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Abstract

This thesis presents a detailed kinematic analysis of a ��degree�of�freedom planar

parallel manipulator with holonomic higher pairs� The manipulator consists of a

circular disk which rolls without slip on the non�grounded rigid links of each of three

�R serial legs�

The �rst portion of the thesis is devoted to the review of the geometric and

mathematical tools used in the kinematic analysis� Planar isometries and group theory

are used in the development of the inverse kinematics �IK� algorithm� Kinematic

mapping and Gr�obner bases are important for the forward kinematics �FK� algorithm�

After six important geometric properties of the manipulator are identi�ed� the

IK algorithm is developed� It is based on the decomposability and commutativity of

planar displacements� The four step algorithm provides closed form analytic solutions�

The algorithm may be used on similar parallel manipulators with any number of �R

legs� and hence� applies to a whole class of manipulators� It will be shown that there

can be no more than �n real solutions� where n is the number of �R legs� Three

numerical examples are given�

The FK problem is solved using kinematic mapping� To employ a technique from

the literature� pseudo inputs must be used to specify joint parameter inputs� The

resulting set of three non�linear equations in three unknowns is solved using Gr	obner

bases theory� A numerical example is given�

Finally� velocity and acceleration analysis are performed after the determination

of the Jacobian matrix�

i



R�esum�e

Le sujet de cette th
ese est l�analyse cin�ematique d�un manipulateur� plan et parall
ele� 
a

trois degr�es de libert�e muni de trois liaisons holonomiques sup�erieures� La poign�ee est

port�ee sur trois ou plus pattes 
a trois liaisons
 deux liaisons roto	�des et une cr�emaill
ere�

Chaque cr�emaill
ere s�engage 
a un seul engrenage �x�e au corps rigide de la poign�ee

et les couples sup�erieurs sont form�ees aux points de contact entre les cr�emaill
eres et

l�engrenage�

On traite� au commencement� la math�ematique et la g�eom�etrie n�ecessaires pour

l�analyse cin�ematique� L�algorithme pour la cin�ematique inverse est bas�e sur des con�

cepts de la g�eom�etrie Euclidienne et non�Euclidienne et de la th�eorie des groupes�

L�algorithme pour la cin�ematique directe est bas�e sur des concepts de kinematic map�

ping et de la th�eorie des bases de Gr�obner�

Apres avoir identi��e six propri�et�es g�eom�etriques importantes� on peut formuler

l�algorithme qui conduit 
a un nombre de solutions analytiques pour la cin�ematique

inverse� Cet nombre des solutions n�exc�ede pas �n� o
u n est le nombre des pattes

s�erielles� A�n d�illustrer l�algorithme� on pr�esente des exemples numeriques�

En utilisant le kinematic mapping� les �equations de cin�ematique directe sont

obtenues� Les pseudo entr�ees sont n�ecessaires pour permettre l�utilisation de la

m�ethode d�evelopp�ee par Husty� Ces trois �equations sont r�esolues par les calculs

symboliques qui utilisent les bases de Gr	obner� Finalement� Encore� on pr�esente un

exemple�

En�n� on accomplit l�analyse de vitesse et d�acc�el�eration est d�eduit les matrices

Jacobiennes�
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Claim of Originality

Certain aspects of the manipulator and its kinematic analysis are original and are

presented herein for the �rst time� The following contributions are of particular

interest�

�i� The ��legged architecture�

�ii� Six �special� geometric manipulator properties�

�iii� An algorithm for the IK problem which results in closed�form solutions�

�iv� The upper bound on the number of IK solutions is �n� where n is the number

of legs�

�v� The introduction of �pseudo inputs� so a kinematic mapping can be used to

solve the FK problem�

Some of the results reported in this thesis have been partly presented in two

refereed publications�  ��� ��!�
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Chapter �

Introduction

���� Background

This thesis is an investigation of the kinematics of a novel class of planar parallel

manipulators� The end e�ector is a disk which rolls without slip along the straight

lines of the non�grounded rigid links of �R� serial legs� Pairs of two �R serial legs

together with the disk form �R�R�G�G�R�R�� closed kinematic chains� �R serial legs

may be added as the application requires� Two and three�legged versions will be

considered in this thesis �see Fig� �����

A similar manipulator comprised of one closed chain was introduced by Vijay

Kumar at the University of Pennsylvania through the work of S�K� Agrawal and R�

Pandravada at Ohio University in  �!� An analysis of the workspace was made in

 �!� and an attempt to solve the inverse kinematics �IK� problem was made in  �!�

However� there is a "aw in the IK solution algorithm which may result in erroneous

solutions �see Section �����

It is well known that the IK solutions are uncoupled between legs� so solution

procedures can treat each leg as a serial chain  ��!� A result is that a successful IK

solution algorithm could be used on platforms with any number of �R legs� Prior to

�An R�pair is a revolute pair�
�A G�pair is a higher pair� Details will be presented in section ������
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Figure ���� Two and three�legged planar platforms with higher pairs�

our work� the IK problem reported herein was essentially unsolved� and the forward

kinematics �FK� problem had not been addressed�

������ Lower and Higher Kinematic Pairs� The term kinematic pair� or

just pair� indicates a joint between two links� Joints involving surface contact are

called lower pairs� Those involving point� line� or curve contact are higher pairs�

Lower pairs enjoy innate practical advantages� First� applied loads are spread over

the contact surfaces� and second� they can be easily and accurately manufactured�

There are six types of lower pair� classi�ed as follows  ��!�

�� S	pair
 The spherical S�pair consists of a convex or solid sphere which ex�

actly conforms with a spherical shell of identical radius� In other words� a

ball�joint� S�pairs have three rotational degrees of freedom �DOF��

�� E	pair
 The planar E�pair �E stands for the German word Ebene� which

means plane� is a special S�pair comprising two concentric spheres of in�nite

radius� To �x one plane relative to the other requires three generalised coor�

dinates� usually two translations and one rotation� Regardless� the E�pair has

three DOF�

�
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�� C	pair
 The cylindrical C�pair consists of mating convex and concave cir�

cular cylinders� They can rotate relative to one another� about their common

axis� and they can translate relative to each other along that axis� Hence�

there are two DOF� one rotational and one translational�

�� R	pair
 The revolute R�pair is made up of two congruent mating surfaces

of revolution� It has one rotational DOF about its axis�

�� P	pair
 The prismatic P�pair comprises two congruent non�circular cylin�

ders� or prisms� It has one translational DOF whose axis is any straight line

parallel to the direction of translation�

�� H	pair
 The helical H�pair� or screw� consists of two congruent helicoidal

surfaces whose elements are a convex screw and a concave nut� For an angle �

of relative rotation about the screw axis there is a translation of distance h in

a direction parallel to the screw axis� The sense of the translation depends on

the hand of the screw threads and on the sense of the rotation� The distance

h is the pitch� When h � �� the H�pair becomes an R�pair
 when h � �
it becomes a P�pair� The H�pair has one DOF which is either speci�ed as a

translation or a rotation� coupled by the pitch� h�

Any joint that does not fall into these six classi�cations is a higher pair� A

few examples are mating spur gears� a rack and pinion� a cam and follower� These

pairs are important because they often o�er the simplest means of achieving complex

motions� The main drawback is that they are often more complicated� and hence�

more expensive to manufacture� The higher pairs may be classi�ed according to the

nature of the relative motion between the jointed links�

�� Pure sliding
 The relative motion is pure translation as in� for example� the

�nger tip of a robot hand sliding along a "at surface�

�
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�� Pure rolling
 The relative motion involves rolling without slip� Mating sets

of spur gears� and rack and pinion systems are good examples�

�� Combination of sliding and rolling
 In cam and follower systems the tip

of the follower slides along the surface of the cam� As the cam rotates and�

relative to the follower� its radius of curvature changes� the follower rotates

about some axis� As this occurs the follower tip will also roll on the cam

surface�

The subject of this thesis involves higher pairs that roll without slip on a straight

line� like rack and pinion gear sets� This type of higher pair will be abbreviated as a

G	pair �G for gear��

������ Parallel Manipulators� The recent interest in research and develop�

ment of robotic systems in general is spurred by the reality of the open market

economy wherein goods and services must be sold� A consumer base with dimin�

ishing disposable income results in more intense competition among the suppliers�

A manufacturer capable of supplying a superior product at a su�ciently high vol�

ume and relatively low cost will usually capture a larger share of the market� The

ever�growing need for greater e�ciency in manufacturing leads to new production

methods� Processes that make use of robotic manipulators comprise a large part of

these new methods�

Currently� most industrial manipulators have serial architecture� Planar ones�

like that shown in Fig� ���� have an intermediate link with a degree of connectivity

of �� In other words� an intermediate link of a serial arm is connected to two other

links� Terminal links� like the end e�ector �EE� and base �B�� are exceptions� They

are jointed to only one other link� and hence� have a degree of connectivity of �� Serial

manipulators have certain advantages because  ��� ��!�

�
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EE

Figure ���� A planar �R serial arm�

�i� People can readily identify with an open loop kinematic chain which may be

compared with the human arm� This is a strong advantage in programming

the arm� training operators� etc��

�ii� Each joint actuator enjoys complete independence�

�iii� The forward and inverse kinematics are well known and the dynamics have

been thoroughly analysed for many cases�

It is frequently claimed that serial architecture su�ers from the following disad�

vantages  ��� ��!�

�i� Serial manipulators require an actuator for each joint� The added mass of the

actuators located at intermediate joints contributes to the total inertia of the

robot�

�ii� The structural design of the links must take the above point into account� That

is� because of the cantilever�like structure of the links� "exibility is a concern�

�
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To control the "exibility of the system the links must be #over�designed�  ��!�

This usually leads to still more massive links�

�iii� If high degrees of accuracy and precision in motion are required� the velocity

of the EE is limited by the above considerations�

�iv� If the actuators are located at the base� force and torque transmission become

an issue� Transmission systems reduce the absolute accuracy� precision� and

the repeatability of EE motions and add to "exibility�

Therefore� kinematic research turned to parallel architecture in the quest for

robot designs that o�er more streamlined� cost�e�ective manufacturing processes�

This has led to e�orts to develop robots that exhibit better characteristics� e�g��

speed of operation� load carrying capacity� dynamic response� accuracy� precision� and

reliability� To this end� parallel manipulators consisting of closed kinematic chains

have been investigated� Stewart�Gough �SG� type platforms are a typical example�

see  ��� ��� �
� ��� ��� ��!� This type of platform was �rst devised by Gough  ��! in

���� to serve as a test stand for automobile tires� The moving platform is connected

to the base by six telescoping prismatic legs� The six legs are jointed to the moving

platform� and to the base� by spherical and universal joints� This gives the moving

platform � DOF� The design was adapted by Stewart  ��! in ���� for use as a "ight

simulator�

Since this thesis is about a particular type of planar SG platform consider Fig�

���� It depicts a typical planar three�legged SG type platform with nine revolute

joints� Note that each �R serial leg is kinematically equivalent to an �R�P�R� serial

leg� This is because a change in location of a reference point on the EE corresponding

to changes in the orientation of the �rst link and the relative angle between the �rst

and intermediate links in the �R leg can always be achieved by a telescoping �R�P�

R� leg� This concept is illustrated in Fig� ���� There are many other examples

�
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Figure ���� A typical planar three�legged� �R SG type platform�
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Figure ���� �R and �R�P�R� serial chains are kinematically equivalent�

of parallel architecture� see for example  ��� ��� �� �� ��� ��� ��� ��!� Moreover�

parallel manipulators have applications in �elds other than manufacturing� These

include aircraft� ship� and automobile simulators� ambulatory� or walking machines�

and robot hands�

Parallel manipulators are characterized by the fact that the EE is attached to the

base� or ground� by more than one kinematic chain
 an architecture with closed�loops�

General advantages of parallel architectures were cited in  ��� ��!�

�i� It is not necessary for each joint to be actuated directly by individual motors�

hence a smaller contribution to the mass of the links� The links� in turn� can

be made lighter�
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�ii� By allowing at least some motors to be �xed� they can be larger and more

powerful� Thus� the load�carrying capacity versus the mass of the robot can

be increased� along with the speed of operation�

�iii� The ensuing reduction in gear drives and transmission systems increases the

inherent accuracy of the robot while simultaneously lowering the cost to make

one�

A few of the potential drawbacks are�

�i� The workspace is limited�

�ii� The workspace may contain many singularities�

�iii� Simultaneous control is required for some or all of the drive motors�

������ Planar Parallel Systems with Pure	Rolling Higher Pairs� Planar

parallel manipulators with higher pairs restricted to pure rolling� such as that shown

in Fig� ���� constitute an important and unique sub�class� They are important

because they have an inherently sound architecture and unique because the pure

rolling constraint forces a kinematic dependency on the initial assembly con�guration

�IAC�� That is� displacement analysis requires the presence of initial conditions in the

kinematic closure equations� This dependency on the IAC means that analysis is not

possible using the conventional techniques employed on lower pair jointed SG type

platforms�

���� Motivation

Research issues concerning general � DOF manipulators form an important sub�

group of the problems of manipulator kinematics� Planar � DOF manipulators are a

special case because the freedoms consist of two linearly independent translations in

the plane and rotations about an axis normal to the plane� All planar displacements

�
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belong to the group of isometries of the plane� It is commonly believed that there is

no group for general � DOF rigid body displacements in space�

The problems of planar manipulators� both serial and parallel� are mostly well

documented and understood� Closed form solutions exist for the FK and IK problems

of most serial planar manipulators  ��� ��!� The kinematics of many parallel manip�

ulators are also well understood� For instance� the IK problem of a lower pair jointed

SG type platform is identical to the IK problem of a serial manipulator architecturally

equivalent to one of each of the kinematic sub�chains of the parallel manipulator  ��!�

On the other hand� the FK problem of parallel platforms is generally more complex

than that of serial manipulators� Due to the nature of the problem� much of the ear�

lier research concentrated on numerical solutions  ��� ��!� While numerical methods

are well suited to certain conditions� they yield no insight into theoretical issues� such

as the size of the solution space� i�e�� the number of assembly modes� Furthermore�

these methods rely on an initial guess which must be fairly close to the solution in

order to converge  ��� ��!� Many e�orts have been made to provide some theoretical

insight by viewing the problem from a di�erent perspective� Gosselin and Sefrioui

 ��! investigated polynomial solutions of the planar SG platform� An algebraic ap�

proach was used in  ��! to derive a degree � input�output equation for the same type

of platform� Both con�rm the well known results of Hunt  ��!�

The success of most of these methods depends largely on the fact that the plat�

forms are jointed with lower pairs� This allows the platform geometry to be readily

determined� This is a critical point� since the above methods require knowledge of

the platform geometry� However� when the EE is replaced with a disk �pinion gear�

and the three revolutes joining the EE to the legs are replaced with racks� along

with the condition that contact is always maintained between the racks and pinion�
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the geometry suddenly becomes complicated� particularly in the context of the FK

problem�

The problem common to all three legged planar platforms with � DOF is that�

unless redundant actuators are used� only three joint inputs can be speci�ed� The

problem unique to the pure rolling contact platform is how the change in location of

the contact point between each rack and the pinion a�ects the displacement� If the

pinion remains stationary while a rack moves� it must be that the rack rolls on the

disk� Conversely� the pinion can roll on a stationary rack� In the above situations� if

the change in location of the contact point along the rack is identical� the displacement

of the disk centre will be di�erent� In the �rst case� the location of the pinion centre

is constant� In the second case� it translates along a line parallel to the stationary

rack� Most displacements� however� require a combination of the two types of relative

rolling� Keeping track of the proportions is critical to both the IK and FK problems�

