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2.7. THE UNIVARIATE CASE

eliminate 1t(r). If the polynomial division required three steps to obtain the final

remainder, the reduction could be represented by

f9—r!i—ri—r.

However, the following shorthand may be used to indicate that repeated reduction

steps were used.

g —
f—

Note that an ordering of the polynomials is implied. That is, for the algorithm
to terminate, the final remainder r must be zero, or have a degree less than that of
g. This can only occur if the powers of = are ordered with 2™ < 2™ and m < n. The

last condition, m < n is equivalent to the statement that =™ divides ™ [1].

It is well established [24, 18, 11| that, given a non-zero polynomial g € k[z],
for any f € k[x] with deg(k) >deg(g), 3 ¢, the quotient, and the remainder, r, both
€ k[x] such that

[ = qg+r,with r =0 or deg(r) < deg(g).

Moreover, ¢ and r are unique.

Next, consider an ideal I = (fi, fo) € k[zx]. The ged of f; and f, will have a
variety identical to V'(f1, f2) [1]. Hence, it may be that the system (fi,..., fs) can
be solved with less computational effort if g = ged(f1,... , fs) is first computed with
the Euclidean algorithm. Then all solutions to the system are obtained by solving
g = 0. Furthermore, any other polynomial in k[z] for which the remainder is zero
upon division by ¢ is in I. ¢ is said to generate I, and is the ‘best’ generator for the

ideal.
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2.8. The Multivariate Case

2.8.1. Multivariate Polynomial Division Algorithm. Now, consider the
case of ideals generated by more than two multivariate polynomials, I = (fi,... , fs).
In order to divide f by fi,..., fs requires a reworking of the division and Euclidean
algorithms given earlier. The general idea is the same as for linear and univariate
polynomials: cancel terms of f using the leading terms of the f;’s, so that new terms
are smaller order than the cancelled terms, and continue the process of subtracting
multiples of the f;’s until the remainder has a smaller degree than any of the f;’s.

One complicating factor is that the dividend may have more than one divisor.
Given f,g,h € klzy, ... ,z,| with g # 0, the reduction symbol given earlier
fP—h

may be thought of as f reducing to h modulo g, if and only if Ip(g) divides a non—zero

term x® that appears in f, and

ma

16(g)”

= f-
In this regard, h is the remainder of a one step division of f by g. This process

of subtracting off terms in f that are divisible by lt(¢) continues until h = 0, or
deg(h) >deg(g). This final remainder is denoted by 7.

Let f,h, and fi,..., fs be polynomials in k[z1,... ,z,], with f; # 0(1 < i < s),
and let F = {f1,..., fs}. Then

ff—_,h

is the notation for f reduces to h modulo F', if and only if there exists a sequence
of indices iy,i9,...,4; € {1,...,s} and a sequence of polynomials hy,... , h,_1 €

k[x1,...,x,] such that

flo —sple s pls 5 e o ple
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If h = 0 or there is no power product in h that is divisible by any of the Ip(f;),
then h is reduced with respect to the set of non—zero polynomials F'. Such a reduced
polynomial is a remainder and is called r. In other words, r can not be reduced

modulo F. This reduction process allows for the definition of a multivariate divi-

sion algorithm, analogous to the univariate case. Given f, fi,..., fs € k[z1,... ,z,]
with f; # 0, the algorithm below returns quotients w;, ... ,us € klzy,...,2,], and a
remainder r € k[xy,...,x,], such that

f = wfi+...+usfs +r.

Note that in this algorithm an ordering is assumed among the polynomials in the set

{f1,..., fs} when i is chosen to be least such that lp(f;) divides Ip(h).
ALGORITHM 2.8.1. Multivariate Polynomial Division Algorithm.

INPUT: f,fi...,f, € klz1,...,2,] with f; £0(1 <i < s)
OUTPUT: uy,... ,usr such that f =u fi +...+ u,fs +r and
r is reduced with respect to {fi,..., fs} and
max(Ip(u)Ip(f1), - - . Ip(us)Ip(fo).lp(r))=Ip(f).
INITIALIZATION:u, := 0, ... ,uy == 0,7 := 0, h := f
WHILE h # 0 DO
IF 3 i such that Ip(f;) divides Ip(h) THEN
choose the least i such that Ip(f;) divides Ip(h)

R U0
HE )
It(h)
= h— i
(s’
ELSE
r o= r+1t(h)
= h—lt(h)
CONTINUE

END
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2.8.2. Definition of Grobner Bases.

DEFINITION 2.8.1. A Grobner Basis for an ideal I is a set of non—zero polyno-
mials G = {g1,...,q:} contained in I if and only if for all f € I such that f # 0, 3
i €{1,...,t} such that Ip(g;) divides Ip(f).

If G is a Grobner basis for I, then all polynomials in I can be reduced with
respect to G. For a subset S of k[zy,...z,], the leading term ideal of S is defined to
be the ideal

Lt(S) = (lt(s)|s € S).
With this definition in mind, the following statements are equivalent [1]:

(i) G is a Grdbner basis for I.
(ii) f € I if and only if f& —, 0.
(iii) Lt(G) =Lt(I).

The proof for the existence of G is given in [1].

2.8.3. S—Polynomials and Buchberger’s Theorem.

DEFINITION 2.8.2. Let 0 # f,g € k[xy,... ,x,]. Let the least common multiple

(lem) of two power products be denoted L =lem(lp(f),lp(g)). The polynomial
L L
S(.0) = o f g
9= ! )

is defined to be the S—polynomial of f and g.

S—polynomials are used for the following reason. In the division of f by fi,..., f,
it may happen that some term x® in f is divisible by both Ip(f;) and Ip(f;) with i # j,
hence, & is divisible by L =lem(lp(f;),Ip(f;)). If f is reduced by f; then

[e7

hi = f_%fi
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is obtained. On the other hand, if f is reduced by f;
ma
hy = f——1;
j
will be obtained. The ambiguity introduced is

hy — hy = a}—z_fi — mijj = T-S(fi. [;)-
A key theorem concerning S—polynomials is due to Buchberger.

THEOREM 2.8.1. (Buchberger) Let G = {g1,...,9:} be a set of non—zero poly-

nomials in k[zy,...,x,]. G is a Grébner basis for the ideal I = (g1,...,q:) if and

only if for all i # 7,

S(gi, ;)% — 4 0.

Buchberger’s proof is given in [1].

2.8.4. Buchberger’s Algorithm. The Buchberger theorem outlines a strat-
egy for computing Grobner bases: Reduce the S—polynomials and if a remainder is
non-zero, add it to the list of polynomials in the generating set. Continue doing this
until there are ‘enough’ polynomials in the generating set to make all S—polynomials
reduce to zero. Buchberger’s algorithm will produce a Grobner basis for the ideal

[:<f17"' 7fs>7givenF:{f17"' 7fs} with fl%0(1§2§8)

ALGORITHM 2.8.2. Buchberger’s Algorithm for Computing Grobner bases.
INPUT: F={f1,...,fs} Cklz,...,z,] with f; Z0(1 <i <)

OUTPUT: G ={q,...,9s}, a Grobner basis for [
INITIALIZATION: G := F,G := {{fi. f;}|f: £ f; € G}
WHILE G # 0 DO

Choose any {f,g} € G

G:=G—{{f9}}

S(f,9)¢ —s, h, where h is reduced with respect to G
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IF h # 0 THEN
GU{{u,h}| Y uedG}
G:=GU{h}
CONTINUE
END

2.8.5. Minimal Grobner Bases. It can be shown [1] that there exists a set

of minimal Grobner bases for every ideal. This leads to the important definition:

DEFINITION 2.8.3. A Grébner basis G = {g1,...,9:} is called minimal if for

all i, 1c(g;)=1 and for all i # j, Ip(g;) does not divide Ip(g;).
2.9. Example

ExXAMPLE 2.9.1.

FicUre 2.8. Non-linear equations f; & f2: Intersecting circle and ellipse.

Consider a set of non-linear equations in two variables. Let the first equation

represent a circle with radius 2, given by z? + y? = 4. It is required to determine the
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variety of the set, i.e., the set of real intersections (if any) of this circle with the ellipse
described by 22? 4+ 3% = 5. These two equations may be rearranged as polynomials

in two variables, z and y:

fi: 2 +y?—4, (2.9.1)

fo: 222+ 9y —5. (2.9.2)

A plot of these geometric entities reveals that they do, indeed, have four intersections.

This is shown in Fig. 2.8. Hence, the variety is not the empty set.

The goal of this example is to illustrate how the Buchberger algorithm computes
a Grobner basis for the ideal I. First, a term ordering is required. We will choose lex

with y < x, specify the input to the algorithm, and proceed:
INITTALIZATION: G := {f1, fo},G := {{f1, f2}}

Pass one through the WHILE loop:
G:={fi. Lt} —{{fi, f2}} =0

SULE) = T
_ x? 2 2_y x? . 2
= @@ +y" —4) @(SCJFZJ 5)
1, 3
=¥ 3

S(f1, f2) = 3y* — 3 can be reduced by neither f; or f,.
Then S(fl,fQ)G — 4 h §£ 0.
This being the case, let f; := 1y — 3.
Continuing with the first pass:
G :={{f1, sH{f2 [3}}
G = {fh f27 fB}

Pass two through the WHILE loop:
Choose {{f1, f3}} €G
G:={{f2, f5}}
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1'2y2 x2y2 1 3
IS _ 2 2 _ gy _ 19 92
(flaf?)) 2 (aj +y ) (y2/2)(2y 2)
= 32° +y' — 4y
= 3f1+ (2y* — 8)f3 +0.
This implies that
S(fi, f3)¢ —L0=h
Pass three through the While loop:
Choose {{fs, f3}} €G
G:=0
1'2y2 x2y2 1 3
S = 21 2_5)— L (=t —=
1 5)
— 32 St 22
7+ 2y 2y

= 3fi+ (y*—8)fs +0.

This implies that
S(fo, ) —>1 0=h

The WHILE loop stops, since G = 0.
G :={f1, f, f3}

Hence, a set of Grobner basis consists of the original second degree polynomials
plus a third univariate second degree polynomial. However, this is not a problem
because the minimal Grobner basis can always be determined. It is readily shown
that Ip(fy) and Ip(f;) divide each other. f; can be obtained as a linear combination
of fi and fs.

f4 = f2_f17
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FIGURE 2.9. The set of four orthogonal lines.

FIGURE 2.10. The variety V(f1, f2) is identical to V(f4, f5).

Finally, multiply f3 through by 2 to get f5 = 2f; = y?—3. This gives the minimal
Grébner basis for I = (fy, f2):

G = {2 —1,4*-3}. (2.9.3)
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Every polynomial in the ideal to which f; and f; belong can be expressed as a
linear combination of the minimal Grébner basis, f, and f;. Geometrically, f, and
f5 represent a set of two pairs of orthogonal lines, shown in Fig. 2.9. Clearly then,
the points shared by the lines © = ++/1 and y = #++/3 are the same as those shared
by 2 + y? = 4 and 22® + y> = 5. The variety V(/f, fo) is identical to the variety
V(fs, f5), as can be seen in Fig. 2.10. The difference is that the system {f4, f;5}

requires less computational effort to solve than {fi, f2}.
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Chapter 3

Manipulator Description

3.1. Holonomic Planar Rolling System

3.1.1. Manipulator Description. A manipulator with 3 closed kinematic
chains, or loops (AgBy, A¢Co, BoCy), is shown in Fig. 3.1. It consists of 7 articulated
rigid elements, which move with constrained relative motion, and a rigid grounded
base. These 8 members are connected by 6 R—pairs and 3 G—pairs. The end—effector,
disk D, is the link -G-G- in each -R-R-G-G-R-R- loop. Legs A, B, and C' each consist

of two links.

Fig. 3.2 shows the disk and a single leg. The first link in each leg is grounded to the
base, connected by an R—pair and to the second link by another R-pair. The circular
disk rolls, without slip, along the straight lines 7S7 (in general, j € {4, B,C}
throughout this text) on the non—grounded links of each of three 2R serial legs.
Although these lines remain in tangential contact with the disk, the points of tangency

can be varied by relative rolling between the lines and disk.

3.1.2. Holonomic Higher Pairs. Referring to Fig. 3.1, the points of contact,
Pé, between the disk and legs constitute three holonomic higher kinematic pairs. The
term refers to the fact that the constraint equations are in integral form, that is, in
terms of displacement. The constraint equation is simply the arc length equation
for a circular arc. It may be expressed in terms of the displacement of the points

of contact along lines /S’ and the appropriate IAC. Furthermore, the pure rolling
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¢

Home (zero) position

FI1GURE 3.1. A planar manipulator with three holonomic higher pairs.

condition and that fact that the displacements are planar allows the simple, linear
arc length equation to express the constraint for the higher pairs. Because of these

related conditions, the higher pairs are holonomic.

3.2. Nomenclature

The IK analysis of a parallel manipulator is the same as that for a serial manipu-
lator, except that the solution is repeated for each leg [20]. Moreover, the kinematic

mapping procedure for the FK analysis also considers each leg separately [33, 34].
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je {a,B,C}

FIGURE 3.2. One of the three 2R legs and the disk.

Hence, joint and position variables along with link design parameters must be de-
scribed so as to allow for analysis of the manipulator on a leg by leg basis. To
minimise the confusion that results from the handling of the kinematic relationships
in component form, a system of left and right sub and super—scripts shall be adopted.
Each joint and position variable is fully identified by left and right sub and super—
scripts while link parameters require only right sub and super—scripts. The system
described below is intended for use with the IK algorithm. Certain modifications are
required for the FK procedure and are detailed in section 3.2.6. Referring to Fig. 3.2,

consider the generic parameter

A
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3.2.1. Left and right sub and super—scripts.

(i) For a joint variable, the right sub-script i, i« € {1,2,3} identifies the joint
number. For each manipulator leg, the joint number at the connection between
the first link and the base is 1. Between the first and second link is 2. The
higher pair between link 2 and the disk is 3.

(ii) For a coordinate axis, the right sub—script ¢, i € {0, 1,2, 3} represents the link
to which the coordinate system is attached. 0 is for the base, 1 is for the first
link, etc..

(iii) The right super-script, j, j € {A, B, C'} denotes a particular manipulator leg.

(iv) The left super-script, f, f € {0, 1,2, 3} refers to the reference frame in which
the variable is represented.

(v) The left sub—script, m indicates the type of planar motion. R is for pure
rotation of the disk about its centroid. 7' is for pure translation of the disk
centre. No left sub—script means either general plane motion, or that the type

of motion is obvious from the context.

3.2.2. Fixed link design parameters.

(i) I/ is the length of link i in leg j and 7 is the radius of the disk.
(i) 12¥ is the projected distance along the horizontal axis of the inertial reference
frame, {{'} between the origins of legs j and k, j € {A, B,C}, k € {A, B,C}.
Note 1: For all analysis in this thesis the non—-moving reference frame,
{#'1, attached to the base of leg A is considered as the inertial reference
frame. In Chapter 5 it is referred to as .

Note 2: If j = k, the value of this parameter, as well as the one below, is

zero since there is no base offset distance in this case.
(iii) lg]; is the projected distance along the vertical axis of the inertial reference

frame, {3'} between the origins of legs j and k, j € {4, B,C}, k € {A, B,C}.
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3.2.3. Joint variables.

(i) 97 is the joint angle i of leg j described in reference frame f with regard to
m type of motion. Positive angles are measured counter—clockwise (CCW).
(i) 2,d} is the distance from point P/ to point PZ measured along yj. Note that

y3 and z are always parallel. So d} could be measured in frame {}} along

<.

z5. However, in order to later derive the manipulator displacement equations
using Denavit and Hartenberg (DH) parameters [17], d must be expressed
in frame {}}. In the home position shown in Fig. 3.2, the points P/ and PZ
are coincident. The origin of the frame { ‘:73 } is superimposed on the point of
contact between the straight line 7S’, and the disk D, and translates with it
along line 757,

3.2.4. Position variables: The Pose Array. The pose of the disk will be
described by a 3 x 1 array. The variables are all expressed in the inertial reference

frame, so the left super—script ‘0’, while always implied, is omitted. The array is

written as:
TE
YE y
Ui
where

xg is the x Cartesian coordinate of the disk centre,
yg is the y Cartesian coordinate of the disk centre,
U is the orientation of the disk expressed as the angle between the xp axis

and the 2t axis. In the home position, the z; axis is parallel to the x{' axis.

Because of the pure rolling constraint, the initial pose of the disk must be consid-

ered in both the FK and IK problems. The variables corresponding to the home, or
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zero position of the manipulator will be scripted with an additional ‘0’. For example,
the pose array in the home position is given by

TEo
YEo
VUEo

3.2.5. Link Reference Frames. The algebra involved in both the IK and
FK problems can be simplified by expressing each joint variable in its own reference
frame. Variables in the cascaded reference frames are transformed to other reference
frames as the problem requires. Careful selection of frame origins further simplifies
computation. Hence, link reference frames (with the exception of frames E and T') are
assigned using the well established procedure developed by Denavit and Hartenberg

[17, 26] and adapted here for higher pairs. The procedure is summarised below [16]:

(i) Identify the point of intersection, or the common normal of neighbouring joint
axes ¢ and ¢ + 1. Assign the origin of the frame for link ¢ at the point of
intersection, or where the common normal meets the ;" axis.

(i) Assign the z; direction pointing along the i joint axis.