It also appears to be a formidable task� Regardless� all methods thus far depend on

the geometry of the platform�

In ���� a new approach to the kinematic analysis of three legged planar SG

platforms jointed with lower pairs was revealed� Husty  ��! used kinematic mapping

to solve the FK problem of such platforms� The importance of this approach is that

it produces an algorithm which is independent of the platform geometry� Moreover� it

was con�rmed that there are a maximum of six real solutions using a simple geometric

argument  ��!�The same mapping was used to determine the workspace of ��legged

planar platforms in  ��!� Clearly� kinematic mapping is worthy of study because of

its potential as an analytic tool�

The literature on the kinematics of planar parallel manipulators has largely been

restricted to manipulators jointed exclusively with lower pairs� The main exceptions

being work on rolling contact in the context of grasp and control� Extensive recent
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research has been done in connection with grasping and �ne�motion manipulation

by multi��ngered robotic hands  ��!� The Utah$MIT dextrous hand is an example�

Various types of contact between hand and object have been studied extensively in

 ��!� But� even here the robotic hands are jointed with lower pairs only� The rolling

contact is merely an approximation of contact between the EE and workpiece� Con�

tinuing in this vein� the kinematics of rolling contact for two surfaces of arbitrary

shape were examined in  ��!� Control schemes for parallel manipulators with rolling

constraints were put forward in  ��� ��!� However� rolling systems are not peculiar to

robotic hands� Automatic Guided Vehicles �AGV� are an important class for indus�

trial applications� dangerous materials handling� etc�� The kinematics and dynamics

of a three wheeled � DOF AGV were studied in great detail in  �
!� However� in the

case of the AGV� continuous rolling contact is a by�product of constraints imposed

by the operating environment� It is not a design parameter a�ecting control �except

to detect wheel slip� or kinematic synthesis�

With the exception of cams and gears� which are not considered to be robotic

mechanical devices� research on mechanisms containing higher pairs is rare� The

roll�without�slip pair is considered in this thesis partly because it can be e�ectively

modelled as a mating gear pair� Gears are common� e�cient and reliable machine

elements but they are unusual as robotic joints� One intriguing possibility involves

the planar parallel systems with the pure rolling higher pairs in Fig� ���� If the initial

IAC were adjustable then the reachable workspace would be dynamic� This could be

accomplished by allowing one rack at a time to disengage and reposition itself on the

disk� Such a manipulator has industrial potential�

The e�ects of the IAC on the reachable workspace of a similar planar rolling

system were examined in  �!� Previously� the same authors described an algorithm

based on vector analysis for the IK problem of the same manipulator  �!� However�
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they failed to account for the orientation of the end�e�ector in the inertial reference

frame� That is� a relative angle was used to specify the disk orientation� which is

a necessary result when a vector approach is employed� The main problem is that

there are some displacements where this angle changes� yet the orientation of the end

e�ector remains constant� So� erroneous solutions can arise� No other reference to

the IK problem of such a planar manipulator was found� No references� whatsoever�

were found in connection with the FK problem of planar parallel manipulators with

holonomic higher pairs�

Optimal trajectory planning and obstacle avoidance in a crowded workspace re�

quires fast computation of IK solutions� Control of the robot requires the availability

of FK solutions� Hence� this thesis addresses these issues in some detail�

���� Thesis Overview

In Chapter � the geometry and mathematics relevant to the kinematic analysis

used in subsequent chapters will be reviewed� Subjects range from the basic concepts

of isometries in the Euclidean plane� which aid in the solution of the IK problem� to

the more esoteric notions of kinematic mapping and Gr	obner bases� a relatively new

tool from computational algebra� for use in solving the FK problem�

Chapter � introduces the planar manipulator along with the necessary nomencla�

ture� The mobility is examined and the commutativity of the disk displacements is

explained� Finally� six special geometric manipulator properties are given�

In Chapter � the development of the IK algorithm is outlined� The four�step

algorithm will then be introduced� It is illustrated with three numerical examples�

Chapter � contains a discussion of the problems involved in formulating the FK

problem� Pseudo inputs are introduced and an adapted version of Husty�s algorithm

is given� illustrated with a numerical example�
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Chapter � includes topics beyond static positioning problems� The velocity analy�

sis is necessary for trajectory planning and as the �rst step in the acceleration analysis�

The latter is required for the investigation of manipulator dynamics�

Finally� Chapter � contains conclusions and suggestions for future research�
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Mathematical Background

���� Isometries

������ The Group of Isometries of the Euclidean Plane� An isometry of

the Euclidean Plane is a one�to�one mapping of the plane onto itself which leaves

distance invariant� The isometries consist of rotations� translations� re"ections� and

glide re"ections� They are congruent transformations that are also called motions of

the plane  ��!� However� the use of the term motion is misleading� An isometry of the

plane is the correspondence between the initial and �nal positions of an object in the

plane displaced in a way that leaves the distance between every pair of points in the

object unchanged� Although a motion takes place� the motion is not the isometry� A

motion is a continuous series of in�nitesimal displacements�

Planar isometries constitute a group� A group consists of a set� G� together with

a binary operator� �� de�ned on G which satis�es the following axioms  �!�

��  closure! x � y � G � x� y � G
��  associativity! �x � y� � z � x � �y � z� � x� y� z � G
��  identity! � I � G � I � x � x � I � x�

� x � G
��  inverse! � x�� � G � x � x�� � x�� � x � I�

� x � G
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If in addition to axioms �� through ��� the elements in G are commutative �i�e��

x � y � y � x� �x� y � G� then G is an Abelian� or commutative group� The Abelian

group axioms of closure and commutativity will prove to be indispensable in the

development of a solution procedure for the IK problem�

������ The Sub	Group of Direct Isometries� A subset of G which is a

group under the binary operator de�ned on G is a sub�group H  
!� It is well known

 ��! that the isometries of the plane are a group� Let I be this group� A planar

displacement consists of the direct isometries only� The direct isometries are transla�

tions and rotations� Let D be the sub�group of planar displacements of group I� The

manipulator under study has � DOF� Two are translations in the directions of the

basis vectors of a non�moving reference frame �the inertial reference frame�� the third

consists of rotations about the centre of the disk� The group operator in D� called

�product�� is denoted by the symbol �� It represents successive implementations of

given isometries and hence is not an algebraic product� By virtue of the axiom of

closure� all the products of all translations and all rotations are also in D� Hence�

the disk can move in any combination of translation and rotation within the physical

limits of its workspace�

Since direct isometries preserve sense� as well as distance� the product of any

number of direct isometries is another direct isometry� It is easy to show that the

associativity axiom holds for the product of three direct isometries� It is equally

simple to show the existence of an identity displacement and that there is an inverse

for every displacement in the plane� Hence� D is indeed a sub�group of I� However�

the indirect� or opposite� isometries do not preserve sense and therefore do not form

a sub�group since the product of opposite isometries is not necessarily opposite� For

example� the product of two re"ections in parallel lines is a translation through twice

the distance between the lines� The product of two re"ections in intersecting lines is
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a rotation through twice the angle between the lines� In both cases� the product of

two opposite isometries is a direct isometry� Since direct isometries are not opposite�

closure is violated� hence the opposite isometries do not form a sub�group of I�

���� Projective Geometry

������ Five Axioms� Some concepts from projective geometry are introduced

here primarily to provide background for the kinematic mapping� which is later used

to solve the FK problem� Kinematic mapping involves the transformation of given

displacement parameters from the Euclidean plane to a three dimensional projective

image space�

The following axioms are extracted from Euclidean geometry  �!�

���
 Any two distinct points determine one and only one line�

���
 Any three distinct non�collinear points� also any line and a point not on the

line� determine one and only one plane�

���
 Two distinct coplanar lines either intersect in a point or are parallel�

���
 A line not in a given plane either intersects the plane in a point or is parallel

to the plane�

���
 Two distinct planes either intersect in a line or are parallel�

Note that these propositions deal only with the connection of points and the inter�

sections of lines and planes� They are entirely free of metric notions�

The space in which projective geometry operates is constructed by expanding

Euclidean geometry� That is� certain objects are adjoined to the Euclidean plane

and space� These objects are the ideal points� lines and planes� For purposes of

distinction� let the Euclidean counterparts be called ordinary� The last three of the

previously stated �ve axioms from Euclidean geometry are amended such that they
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hold true for all combinations of ideal and ordinary quantities� The space that results

is called projective space�

����
 Any two distinct points determine one and only one line�

����
 Any three distinct non�collinear points� also any line and a point not on

the line� determine one and only one plane�

����
 Any two distinct coplanar lines intersect in one� and only one point�

����
 Any line not in a given plane intersects the plane in one� and only one

point�

����
 Any two distinct planes intersect in one� and only one line�

Consider �rst the projective plane� P �� The ordinary lines are adjoined with

an ideal point �called the point at in�nity� to become projective lines� Two distinct

intersecting ordinary lines will have distinct points at in�nity� Two ordinary parallel

lines will share the same point at in�nity� The ordinary plane together with the

totality of the points at in�nity of its ordinary lines constitutes the projective plane�

P �� A projective line has but one point at in�nity� not two �one for each direction��

That is� a projective line is closed� this idea is discussed at length in subsection ������

Also� all the points at in�nity of a given projective plane lay on the same line at

in�nity�

Projective space� P � consists of the totality of projective planes� The lines at

in�nity associated with each plane in the projective space are coplanar� The plane in

which they lie is called the plane at in�nity�

������ Homogeneous Coordinates� Let O be the origin of the Cartesian

coordinate system� fO � x� yg shown in Fig� ���� Let Q be a distinct point in the

plane� The ray passing through O and Q is described by Q��x� �y�� where � � R
�ie�� a real number�� Conversely� for a given point S �� O the pair ��x� �y� describes
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Figure ���� Cartesian coordinates in E��

a distinct point Q on OS� As � � �� the seemingly meaningless pair ����� is

obtained�

If S � �x� y� � E� and �x�� x�� xh� is an ordered triple with xh �� �� then the

point S can be uniquely described by the triple if the point S is represented as�

x �
x�
xh

� y �
x�
xh
� �������

Then any triple of the form ��x�� �x�� �xh� �for � �� �� describes exactly the same

point S� In other words� two real points are equal if their homogeneous coordinates

are proportional� This is because

�x�
�xh

�
x�
xh

� x� and
�x�
�xh

� y�

The coordinates �x� � x� � xh� are called homogeneous coordinates� where xh is

the homogenizing coordinate� Note that when xh � � the Cartesian coordinate pair

�x� y� is recovered�
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The Cartesian coordinates ��x� �y�� � �� �� of the family of points on the ray

through Q in Fig� ��� can be expressed in homogeneous coordinates as follows�

��x� �y� � ��x� � �x� � xh� � �x� � x� �
xh
�

��

In E�� as �� �� the homogeneous coordinates �x� � x� � �� are obtained� There is

no point on the line OS to which this triple can correspond because E� is unbounded�

In the extended Euclidean plane the triple �x� � x� � �� describes the point at in�nity

�ideal point� on the line OS� Since the same triple is obtained regardless if �� ��
or � � ��� a single� unique point at in�nity is associated with the line OS in E��

Hence� an ordinary line adjoined by its point at in�nity is a closed curve�

The triple �� � � � �� describes neither an ideal point or a real point on OS�

�x � y � �� � �� � � � �� seems to imply that S � O� which is a contradiction in

the construction of the line segment OS� The trivial triple �� � � � �� is therefore

discounted�

Entirely analogous statements can be made for the three�dimensional Euclidean

space� E�� This space is covered by a Cartesian coordinate�system fO � x� y� zg with

the origin O and axes x� y� z� The axes are usually de�ned as orthogonal� Such an

orthogonal Cartesian system is illustrated in Fig� ���� As Fig� ��� shows� a unique

triple� �x� y� z� can be assigned to every point S � E�� The converse is also true� A

point Q � l � OS has the coordinates Q��x� �y� �z�� where � � R� As �� �� the

triple �������� is obtained�

The projective homogeneous coordinates �x� � x� � x� � xh� of the point S � E�

are de�ned as�

x �
x�
xh
� y �

x�
xh
� z �

x�
xh

� xh �� �� �������

As in two dimensional projective space� when xh � � the Cartesian coordinate triple

�x� y� z� is recovered�

��
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Figure ���� Cartesian coordinates in E��

���� A Kinematic Mapping of Planar Displacements

������ Planar Displacements� A general displacement in the plane requires

three independent coordinates to fully characterize it� In other words� a position of

one rigid body relative to another is given by three numbers� Typically� a displacement

is described by D�a� b� ��� where a and b are the components of a position vector in

the directions of linearly independent basis vectors� and � is a rotation angle about

some �xed axis normal to the plane� see Fig� ���� In ����� Gr	unwald and Blaschke

independently suggested using the three numbers which describe a planar position

as the coordinates of the points in a three dimensional projective space� called the

image space  ��� �!� This was done originally to gain a deeper insight� and to derive

new theorems� of plane kinematics�

A planar motion is a continuous series of displacements� hence a complete motion

in the plane is mapped to a curve of the image space� One� two� and three degree of

freedom planar motions are represented respectively by curves� surfaces� and solids

��
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Figure ���� A planar displacement described by D�a� b� ���

in the image space  �
!� The classi�cation of planar motions can be reduced to the

classi�cation of curves� surfaces� and solids  ��!�

It is convenient to think of the relative planar motion between two rigid bodies

as the motion of a Cartesian reference coordinate system� E� attached to one of the

bodies� with respect to the Cartesian coordinate system� �� attached to the other

 �!� Without loss of generality� � may be considered as �xed while E is free to move�

Then the position of a point in E relative to � can be given by

�
X �

Y �

�
�

�
cos� � sin�
sin� cos�

� �
x�

y�

�
�

�
a
b

�
� �������

where

�i� �x�� y�� are the Cartesian coordinates of a point in E�

�ii� �X �� Y �� are the Cartesian coordinates of the same point in ��

�iii� �a� b� are the Cartesian coordinates of the origin of E measured in �� i�e�� the

components of the position vector of the origin of E in ��

��
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�iv� � is the rotation angle measured from the X ��axis to the x��axis� the positive

sense being counter�clockwise�

Equation ������� does not represent a linear transformation� This fact is compu�

tationally inconvenient� and can be remedied by the use of homogeneous coordinates�

�x � y � z� and �X � Y � Z�� where  ��!