(iii) Assign the z; direction pointing along the common normal, or if the axes
intersect, assign x; to be normal to the plane containing the two axes.

(iv) Assign the y; direction to complete a right-handed coordinate system.

This procedure introduces the planar systems (x,y) and (z, z), see Figs. 3.1 & 3.2.
These systems are used for their computational convenience when concatenating the

4 x4 DH parameter transformations (section 4.2) to derive the displacement equations.

3.2.6. Additional Nomenclature for the FK Problem. Additional nomen-
clature is required to suit the demands of the FK problem. In order to make the
transform between actual and pseudo inputs (introduced in section 5.1.2) it is conve-

nient to have two reference frames, £ and T', attached to the disk. Both E and T
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translate with the disk, but only E rotates with the disk. The origins of £ and T are

both incident on the centre of the disk.

The R—pairs connecting two links in a leg shall be referred to as knee joints A, B,
and C. Recall that 2d‘§, j € {A, B,C} is the distance of the contact point measured
along the y% coordinate axis, which is always parallel to the rack. Observe that the
Euclidean distance between the knee joint and the centre of the disk is a function
of this distance. Also, the three normals through each contact point are all incident
on the disk centre. The change in the angle a normal makes with respect to the
non-rotating frame, 7', is related to the change in position of the contact point along

the rack by

A = rAT.

3.3. Mobility Analysis

An unconstrained rigid body in the plane has three DOF. It can translate in
two mutually orthogonal directions in the plane and it can rotate about any axis
perpendicular to the plane. This is a special case of general 3 DOF motions in 3—
space, where the 3 freedoms can be any of the (§), i.e., 20 permutations of translations

and rotations.

[ unconstrained rigid links have 3(I—1) relative degrees of freedom, given that one
of the rigid links is designated as a non—moving reference link. Any joint connecting
two neighbouring bodies removes at least one or at most two relative DOF. If the
joint removes no DOF then the bodies are not connected. If the joint removes three

DOF then the two bodies are a rigid structure.
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3.3. MOBILITY ANALYSIS

The general mobility formula for planar motion, often referred to as the Chebyshev—

Griibler-Kutzbach formula [2, 30], is expressed as:
J
3(1—1)—> u; = DOF, (3.3.1)
i=1

where [ is the number of links, u; is the number of constraints imposed by the i,

joint, and j is the number of joints.

The three legged manipulator shown in Fig. 3.1 is characterised as follows: In-
cluding the base, there are eight links; six R—pairs take away two freedoms each;
the three G—pairs also take away two freedoms each. Using the Chebyshev-Griibler—

Kutzbach formula:
38—1)—6(2)—3(2) = 3. (3.3.2)

Since there are 3 DOF, three independent coordinates are required to specify the pose

of the disk.

It is worthwhile to note that the disk has 3 DOF regardless of the number of
grounded 2R legs to which it is connected by pure rolling. This is proven by showing
the left hand side (LHS) of equation (3.3.1) is always equal to 3. Equation 3.3.1 may

be re-expressed as:
3(l-1) —25 = DOF, (3.3.3)

since each joint removes two DOF. The ground link and disk always count as two
links and each of the n legs is composed of two links, thus for n legs the number of

links is
[ =2n+2. (3.3.4)
Furthermore each leg has three joints, so:
Jj = 3n. (3.3.5)

Substituting equations (3.3.4) and (3.3.5) into the LHS of equation (3.3.3) gives

99



3.4. TANGENCY CONDITION

32n+2—1)—2(3n)
= 6n+3—-06n
= 3.

Therefore, n can be any positive non—zero integer. This implies the disk may
have any position and orientation, within the physical limits of its workspace. These

3 DOF are independent of the number of 2R legs upon which the disk rolls.

3.4. Tangency Condition

By virtue of the pure rolling constraints, the straight lines along which the disk
rolls must always remain tangent to the disk. Consider a line and a circle in the

Euclidean plane. The equation of the line can be represented by the linear equation
ax + by +c =0, (3.4.1)

for constant coefficients a, b, ¢, and variable points (x,y). A circle with centre (., y.)

and radius r is given by
(=) + (y —ye)® =12 = 0. (3.4.2)

Equation (3.4.1) can be solved for y to give the familiar slope—intercept form of the
line, and the expression is substituted into equation (3.4.2). The result is expanded

in powers of x which yields a quadratic:

Az 4+ Bx +C =0, (3.4.3)
where:
fo T
e ]

C = ="+ ((e/b) +y)"
To satisfy the tangency condition, the discriminant of the quadratic must vanish:

vVB? —4AC = 0.
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The discriminant itself is a quadratic in terms of the constant a:

(22 — r?)a® + (c + by.)2z.a + (bPy? — b*r® + 2bey,. + ¢*) = 0. (3.4.4)

This condition is necessary, but not sufficient to guarantee pure rolling contact.
However, all solutions to the FK and IK problems must satisfy this condition. FK

and IK algorithms can use this condition as a check on the validity of solutions.

3.5. Commutative Disk Displacements in the Plane

Recall section 2.1.2: The group operator defined on D, %, is called “product”. x
represents successive implementations of given isometries. Now, any displacement of
the disk, that is, any product of translations and rotations about arbitrary parallel
axes normal to the plane may be decomposed into the product of a single translation of
the disk centre and a single rotation through a finite angle of the disk about its centre
[14]. Furthermore, since it is the centre of rotation which is translated, these specific

translations and rotations commute. The latter claim is shown by the following: Let

Ts = Translation through distance d,

Ss = Rotation through angle ® about centre S.

Consider the arbitrary motion of the disk along some path between an initial
position, F;, and a final position, Py, shown in Fig. 3.3. 7; is the translation through
distance d of the disk centre from P; to Py. Although many paths are associated with
the isometry 7,4, the distance d is independent of the path between the two points.

In fact, d is the sum of the directed translations along any path between P; and P.

Along any arbitrary path, the disk orientation can change such that when it
arrives at Py, a reference line painted on the disk has been rotated through an angle ®.
This angle is the sum of all angular displacements of the disk about arbitrary parallel

axes (perpendicular to the plane of the disk) encountered along the path. This sum
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Arbitrary path

FIcURE 3.3. Arbitrary motion of the disk between two points.

may be expressed as the difference between ®; and ®;, such that ®; = ®;(mod2r).
It follows that the sum of all angular displacements along the path may be expressed

as a single rotation of the disk about its centre, Sg, where & = &, — ;.

Thus, any arbitrary motion of the disk may be represented by the product of a
single translation of its centre and a single rotation about its centre. The centre of
the disk is a point. Points can not rotate, they can only translate. Since the centre
of rotation is translated it is evident that S may occur independently from 7;. It

then follows that:

7:1*8.@ == S@*E

3.6. Special Geometric Manipulator Properties

The general motion of the disk in the plane involves relative motion between the
disk and each serial 2R leg. The rolling contact is conveniently modelled as multiple
racks and a single pinion. Each rack can roll on the pinion, the pinion can roll on the
racks, or there can be a combination of the two motions. For general planar motion

the system, with link frames as assigned in Fig. 3.1, has the following properties:
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3.6. SPECIAL GEOMETRIC MANIPULATOR PROPERTIES

If the pinion rolls on one rack, then it must roll on all.

(ii) As a consequence of (i), if one of the higher pairs is locked, the disk can not

(i)
(iv)

rotate about its centre.

Any or all of the racks may roll on the pinion.

If, during general motion, the pinion is stationary with respect to one rack
while the other racks roll on the pinion there are two possibilities. Consider
leg A, for example. Suppose that the higher pair in this leg is locked. First, if
094" is constant, the motion of the pinion is pure curvilinear translation in the
fixed base frame. Second, if %94 changes during the motion, then the pinion
rotates about a centre other than its own axis by an angle equal to the change
in %92, Regardless, there can be no rotation of the disk about its centre, since
one of the higher pairs is locked. Such a motion would violate (ii).

If A%d4 has the same magnitude but opposite sense as either A%2d% or A%d§,
then the motion of the pinion is pure rectilinear translation of its centre. Pure
curvilinear translation can also occur if the magnitude condition is violated
however, the opposite sense condition must be met.

If A%dy, A%dP, and A2dS have the same magnitude and sense, then the motion

of the pinion is pure fixed axis rotation about its centre.
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Chapter 4

The Inverse Kinematics Problem

4.1. Approach

The TK problem involves the determination of a set of feasible joint variables
required to attain a desired pose. It may be stated succinctly as: given [zg, yg, 9g]"
determine [°97, ') 2dJ]". A complicating factor in general plane displacement is the
ambiguity that the rolling constraint introduces. That is, ¥, the desired final disk
orientation does not divulge how much of the new position was achieved by rotation
of the grounded and non-grounded links and how much was achieved by pure rolling
between the disk and the legs. By how much has the disk rolled on the racks and by
how much has each rack rolled on the disk? Is there a combination, and if so, what
is the ratio? These questions lead to difficulties in the calculation of the joint offsets,
Qdé. To address this problem the special properties of the manipulator (section 3.6)
and the group properties of D (section 2.1.2) are invoked. Any feasible displacement

of the disk can then be decomposed into a pure translation of the disk and pure, fixed

axis rotation about the centre of the disk (see section 3.5).