x� �
x

z
� y� �

y

z
�

X � �
X

Z
� Y � �

Y

Z
�

Substituting these homogeneous coordinates in equation ������� gives for X �

X

Z
�

x

z
cos �� y

z
sin� � a� �������

Without loss of generality� the homogenizing coordinates may be set to be equal since

their value is arbitrary� i�e� set Z � z� Multiplying through by z gives

X � x cos�� y sin� � az�

Similarly� the Y � expression becomes

Y � x sin� � y cos� � bz�

The following linear transformation is obtained��
� X

Y
Z

�
� �

�
� cos� � sin� a

sin� cos� b
� � �

�
�
�
� x
y
z

�
� � �������

which may be expressed very compactly as the vector�matrix equation

X � Ax� �������

Equation ������� represents a displacement of E with respect to �� If A is a

continuous function of a parameter� such as time� then equation ������� represents a

motion of E with respect to ��

��
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Figure ���� The pole is an invariant of a planar displacement�

������ The Pole of a Displacement� All general planar displacements that

are not translations may be represented by a single rotation through a �nite angle

about a �xed axis normal to the plane  ��!� Even a pure translation can be considered

a rotation through an in�nitesimal angle about a point at in�nity on a line perpendic�

ular to the direction of the translation� The coordinates of the piercing point of this

axis describe the pole of the displacement� If E and � are initially coincident� then

after the displacement the pole has the same coordinates in both E and �� This is

illustrated in Figure ���� where P represents the pole and the p�subscripted quantities

are the pole coordinates in their respective coordinate systems�

To prove that the pole is an invariant of the displacement� the eigenvalues of

the �	 � homogeneous transformation matrix A are examined  �
!� The eigenvalue

problem is stated as follows�

�x � Ax�

�A� �I�x � ��

where x is column vector� � is a scalar constant� and I is the �	 � identity matrix�

��



���� A KINEMATIC MAPPING OF PLANAR DISPLACEMENTS

The system of equations has non�trivial solutions if� and only if

det �A� �I� � ��

The �rd order characteristic polynomial for this � 	 � matrix is found by the

Laplacian expansion of the above determinant�

��� ��� cos�� �! cos �� �! � sin� �� � ��

��� ����� � �� cos� � cos� � � sin� �� � ��

��� ����� � �� cos� � �� � ��

Since the characteristic is �rd order� there must be three eigenvalues� By inspection�

the �rst eigenvalue is �� � �� The second and third are from

���� �
�

�
�� cos��

p
� cos� �� ���

� cos��
p

cos� �� ��

� cos��
q
� sin� ��

� cos�� sin�
p���

� cos�� i sin��

� e�i��

Hence� for any general planar displacement the homogeneous transformation matrix

has only one real eigenvalue� � � �� Corresponding to this eigenvalue� the eigenvalue�

matrix equation is quite similar to equation �������

x � Ax�

Now� re�consider equation �������� It can be de�homogenized and expressed as�
X �

Y �

�
�

�
cos� � sin�
sin� cos�

� �
x�

y�

�
�

�
a
b

�
� �������

If it is true that the pole is an invariant� then its coordinates must be the same in E

and in �� i�e�� X �

p � x�p and Y �

p � y�p� Substituting these into the previous equation

��
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gives �
x�p
y�p

�
�

�
cos� � sin�
sin� cos�

� �
x�p
y�p

�
�

�
a
b

�
� �������

This is compactly expressed as

x�p � Bx�p � d� �������

where the components of the vector x�
p

are xp and yp� B is the �	 � rotation matrix

and d is the translation vector whose components are a and b�

It is a simple matter to solve for x�p�

x�p �Bx�p � d�

�I�B�x�p � d�

x�p � �I�B���d�

The last equation may be rearranged as

x�p � ��B� I���d� �������

These are the Cartesian coordinates of the pole�

Return now to the eigenvalue problem�

�A� �I�x � ��

Setting � � �� the only real eigenvalue for the matrix A�

�A� I�x � ��

The matrix �A� I� can be partitioned as�
�B� I� d
���� �

�
x � �� �������

Equation ������� may be de�homogenized and expanded giving

�B� I�x� � d � ��

Solving for the eigenvector� x� yields

x� � ��B� I���d� ��������

��
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Comparing equations ������� and �������� it is seen that the eigenvector which

corresponds to the sole real eigenvalue shared by all planar homogeneous displacement

transformation matrices is identical to the pole of the displacement� Since it is an

eigenvector� the pole is coordinate system independent� and hence� invariant�

������ Pole Coordinates in Terms of a� b and �� Given that the pole P is

de�ned as the point where XP � xP and YP � yP � as in Fig� ���� one may immediately

write a � a�xP � yP � �� and b � b�xP � yP � �� as

a � xP � yP sin�� xP cos��
b � yP � yP cos�� xP sin��

Solving for xP and yP yields

xP �
a

�
� b sin�

���� cos��

and

yP �
a sin�

���� cos��
�
b

�
�

The homogenizing coordinate is z and its value may now� without loss of generality�

be set to z � sin �

�
� xP and yP must also be multiplied by this value� Then the double

angle relationships

sin �� � � sin � cos �� cos �� � cos� � � sin� �

are used to obtain the following�

Xp � xp �
�

�
a sin ������ �

�
b cos ������

Yp � yp �
�

�
a cos ����� �

�

�
b sin ������ ��������

Zp � zp � sin����

Hence� the homogeneous coordinates of the pole� which are identical in each of

the two coordinate systems � and E� in terms of the three displacement parameters

a� b� and � are determined by the three equations ���������

��



���� A KINEMATIC MAPPING OF PLANAR DISPLACEMENTS

������ The Image Point and Image Space� The location of the pole of a

displacement along with the rotation angle convey su�cient information to charac�

terize the displacement� The image of the pole under the kinematic mapping is called

the image point� Many mappings can be de�ned that map a position �a� b� �� of the

moving coordinate system E with respect to the �xed system � in the plane to a point

described by the homogeneous coordinates �X� � X� � X� � X�� of a three dimensional

projective image space� ��� The mapping used here is

�X� � X� � X� � X�� � �Xp � Yp � Zp � �Zp�� ��������

where

�X� � X� � X� � X�� �� �� � � � � � ���

� � cot ������

� 
 � � �	�

and Xp � Yp � Zp depend on �a� b� �� as given by the set of equations ������� The image

point is given by

�X� � X� � X� � X�� �  �a sin ������ b cos ����� �

�a cos ����� � b sin ����� �

� sin ����� � � cos �����!� ��������

By virtue of the relationships expressed in ��������� the linear transformation

operator� the matrix A from equation �������� may be expressed in terms of the

homogeneous coordinates of the image space� ��� Recall that

A �

�
� cos� � sin� a

sin� cos � b
� � �

�
� �

��
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A�� and A�� may be re�expressed using the identities cos� ����� � �� � cos���� and

sin� ����� � ��� cos ����� This gives

X�
� �X�

� � �� cos ������� � �� sin ��������

�
� � cos��

�
� �� cos ��

�
�

� � cos�� ��������

A�� and A�� are related by A�� � �A��� A�� may be obtained from

�X�X� � �  �� sin �������� cos ������! � ��������

The identity

� sin ����� �
sin�

cos �����

is used to get

�

�
sin�

cos �����
� cos �����

�
� � sin�� ��������

A�� is obtained from

��X�X� � X�X�� � � �a sin ������ b cos �������� sin ������

��a cos ����� � b sin �������� cos ������!�

� ��a sin� ������ b cos ����� sin ������ �

��a cos� ����� � b cos ����� sin �������

� �a� ��������

��
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A�� is obtained from

��X�X� �X�X�� � � �a cos ����� � b sin �������� sin ������

��a sin ������ b cos �������� cos ������!�

� ��a cos ����� sin ����� � b sin� �������

��a cos ����� sin ������ b cos� �������

� �b� ��������

A�� is obtained from

X�
� � X�

� � �� sin ������� � �� cos ��������

� �� ��������

Notice that � is a factor common to all non zero terms of A� Since homogeneous

coordinates are used�

X � Ax � �Ax�

So� equation ������� may be re�expressed using the homogeneous coordinates of the

image space� This means that we now have a linear transformation� or a kinematic

mapping� to express a position of E with respect to � in terms of the image point as

given by ���������

�
� X
Y
Z

�
� �

�
� �X�

� �X�
� � ��X�X� ��X�X� � X�X��

�X�X� �X�
� �X�

� � ��X�X� �X�X��
� � �X�

� � X�
� �

�
�
�
� x
y
z

�
� � ��������

It may now be said that for each unique displacement described by �a� b� �� there is a

corresponding unique point in the image space� because equation �������� is a linear

transformation� From equation ��������� the inverse mapping is obtained� That is�

for a given point of the image space� the displacement parameters� or pre�image are

��
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obtained from

tan ����� � X��X��

a � ��X�X� � X�X����X�
� � X�

� ��

b � ��X�X� �X�X����X�
� � X�

� �� ��������

The geometry of the image space is discussed in detail in appendix A�

���� Displacements With One Point Bound to a Circle

������ Planar SG Type Platforms� A planar SG type platform is a manipu�

lator that consists of a movable platform connected to a base by three legs of variable

length� Each leg is either an R�P�R or a �R leg� Figure ��� shows the �R variety�

The lengths� rj� j � fA�B�Cg between the platform connection points� A�B�C and

corresponding base points� A�� B�� C� is varied directly with the prismatic pair in the

R�P�R type� or by changing the relative angle� 
j� j � fA�B�Cg between the two

links in the �R leg� If the rj are �xed the platform points must be on corresponding

circles centred at A�� B�� and C� with radii rj�

A moving reference frame E� which moves with the triangular platform� has its

origin incident on the platform point A� A non�moving reference frame �� with

origin incident on the point A�� is �xed to the base of leg A� Each leg consists of

a �R grounded leg connected to the triangular platform by another R�pair� What

remains when legs B and C are disconnected from the platform is a single �R open

chain� Since rA is �xed in magnitude� the two leg links behave as a single rigid body�

They can only rotate about the point A�� The platform can rotate about A� It is

clear that all allowable displacements of this �R chain require that the point A remain

bound to the circle centred at A� with radius rA� Thus� two parameters are required

to describe a displacement of the moving frame E with respect to �� the �xed frame�

��
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Figure ���� A planar SG type platform with three �R legs�

For a given set of input angles� 
j� the platform points must be on circles of radii rj�

Thus� the locations of the platform on the respective circles are the FK solutions�

Husty  ��! showed that kinematic mapping is a good tool for solving the FK

problem for SG type platforms because of the condition that one point of the moving

system is bound to a circle� This gives a quadratic condition for the corresponding

image points of the possible positions of the platform� Moreover� the mapping does

not depend on the platform geometry�

������ The Hyperboloidal Constraint Manifold� The image of the possi�

ble displacements has to be a two parameter set of points� which is a surface in the

image space� Bottema and Roth  �! show that it is a quadric surface� speci�cally a

hyperboloid� The points on this hyperboloid correspond to all possible positions of

the �R open sub�chain� hence all image points are constrained to lie on this surface�

McCarthy  �
! points out that these constraint hyperboloids are manifolds� Husty

��
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Figure ���� A planar �R serial kinematic chain�

 ��! demonstrates that the constraint manifolds are skew hyperboloids� not neces�

sarily hyperboloids of revolution� Furthermore� Husty shows the intersection curve

of the hyperboloid with planes X� � constant are circles� and that the axis of the

hyperboloid is independent of link length�

Consider the �R serial chain in Fig� ���� � and E are arbitrary �xed and moving

coordinate reference frames� respectively� Without loss of generality� � is �xed to

the grounded base with its origin incident on A�� and E is attached to link l�� with

its origin at the point A� The point A is constrained to move on a circle of radius

l�� Furthermore� link l� is free to rotate about point A� The positions of this two

parameter system map to a hyperboloid in the image space� Each possible assembly

mode of the �R chain corresponds to a point on the hyperboloid� Since all positions

are constrained to be on this quadric� it is called the constraint hyperboloid� H�

The equation of this quadric� H �which is derived in Section ���� is found using

equation �������� and the fact that the moving point A is bound to a circle with

��
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radius r� and centre described by the homogeneous coordinates �Xc � Yc � Z� with

respect to the �xed reference frame �� The standard hyperboloid equation is

H � � � z��X�
� � X�

� � � ����� �x� � y��� �C�xz � �C�yz � C�z
�!X�

� �

����� �x� � y�� � �C�xz � �C�yz � C�z
�!X�

� � �C�z � x�zX�X� �

�C�z � y�zX�X� � �y � C�z�zX�X� � �C�z � x�zX�X� �

�C�x� C�y�zX�X�� �������

where

C� � �Xc�

C� � �Yc�

C� � X�
c � Y �

c � r��

For example� suppose C� � C� � � and C� � ���� Furthermore� let the ho�

mogenizing coordinates have the values z � X� � �� With these simpli�cations� the

equation of the constraint surface H is reduced to

H � � � X�
� � X�

� � �X�
� � �� �������

This surface is clearly a hyperboloid of one sheet in the variables X�� X�� X�� see Fig�

����

The essential idea of Husty�s FK solution algorithm  ��� ��! is to determine

the constraint surfaces for each �R sub�chain� The assembly modes are the posi�

tions which are common to all three constraint surfaces� i�e�� the intersections of the

hyperboloids� The algorithm is discussed in greater detail in Section ����
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Figure ���� The constraint hyperboloid� H in the image space�

���� Gr�obner Bases

Determining the intersections of the three hyberboloids requires the solution of a

system of three non�linear equations in three unknowns� Common tools for solving

such systems are the iterative �Newton�Raphson� etc��� continuation� and elimination

methods  ��� ��!� However� one thing shared by these methods is that they ignore

the geometric properties of the solution space and do not take possible alternate

descriptions of the system into account  �!�

Gr�obner bases were introduced in the Ph�D� thesis of Bruno Buchberger� written

in ���� at the University of Innsbruck� Austria� They were named in honour of Wolf�

gang Gr	obner� Buchberger�s research supervisor� The essential idea is a generalisation

of the theory of univariate polynomials and �nite systems of linear equations to mul�

tivariate and non�linear systems� The Buchberger algorithm  �� �!� which computes

Gr	obner bases� is an extension of the division algorithm for polynomial long division�

the method of determining least common multiples �lcm� of certain terms of two poly�

nomials� and the Euclidean algorithm for determining the greatest common divisor

��
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�gcd� of two polynomials� Thus� given a �nite set of multivariate polynomials over a

�eld� the Buchberger algorithm computes a new set of polynomials� called Gr	obner

bases� which are generators of the same ideal as the original�

The minimal Gr�obner basis of a given ideal can be thought of as basis vectors�

That is� every polynomial in the ideal is generated by a linear combination of the

minimal Gr	obner basis� The variety� or solution space� of the Gr	obner basis is iden�

tical to the variety of the ideal� It is important to note that a variety is determined

by an ideal� not by a particular set of equations� or polynomials� Depending on the

given ideal� it may be that the set of equations which comprise the Gr	obner basis are

#easier� to solve than the given set of the ideal�

The advantage of using Gr	obner bases theory over numerical methods� such as the

Newton�Raphson or secant methods� is that the reduction is algebraic� not numeric�

The potential advantage over the continuation and elimination methods is that the

reduced system may require less e�ort to solve� The biggest potential drawback is

that for di�cult problems intermediate results can become very large� which usually

leads to excessive computational time  ��� ��!�

A very detailed description of Gr	obner bases theory may be found in  �! and  �!�

Most of the notation from  �! will be used here so that additional information will be

easily accessible from that reference�

���� Term Orders

Systems of linear equations can be transformed using Gauss�Jordan elimination

to the reduced row echelon form� This is the form of the coe�cient matrix where

every row has a leading #�� with zeros directly beneath and above it� This system

has the same solutions as the original but� in general� requires less computational

e�ort to solve� Gr	obner bases theory o�ers an analogous procedure for non�linear

��
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systems� This method involves �nding a #better� representation for the corresponding

variety �solution space�� meaning that the original non�linear system is now #easier�

to solve� The desired #better� representation for the variety V �f�� � � � � fs� will be a

#better� generating set for the ideal I � hf�� � � � � fsi� #Better�� in this case� means

the new set of generators give a better understanding of the algebraic structure of

I � hf�� � � � � fsi� and the geometric structure of V �f�� � � � � fs��

Buchberger�s algorithm for computing Gr	obner bases is essentially a generalisa�

tion of the Euclidean algorithm for determining the gcd of two univariate polynomials�

It may also be viewed as Gauss�Jordan row reduction for systems of non�linear equa�

tions� Employing Gauss�Jordan elimination or the Euclidean algorithm requires a

certain ordering of terms� For example� univariate polynomials are ordered by term

degree� with the leading term having the highest degree if the division or Euclidean

algorithms are to be used� For solving linear systems� the order is unimportant� but

it must be speci�ed� For multivariate systems� an analogous order is required�

Recall that the set of power products is denoted by

Bn � fx��� � � � � � x�nn j�i � N� i � �� � � � � ng�

Let x� � x��� � � � � � x
�n
n � where � � ���� � � � � �n� � Nn� It will be assumed that the

di�erent terms in a polynomial have di�erent power products� so �x�y would never

be written as �x�y � x�y� The terms in a polynomial are arranged in increasing or

decreasing order� hence there must be a way to compare any two power products�

The order must be a total order� That is� given any x�� x� � Bn� exactly one of the

following must be true�

x� � x�� x� � x�� or x� � x��

The following three total term orders are used e�ectively in determining Gr	obner

bases  �� �!�

��
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Definition ������ Let lex denote the lexicographical order on Bn with

x� � x� � � � � � xn and be de�ned as follows� If

� � �
�� � � � � 
n��� � ���� � � � � �n� � Nn

then

x� � x� ��
��
�

the �rst coordinates 
i and �i in � and �
from the left which are di	erent satisfy 
i � �i

�From the left� means starting with the largest variables


For example� in the commutative polynomial ring k x� y! with lex x � y� the

following order is implied

� � x � x� � x� � � � � � y � xy � x�y � � � � � y� � � � � �

Definition ������ Let deglex denote the degree lexicographical order on Bn with

x� � x� � � � � � xn and be de�ned as follows� If

� � �
�� � � � � 
n��� � ���� � � � � �n� � Nn

then

x� � x� ��

�		�
		�

Pn

i���i �
Pn

i�� �i
orPn

i���i �
Pn

i�� �i and x
� � x�

with respect to lex with x� � � � � � xn

In the commutative polynomial ring k x� y! the degree lexicographical ordering

deglex with x � y is

� � x � y � x� � xy � y� � x� � x�y � xy� � y� � � � �

The �nal term ordering is the degree reverse lexicographical order�

Definition ������ Let degrevlex denote the degree reverse lexicographical order

on Bn with x� � x� � � � � � xn and be de�ned as follows� If

� � �
�� � � � � 
n��� � ���� � � � � �n� � Nn

then

��
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x� � x� ��

�		�
		�

Pn

i���i �
Pn

i�� �i
orPn

i���i �
Pn

i�� �i and the �rst coordinates 
i and �i in
� and � from the right� which are di	erent� satisfy 
i � ��

In this case� �from the right� means that the smallest variables are compared

until a set of corresponding exponents are found that have di�erent values�

In the case of two variables� deglex and degrevlex are identical� But� if there are

three or more variables in the ring this is no longer the case� This can be seen in the

following example�

x��x�x� � x�x
�
� for deglex with x� � x� � x�

but� if the degrevlex order is used the opposite is true�

x��x�x� � x��x
�
� for degrevlex with x� � x� � x��

Using degrevlex the exponents of x� are compared because they are the �rst from the

right that are di�erent� That is� on the left hand side the exponent of x� is �� on the

right hand side is exponent is �� The tie is broken because � � �� hence x� � x��

To compare the three term orderings� consider the polynomial in k x� y� z!� de�

scribed by f � �x�y�z � ��xy� � �x��

lex with x � y � z �� xy� � x�y�z � x��
�� f � �x� � �x�y�z � ��xy��

deglex with x � y � z �� x� � xy� � x�y�z�
�� f � �x�y�z � ��xy� � �x��

degrevlex with x � y � z �� x� � x�y�z � xy��
�� f � ���xy� � �x�y�z � �x��

Again� note that for the degrevlex ordering� to break the tie the �rst set of di�erent

exponents from the right are those of z� Since � � � then x�y�z � xy��

��
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���� The Univariate Case

������ The Euclidean Algorithm� The algorithm attributed to Euclid is for

determining the gcd of two positive integers� Suppose a and b are positive integers

with a � b� Then for some integers q� and r�� � 
 r� � b�

a � q�b � r��

Since r� � b� we also have

b � q�r� � r��

where q� and r� are integers� with � 
 r� � r��

Successive divisions produce the sequence of equations

a � q�b � r�� � 
 r� � b
b � r�q� � r�� � 
 r� � r�
r� � r�q� � r�� � 
 r� � r�

���
���

rn�� � rn��qn � rn� � � rn � rn�� � rn���

Since the successive remainders are decreasing non�negative integers� the remainder

rn � � must be obtained after a �nite number of divisions� The gcd of a and b is the

last positive remainder in the sequence� This is so because rn�� is a divisor of each

divisor and of each remainder� It must� therefore� be a divisor of each dividend� and

the gcd of a and b is the same as that of rn�� and rn��� namely� rn��  ��!�

The operations used in the Euclidean algorithm are addition and division� These

operators may also be used on polynomials� Hence� the Euclidean algorithm may

be used to determine the gcd of two polynomials� The main tool in the Euclidean

algorithm is the division algorithm�

������ The Univariate Polynomial Division Algorithm� The degree of a

polynomial f � denoted by deg�f�� is the largest exponent of x in f � The leading term

of f � lt�f�� is the highest degree term of f � The leading coe
cient of f � lc�f�� is the

��
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Table ���� Polynomial term reference terminology�

Symbol Meaning
deg�f� Degree of polynomial f

lt�f� The leading term of polynomial f
lc�f� The leading coe�cient of polynomial f
lp�f� The leading power product of polynomial f

coe�cient of lt�f�� The leading power product of f � lp�f�� is the power product of the

leading term� lt�f�� These are summarised in Table ����

The polynomial f is divisible by the polynomial g if and only if deg�g�
deg�f��

Consider the two polynomials

f � anx
n � an��x

n�� � � � � � a�x � a�

g � bmx
m � bm��x

m�� � � � � � b�x � b��

with n � deg�f� 
 m � deg�g�� If this is so� then g divides f �

The �rst step in the division of f by g is to subtract from f the product an
bm

xn�mg�

The factor of g in this product is
lt�f�
lt�g�

� The remainder after the �rst division step is

denoted by r� and is given by

r� � f � lt�f�

lt�g�
g�

r� is called a reduction of f by g and the process of computing r� is indicated by

f g �� r��

deg�r�� is necessarily less than deg�f� due to the subtraction of a suitable multiple

of g� which eliminates lt�f�� If deg�r�� �deg�g� the process continues� reducing r� by

g to obtain r� as

r� � r� � lt�r��

lt�g�
g�

The division algorithm continues until the �nal remainder equals zero� or the degree

of the remainder is less than deg�g�� At this point lt�g� can no longer be used to

��
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eliminate lt�r�� If the polynomial division required three steps to obtain the �nal

remainder� the reduction could be represented by

f g �� rg� �� rg� �� r�

However� the following shorthand may be used to indicate that repeated reduction

steps were used�

f g ��	 r�

Note that an ordering of the polynomials is implied� That is� for the algorithm

to terminate� the �nal remainder r must be zero� or have a degree less than that of

g� This can only occur if the powers of x are ordered with xm � xn and m � n� The

last condition� m � n is equivalent to the statement that xm divides xn  �!�

It is well established  ��� ��� ��! that� given a non�zero polynomial g � k x!�

for any f � k x! with deg�k� 
deg�g�� � q� the quotient� and the remainder� r� both

� k x! such that

f � qg � r�with r � � or deg�r� � deg�g��

Moreover� q and r are unique�

Next� consider an ideal I � hf�� f�i � k x!� The gcd of f� and f� will have a

variety identical to V �f�� f��  �!� Hence� it may be that the system �f�� � � � � fs� can

be solved with less computational e�ort if g � gcd�f�� � � � � fs� is �rst computed with

the Euclidean algorithm� Then all solutions to the system are obtained by solving

g � �� Furthermore� any other polynomial in k x! for which the remainder is zero

upon division by g is in I� g is said to generate I� and is the #best� generator for the

ideal�

��
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��	� The Multivariate Case

������ Multivariate Polynomial Division Algorithm� Now� consider the

case of ideals generated by more than two multivariate polynomials� I � hf�� � � � � fsi�
In order to divide f by f�� � � � � fs requires a reworking of the division and Euclidean

algorithms given earlier� The general idea is the same as for linear and univariate

polynomials� cancel terms of f using the leading terms of the fi�s� so that new terms

are smaller order than the cancelled terms� and continue the process of subtracting

multiples of the fi�s until the remainder has a smaller degree than any of the fi�s�

One complicating factor is that the dividend may have more than one divisor�

Given f� g� h � k x�� � � � � xn! with g �� �� the reduction symbol given earlier

f g �� h

may be thought of as f reducing to h modulo g� if and only if lp�g� divides a non�zero

term x� that appears in f � and

h � f � x�

lt�g�
g�

In this regard� h is the remainder of a one step division of f by g� This process

of subtracting o� terms in f that are divisible by lt�g� continues until h � �� or

deg�h� �deg�g�� This �nal remainder is denoted by r�

Let f� h� and f�� � � � � fs be polynomials in k x�� � � � � xn!� with fi �� ��� 
 i 
 s��

and let F � ff�� � � � � fsg� Then

fF ��	 h

is the notation for f reduces to h modulo F � if and only if there exists a sequence

of indices i�� i�� � � � � it � f�� � � � � sg and a sequence of polynomials h�� � � � � ht�� �
k x�� � � � � xn! such that

f fi� �� h
fi�
� �� h

fi�
� �� � � � fit�� �� h

fit
t�� �� h�

��
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If h � � or there is no power product in h that is divisible by any of the lp�fi��

then h is reduced with respect to the set of non�zero polynomials F � Such a reduced

polynomial is a remainder and is called r� In other words� r can not be reduced

modulo F � This reduction process allows for the de�nition of a multivariate divi�

sion algorithm� analogous to the univariate case� Given f� f�� � � � � fs � k x�� � � � � xn!

with fi �� �� the algorithm below returns quotients ui� � � � � us � k x�� � � � � xn!� and a

remainder r � k x�� � � � � xn!� such that

f � u�f� � � � � � usfs � r�

Note that in this algorithm an ordering is assumed among the polynomials in the set

ff�� � � � � fsg when i is chosen to be least such that lp�fi� divides lp�h��

Algorithm ������ Multivariate Polynomial Division Algorithm�

INPUT
 f� f� � � � � fs � k x�� � � � � xn! with fi �� ��� 
 i 
 s�
OUTPUT
 u�� � � � � us� r such that f � u�f� � � � � � usfs � r and

r is reduced with respect to ff�� � � � � fsg and
max�lp�u��lp�f��� � � � �lp�us�lp�fs��lp�r���lp�f��

INITIALIZATION
u� �� �� � � � � us �� �� r �� �� h �� f
WHILE h �� � DO

IF � i such that lp�fi� divides lp�h� THEN
choose the least i such that lp�fi� divides lp�h�

ui �� ui �
lt�h�

lt�fi�

h �� h� lt�h�

lt�fi�
fi

ELSE

r �� r � lt�h�

h �� h� lt�h�

CONTINUE

END

��
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������ De�nition of Gr�obner Bases�

Definition ������ A Gr	obner Basis for an ideal I is a set of non�zero polyno�

mials G � fg�� � � � � gtg contained in I if and only if for all f � I such that f �� �� �
i � f�� � � � � tg such that lp�gi� divides lp�f�


If G is a Gr	obner basis for I� then all polynomials in I can be reduced with

respect to G� For a subset S of k x�� � � � xn!� the leading term ideal of S is de�ned to

be the ideal

Lt�S� � hlt�s�js � Si�

With this de�nition in mind� the following statements are equivalent  �!�

�i� G is a Gr	obner basis for I�

�ii� f � I if and only if fG ��	 ��

�iii� Lt�G� �Lt�I��

The proof for the existence of G is given in  �!�

������ S	Polynomials and Buchberger�s Theorem�

Definition ������ Let � �� f� g � k x�� � � � � xn!
 Let the least common multiple

�lcm� of two power products be denoted L �lcm�lp�f��lp�g��
 The polynomial

S�f� g� �
L

lt�f�
f � L

lt�g�
g

is de�ned to be the S�polynomial of f and g


S�polynomials are used for the following reason� In the division of f by f�� � � � � fs�

it may happen that some term x� in f is divisible by both lp�fi� and lp�fj� with i �� j�

hence� x� is divisible by L �lcm�lp�fi��lp�fj��� If f is reduced by fi then

h� � f � x�

fi
fi

��
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is obtained� On the other hand� if f is reduced by fj

h� � f � x�

fj
fj

will be obtained� The ambiguity introduced is

h� � h� � x�

fi
fi � x�

fj
fj � x�

L S�fi� fj��

A key theorem concerning S�polynomials is due to Buchberger�

Theorem ������ �Buchberger� Let G � fg�� � � � � gtg be a set of non�zero poly�

nomials in k x�� � � � � xn!
 G is a Gr�obner basis for the ideal I � hg�� � � � � gti if and
only if for all i �� j�

S�gi� gj�
G ��	 ��

Buchberger�s proof is given in  �!�

������ Buchberger�s Algorithm� The Buchberger theorem outlines a strat�

egy for computing Gr	obner bases� Reduce the S�polynomials and if a remainder is

non�zero� add it to the list of polynomials in the generating set� Continue doing this

until there are #enough� polynomials in the generating set to make all S�polynomials

reduce to zero� Buchberger�s algorithm will produce a Gr	obner basis for the ideal