Given both the desired pose array and the TAC, a set of intermediate joint vari-
ables may be calculated for the pure translation component. The translation set may

then be combined with a subsequent set calculated for the pure rotation component.



4.2. DERIVATION OF DISK DISPLACEMENT EQUATIONS

As shown in section 3.5, these rotations and translations commute. Hence, the order
of rotation and translation is not important. This last fact will be used for the sake
of convention: The intermediate solutions for pure translation will be calculated first.
Then, using this intermediate set as new initial conditions, solutions will be generated
for fixed axis rotation. The final solution set is simply the combination of the two

solution sets.

A result determined in section 4.3.3 is that the upper bound on the number of
solutions to the IK problem is 4", where n is the number of legs. For the three—
legged version, this means that there are as many as 64 real solutions. The aim was
to develop an algorithm to determine solutions and not to generate vast tables of
data. Since the solutions are not coupled from leg to leg we can, without loss of
generality, develop the algorithm using the two—legged version as the model. The
solution algorithm can then be applied to similar manipulators with any number of
2R legs. It is for this reason that the two-legged version, shown in Fig. 4.1, is now

considered.

4.2. Derivation of Disk Displacement Equations

Input-output displacement equations for each leg are required for the IK algo-
rithm. The inputs for a given leg are the location of the base in the inertial reference
frame; the three joint parameters, %97, "9, and 2d; the IAC. The outputs are the
disk position and orientation, zg,yg, and Yr. The displacement equations for the
two—legged version of the manipulator are readily obtained by inspection. However,
the DH notation provides an excellent means for ‘accounting’ as well as keeping the
problem ‘general’. After assigning link reference frames by the procedure given in

section 3.2.5, the following definitions of link parameters apply [16, 17]:
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Home (zero) position

Ficure 4.1. Disk platform with two 2R legs.

a; = distance from z; to z;,; along x;.
a; = angle between z; & z;.1 about x;.
d; = distance from x; | to x; along z;.
9¥; = angle between z; ; & x; about z;.

Using homogeneous Cartesian coordinates [52] with a homogenising coordinate
of z;, = 1, the relative displacement between adjacent links can be expressed as a

linear transformation of the form:

z-l—lx — E—HTZX,

where “!'x and x are the position vectors of points in reference frames {i + 1} and

{i} respectively, with x having the form:

S RS S]

Either y or z will be set to zero, depending on which reference plane is used (see Fig.

4.1). The additional dimensions are included for the sake of computation and have
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4.2. DERIVATION OF DISK DISPLACEMENT EQUATIONS

no effect on the outcome. The operator *'T is a 4 x 4 homogeneous transformation
matrix which maps vectors defined in frame 7 into frame ¢ + 1. Employing the DH
parameters, it has the form:

Clgi —Slgi 0 a;—1
s¥;coi_y cjecon_q  —Soy_1 —Soy_q1d;
8191'8&1'_1 0191'80[1'_1 CQ;_q Ca/i—ldi

0 0 0 1

i+l
=

where ¢ = cos and s = sin.

A transformation matrix must be calculated for each link. The matrices may
then be concatenated, in the appropriate order, to obtain the transformation matrix
which relates the pose of the disk in the disk frame, {E} to the pose of the disk in
the base frame of interest. Since the base frame {{'} has been selected as the inertial
reference frame, the locations of the bases of all other legs must be expressed with
respect to {5'} and incorporated into the calculations. The displacement equations

for each leg may then be obtained, by inspection, from this transformation matrix.

After some algebra the following equations are obtained (note the right super—

script is dropped, since all variables refer to the current leg):

K, = lLici+ (ls +7r)cip — dzsia, (4.2.1)
K, = lisi+ (lo +1)s12 + dscia, (4.2.2)
where
K, = zp— lfﬁf,
Ky = yg— léyk,
c = cos ("),

Clas = COS(0191+1192),
ST = sin(oﬁl),

S12 = sin (0191 + 1192).
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Note that for leg A, K, = xp, and K, = yg, because of the location of the origin of

the inertial reference frame.

4.3. Inverse Kinematics Algorithm

4.3.1. The Four Algorithm Steps. Since solutions are not coupled between
legs, [20], each leg is treated as an open four—bar chain and solved for separately. A
convention mentioned in section 3.2.2, is that the inertial reference frame will remain
coincident with the fixed reference frame on the base of leg A. The choice of leg A is
arbitrary, however any subsequent legs will be labelled B, C, ... ,j, CCW from leg A.
Leg A will always be solved for first. The inverse kinematics algorithm is summarized,
with reference to Fig. 4.1, in the following four steps. Note the dependence of the
results on the initial conditions. This dependency is what removes this manipulator
from the more common group of SG type planar platforms jointed exclusively with

lower pairs.

Step 1. Pure translation: Remove the higher pair connection with all but the leg
being considered. The first iteration concerns leg A. Lock the higher pair so that
A?d{ = 0 and calculate the joint angles required to reach the new position given
by the ordered pair (zp,yg). Call the new angles 9975, L5, and 594 (recall that

09A _ 0 9A 1 9A
T,l920 - T,&IO + T,l920 )

Step 2. Remove artificial angular offset: Recall special property (iv) in section
3.6: If the disk is stationary with respect to one rack while in motion, then the disk
orientation can change. Since pure translation of the disk is required, any angular
offset, created by step 1 must be removed. This is accomplished by an imaginary
fixed axis rotation about the disk centre equal in magnitude, but opposite in sense
to %04, Calculate 2d5', which is the joint offset required to effect the imaginary

rotation. Recalculate the joint angles. These are the joint angles necessary to cause
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the pure translation of the disk centre. Call these intermediate angles 3097, 15!, and
9951 Of course, if there is no rotation component to the motion, these are the final
joint angles. If there is no translation component, these angles are the same as the

initial joint angles.

Step 3. Pure rotation: Recall special property (vi) in section 3.6: If A2d3' (ie.,2ds —
2d4) and A2d? have the same magnitude and sense, then the motion of the disk is
pure rotation about its centre. Hence, A%d4 is simply calculated from the arc length
subtended by Adp (ie., ¥p — Ugo), and is the same for all legs. Using the joint
variables from step 2 as initial conditions and the desired disk angle ¥g, calculate

094, 195!, and 2d3.

Step 4. Repeat Steps 1, 2, and 3 for the remaining legs.

4.3.2. Closed Form Analytic Solution. Once the displacement equations
are known, the following procedure may be used to solve for the set of joint variables
required to achieve a desired feasible pose. Again, since the solution proceeds on a leg—
by-leg basis all variables correspond to the current leg, so the right superscript may
be omitted. Equations (4.2.1) and (4.2.2) are squared and added. %9, is eliminated

using the identities:

Ci12 = C1C2 — 5182,

S19 = (€182 + S1Co.
The following equation in two unknowns, ', and 2ds, is obtained:
0 = 20((Iy +7)cy — 2dssy) + Io(2r + 1y) + 1 + *d>

+r’ — K} — K. (4.3.1)

The variable 2d3 can be determined because of special property (vi) (in section

3.6) and the fact that the general plane motion is decomposable into pure translational
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and rotational components. In the algorithm, step 1 requires that the higher pair be
locked. Hence, there is no change in 2d;. Step 2 recovers the angular offset artificially
caused by step 1. This is accomplished by fixed axis rotation of the disk about its
centre. Step 3 is the actual pure rotational component of the motion. Again, this is
a fixed axis rotation about the disk centre. Thus 2d3 in each of steps 2 and 3 is given

by:

Step 2: %vdg = 2d30 — T(%ﬁgg — 0’(920), (432)

Step 3: %d3 =2ds + 795 — Ipo). (4.3.3)

Determining the joint offsets using the pure rolling constraint equations guarantees
that the tangency condition is met since tangency is a necessary (although not suffi-

cient) condition for pure rolling.

Equation (4.3.1) can now be expressed as a function of just one variable, 9,:

1 K, + 2VK,
tan = (1y) = | ———" 4.3.4
w30 = | P (1.3.0)
where
Kl = 4l12d37
Ky = 20(15+2d5 4+ %) + dlyr(I} = *d5 + K + K)
—2%d5 (15 + ) + 2(K + K)) (I3 + 15 +°d5 + 1)
—2K. K, — 4lyr — 6r°13 — 4r®ly — I} — 1
—dy — 1t — K; — K,
Ky = B4+15+%d3+r— K, — K} +2l(r — 1)
—2117".
Solving (4.3.4) for 19, yields two solutions:
K, +2VK
1y = 2tan 1 | =2 (4.3.5)
2K
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Solving for angles using tan ~! has an inherent ambiguity concerning the quadrant
in which the angle lies. However, this solution involves the half angle and hence the

quadrant is unique.