I � hf�� � � � � fsi� given F � ff�� � � � � fsg with fi �� ��� 
 i 
 s��

Algorithm ������ Buchberger�s Algorithm for Computing Gr	obner bases�

INPUT
 F � ff�� � � � � fsg � k x�� � � � � xn! with fi �� ��� 
 i 
 s�

OUTPUT
 G � fg�� � � � � gsg� a Gr	obner basis for I

INITIALIZATION
 G �� F�G �� fffi� fjgjfi �� fj � Gg
WHILE G �� � DO

Choose any ff� gg � G
G �� G � fff� ggg
S�f� g�G ��	 h� where h is reduced with respect to G

��
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IF h �� � THEN

G � ffu� hgj � u � Gg
G �� G � fhg

CONTINUE

END

������ Minimal Gr�obner Bases� It can be shown  �! that there exists a set

of minimal Gr	obner bases for every ideal� This leads to the important de�nition�

Definition ������ A Gr�obner basis G � fg�� � � � � gtg is called minimal if for

all i� lc�gi��� and for all i �� j� lp�gi� does not divide lp�gj�


��
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Example ������
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Figure ��	� Non�linear equations f� 	 f�
 Intersecting circle and ellipse�

Consider a set of non�linear equations in two variables� Let the �rst equation

represent a circle with radius �� given by x� � y� � �� It is required to determine the

��
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variety of the set� i�e�� the set of real intersections �if any� of this circle with the ellipse

described by �x� � y� � �� These two equations may be rearranged as polynomials

in two variables� x and y�

f� � x� � y� � �� �������

f� � �x� � y� � �� �������

A plot of these geometric entities reveals that they do� indeed� have four intersections�

This is shown in Fig� ���� Hence� the variety is not the empty set�

The goal of this example is to illustrate how the Buchberger algorithm computes

a Gr	obner basis for the ideal I� First� a term ordering is required� We will choose lex

with y � x� specify the input to the algorithm� and proceed�

INITIALIZATION� G �� ff�� f�g�G �� fff�� f�gg

Pass one through the WHILE loop

G �� fff�� f�gg � fff�� f�gg � �

S�f�� f�� �
L

lt�f��
f� � L

lt�f��
f�

�
x�

x�
�x� � y� � ��� x�

�x�
��x� � y� � ��

�
�

�
y� � �

�

S�f�� f�� � �
�
y� � �

�
can be reduced by neither f� or f��

Then S�f�� f��
G ��	 h �� ��

This being the case� let f� �� �
�
y� � �

�
�

Continuing with the �rst pass�
G �� fff�� f�gff�� f�gg
G �� ff�� f�� f�g

Pass two through the WHILE loop

Choose fff�� f�gg � G
G �� fff�� f�gg

��
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S�f�� f�� �
x�y�

x�
�x� � y� � ��� x�y�

�y����
�
�

�
y� � �

�
�

� �x� � y� � �y�

� �f� � ��y� � ��f� � ��

This implies that
S�f�� f��

G ��	 � � h

Pass three through the While loop

Choose fff�� f�gg � G
G �� �

S�f�� f�� �
x�y�

�x�
��x� � y� � ��� x�y�

�y����
�
�

�
y� � �

�
�

� �x� �
�

�
y� � �

�
y�

� �f� � �y� � ��f� � ��

This implies that

S�f�� f��
G ��	 � � h

The WHILE loop stops� since G � ��

G �� ff�� f�� f�g

Hence� a set of Gr	obner basis consists of the original second degree polynomials

plus a third univariate second degree polynomial� However� this is not a problem

because the minimal Gr	obner basis can always be determined� It is readily shown

that lp�f�� and lp�f�� divide each other� f� can be obtained as a linear combination

of f� and f��

f� � f� � f��

� �x� � y� � �� �x� � y� � ���

� x� � ��
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Figure ��
� The set of four orthogonal lines�
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Figure ����� The variety V �f�� f�� is identical to V �f�� f���

Finally� multiply f� through by � to get f� � �f� � y���� This gives the minimal

Gr	obner basis for I � hf�� f�i�

G � fx� � �� y� � �g� �������
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Every polynomial in the ideal to which f� and f� belong can be expressed as a

linear combination of the minimal Gr	obner basis� f� and f�� Geometrically� f� and

f� represent a set of two pairs of orthogonal lines� shown in Fig� ���� Clearly then�

the points shared by the lines x � �p� and y � �p� are the same as those shared

by x� � y� � � and �x� � y� � �� The variety V �f�� f�� is identical to the variety

V �f�� f��� as can be seen in Fig� ����� The di�erence is that the system ff�� f�g
requires less computational e�ort to solve than ff�� f�g�

��
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Manipulator Description

���� Holonomic Planar Rolling System

������ Manipulator Description� A manipulator with � closed kinematic

chains� or loops �A�B�� A�C�� B�C��� is shown in Fig� ���� It consists of � articulated

rigid elements� which move with constrained relative motion� and a rigid grounded

base� These � members are connected by � R�pairs and � G�pairs� The end�e�ector�

disk D� is the link �G�G� in each �R�R�G�G�R�R� loop� Legs A�B� and C each consist

of two links�

Fig� ��� shows the disk and a single leg� The �rst link in each leg is grounded to the

base� connected by an R�pair and to the second link by another R�pair� The circular

disk rolls� without slip� along the straight lines QjSj �in general� j � fA�B�Cg
throughout this text� on the non�grounded links of each of three �R serial legs�

Although these lines remain in tangential contact with the disk� the points of tangency

can be varied by relative rolling between the lines and disk�

������ Holonomic Higher Pairs� Referring to Fig� ���� the points of contact�

P j
C � between the disk and legs constitute three holonomic higher kinematic pairs� The

term refers to the fact that the constraint equations are in integral form� that is� in

terms of displacement� The constraint equation is simply the arc length equation

for a circular arc� It may be expressed in terms of the displacement of the points

of contact along lines QjSj and the appropriate IAC� Furthermore� the pure rolling
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Figure ���� A planar manipulator with three holonomic higher pairs�

condition and that fact that the displacements are planar allows the simple� linear

arc length equation to express the constraint for the higher pairs� Because of these

related conditions� the higher pairs are holonomic�

���� Nomenclature

The IK analysis of a parallel manipulator is the same as that for a serial manipu�

lator� except that the solution is repeated for each leg  ��!� Moreover� the kinematic

mapping procedure for the FK analysis also considers each leg separately  ��� ��!�

��
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Figure ���� One of the three �R legs and the disk�

Hence� joint and position variables along with link design parameters must be de�

scribed so as to allow for analysis of the manipulator on a leg by leg basis� To

minimise the confusion that results from the handling of the kinematic relationships

in component form� a system of left and right sub and super�scripts shall be adopted�

Each joint and position variable is fully identi�ed by left and right sub and super�

scripts while link parameters require only right sub and super�scripts� The system

described below is intended for use with the IK algorithm� Certain modi�cations are

required for the FK procedure and are detailed in section ������ Referring to Fig� ����

consider the generic parameter

f
m�

j
i �

��
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������ Left and right sub and super	scripts�

�i� For a joint variable� the right sub�script i� i � f�� �� �g identi�es the joint

number� For each manipulator leg� the joint number at the connection between

the �rst link and the base is �� Between the �rst and second link is �� The

higher pair between link � and the disk is ��

�ii� For a coordinate axis� the right sub�script i� i � f�� �� �� �g represents the link

to which the coordinate system is attached� � is for the base� � is for the �rst

link� etc��

�iii� The right super�script� j� j � fA�B�Cg denotes a particular manipulator leg�

�iv� The left super�script� f � f � f�� �� �� �g refers to the reference frame in which

the variable is represented�

�v� The left sub�script� m indicates the type of planar motion� R is for pure

rotation of the disk about its centroid� T is for pure translation of the disk

centre� No left sub�script means either general plane motion� or that the type

of motion is obvious from the context�

������ Fixed link design parameters�

�i� lji is the length of link i in leg j and r is the radius of the disk�

�ii� ljk�x is the projected distance along the horizontal axis of the inertial reference

frame� fA� g between the origins of legs j and k� j � fA�B�Cg� k � fA�B�Cg�
Note �
 For all analysis in this thesis the non�moving reference frame�

fA� g� attached to the base of leg A is considered as the inertial reference

frame� In Chapter � it is referred to as ��

Note �
 If j � k� the value of this parameter� as well as the one below� is

zero since there is no base o�set distance in this case�

�iii� ljk�y is the projected distance along the vertical axis of the inertial reference

frame� fA� g between the origins of legs j and k� j � fA�B�Cg� k � fA�B�Cg�

��



���� NOMENCLATURE

������ Joint variables�

�i� f
m


j
i is the joint angle i of leg j described in reference frame f with regard to

m type of motion� Positive angles are measured counter�clockwise �CCW��

�ii� �
md

j
� is the distance from point P j to point P j

C measured along yj�� Note that

yj� and zj� are always parallel� So dj� could be measured in frame fj�g along

zj�� However� in order to later derive the manipulator displacement equations

using Denavit and Hartenberg �DH� parameters  ��!� dj� must be expressed

in frame fj�g� In the home position shown in Fig� ���� the points P j and P j
C

are coincident� The origin of the frame f j
� g is superimposed on the point of

contact between the straight line QjSj� and the disk D� and translates with it

along line QjSj�

������ Position variables
 The Pose Array� The pose of the disk will be

described by a � 	 � array� The variables are all expressed in the inertial reference

frame� so the left super�script #��� while always implied� is omitted� The array is

written as� �
� xE
yE

E

�
� �

where

xE is the x Cartesian coordinate of the disk centre�

yE is the y Cartesian coordinate of the disk centre�


E is the orientation of the disk expressed as the angle between the xE axis

and the xA� axis� In the home position� the xE axis is parallel to the xA� axis�

Because of the pure rolling constraint� the initial pose of the disk must be consid�

ered in both the FK and IK problems� The variables corresponding to the home� or

��
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zero position of the manipulator will be scripted with an additional #��� For example�

the pose array in the home position is given by�
� xE�
yE�

E�

�
� �

������ Link Reference Frames� The algebra involved in both the IK and

FK problems can be simpli�ed by expressing each joint variable in its own reference

frame� Variables in the cascaded reference frames are transformed to other reference

frames as the problem requires� Careful selection of frame origins further simpli�es

computation� Hence� link reference frames �with the exception of frames E and T � are

assigned using the well established procedure developed by Denavit and Hartenberg

 ��� ��! and adapted here for higher pairs� The procedure is summarised below  ��!�

�i� Identify the point of intersection� or the common normal of neighbouring joint

axes i and i � �� Assign the origin of the frame for link i at the point of

intersection� or where the common normal meets the ith axis�

�ii� Assign the zi direction pointing along the ith joint axis�

�iii� Assign the xi direction pointing along the common normal� or if the axes

intersect� assign xi to be normal to the plane containing the two axes�

�iv� Assign the yi direction to complete a right�handed coordinate system�

This procedure introduces the planar systems �x� y� and �x� z�� see Figs� ��� � ����

These systems are used for their computational convenience when concatenating the

�	� DH parameter transformations �section ���� to derive the displacement equations�

������ Additional Nomenclature for the FK Problem� Additional nomen�

clature is required to suit the demands of the FK problem� In order to make the

transform between actual and pseudo inputs �introduced in section ������ it is conve�

nient to have two reference frames� E and T � attached to the disk� Both E and T

��
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translate with the disk� but only E rotates with the disk� The origins of E and T are

both incident on the centre of the disk�

The R�pairs connecting two links in a leg shall be referred to as knee joints A�B�

and C� Recall that �dj�� j � fA�B�Cg is the distance of the contact point measured

along the yj� coordinate axis� which is always parallel to the rack� Observe that the

Euclidean distance between the knee joint and the centre of the disk is a function

of this distance� Also� the three normals through each contact point are all incident

on the disk centre� The change in the angle a normal makes with respect to the

non�rotating frame� T � is related to the change in position of the contact point along

the rack by

%�dj� � r%T �jE�

���� Mobility Analysis

An unconstrained rigid body in the plane has three DOF� It can translate in

two mutually orthogonal directions in the plane and it can rotate about any axis

perpendicular to the plane� This is a special case of general � DOF motions in ��

space� where the � freedoms can be any of the �
��� i�e�� �� permutations of translations

and rotations�

l unconstrained rigid links have ��l��� relative degrees of freedom� given that one

of the rigid links is designated as a non�moving reference link� Any joint connecting

two neighbouring bodies removes at least one or at most two relative DOF� If the

joint removes no DOF then the bodies are not connected� If the joint removes three

DOF then the two bodies are a rigid structure�

��
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The general mobility formula for planar motion� often referred to as the Chebyshev�

Gr	ubler�Kutzbach formula  �� ��!� is expressed as�

��l � ���
jX

i��

ui � DOF� �������

where l is the number of links� ui is the number of constraints imposed by the ith

joint� and j is the number of joints�

The three legged manipulator shown in Fig� ��� is characterised as follows� In�

cluding the base� there are eight links
 six R�pairs take away two freedoms each


the three G�pairs also take away two freedoms each� Using the Chebyshev�Gr	ubler�

Kutzbach formula�

���� ��� ����� ���� � �� �������

Since there are � DOF� three independent coordinates are required to specify the pose

of the disk�

It is worthwhile to note that the disk has � DOF regardless of the number of

grounded �R legs to which it is connected by pure rolling� This is proven by showing

the left hand side �LHS� of equation ������� is always equal to �� Equation ����� may

be re�expressed as�

��l � ��� �j � DOF� �������

since each joint removes two DOF� The ground link and disk always count as two

links and each of the n legs is composed of two links� thus for n legs the number of

links is

l � �n � �� �������

Furthermore each leg has three joints� so�

j � �n� �������

Substituting equations ������� and ������� into the LHS of equation ������� gives

��



���� TANGENCY CONDITION

���n � �� ��� ���n�
� �n � �� �n
� ��

Therefore� n can be any positive non�zero integer� This implies the disk may

have any position and orientation� within the physical limits of its workspace� These

� DOF are independent of the number of �R legs upon which the disk rolls�

���� Tangency Condition

By virtue of the pure rolling constraints� the straight lines along which the disk

rolls must always remain tangent to the disk� Consider a line and a circle in the

Euclidean plane� The equation of the line can be represented by the linear equation

ax � by � c � �� �������

for constant coe�cients a� b� c� and variable points �x� y�� A circle with centre �xc� yc�

and radius r is given by

�x� xc�
� � �y � yc�

� � r� � �� �������

Equation ������� can be solved for y to give the familiar slope�intercept form of the

line� and the expression is substituted into equation �������� The result is expanded

in powers of x which yields a quadratic�

Ax� � Bx � C � �� �������

where�

A �
a�

b�
� ��

B � �


�xc �

ac

b�
�
ayc
b

�
�

C � x�c � r� � ��c�b� � yc�
� �

To satisfy the tangency condition� the discriminant of the quadratic must vanish�

p
B� � �AC � ��

��



���� COMMUTATIVE DISK DISPLACEMENTS IN THE PLANE

The discriminant itself is a quadratic in terms of the constant a�

�x�c � r��a� � �c � byc��xca � �b�y�c � b�r� � �bcyc � c�� � �� �������

This condition is necessary� but not su�cient to guarantee pure rolling contact�

However� all solutions to the FK and IK problems must satisfy this condition� FK

and IK algorithms can use this condition as a check on the validity of solutions�

���� Commutative Disk Displacements in the Plane

Recall section ������ The group operator de�ned on D� �� is called �product�� �
represents successive implementations of given isometries� Now� any displacement of

the disk� that is� any product of translations and rotations about arbitrary parallel

axes normal to the plane may be decomposed into the product of a single translation of

the disk centre and a single rotation through a �nite angle of the disk about its centre

 ��!� Furthermore� since it is the centre of rotation which is translated� these speci�c

translations and rotations commute� The latter claim is shown by the following� Let

Td � Translation through distance d�

S� � Rotation through angle & about centre S�

Consider the arbitrary motion of the disk along some path between an initial

position� Pi� and a �nal position� Pf � shown in Fig� ���� Td is the translation through

distance d of the disk centre from Pi to Pf � Although many paths are associated with

the isometry Td� the distance d is independent of the path between the two points�

In fact� d is the sum of the directed translations along any path between Pi and Pf �

Along any arbitrary path� the disk orientation can change such that when it

arrives at Pf � a reference line painted on the disk has been rotated through an angle &�

This angle is the sum of all angular displacements of the disk about arbitrary parallel

axes �perpendicular to the plane of the disk� encountered along the path� This sum

��
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Arbitrary path

P

P

d

f

i

Figure ���� Arbitrary motion of the disk between two points�

may be expressed as the di�erence between &f and &i� such that &f � &i�mod�	��

It follows that the sum of all angular displacements along the path may be expressed

as a single rotation of the disk about its centre� S�� where & � &f � &i�

Thus� any arbitrary motion of the disk may be represented by the product of a

single translation of its centre and a single rotation about its centre� The centre of

the disk is a point� Points can not rotate� they can only translate� Since the centre

of rotation is translated it is evident that S� may occur independently from Td� It

then follows that�

Td � S� � S� � Td�

���� Special Geometric Manipulator Properties

The general motion of the disk in the plane involves relative motion between the

disk and each serial �R leg� The rolling contact is conveniently modelled as multiple

racks and a single pinion� Each rack can roll on the pinion� the pinion can roll on the

racks� or there can be a combination of the two motions� For general planar motion

the system� with link frames as assigned in Fig� ���� has the following properties�

��
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�i� If the pinion rolls on one rack� then it must roll on all�

�ii� As a consequence of �i�� if one of the higher pairs is locked� the disk can not

rotate about its centre�

�iii� Any or all of the racks may roll on the pinion�

�iv� If� during general motion� the pinion is stationary with respect to one rack

while the other racks roll on the pinion there are two possibilities� Consider

leg A� for example� Suppose that the higher pair in this leg is locked� First� if

�
A� is constant� the motion of the pinion is pure curvilinear translation in the

�xed base frame� Second� if �
A� changes during the motion� then the pinion

rotates about a centre other than its own axis by an angle equal to the change

in �
A� � Regardless� there can be no rotation of the disk about its centre� since

one of the higher pairs is locked� Such a motion would violate �ii��

�v� If %�dA� has the same magnitude but opposite sense as either %�dB� or %�dC� �

then the motion of the pinion is pure rectilinear translation of its centre� Pure

curvilinear translation can also occur if the magnitude condition is violated

however� the opposite sense condition must be met�

�vi� If %�dA� � %�dB� � and %�dC� have the same magnitude and sense� then the motion

of the pinion is pure �xed axis rotation about its centre�

��



Chapter �

The Inverse Kinematics Problem

���� Approach

The IK problem involves the determination of a set of feasible joint variables

required to attain a desired pose� It may be stated succinctly as� given  xE� yE� 
E!T

determine  �
j��
�
j��

�dj�!
T � A complicating factor in general plane displacement is the

ambiguity that the rolling constraint introduces� That is� 
E� the desired �nal disk

orientation does not divulge how much of the new position was achieved by rotation

of the grounded and non�grounded links and how much was achieved by pure rolling

between the disk and the legs� By how much has the disk rolled on the racks and by

how much has each rack rolled on the disk' Is there a combination� and if so� what

is the ratio' These questions lead to di�culties in the calculation of the joint o�sets�

�dj�� To address this problem the special properties of the manipulator �section ����

and the group properties of D �section ������ are invoked� Any feasible displacement

of the disk can then be decomposed into a pure translation of the disk and pure� �xed

axis rotation about the centre of the disk �see section �����

Given both the desired pose array and the IAC� a set of intermediate joint vari�

ables may be calculated for the pure translation component� The translation set may

then be combined with a subsequent set calculated for the pure rotation component�



���� DERIVATION OF DISK DISPLACEMENT EQUATIONS

As shown in section ���� these rotations and translations commute� Hence� the order

of rotation and translation is not important� This last fact will be used for the sake

of convention� The intermediate solutions for pure translation will be calculated �rst�

Then� using this intermediate set as new initial conditions� solutions will be generated

for �xed axis rotation� The �nal solution set is simply the combination of the two

solution sets�

A result determined in section ����� is that the upper bound on the number of

solutions to the IK problem is �n� where n is the number of legs� For the three�

legged version� this means that there are as many as �� real solutions� The aim was

to develop an algorithm to determine solutions and not to generate vast tables of

data� Since the solutions are not coupled from leg to leg we can� without loss of

generality� develop the algorithm using the two�legged version as the model� The

solution algorithm can then be applied to similar manipulators with any number of

�R legs� It is for this reason that the two�legged version� shown in Fig� ���� is now

considered�

���� Derivation of Disk Displacement Equations

Input�output displacement equations for each leg are required for the IK algo�

rithm� The inputs for a given leg are the location of the base in the inertial reference

frame
 the three joint parameters� �
j��
�
j�� and �dj�
 the IAC� The outputs are the

disk position and orientation� xE� yE� and 
E� The displacement equations for the

two�legged version of the manipulator are readily obtained by inspection� However�

the DH notation provides an excellent means for #accounting� as well as keeping the

problem #general�� After assigning link reference frames by the procedure given in

section ������ the following de�nitions of link parameters apply  ��� ��!�

��
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Figure ���� Disk platform with two �R legs�

ai � distance from zi to zi	� along xi�

i � angle between zi � zi	� about xi�
di � distance from xi�� to xi along zi�

i � angle between xi�� � xi about zi�

Using homogeneous Cartesian coordinates  ��! with a homogenising coordinate

of xh � �� the relative displacement between adjacent links can be expressed as a

linear transformation of the form�

i	�x � i	�
i Tix�

where i	�x and ix are the position vectors of points in reference frames fi � �g and

fig respectively� with x having the form��
���
x
y
z
�

�


� �

Either y or z will be set to zero� depending on which reference plane is used �see Fig�

����� The additional dimensions are included for the sake of computation and have

��
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no e�ect on the outcome� The operator i	�
i T is a �	 � homogeneous transformation

matrix which maps vectors de�ned in frame i into frame i � �� Employing the DH

parameters� it has the form�

i	�
i T �

�
���

c
i �s
i � ai��
s
ic
i�� c
ic
i�� �s
i�� �s
i��di
s
is
i�� c
is
i�� c
i�� c
i��di

� � � �

�


� �

where c � cos and s � sin�

A transformation matrix must be calculated for each link� The matrices may

then be concatenated� in the appropriate order� to obtain the transformation matrix

which relates the pose of the disk in the disk frame� fEg to the pose of the disk in

the base frame of interest� Since the base frame fA� g has been selected as the inertial

reference frame� the locations of the bases of all other legs must be expressed with

respect to fA� g and incorporated into the calculations� The displacement equations

for each leg may then be obtained� by inspection� from this transformation matrix�

After some algebra the following equations are obtained �note the right super�

script is dropped� since all variables refer to the current leg��

Kx � l�c� � �l� � r�c�� � d�s��� �������

Ky � l�s� � �l� � r�s�� � d�c��� �������

where

Kx � xE � lAk�x �

Ky � yE � lAk�y �

c� � cos ��
���

c�� � cos ��
� � �
���

s� � sin ��
���

s�� � sin ��
� � �
���

��
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Note that for leg A� Kx � xE� and Ky � yE� because of the location of the origin of

the inertial reference frame�

���� Inverse Kinematics Algorithm

������ The Four Algorithm Steps� Since solutions are not coupled between

legs�  ��!� each leg is treated as an open four�bar chain and solved for separately� A

convention mentioned in section ������ is that the inertial reference frame will remain

coincident with the �xed reference frame on the base of leg A� The choice of leg A is

arbitrary� however any subsequent legs will be labelled B�C� � � � � j� CCW from leg A�

Leg A will always be solved for �rst� The inverse kinematics algorithm is summarized�

with reference to Fig� ���� in the following four steps� Note the dependence of the

results on the initial conditions� This dependency is what removes this manipulator

from the more common group of SG type planar platforms jointed exclusively with

lower pairs�

Step �� Pure translation
 Remove the higher pair connection with all but the leg

being considered� The �rst iteration concerns leg A� Lock the higher pair so that

%�dA� � � and calculate the joint angles required to reach the new position given

by the ordered pair �xE� yE�� Call the new angles �
T


A
���

�
T


A
��� and �

T

A
�� �recall that

�
T


A
�� � �

T

A
�� � �

T

A
�� ��

Step �� Remove arti�cial angular o�set
 Recall special property �iv� in section

���� If the disk is stationary with respect to one rack while in motion� then the disk

orientation can change� Since pure translation of the disk is required� any angular

o�set created by step � must be removed� This is accomplished by an imaginary

�xed axis rotation about the disk centre equal in magnitude� but opposite in sense

to �
T


A
��� Calculate �

Td
A
� � which is the joint o�set required to e�ect the imaginary

rotation� Recalculate the joint angles� These are the joint angles necessary to cause

��
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the pure translation of the disk centre� Call these intermediate angles �
T


A
� � �

T

A
� � and

�
T


A
� � Of course� if there is no rotation component to the motion� these are the �nal

joint angles� If there is no translation component� these angles are the same as the

initial joint angles�

Step �� Pure rotation
 Recall special property �vi� in section ���� If %�dA� �ie���dA� �
�dA��� and %�dB� have the same magnitude and sense� then the motion of the disk is

pure rotation about its centre� Hence� %�dA� is simply calculated from the arc length

subtended by %
E �ie�� 
E � 
E��� and is the same for all legs� Using the joint

variables from step � as initial conditions and the desired disk angle 
E � calculate

�
A� � �
A� � and �dA� �

Step �� Repeat Steps �� �� and � for the remaining legs�

������ Closed Form Analytic Solution� Once the displacement equations

are known� the following procedure may be used to solve for the set of joint variables

required to achieve a desired feasible pose� Again� since the solution proceeds on a leg�

by�leg basis all variables correspond to the current leg� so the right superscript may

be omitted� Equations ������� and ������� are squared and added� �
� is eliminated

using the identities�

c�� � c�c� � s�s��

s�� � c�s� � s�c��

The following equation in two unknowns� �
� and �d�� is obtained�

� � �l���l� � r�c� � �d�s�� � l���r � l�� � l�� � �d��

�r� �K�
x �K�

y � �������

The variable �d� can be determined because of special property �vi� �in section

���� and the fact that the general plane motion is decomposable into pure translational

��
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and rotational components� In the algorithm� step � requires that the higher pair be

locked� Hence� there is no change in �d�� Step � recovers the angular o�set arti�cially

caused by step �� This is accomplished by �xed axis rotation of the disk about its

centre� Step � is the actual pure rotational component of the motion� Again� this is

a �xed axis rotation about the disk centre� Thus �d� in each of steps � and � is given

by�

Step �� �
Td� � �d�� � r��T
�� � �
���� �������

Step �� �d� � �
Td� � r�
E � 
E��� �������

Determining the joint o�sets using the pure rolling constraint equations guarantees

that the tangency condition is met since tangency is a necessary �although not su��

cient� condition for pure rolling�

Equation ������� can now be expressed as a function of just one variable� �
��

tan
�

�
��
�� �

�
K� � �

p
K�

�K�

�
� �������

where

K� � �l�
�d��

K� � �l���l
�
� � �d�� � r�� � �l�r�l

�
� � �d�� � K�

x � K�
y�

���d���l
�
� � r�� � ��K�

x � K�
y ��l�� � l�� � �d�� � r��

��K�
xK

�
y � �l��r � �r�l�� � �r�l� � l�� � l��

��d�� � r� �K�
x �K�

y �

K� � l�� � l�� � �d�� � r� �K�
x �K�

y � �l��r � l��

��l�r�

Solving ������� for �
� yields two solutions�

�
� � � tan��

�
K� � �

p
K�

�K�

�
� �������

��
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Solving for angles using tan�� has an inherent ambiguity concerning the quadrant

in which the angle lies� However� this solution involves the half angle and hence the

quadrant is unique�

������ Upper Bound on the Number of Solutions� For a general displace�

ment� the four algorithm steps produce the following� From step � two values of �
T
��

are obtained from equation �������� Corresponding to each of these there is a unique

value of �
T
�� that will satisfy both equations ������� and �������� From step �� there

is one value of �
Td� obtained for each value of �

T
�� determined in step �� Also� two

values of each of �
T
� and �

T
� are obtained� Step � yields two values for �d�� one for

each of the values of �
Td� determined in step �� For each value of �d� there correspond

two values for each of �
� and �
�� These are the elbow�up and elbow�down solutions�

Thus� for each leg there are up to four solutions� The solutions for each leg are un�

coupled� Hence� for a manipulator with n legs� there are �n solutions� some of which

may be complex conjugate pairs� It must be noted that not all con�gurations can be

achieved by smooth motions from the home position�

���� Examples

The following three numerical examples deal with �� pure rotation of the disk

about its centre
 �� pure translation of the disk� no disk rotation
 �� combined trans�

lation and rotation� In all three examples� the home position shown in Fig� ��� is the

initial position� The �xed link parameters and initial conditions are as follows� where

lengths are in �generic� units and angles are in degrees�

Initial Pose Array

�
� xE�
yE�

E�

�
� �

�
� �

p
�

�
p

�
��

�
�

��



���� EXAMPLES

Fixed Link Parameters

r � �
lAB�x � ��

p
�

lAB�y � �
lA� � lB� � �
lA� � lB� � ��

Initial Joint Parameters

�dA�� � �dB�� � �
�
A�� � ����
�
B�� � ���
�
A�� � ����
�
B�� � ���
�
A�� � ���
�
B�� � ����

Example ������

Pure Rotation
 Pure rotation of the disk about its centre is the simplest motion

for obtaining solutions� There are no intermediate joint parameters to calculate� As

a result� a maximum of only four solutions may be expected�

In this example� the disk centre remains in its home position while it rotates

through ���� The desired pose array is��
� xE
yE

E

�
� �

�
� �

p
�

�
p

�
���

�
� �

The four solutions are given in Table ��� at the end of the chapter and are represented

graphically in Fig� ����

Example ������

Pure Translation
 In this example� joint parameters are calculated for the case

of pure translation of the disk� Despite the fact that no real rotation of the disk