4.3.3. Upper Bound on the Number of Solutions. For a general displace-
ment, the four algorithm steps produce the following: From step 1 two values of L1y
are obtained from equation (4.3.1). Corresponding to each of these there is a unique
value of 9919 that will satisfy both equations (4.2.1) and (4.2.2). From step 2, there
is one value of 2.d3 obtained for each value of Y45y determined in step 1. Also, two
values of each of 19, and %, are obtained. Step 3 yields two values for 2ds, one for
each of the values of 2.d; determined in step 2. For each value of ?d3 there correspond
two values for each of ', and °Y,. These are the elbow-up and elbow-down solutions.
Thus, for each leg there are up to four solutions. The solutions for each leg are un-
coupled. Hence, for a manipulator with n legs, there are 4™ solutions, some of which
may be complex conjugate pairs. It must be noted that not all configurations can be

achieved by smooth motions from the home position.

4.4. Examples

The following three numerical examples deal with 1) pure rotation of the disk
about its centre; 2) pure translation of the disk, no disk rotation; 3) combined trans-
lation and rotation. In all three examples, the home position shown in Fig. 4.1 is the
initial position. The fixed link parameters and initial conditions are as follows, where

lengths are in “generic” units and angles are in degrees:

Initial Pose Array

TEo 5v/2
YEO = 9\/5
Uro 0°
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Fixed Link Parameters

r = 4
B = 10v2
1B = g
o= =4
=15 =10

Initial Joint Parameters
2dyy, = 2dB = 0
094 = 135°
09l = 45°
119§‘0 = 270°
B = 90°
09 = 45°
Oyl = 135°

EXAMPLE 4.4.1.

Pure Rotation: Pure rotation of the disk about its centre is the simplest motion
for obtaining solutions. There are no intermediate joint parameters to calculate. As

a result, a maximum of only four solutions may be expected.

In this example, the disk centre remains in its home position while it rotates

through 15°. The desired pose array is:

TE 5v/2
YE = 9v2
Vg 15°

The four solutions are given in Table 4.1 at the end of the chapter and are represented

graphically in Fig. 4.2.

EXAMPLE 4.4.2.

Pure Translation: In this example, joint parameters are calculated for the case

of pure translation of the disk. Despite the fact that no real rotation of the disk
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FIGURE 4.2. The solutions for pure rotation from Table 4.1.

occurs, the algorithm requires the calculation of a set of intermediate joint variables.

The desired pose array is:

Tp 2.0710
ye | = | 11.7280
I 0°

Sixteen real solutions were obtained. The first four, from Table 4.2 at the end of

the chapter, are shown in Fig. 4.3.

'~ ‘\~_
< SOL'N B2
soL'n B1 AT

X,

SOL'N Al-A4

SOLUTIONS 1-4

F1cURE 4.3. The first four solutions for pure translation from Table 4.2
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EXAMPLE 4.4.3.

General Plane Displacement: The displacements of Examples 4.4.1 and 4.4.2

are combined to give a general plane displacement. The desired pose array is:

T5 2.0710
ye | = | 11.7280
I 15°

The first four of the sixteen real solutions obtained are illustrated in Fig. 4.4. All

sixteen solutions are given in Table 4.3 at the end of the chapter.

SOL'N B2

\\\\
S\ SOL/N Ba N
N N

O\ .

SOL'N B3 .\ Ny

\)\ SOL'N BL
O i
i
i

SOL'N Al-A4

SOLUTIONS 1-4

FIGURE 4.4. The first four solutions for general displacement from Table 4.3.

4.5. Tables of Solutions

TABLE 4.1. 4 real solutions for Example 4.4.1.

[ Soln T | 2 [ 3 1
97 (deg) || 135.5602 | 135.5602 | -13.6694 | -13.6694
94 (deg) || 265.1628 | 265.1628 | -273.7183 | -273.7183
22 1.0472 | 1.0472 | 1.0472 | 1.0472
97 (deg) || -166.3306 | 44.4398 |-166.3306 | 44.4398
"7 (deg) || 265.1628 | -273.7183 | 265.1628 | -273.7183
27 1.0472 | 1.0472 | 1.0472 | 1.0472
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TABLE 4.2. 16 real solutions for Example 4.4.2.

[ Solm [ 1 | 2 | 3 | 4 ]
°07 (deg) || -165.1389 | -165.1389 | -165.1389 | -165.1389
"5 (deg) || 235.8174 | 235.8174 | 235.8174 | 235.8174
2dy -1.3830 [ -1.3830 | -1.3830 | -1.3830
07 (deg) || 176.0545 | 95.5975 | 176.1665 | 95.4856
92 (deg) || 306.3702 [ -311.9312 | 312.2698 | -305.7674
2d? 0.6799 | 0.6799 | -0.7953 | -0.7953
[ Solm [ 5 | 6 | 7 [ 8 ]
°07 (deg) || -34.8899 | -34.8899 | -34.8899 | -34.8899
"5 (deg) || -224.5344 [ -224.5344 | -224.5344 | -224.5344
2dy -1.3830 [ -1.3830 | -1.3830 | -1.3830
07 (deg) || 176.0545 | 95.5975 | 176.1665 | 95.4856
92 (deg) || 306.3702 [ -311.9312 | 312.2698 | -305.7674
2d? 0.6799 | 0.6799 | -0.7953 | -0.7953
[ Solm [ 9 | 10 | 11 | 12 ]
°0% (deg) || -158.0567 | -158.0567 | -158.0567 | -158.0567
"5 (deg) || 238.4847 | 238.4847 | 238.4847 | 238.4847
2dy -3.5019 [ -3.5019 | -3.5019 | -3.5019
07 (deg) || 176.0545 | 95.5975 | 176.1665 | 95.4856
92 (deg) || 306.3702 [ -311.9312 | 312.2698 | -305.7674
2d? 0.6799 | 0.6799 | -0.7953 | -0.7953
| Solm || 13 | 14 | 15 [ 16 |
07 (deg) || -41.9721 | -41.9721 | -41.9721 | -41.9721
97 (deg) || -210.3971 [ -210.3971 | -210.3971 | -210.3971
2dy -3.5019 [ -3.5019 | -3.5019 | -3.5019
0% (deg) || 176.0545 | 95.5975 | 176.1665 | 95.4856
92 (deg) || 306.3702 [ -311.9312 | 312.2698 | -305.7674
2d? 0.6799 | 0.6799 | -0.7953 | -0.7953




4.5. TABLES OF SOLUTIONS

TABLE 4.3. 16 real solutions for Example 4.4.3.

[ Solm [ 1 | 2 | 3 | 4 ]
°07 (deg) ]| -166.3263 | -166.3263 | -166.3263 | -166.3263
g (deg) || 232.5227 | 232.5227 | 232.5227 | 232.5227
2dy -0.3358 [ -0.3358 | -0.3358 | -0.3358
07 (deg) || 177.6881 | 93.9640 | 175.7910 [ 95.8611
92 (deg) || 300.1970 | -314.2627 | 308.4310 | -310.4928
2d? 1.7271 | 1.7271 | 0.2519 [ 0.2519
[ Solm [ 5 | 6 | 7 [ 8 ]
07 (deg) || -33.7025 | -33.7025 | -33.7025 | -33.7025
"y (deg) || -229.7750 | -229.7750 | -229.7750 | -229.7750
2dy -0.3358 [ -0.3358 | -0.3358 | -0.3358
07 (deg) || 176.0545 | 95.5975 | 175.7910 [ 95.8611
92 (deg) || 300.1970 | -314.2627 | 308.4310 | -310.4928
2d? 1.7271 | 1.7271 | 0.2519 [ 0.2519
[ Solm [ 9 | 10 | 11 | 12 ]
°0; (deg) || -162.3804 | -162.3804 | -162.3804 | -162.3804
"y (deg) || 237.8740 | 237.8740 | 237.8740 | 237.8740
2d -2.4548 | -2.4548 | -2.4548 | -2.4548
0% (deg) || 176.0545 | 95.5975 | 175.7910 [ 95.8611
92 (deg) || 300.1970 | -314.2627 | 308.4310 | -310.4928
2ds 1.7271 | 1.7271 | 0.2519 [ 0.2519
| Solm || 13 | 14 | 15 [ 16 |
07 (deg) || -37.6483 | -37.6483 | -37.6483 | -37.6483
"5 (deg) || -217.9837 | -217.9837 | -217.9837 | -217.9837
2d -2.4548 | -2.4548 | -2.4548 | -2.4548
0% (deg) || 176.0545 | 95.5975 | 175.7910 [ 95.8611
92 (deg) || 300.1970 | -314.2627 | 308.4310 | -310.4928
2d? 1.7271 | 1.7271 | 0.2519 [ 0.2519




Chapter 5

The Forward Kinematics Problem

5.1. The FK Problem Formulation

5.1.1. Difficulties. The FK problem is conventionally expressed as a transfor-
mation of the position and orientation of the end effector from a joint space represen-
tation to a Cartesian space representation. That is, given a set of n joint variables,
one for each n degrees of freedom, determine the position and orientation of the end
effector with respect to a non—moving reference coordinate system. The pure rolling
nature of the higher pairs makes this manipulator markedly different from planar SG
type platforms because the pure rolling condition renders FK solutions completely
dependent on the IAC. The FK analysis can not be reduced to the planar SG case be-
cause no equivalent mechanism exists which can exactly reproduce a rack—and—pinion
motion [30]. For this reason, and those discussed in section 4.1 associated with the
presence of the higher pairs, the methods in [54] and [21] can not be used. Hence

the FK problem must be reformulated.

5.1.2. Input Variables: Pseudo Inputs. A way to decompose a general
displacement of the manipulator to determine the contributions of the racks rolling on
the disk and the disk rolling on the racks has proven elusive. As a result, conventional

joint variable inputs can not be used. This is because each type of rolling may produce



5.1. THE FK PROBLEM FORMULATION

the same change in the location of the contact point but yields an entirely different
displacement. One solution is to modify the problem by using instead a set of pseudo
inputs from which the position and orientation of the disk in the non—moving reference

frame can be determined.

The pseudo inputs are the position of the knee joints in the disk frame, F, as

described in section 3.2.6. These positions are
EA
EB |. (5.1.1)
EC
Each position is specified by a 2 x 1 array of Cartesian coordinates expressed in F,
hence six pseudo input variables are required. Because the knee joints are constrained
to move on circles, the position and orientation of the disk in the non-moving frame

Y} can be determined with the kinematic mapping discussed earlier in the same way

as (33, 34|.

The actual joint inputs are the variable joint lengths 2d}, j € {A, B,C}. These
lengths are the change in distance of the contact point measured along the yg coor-
dinate axis, which is always parallel to the rack. This is why the solution is coupled

with the TAC. They are related to the pseudo inputs in the following way:

T pJ _ 02¢ —SE(Z) E‘l.]2
] - Ll 2] o
Ty 1 _ [ (B+r)cR0) — *dis™0) (5.13)
Tyl (I3 + r)s™0) + 2dic¥0y |’ o

where ¢ = cos, s = sin, and ¢ is the orientation angle of the disk. T is the non—

rotating reference frame incident on the origin of E.

Since the reference frame 7T translates with the disk, 7¢p = ¢ and, of course,
Ty = *9. So, the pseudo inputs are theoretically valid as input parameters, except
that the actual inputs can not be specified until the disk orientation is known. The

higher pair variables along with the IAC must be specified or the disk orientation can
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5.2. FORWARD KINEMATICS ALGORITHM

not be determined. A cart—before—horse scenario, to be sure. While this approach to
the FK problem is not necessarily practical, it is a start. To the best of our knowledge

the FK of such a planar parallel platform with higher pairs have never been addressed.

Using the pseudo inputs and IAC, the FK problem of the manipulator shown in
Fig. 3.1 can be stated in the following way: Given the coordinates of the three base
points Ag, By, Cy in an arbitrary fixed coordinate system, ¥, the coordinates of the
knee joints A, B, FC expressed in an arbitrary coordinate system, F, which moves
with the disk, the fixed lengths of each link, l‘Z, i € {1,2} and j € {A, B,C}, and
given the radius of the disk, find the position(s) and orientation(s) of the disk such
that the knee joints “A, ¥ B, C can be joined to the base points Ay, By, Cy with legs

of the given lengths.

5.2. Forward Kinematics Algorithm

To obtain the solutions for a given set of inputs, begin by removing the disk
connections with legs B and C'. Observe that the higher pairs are locked by virtue of
the specified input parameter. That is, there can be no relative motion between the
disk and the rack because that would change the relative location of the knee joint
in the moving coordinate system, F. The knee joint ¥ A is constrained to move on a
circle with A, as its centre and radius [{. Furthermore, the rigid body comprised of
link /3' and the disk can rotate about ” A. Since this is a two parameter motion it must
correspond to a two parameter set of points in the image space. This set of image
points is a surface, called a constraint surface, H. The equation of H is found using
equation (2.3.20) and the fact that the moving point A is bound to a circle. Note
that the rack and pinion joints can be actuated by means of power transmission from
motors located on the base. The advantages of parallel architecture are contracdicted

by placing the motors on the moving platform.

79



5.2. FORWARD KINEMATICS ALGORITHM

The general homogeneous equation of this circle is determined as follows: A circle
with a centre described by the homogeneous coordinates (X, : Y. : Z) and radius r

has an equation
(X = X2+ (Y =Y. 2) - r*Z* = 0. (5.2.1)

Expanded, this becomes

X+ Y? =2XX.Z -2YY Z+ X2+ Y272 —r* 7" = 0. (5.2.2)
We can set
i = —X,
Cy, = Y,

03 = X02+}/;2_T27
and substitute these constants back into equation (5.2.2) to get
X2+ Y? 420, X7 +20,Y 7 + C3 7% = 0. (5.2.3)

Recall from Chapter 2 that the equation of the image point (equation (2.3.20)) is

given by:
X (XZ — X;) —2X3X4 2(X1X3 + X2X4) T
Z 0 0 (X2 + X2) 2

Substituting the expressions for X, Y, Z from equation (5.2.4) into equation (5.2.3)

gives the quadric surface
H: 0=22(X?+X3)+ (1/4)[(2* + y*) — 2C 22 — 2Cyy2 + C32%] X3 +
(1/D)[(2* + y*) + 2C 22 + 2Coy2 + C32°] X7 + (Ch2 — )2 X, X3 +
(Cyz — y)2 X0 X3 — (y + C22)2 X1 Xy + (Cr2 + 2)2 X X +

It is shown in [8] that this quadric constraint surface is a hyperboloid containing

the isotropic points Ji(1:7:0:0) and Jo(1: —i:0:0). When the other two points
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5.3. EXAMPLE

TABLE 5.1. Input parameters.

)3} E

T |y v | "y
A 00 [FA] 9] -11
By | 1310 [[PB] 9 | -11
Col10[26] 2C9.5]10.5

[F=4[L =4[H=10]j € {4, B.C}]

B and C' are analyzed in turn, three hyperboloidal surfaces are generated, H,, Hg,
and H¢, which correspond to the complete range of possible displacements around
the points still connected. The points of intersection of H,, Hg, and Hg represent
the positions of the end—effector where its three knee joints are on their respective
circles. Therefore, these points of intersection constitute the solution(s) to the FK

problem.

It must be noted that, according to Bézout’s theorem [30], three second order
surfaces can intersect in at most eight points. However, the isotropic points .JJ; and
Jo are common to all such constraint hyperboloids, and are therefore always in the
solution set. Recall that points with X3 = X, = 0 correspond to no real displacement.
Since only real solutions are of interest, the isotropic points are discounted. Hence,
there are a maximum of six real solutions to the FK problem for manipulators of this

type, which confirms the already well known result for planar SG type platforms [31].

5.3. Example

EXAMPLE 5.3.1.

5.3.1. Determining the 3 Hyperboloids. Table 5.1 gives the coordinates of
the base points Ag, By, C in the fixed frame > with origin at Ag, the input variable
coordinates of the knee joints YA, ¥ B, £C in the moving frame E, with origin at
centre of the disk, D, along with the fixed link lengths ¢/, i € {1,2}, j € {A,B,C}

and radius of the disk r.

81



5.3. EXAMPLE

Substituting the data from Table 5.1 into equation (5.2.5) gives the following

three constraint surfaces in the image space:

93
Hy: X7+X5+ 7X§ +46.5X7 +9X1 X3 + 11X, X3 + 11X, X,

—9X, X, =0 (5.3.1)
121
HB . X12+X22+g49X§ TX2—22X1X3—4X2X4+11X2X3
+ 11X, X, =0 (5.3.2)
3393 449 ., 39 73 31
Ho: X74+Xo+ "2 X2+ —X7— X1 X3 — —Xo X3+ =X X4
8 8 2 2 2
1

These constraint surfaces in the image space are shown from two different per-

spectives in Fig.’s 5.1 and 5.2. They were generated using Husty’s parametrization

R .|
B

where m = Pyl + Cy — 5(Cy, — Pal), n = s("y] — Cy) — C, — Pal and t € [0,27],

[35]:

rv/s? + 1cost—|—m-|
rv/s? + lsmt+nJ,

NN

s € [—00, +00.