��



���� EXAMPLES

SOL’N A1

SOL’N A2

SOL’N B1

SOL’N B2

E

Figure ���� The solutions for pure rotation from Table ����

occurs� the algorithm requires the calculation of a set of intermediate joint variables�

The desired pose array is� �
� xE
yE

E

�
� �

�
� ������

�������
��

�
� �

Sixteen real solutions were obtained� The �rst four� from Table ��� at the end of

the chapter� are shown in Fig� ����

SOLUTIONS 1-4

SOL’N A1-A4

SOL’N B3

SOL’N B1

SOL’N B4

SOL’N B2

E E
(x  ,y  )

Figure ���� The 
rst four solutions for pure translation from Table ���

��



���� TABLES OF SOLUTIONS

Example ������

General Plane Displacement
 The displacements of Examples ����� and �����

are combined to give a general plane displacement� The desired pose array is��
� xE
yE

E

�
� �

�
� ������

�������
���

�
� �

The �rst four of the sixteen real solutions obtained are illustrated in Fig� ���� All

sixteen solutions are given in Table ��� at the end of the chapter�

SOLUTIONS 1-4

SOL’N A1-A4

SOL’N B3
SOL’N B1

SOL’N B4

SOL’N B2

E

EE
(x  ,y  )

Figure ���� The 
rst four solutions for general displacement from Table ����

���� Tables of Solutions

Table ���� � real solutions for Example ������

Sol�n � � � �
�
A

�
�deg� �������� �������� �������� ��������

�
A
�

�deg� �������� �������� ��������� ���������
�dA

�
������ ������ ������ ������

�
B
�

�deg� ��������� ������� ��������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������ ������

��



���� TABLES OF SOLUTIONS

Table ���� �� real solutions for Example ������

Sol�n � � � �
�
A

�
�deg� ��������� ��������� ��������� ���������

�
A
�

�deg� �������� �������� �������� ��������
�dA

�
������� ������� ������� �������

�
B
�

�deg� �������� ������� �������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������� �������

Sol�n � � � �
�
A

�
�deg� �������� �������� �������� ��������

�
A
�

�deg� ��������� ��������� ��������� ���������
�dA

�
������� ������� ������� �������

�
B
�

�deg� �������� ������� �������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������� �������

Sol�n � �� �� ��
�
A

�
�deg� ��������� ��������� ��������� ���������

�
A
�

�deg� �������� �������� �������� ��������
�dA

�
������� ������� ������� �������

�
B
�

�deg� �������� ������� �������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������� �������

Sol�n �� �� �� ��
�
A

�
�deg� �������� �������� �������� ��������

�
A
�

�deg� ��������� ��������� ��������� ���������
�dA

�
������� ������� ������� �������

�
B
�

�deg� �������� ������� �������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������� �������

��
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Table ���� �� real solutions for Example ������

Sol�n � � � �
�
A

�
�deg� ��������� ��������� ��������� ���������

�
A
�

�deg� �������� �������� �������� ��������
�dA

�
������� ������� ������� �������

�
B
�

�deg� �������� ������� �������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������ ������

Sol�n � � � �
�
A

�
�deg� �������� �������� �������� ��������

�
A
�

�deg� ��������� ��������� ��������� ���������
�dA

�
������� ������� ������� �������

�
B
�

�deg� �������� ������� �������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������ ������

Sol�n � �� �� ��
�
A

�
�deg� ��������� ��������� ��������� ���������

�
A
�

�deg� �������� �������� �������� ��������
�dA

�
������� ������� ������� �������

�
B
�

�deg� �������� ������� �������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������ ������

Sol�n �� �� �� ��
�
A

�
�deg� �������� �������� �������� ��������

�
A
�

�deg� ��������� ��������� ��������� ���������
�dA

�
������� ������� ������� �������

�
B
�

�deg� �������� ������� �������� �������
�
B

�
�deg� �������� ��������� �������� ���������

�dB
�

������ ������ ������ ������

��



Chapter �

The Forward Kinematics Problem

���� The FK Problem Formulation

������ Di�culties� The FK problem is conventionally expressed as a transfor�

mation of the position and orientation of the end e�ector from a joint space represen�

tation to a Cartesian space representation� That is� given a set of n joint variables�

one for each n degrees of freedom� determine the position and orientation of the end

e�ector with respect to a non�moving reference coordinate system� The pure rolling

nature of the higher pairs makes this manipulator markedly di�erent from planar SG

type platforms because the pure rolling condition renders FK solutions completely

dependent on the IAC� The FK analysis can not be reduced to the planar SG case be�

cause no equivalent mechanism exists which can exactly reproduce a rack�and�pinion

motion  ��!� For this reason� and those discussed in section ��� associated with the

presence of the higher pairs� the methods in  ��! and  ��! can not be used� Hence

the FK problem must be reformulated�

������ Input Variables
 Pseudo Inputs� A way to decompose a general

displacement of the manipulator to determine the contributions of the racks rolling on

the disk and the disk rolling on the racks has proven elusive� As a result� conventional

joint variable inputs can not be used� This is because each type of rolling may produce



���� THE FK PROBLEM FORMULATION

the same change in the location of the contact point but yields an entirely di�erent

displacement� One solution is to modify the problem by using instead a set of pseudo

inputs from which the position and orientation of the disk in the non�moving reference

frame can be determined�

The pseudo inputs are the position of the knee joints in the disk frame� E� as

described in section ������ These positions are�
�

EA
EB
EC

�
� � �������

Each position is speci�ed by a � 	 � array of Cartesian coordinates expressed in E�

hence six pseudo input variables are required� Because the knee joints are constrained

to move on circles� the position and orientation of the disk in the non�moving frame

� can be determined with the kinematic mapping discussed earlier in the same way

as  ��� ��!�

The actual joint inputs are the variable joint lengths �dj�� j � fA�B�Cg� These

lengths are the change in distance of the contact point measured along the yj� coor�

dinate axis� which is always parallel to the rack� This is why the solution is coupled

with the IAC� They are related to the pseudo inputs in the following way��
Txj�
Tyj�

�
�

�
c�� �s��
s�� c��

� �
Exj�
Eyj�

�
� �������

�
Txj�
Tyj�

�
�

�
�lj� � r�c��j� � �dj�s

��j�
�lj� � r�s��j� � �dj�c

��j�

�
� �������

where c � cos� s � sin� and �� is the orientation angle of the disk� T is the non�

rotating reference frame incident on the origin of E�

Since the reference frame T translates with the disk� T� � �� and� of course�

T
 � �
� So� the pseudo inputs are theoretically valid as input parameters� except

that the actual inputs can not be speci�ed until the disk orientation is known� The

higher pair variables along with the IAC must be speci�ed or the disk orientation can

��



���� FORWARD KINEMATICS ALGORITHM

not be determined� A cart�before�horse scenario� to be sure� While this approach to

the FK problem is not necessarily practical� it is a start� To the best of our knowledge

the FK of such a planar parallel platform with higher pairs have never been addressed�

Using the pseudo inputs and IAC� the FK problem of the manipulator shown in

Fig� ��� can be stated in the following way� Given the coordinates of the three base

points A�� B�� C� in an arbitrary �xed coordinate system� �� the coordinates of the

knee joints EA� EB� EC expressed in an arbitrary coordinate system� E� which moves

with the disk� the �xed lengths of each link� lji � i � f�� �g and j � fA�B�Cg� and

given the radius of the disk� �nd the position�s� and orientation�s� of the disk such

that the knee joints EA� EB� EC can be joined to the base points A�� B�� C� with legs

of the given lengths�

���� Forward Kinematics Algorithm

To obtain the solutions for a given set of inputs� begin by removing the disk

connections with legs B and C� Observe that the higher pairs are locked by virtue of

the speci�ed input parameter� That is� there can be no relative motion between the

disk and the rack because that would change the relative location of the knee joint

in the moving coordinate system� E� The knee joint EA is constrained to move on a

circle with A� as its centre and radius lA� � Furthermore� the rigid body comprised of

link lA� and the disk can rotate about EA� Since this is a two parameter motion it must

correspond to a two parameter set of points in the image space� This set of image

points is a surface� called a constraint surface� H� The equation of H is found using

equation �������� and the fact that the moving point EA is bound to a circle� Note

that the rack and pinion joints can be actuated by means of power transmission from

motors located on the base� The advantages of parallel architecture are contracdicted

by placing the motors on the moving platform�

��



���� FORWARD KINEMATICS ALGORITHM

The general homogeneous equation of this circle is determined as follows� A circle

with a centre described by the homogeneous coordinates �Xc � Yc � Z� and radius r

has an equation

�X �XcZ�� � �Y � YcZ�� � r�Z� � �� �������

Expanded� this becomes

X� � Y � � �XXcZ � �Y YcZ � X�
cZ

� � Y �
c Z

� � r�Z� � �� �������

We can set

C� � �Xc�

C� � �Yc�

C� � X�
c � Y �

c � r��

and substitute these constants back into equation ������� to get

X� � Y � � �C�XZ � �C�Y Z � C�Z
� � �� �������

Recall from Chapter � that the equation of the image point �equation ��������� is

given by��
� X
Y
Z

�
� �

�
� �X�

� �X�
� � ��X�X� ��X�X� � X�X��

�X�X� �X�
� �X�

� � ��X�X� �X�X��
� � �X�

� � X�
� �

�
�
�
� x
y
z

�
� � �������

Substituting the expressions for X� Y� Z from equation ������� into equation �������

gives the quadric surface

H � � � z��X�
� � X�

� � � ����� �x� � y��� �C�xz � �C�yz � C�z
�!X�

� �

����� �x� � y�� � �C�xz � �C�yz � C�z
�!X�

� � �C�z � x�zX�X� �

�C�z � y�zX�X� � �y � C�z�zX�X� � �C�z � x�zX�X� �

�C�x� C�y�zX�X�� �������

It is shown in  �! that this quadric constraint surface is a hyperboloid containing

the isotropic points J��� � i � � � �� and J��� � �i � � � ��� When the other two points

��



���� EXAMPLE

Table ���� Input parameters�

�x �y Ex Ey
A� � � EA �� ���
B� �� � EB � ���
C� �� �� EC ��� ����

r � � lj
�

� � lj
�

� �� j � fA�B�Cg

B and C are analyzed in turn� three hyperboloidal surfaces are generated� HA� HB�

and HC � which correspond to the complete range of possible displacements around

the points still connected� The points of intersection of HA� HB� and HC represent

the positions of the end�e�ector where its three knee joints are on their respective

circles� Therefore� these points of intersection constitute the solution�s� to the FK

problem�

It must be noted that� according to B�ezout�s theorem  ��!� three second order

surfaces can intersect in at most eight points� However� the isotropic points J� and

J� are common to all such constraint hyperboloids� and are therefore always in the

solution set� Recall that points with X� � X� � � correspond to no real displacement�

Since only real solutions are of interest� the isotropic points are discounted� Hence�

there are a maximum of six real solutions to the FK problem for manipulators of this

type� which con�rms the already well known result for planar SG type platforms  ��!�

���� Example

Example ������

������ Determining the � Hyperboloids� Table ��� gives the coordinates of

the base points A�� B�� C� in the �xed frame � with origin at A�� the input variable

coordinates of the knee joints EA� EB� EC in the moving frame E� with origin at

centre of the disk� D� along with the �xed link lengths lji � i � f�� �g� j � fA�B�Cg
and radius of the disk r�

��
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Substituting the data from Table ��� into equation ������� gives the following

three constraint surfaces in the image space�

HA � X�
� � X�

� �
��

�
X�

� � ����X�
� � �X�X� � ��X�X� � ��X�X�

��X�X� � � �������

HB � X�
� � X�

� �
���

�
X�

� �
���

�
X�

� � ��X�X� � �X�X� � ��X�X�

� ��X�X� � � �������

HC � X�
� � X�

� �
����

�
X�

� �
���

�
X�

� �
��

�
X�X� � ��

�
X�X� �

��

�
X�X�

� �

�
X�X� � ���X�X� � �� �������

These constraint surfaces in the image space are shown from two di�erent per�

spectives in Fig��s ��� and ���� They were generated using Husty�s parametrization

 ��!�
�
� X�

X�

X�

�
� �

�

�

�
� r

p
s� � � cos t � m

r
p
s� � � sin t � n

�s

�
� �

where m � Eyj� � C� � s�C� � Exj��� n � s�Eyj� � C�� � C� � Exj� and t �  �� �	!�

s �  �����!�

Setting the range of parameter s �ie�� X�� to be  �����!� the constraint surfaces

are clearly seen to be skew hyperboloids in Fig� ���� Decreasing this range to s �

���� � ���� in Fig� ���� the line of intersection between two of the surfaces clearly

intersects the third surface in a single point� This single point represents one of

the possible six real solutions� The remaining common intersections are not visible

because of the display parameters�

������ Determining the Minimal Univariate Polynomial� Using the Gr�

	obner bases package in the computer algebra software MapleV the equations of the

three hyperboloids are easily reduced to a minimal sixth degree univariate polynomial

��
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X3 0

1

0.5

0
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-1

X2
0
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Figure ���� The constraint surfaces in the image space�

X1
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-6
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-10

X20

6
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2
0
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X3 0

0.1

0

-0.1

Figure ���� The range set to s � ����� �����

in X�� The default deglex ordering was used with X� � X� � X�� Since X� is the

homogenising coordinate� its value is arbitrary� hence it is set X� � �� The following

��
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reduced Gr	obner bases were obtained�

G� � ���X�X� � ���X�
� � ��X� � ���X� � ��

G� � ����X�X� � �����X�
� � ���X� � ���X� � ���X� � ����

G� � �����X�
� � �����X�

� � �������X�
� � ������X� � �����X� � ������X� �

������

G� � ��������X�X� � ��������X�
� � ����������X�

� � ��������X� �

���������X� � ��������X� � ���������

G� � �������������X�
� � �����������X�

� � �����������X� � �����������X� �

������������X� � �����������

G
 � �������������������X�
� � ��������������������X�

� �

��������������������X�
� � ��������������������X� �

��������������������X� � �������������������X�

���������������������

This gives six nonlinear equations� some with very large coe�cients� However�

since these equations represent bases� they are independent� so any three may be used

to solve for the three unknowns� The �rst three bases are selected� as they appear

to be the easiest to work with� A univariate polynomial in X� is obtained using the

elimination method on G�� G�� G�� The resulting polynomial is

�����������X

� � �����������X�

� � ����������X�
� � ���������X�

� �

��������X�
� � �������X� � ������ �������

The roots of this polynomial are then obtained and the set of equations HA �

�� HB � �� HC � � can now be solved for the remaining variables X�� X�� The

��
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following solutions are obtained�

S� � X� � ������������ X� � ����������� X� � ����������

S� � X� � ������������ X� � ����������� X� � ����������

S� � X� � ������������ X� � ����������� X� � ����������

S� � X� � ������������ X� � ����������� X� � ����������

S� � X� � ��������� � ��������i� X� � �������� � ��������i�

X� � ��������� � ��������i

S
 � X� � ���������� ��������i� X� � ��������� ��������i�

X� � ���������� ��������i

There are four real and one set of complex conjugate solutions for a total of six

solutions� as expected� since two of the possible eight correspond to J� and J�� Back

substitution of the solutions into equations �������� �������� and ������� veri�es the

four real solutions� The position and orientation of the end�e�ector corresponding

to each of these solutions in terms of the displacement parameters a� b� and � can be

found by substituting the solutions for X�� X�� X�� along with X� � � into equations

��������� The subsequent four sets of displacement parameters are given in Table ����

The four real solutions are illustrated in Figures ���� It is a simple matter of planar

Euclidean geometry to determine the the link parameters �dj� and T �j�� j � fA�B�Cg�
given the locations of the knee joints in E along with the �xed link lengths and disk

radius� These values are given in Table ����

Table ���� Four real positions and orientations in ��

Sol�n � Sol�n � Sol�n � Sol�n �
a �������� �������� �������� ��������
b ��������� �������� �������� ���������

� �deg�� ��������� ��������� ��������� ��������

��
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0 0

0

A B

C

A

C

B

T

D

E

E

E

Solution 1

0
0

0

A B

C

A

C

B

E

E

E

E

Solution 2

0 0

0

A B

C

A

C

B

E

E

E

E

Solution 3

0 0

0

A B

C

A

C

B

E

E E

E

Solution 4

Figure ���� The four real solutions�
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Table ���� Required joint variable inputs�

Sol�n � Sol�n � Sol�n � Sol�n �
�dA

�
�������� �������� �������� ��������

�dB
�

��������� �������� �������� ��������
�dC

�
��������� ��������� ��������� ���������

T�A
�

�deg�� ���������� ���������� ���������� ����������
T�B

�
�deg�� ���������� ���������� ���������� ����������

T�C
�

�deg�� ��������� ��������� ��������� ���������

��



Chapter �

Velocity and Acceleration Analysis

���� The Jacobian Matrix

An unconstrained rigid body in the plane has � DOF� Suppose we had three

functions� each of which depended on the same number of at least three linearly inde�

pendent variables� These three functions could describe the position and orientation

of a planar rigid body in terms of n 
 � input parameters�

yi � fi�x�� x�� � � � � xn�� i � f�� �� �g�

Employing the chain rule� the di�erentials of the yi as functions of the xn are

determined as

�yi �
�fi
�x�

�x� �
�fi
�x�

�x� � � � � �
�fi
�xn

�xn� i � f�� �� �g�

This result may be expressed more compactly using vector notation as

�Y �
�F

�X
�X� �������

The � 	 n matrix of partial derivatives� �F
�X � is a linear transformation which

maps the �xn to the �yi� It is called the Jacobian matrix� or simply� the Jacobian�

and denoted as J� Then the expression in equation ������� may be rewritten

�Y � J�X� �������



���� VELOCITY ANALYSIS

Dividing both sides of equation ������� by the di�erential time element� �t� J

becomes a mapping of the velocities of X to the velocities of Y�

�Y � J �X� �������

For most robot manipulators the fi�s are non�linear and the partial derivatives are

functions of the xn� Thus� at di�erent instances of time� J will have di�erent val�

ues� The Jacobian� as far as a manipulator is concerned� is a time�varying linear

transformation�

The conventional application of J for serial manipulators is to map joint rates to

the Cartesian velocities of the EE� or tip of the arm�

V � J �(� �������

where V is the vector of Cartesian velocities and �( is the vector of joint rates� The

number of rows in the Jacobian matrix is the same as the number of DOF of the serial

manipulator� The number of columns in J equals the number of joints� For redundant

serial manipulators J is not square� there are more columns than rows� Note that

in a serial manipulator all joints must be actuated� A parallel manipulator requires

only as many motors as there are DOF� The Jacobian for a parallel manipulator

should be constructed� if possible� such that it maps the actuated joint rates to the

EE velocities� In this case� the number of rows equals the number of DOF� where as

the number of columns equals the number of powered joints�

���� Velocity Analysis

The �rst step in the velocity analysis of the manipulator presented in the previous

chapters is to determine the Jacobian matrix for each leg of the manipulator� This

can be done by direct di�erentiation of the kinematic closure equations� From section

��
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��� these equations are

xE � lj�c
j
� � �lj� � r�cj�� � �dj�s

j
�� � lAk�x � �������

yE � lj�s
j
� � �lj� � r�sj�� � �dj�c

j
�� � lAk�y � �������


E � �
j� � �
j� �
�

r
��dj� � �dj��� � �
E�� �������

where j � k � fA�B�Cg� The last term in equation ������� comes from the constraint

relation

�
E �
�

r
��dj� � �dj��� � �
E�� �������

Di�erentiating the closure equations with respect to time gives

)xE � �lj�sj�� )
j� � �lj� � r�sj���
� )
j� � � )
j��� �dj�c

j
���

� )
j� � � )
j��� � )dj�s���

)yE � lj�c
j
�
� )
j� � �lj� � r�cj���

� )
j� � � )
j��� �dj�s
j
���

� )
j� � � )
j�� � � )dj�c���

)
E � � )
j� � � )
j� �
�

r
� )dj��

Collecting terms and expressing the equations in matrix form yields�
� )xE

)yE
)
E

�
� �

�
� ��lj�s

j
� � lj� � r � dj�c

j
��� ��lj� � r � �dj�c

j
��� �sj��

�lj�s
j
� � lj� � r � dj�s

j
��� �lj� � r � �dj�s

j
��� cj��

� � ��r

�
�
�
�

� )
j�
� )
j�
� )dj�

�
� �

Comparing this last equation with equation �������� it is seen that the �	� matrix

which maps the joint rates for a particular leg onto the Cartesian velocities of the

disk is the Jacobian for that leg� Hence�

Jj �

�
� ��lj�s

j
� � lj� � r � dj�c

j
��� ��lj� � r � �dj�c

j
��� �sj��

�lj�s
j
� � lj� � r � dj�s

j
��� �lj� � r � �dj�s

j
��� cj��

� � ��r

�
� � �������

Continuing in this fashion� the total Jacobian for the manipulator is a �	 � matrix�

The vector of joint rates� �(� becomes a � 	 � array composed by stacking the three

� 	 � joint rate vectors for each leg� �(j� However� there are only three powered

joints� one for each DOF� In this architecture� as described in chapter �� three motors

which control the parameter �dj� determine the position and orientation of the disk�

Therefore� the rates of change of these parameters set the Cartesian velocities of the

��
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disk� That is� what is needed to produce a desired velocity of the pinion is not all

nine joint rates� but only the three �dj��

The unactuated joint rates can be eliminated by multiplying both sides of the

equation

V � Jj �(
j
� �������

by a ��dimensional vector n perpendicular to the �rst and second columns of Jj� This

vector is easily calculated as the cross product of these two columns� namely

n � jj� 	 jj�� �������

The following vector is determined for each leg�

n �

�
� lj�c

j
�

lj�s
j
�

k

�
� � �������

where

k � �lj�c
j
� � lj� � r � �dj�s

j
����l

j
� � r � �dj�c

j
����

�lj�s
j
� � lj� � r � �dj�c

j
����l

j
� � r � �dj�s

j
����

Multiplication of both sides of equation ������� by the transpose of n �i�e�� nT �� and

then rearranging yields�

� )dj� � r cj� )xE � sj� )yE � )�E�sj��
�dj�s

j
�� � lj� � r� �

cj��
�dj�c

j
�� � lj� � r��!� r�sj�c

j
�� � cj�s

j
�� � sj� � cj�� �

lj��c
j
� � sj�� � �dj��s

j
�s

j
�� � cj�c

j
���!� �������

Expressions for the joint accelerations can be readily derived by di�erentiation of

the previous equation with respect to time�

��
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���� Acceleration Analysis

The dynamics of mechanisms is a �eld of considerable interest� The dynamics can

only be analysed after the kinematic considerations of static position� static force� and

velocity� The forces which cause the motion of a manipulator are typically analysed

using the Newton�Euler� Lagrange� or Kane�s method� The Newton�Euler approach

requires the immediate calculation of the manipulator accelerations�

The relationship between the Cartesian and joint accelerations is derived by the

di�erentiation of equation ����� with respect to time� giving

�V � �J �( � J�(� �������

Alternately� expressions for the joint accelerations can be readily derived by dif�

ferentiation of equation ������� with respect to time�

��



Chapter �

Concluding Remarks

���� Conclusions

This thesis has presented a kinematic analysis of a planar parallel manipulator

with holonomic higher pairs� This analysis involved the detailed investigation of the

IK and FK position problems� and a cursory look at the velocity and acceleration

analysis�

As a prelude to the study� the relevant geometry and mathematics were reviewed�

The group of planar isometries and the group properties proved to be important for

the development of the IK algorithm� Speci�cally� planar displacements are decom�

posable into components of certain translations and rotations� and these components

commute� Kinematic mapping and Gr	obner bases theory were discussed in detail�

They proved to be useful and elegant tools for the FK problem�

After describing the manipulator� a mobility analysis was performed� Further�

more� six special geometric properties were observed which proved to be useful in

developing the IK algorithm�

An algorithm for determining closed form analytical solutions to the IK problem

was developed� Because the algorithm proceeds on a leg�by�leg basis� solutions can

be obtained for similar rolling systems comprised of any number of �R serial legs� It



���� SUGGESTIONS FOR FUTURE RESEARCH

turns out that the upper bound on the number of real solutions for any such system

is �n� where n is the number of �R legs�

Husty�s FK algorithm was adapted for the holonomic higher pairs by the intro�

duction of pseudo inputs to be used as powered joint inputs for the FK problem� The

kinematic mapping approach yields promising results for this initial e�ort with the

exception of a small direction anomaly� The anomaly is probably due to the problem

formulation using the pseudo inputs� It is believed that this may be overcome with

minor correction of the algorithm� In any event� the procedure needs reformulation

because of the fact that the real inputs can not be speci�ed from the pseudo inputs

alone� but require knowledge of the actual disk orientation� The FK solutions in the

example were easily obtained using Gr	obner bases�

Finally� the Jacobian for the manipulator was determined� It was then used in a

velocity and acceleration analysis�

���� Suggestions for Future Research

The workspace singularity analysis in chapter � appears to hold the promise of

great interest� Based on this preliminary work� it would appear that the interior of

the workspace is devoid of singularities� If this is so� then the manipulator has a

bright future� Hence� it is recommended that a detailed workspace and singularity

analysis be carried out� The manipulator dynamics should also be investigated� Since

the Jacobian matrices are known� the Newton�Euler method could be used�

For practical design reasons� the IK and FK solutions must be made quickly

available to the controller or path planner� The FK problem needs to be reformulated

to eliminate the direction ambiguity which is� apparently� generated by the use of the

pseudo inputs� Better still� the problem should be reformulated to allow the actual

powered joint variables to be used as inputs�

��
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Once a better formulation of the FK problem exists� manipulator motions should

be simulated� The animation should expose any "aws in the IK and FK solution pro�

cedures� Then issues of obstacle avoidance and trajectory planning can be addressed�

After these tasks have been completed� the design of a prototype should commence�

With a sound design in place� the construction of a prototype should be considered�

��
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Appendix A

Geometry of The Image Space

A��� Erlangen Programme

In ����� F� Klein introduced his Erlangen Programme as a means of classifying

geometries according to the groups of transformations which leave the propositions

intact� Usually these groups have sub�groups that preserve the central concepts of

the geometry  ��!�

The Erlangen Programme is conveniently stated in the form of three propositions

 ��!�

Proposition �
 A geometry on a space de�nes a group of transformations in

that space�

Proposition �
 A group of transformations in a space de�nes a geometry on

that space�

Proposition �
 Geometry is the study of those relations which remain invariant

under the group of transformations associated with it�

In Euclidean geometry the group of isometries preserves distance and angle� The

isometries are actually a sub�group of the similarity transformations� It is this group

which preserves the propositions of Euclidean geometry  ��!�
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Projective geometry does not admit concepts of length� angle� parallelism� or

betweenness� and hence� is di�erent from Euclidean geometry� Indeed� using the

Erlangen Programme� projective geometry is classi�ed by the group of collineations

and correlations� These groups preserve the class of points and the class of lines

 ��� 
!�

A collineation is a point�to�point correspondence which preserves collinearity� A

planar correlation is a point�to�line� or line�to�point correspondence relating collinear

points to concurrent lines�

A��� Image Space Geometry

Following the propositions of Klein�s Erlangen Programme� the image space group

and its invariants may be determined for the mapping given by equation ���������

Hence� the geometry on the image space may be de�ned� A very detailed investigation

is given in  �!� and the results were used in  ��! to classify planar algebraic motions�

The image of a displacement given by the three parameters �a� b� �� is dependent

on the arbitrary zero positions of the reference frames E and �� Therefore� there are

�
 mappings� It is shown in  �! that if �X� � X� � X� � X�� is a representation of a

displacement all other allowable representations �X �

� � X �

� � X �

� � X �

�� are related to it

by

X �

i �
�X
i��

�X
j��

cijXj� �A�����

���
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where the cij obey

c�� � c���

c�� � �c���

c�� � c���

c�� � �c��� �A�����

c��c�� � c��c�� � c��c�� � c��c���

c�� � c�� � c�� � c�� � ��

Equations �A����� and �A����� represent a group G of �
 non�singular linear

transformations in �� connecting all the allowable representations of a given displace�

ment  ��!� The group G of transformations and its invariants determines the ��

geometry� G has six independent parameters and �ve invariants� The invariants are

 �!�

�i� The line l�X� � X� � ���

�ii� The isotropic points J��� � i � � � �� and J��� � �i � � � �� on the line l�

�iii� The conjugate imaginary planes V��X� � iX�� and V��X� � �iX���

The isotropic points refer to the intersection points of a line which cuts the circle at

in�nity  ��!�

The invariant elements in the non�Euclidean hyperbolic and elliptic geometries

are respectively� general real and imaginary quadrics� Whereas� in the �� geometry

they consist of two imaginary planes� As a result� the geometry on the image space

of the mapping is identical with none of the classical metric geometries� In  �! the ��

geometry is labelled quasi�elliptic� since it is considered a borderline case of elliptic

geometry� Furthermore� the metric concepts of the distance between two points�

the angle between two planes� and the parallelism of two lines are de�ned� Finally�

���
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it is shown that two sets of transformations in �� are comparable to rotations and

translations of Euclidean geometry�

Of interest are three special cases  ��!�

�i� X� � �� X� �� � � � � �� These are the pure translations in the Euclidean

plane�

�ii� X� �� �� X� � � � � � 	� These are the ���� half�turns in the Euclidean

plane�

�iii� X� � constant� � X� � constant� This situation corresponds to translations

in the Euclidean plane where the moving frame E maintains a constant angle

with respect to the �xed frame ��

���
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