Setting the range of parameter s (ie., X3) to be [—1,+1], the constraint surfaces
are clearly seen to be skew hyperboloids in Fig. 5.2. Decreasing this range to s =
—0.1 = +0.1 in Fig. 5.1, the line of intersection between two of the surfaces clearly
intersects the third surface in a single point. This single point represents one of
the possible six real solutions. The remaining common intersections are not visible

because of the display parameters.

5.3.2. Determining the Minimal Univariate Polynomial. Using the Gr-
Obner bases package in the computer algebra software MapleV the equations of the

three hyperboloids are easily reduced to a minimal sixth degree univariate polynomial
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FIGURE 5.1. The constraint surfaces in the image space.
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FI1GURE 5.2. The range set to s = —0.1 — +0.1.

in X3. The default deglex ordering was used with X; > X, > Xj.

5.3. EXAMPLE

Since X, is the

homogenising coordinate, its value is arbitrary, hence it is set Xy = 1. The following
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reduced Grobner bases were obtained:

G
G

Gs

Gs

124X, X3 — 403X2 — 20X, + 572X3 + 65

2945X, X5 — 17670X2 — 279X, — 242X, + 653X3 — 1523

11780X7 + 11780X, + 1669815X3 + 141856 X, — 78272X, — 517792X5 +
559207

11403040X, X, — 35528480 X2 — 1418980515X2 — 16692632X, —
208829944 X, + 83706384.X 5 — 204226539

3161950743325 X5 + 14774004800X 7 — 11812714672X, — 56456371456 X, +
191339270949.X 5 — 44188577829

3172473715398785600 X5 — 25844720185986858400.X 2 —
82537321128642549525X 2 — 37932481840582033488 X5 +
63672525238168620792.X, + 3214412082685214664.X,

—21984850464217606317

This gives six nonlinear equations, some with very large coefficients. However,

since these equations represent bases, they are independent, so any three may be used

to solve for the three unknowns. The first three bases are selected, as they appear

to be the easiest to work with. A univariate polynomial in X3 is obtained using the

elimination method on G, G5, G3. The resulting polynomial is

26131824325 X5 — 12818984220X 7> + 2608119419X 5 — 489175320 X +

88526279X2 — 7719420X; + 171025 (5.3.4)

The roots of this polynomial are then obtained and the set of equations H4 =

0,Hg = 0,Hs = 0 can now be solved for the remaining variables X5, X3. The
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following solutions are obtained:
Sy Xy = —5.35817508, Xy = 1.69375244, X35 = 0.18597447
Sy Xy = —4.23444169, X, = 3.13635972, X3 = 0.15325037
Sy X; = —4.7T1288212, X, = 2.25800666, X5 = 0.20703047
Sy Xy =-6.90743973, Xy = 2.76957064, X35 = 0.03229377
S5 Xy = —4.306063 + 2.801994:, X5 = 0.652824 + 0.1026591,
X3 = —0.043999 + 0.180029¢
Sg: X; = —4.306063 — 2.801994:, Xy = 0.652824 — 0.1026591,

X3 = —0.043999 — 0.180029:

There are four real and one set of complex conjugate solutions for a total of six
solutions, as expected, since two of the possible eight correspond to J; and .J,. Back
substitution of the solutions into equations (5.3.1), (5.3.2), and (5.3.3) verifies the
four real solutions. The position and orientation of the end-effector corresponding
to each of these solutions in terms of the displacement parameters a, b, and ¢ can be
found by substituting the solutions for X, X5, X3, along with X, = 1 into equations
(2.3.21). The subsequent four sets of displacement parameters are given in Table 5.2.
The four real solutions are illustrated in Figures 5.3. It is a simple matter of planar
Euclidean geometry to determine the the link parameters Qd?,; and Tﬁg, je{A B,C},
given the locations of the knee joints in E along with the fixed link lengths and disk

radius. These values are given in Table 5.3.

TABLE 5.2. Four real positions and orientations in X.

Sol'n 1 Sol’'n 2 Sol’'n 3 Sol'n 4
a 1.347918 | 4.860703 | 2.459188 | 5.087701
b 10.967028 | 9.213788 | 9.934891 | 13.979180
¢ (deg.) || 21.070388 | 17.425626 | 23.393454 | 3.699307
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Solution 1

%\ Solution 3 Solution 4

FIGURE 5.3. The four real solutions.
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TABLE 5.3. Required joint variable inputs.

5.3. EXAMPLE

Sol'n 1 Sol’'n 2 Sol’'n 3 Sol'n 4

>ds 2.449489 2.449489 2.449489 2.449489
°d? -2.449489 | 2.449489 2.449489 2.449489
dS -2.121320 | -2.121320 | -2.121320 | -2.121320
702 (deg.) || 241.856762 | 238.211999 | 244.179828 | 224.485681
702 (deg.) || -19.715986 | -43.209187 | -37.241359 | -56.935505
"0 (deg.) || 77.548874 | 73.904112 | 79.871940 | 60.177794
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Chapter 6

Velocity and Acceleration Analysis

6.1. The Jacobian Matrix

An unconstrained rigid body in the plane has 3 DOF. Suppose we had three
functions, each of which depended on the same number of at least three linearly inde-
pendent variables. These three functions could describe the position and orientation

of a planar rigid body in terms of n > 3 input parameters:

Yy = fi(xlax%"'axn)a 7'6{]-7273}

Employing the chain rule, the differentials of the y; as functions of the z, are

determined as

o of; 0f; .
5yz - 8x16x1+8—1'26x2+"'+£6xm (S {17273}

This result may be expressed more compactly using vector notation as

OF
0¥ = S0X. (6.1.1)

The 3 x n matrix of partial derivatives, g—)F(, is a linear transformation which
maps the dz, to the dy;. It is called the Jacobian matriz, or simply, the Jacobian,

and denoted as J. Then the expression in equation (6.1.1) may be rewritten

Y = J5X. (6.1.2)



6.2. VELOCITY ANALYSIS

Dividing both sides of equation (6.1.2) by the differential time element, dt, J

becomes a mapping of the velocities of X to the velocities of Y:
Y = JX. (6.1.3)

For most robot manipulators the f;’s are non—linear and the partial derivatives are
functions of the xz,. Thus, at different instances of time, J will have different val-
ues. The Jacobian, as far as a manipulator is concerned, is a time—varying linear

transformation.

The conventional application of J for serial manipulators is to map joint rates to

the Cartesian velocities of the EE, or tip of the arm:
vV = JO, (6.1.4)

where V is the vector of Cartesian velocities and © is the vector of joint rates. The
number of rows in the Jacobian matrix is the same as the number of DOF of the serial
manipulator. The number of columns in J equals the number of joints. For redundant
serial manipulators J is not square: there are more columns than rows. Note that
in a serial manipulator all joints must be actuated. A parallel manipulator requires
only as many motors as there are DOF. The Jacobian for a parallel manipulator
should be constructed, if possible, such that it maps the actuated joint rates to the
EE velocities. In this case, the number of rows equals the number of DOF, where as

the number of columns equals the number of powered joints.

6.2. Velocity Analysis

The first step in the velocity analysis of the manipulator presented in the previous
chapters is to determine the Jacobian matrix for each leg of the manipulator. This

can be done by direct differentiation of the kinematic closure equations. From section
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4.2 these equations are

zp = Ud + (U +r)d, - 2ds], + 13k, (6.2.1)

ye = s+ & +r)sl, +2dic, + 15, (6.2.2)
. 1L .

Op = P40 4 (s —Pdso) + U, (6.2.3)

where j = k € {A, B,C}. The last term in equation (6.2.3) comes from the constraint

relation

1 . .
219E - ;(2(1% - ng))o) + 219E0- (624)

Differentiating the closure equations with respect to time gives
b = —HSAO (B 7)ot 4 0E) — s+ ) — o,
gp = KA+ (1 +r)ely ("0 +105) — 2dyst, (O] + 103) + Pdiens,
Vg = "9+ + ;ng.

Collecting terms and expressing the equations in matrix form yields

i —(Us + B4+ dicly) —(B 47+ 2diel,) —sl, | [
v | = | Us]+B+r+dsl,) (G +r—2ds],) 4
Ui 1 1 1/r ng

Comparing this last equation with equation (6.1.4), it is seen that the 3 x 3 matrix
which maps the joint rates for a particular leg onto the Cartesian velocities of the

disk is the Jacobian for that leg. Hence,
| —(Hs] + B +r+dicy) —(+r+2dicl,) —s,
Fo= | Usi+h+r+disyy) (B +r—2disty) cJ}z - (6:25)
1 1 1/r

Continuing in this fashion, the total Jacobian for the manipulator is a 3 x 9 matrix.
The vector of joint rates, O, becomes a 9 x 1 array composed by stacking the three
3 x 1 joint rate vectors for each leg, ©7. However, there are only three powered
joints, one for each DOF. In this architecture, as described in chapter 5, three motors
which control the parameter Qd?,; determine the position and orientation of the disk.

Therefore, the rates of change of these parameters set the Cartesian velocities of the
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disk. That is, what is needed to produce a desired velocity of the pinion is not all

nine joint rates, but only the three ng.

The unactuated joint rates can be eliminated by multiplying both sides of the

equation
vV o= 3o, (6.2.6)

by a 3-dimensional vector n perpendicular to the first and second columns of J7. This

vector is easily calculated as the cross product of these two columns, namely

n = j'xj?2 (6.2.7)

The following vector is determined for each leg:

el
n = | s |, (6.2.8)
k

where

ko= (e + 5 +r = dishy) (i + 1+ djey) —

(] + 8 + 1+ *dicdy) (1 + r = disiy).

Multiplication of both sides of equation (6.2.6) by the transpose of n (i.e., nT), and
then rearranging yields:
20@; = r[dip+ sy + éE(S{(Qdésﬁ —B—r)+
ACdicly + 1+ 1))/ [r(siely — clsly —si +¢l) +
Bl — s1) + *dy(sis1y + clely)]. (6.2.9)

Expressions for the joint accelerations can be readily derived by differentiation of

the previous equation with respect to time.
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6.3. Acceleration Analysis

The dynamics of mechanisms is a field of considerable interest. The dynamics can
only be analysed after the kinematic considerations of static position, static force, and
velocity. The forces which cause the motion of a manipulator are typically analysed
using the Newton—Euler, Lagrange, or Kane’s method. The Newton—Euler approach

requires the immediate calculation of the manipulator accelerations.

The relationship between the Cartesian and joint accelerations is derived by the

differentiation of equation 6.1.4 with respect to time, giving

V = J6+16. (6.3.1)

Alternately, expressions for the joint accelerations can be readily derived by dif-

ferentiation of equation (6.2.9) with respect to time.
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Chapter 7

Concluding Remarks

7.1. Conclusions

This thesis has presented a kinematic analysis of a planar parallel manipulator
with holonomic higher pairs. This analysis involved the detailed investigation of the
IK and FK position problems, and a cursory look at the velocity and acceleration

analysis.

As a prelude to the study, the relevant geometry and mathematics were reviewed.
The group of planar isometries and the group properties proved to be important for
the development of the IK algorithm. Specifically, planar displacements are decom-
posable into components of certain translations and rotations, and these components
commute. Kinematic mapping and Grobner bases theory were discussed in detail.

They proved to be useful and elegant tools for the FK problem.

After describing the manipulator, a mobility analysis was performed. Further-
more, six special geometric properties were observed which proved to be useful in

developing the IK algorithm.

An algorithm for determining closed form analytical solutions to the IK problem
was developed. Because the algorithm proceeds on a leg—by—leg basis, solutions can

be obtained for similar rolling systems comprised of any number of 2R serial legs. It
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turns out that the upper bound on the number of real solutions for any such system

is 4", where n is the number of 2R legs.

Husty’s FK algorithm was adapted for the holonomic higher pairs by the intro-
duction of pseudo inputs to be used as powered joint inputs for the FK problem. The
kinematic mapping approach yields promising results for this initial effort with the
exception of a small direction anomaly. The anomaly is probably due to the problem
formulation using the pseudo inputs. It is believed that this may be overcome with
minor correction of the algorithm. In any event, the procedure needs reformulation
because of the fact that the real inputs can not be specified from the pseudo inputs
alone, but require knowledge of the actual disk orientation. The FK solutions in the

example were easily obtained using Grébner bases.

Finally, the Jacobian for the manipulator was determined. It was then used in a

velocity and acceleration analysis.

7.2. Suggestions for Future Research

The workspace singularity analysis in chapter 6 appears to hold the promise of
great interest. Based on this preliminary work, it would appear that the interior of
the workspace is devoid of singularities. If this is so, then the manipulator has a
bright future. Hence, it is recommended that a detailed workspace and singularity
analysis be carried out. The manipulator dynamics should also be investigated. Since

the Jacobian matrices are known, the Newton—FEuler method could be used.

For practical design reasons, the IK and FK solutions must be made quickly
available to the controller or path planner. The FK problem needs to be reformulated
to eliminate the direction ambiguity which is, apparently, generated by the use of the
pseudo inputs. Better still, the problem should be reformulated to allow the actual

powered joint variables to be used as inputs.
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7.2. SUGGESTIONS FOR FUTURE RESEARCH

Once a better formulation of the FK problem exists, manipulator motions should
be simulated. The animation should expose any flaws in the IK and FK solution pro-
cedures. Then issues of obstacle avoidance and trajectory planning can be addressed.
After these tasks have been completed, the design of a prototype should commence.

With a sound design in place, the construction of a prototype should be considered.
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Appendix A

Geometry of The Image Space

A.1. Erlangen Programme

In 1872, F. Klein introduced his Erlangen Programme as a means of classifying
geometries according to the groups of transformations which leave the propositions
intact. Usually these groups have sub—groups that preserve the central concepts of

the geometry [13].

The Erlangen Programme is conveniently stated in the form of three propositions

[46]:

Proposition 1: A geometry on a space defines a group of transformations in
that space.

Proposition 2: A group of transformations in a space defines a geometry on
that space.

Proposition 3: Geometry is the study of those relations which remain invariant

under the group of transformations associated with it.

In Euclidean geometry the group of isometries preserves distance and angle. The
isometries are actually a sub—group of the similarity transformations. It is this group

which preserves the propositions of Euclidean geometry [15].



A.2. IMAGE SPACE GEOMETRY

Projective geometry does not admit concepts of length, angle, parallelism, or
betweenness, and hence, is different from Euclidean geometry. Indeed, using the
Erlangen Programme, projective geometry is classified by the group of collineations
and correlations. These groups preserve the class of points and the class of lines

(13, 9.

A collineation is a point—to—point correspondence which preserves collinearity. A
planar correlation is a point—to—line, or line—to—point correspondence relating collinear

points to concurrent lines.
A.2. Image Space Geometry

Following the propositions of Klein’s Erlangen Programme, the image space group
and its invariants may be determined for the mapping given by equation (2.3.13).
Hence, the geometry on the image space may be defined. A very detailed investigation

is given in [8], and the results were used in [46] to classify planar algebraic motions.

The image of a displacement given by the three parameters (a, b, ¢) is dependent
on the arbitrary zero positions of the reference frames F and X. Therefore, there are
oo mappings. It is shown in [8] that if (X : X, : X3 : X}) is a representation of a
displacement all other allowable representations (X : X} : X} : X}) are related to it

by

4 4
XZI = ZZCinj’ (A21)

i=1 j=1
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A.2. IMAGE SPACE GEOMETRY

where the ¢;; obey

11 = C29,
Ci12 = —Cai,
C33 = Cud4,
C3yg — —C43, (A22)
C11C22 — C12C21 = (33C44 — C34C43,
C31 =C33 = €41 = Cg9 = 0.

Equations (A.2.1) and (A.2.2) represent a group G of oo® non-singular linear
transformations in ¥’ connecting all the allowable representations of a given displace-
ment [46]. The group G of transformations and its invariants determines the >
geometry. GG has six independent parameters and five invariants. The invariants are

[8]:

(1) The line l(Xg = X4 = 0)
(ii) The isotropic points Jy(1:4:0:0) and Jo(1: —i:0:0) on the line [.

(iii) The conjugate imaginary planes Vi (X3 = iXy) and V3(X3 = —iXy).

The isotropic points refer to the intersection points of a line which cuts the circle at

infinity [52].

The invariant elements in the non-Euclidean hyperbolic and elliptic geometries
are respectively, general real and imaginary quadrics. Whereas, in the ¥ geometry
they consist of two imaginary planes. As a result, the geometry on the image space
of the mapping is identical with none of the classical metric geometries. In [8] the X'
geometry is labelled quasi—elliptic, since it is considered a borderline case of elliptic
geometry. Furthermore, the metric concepts of the distance between two points,

the angle between two planes, and the parallelism of two lines are defined. Finally,
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it is shown that two sets of transformations in ¥’ are comparable to rotations and

translations of Euclidean geometry.
Of interest are three special cases [35]:

(i) X3 =0, X4 # 0 = ¢ = 0: These are the pure translations in the Euclidean
plane.

(i) X3 # 0, X4y = 0 = ¢ = m These are the 180° half-turns in the Euclidean
plane.

(iii) X3 = constant, = X4 = constant: This situation corresponds to translations

in the Euclidean plane where the moving frame F maintains a constant angle

with respect to the fixed frame X.
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