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ABSTRACT

ABSTRACT

This thesis presents a detailed kinematic analysis of three degree	of	freedom planar

parallel manipulator platforms possessing topological symmetry� called general planar

Stewart	Gough platforms 
PSGP�� A speci�c super	set of topologically asymmetric

platforms and one with actuated holonomic higher pairs are included in the analysis�

After PSGP are described and classi�ed� the remainder of the �rst portion is

devoted to the review of the geometric and mathematical tools used in the analysis�

A single univariate polynomial is derived which yields the solutions to the forward

kinematics problem of every PSGP platform� Kinematic mapping is used to repre	

sent distinct displacements of the platform as discrete points in a three	dimensional

projective image space� Separate motions of each leg map to skew one	sheet hyper	

boloids� or hyperbolic paraboloids� depending on the kinematic architecture of the

leg� After two elimination steps the three quadric surfaces are reduced to a sixth

order univariate� The roots of this polynomial reveal all solutions to the forward

kinematics problem� The procedure leads to a robust algorithm which can be applied

to the abovementioned super	set�

The inverse kinematics problem of these platforms is solved� in closed form� using

the same kinematic mapping� The procedure can be applied to any three	legged

planar platform with lower pairs� regardless of symmetry�

A workspace analysis and simple criteria for the determination of the existence of

a dextrous workspace are presented� Finally� a geometric singularity and self	motion

detection method� which does not employ Jacobian matrices� is discussed�
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R�ESUM�E

R�ESUM�E

Cette th�ese pr�esente une analyse cin�ematique d�etaill�ee des manipulateurs parall�eles

planaires �a trois degr�es de libert�e et topologiquement sym�etriques� appel�es plate�

formes planaires g�en�erales de Stewart�Gough 
PSGP�� De plus� un sur	groupe de

plate	formes topologiquement asym�etriques� et un manipulateur parall�ele muni de

trois articulations sup�erieures holonomiques et motoris�ees� sont inclus dans lanalyse�

Apr�es la description et la classi�cation des PSGP� nous rappelons les outils

math�ematiques et g�eom�etriques n�ecessaires �a lanalyse cin�ematique�

Les solutions de la cin�ematique directe de toutes les PSGP sont obtenues gr�ace

�a un polyn�ome de degr�e six� Ce polyn�ome est obtenu apr�es deux �etapes de calcul

en utilisant une transformation cin�ematique� Les racines de ce polyn�ome sont les

points dintersection des trois surfaces quadratiques dans lespace cin�ematique� Cette

proc�edure conduit �a un algorithme robuste qui peut �etre �egalement utilis�e pour le

sur	groupe mention�e ci	dessus�

Nous obtenons une solution explicite de la cin�ematique inverse de ces plate	formes

en utilisant la m�eme transformation cin�ematique� La proc�edure peut �etre utilis�ee pour

toute plate	forme planaire �a trois segments avec des articulations inf�erieures� quelle

que soit la sym�etrie�

Nous pr�esentons une analyse de lespace de travail et un crit�ere simple pour

lexistence dun espace de dext�erit�e� Finalement� en utilisant des consid�erations

g�eom�etriques� une m�ethode de detection des singularit�es g�eom�etriques et de mou	

vement propre� qui nutilise pas les matrices jacobiennes� est examin�ee�
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NOMENCLATURE

NOMENCLATURE

PSGP Planar Stewart�Gough platform�

DOF Degree�of�freedom�

FK Forward kinematics�

IK Inverse kinematics�

R� P� U� S� G Revolute� prismatic� universal� spherical and gear joints 
kinematic

pairs� Section �����

RRG Example of a succession of three joints in a simple kinematic chain

beginning with the joint connecting the �rst link to the �xed base�

RPR Example of a characteristic chain 
Section ������� The underscore

indicates the actuated joint� Such chains are used to identify a

three	legged platform with topological symmetry among legs�

FA� FB� FC Fixed�base joint point coordinates 
Section �����

KA� KB� KC Knee�joint point coordinates 
Section �����

MA� MB� MC Moving�platform joint point coordinates 
Section �����

x� y� z Point coordinates in a moving reference frame 
Section �����

X� Y� Z Point coordinates in a non	moving reference frame 
Section �����

X�� X�� X�� X� Image space point coordinates 
Section �������

K�� K�� K�� K� Circle coordinates 
Section �����

CKG Chebyshev�Gr�ubler�Kutzbach formula 
Section �������
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a novel and simple way to detect certain singularities�

Parts of these results have appeared in six refereed publications� ���� ��� ���

��� ��� ����

�
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CHAPTER �

Introduction

This thesis is an investigation of the kinematics of planar three	legged fully	parallel

platform manipulators in general� and a topologically� symmetric sub	class in partic	

ular� Those belonging to this sub	class are called general planar Stewart�Gough plat�

forms 
PSGP�� Moreover� a novel architecture is introduced where the end e�ector is

a circular disk which rolls without slip along the straight lines of the non	grounded

links of each of three serial legs� The kinematic analysis presented turns out to be

general enough to handle this architecture containing higher	pairs�

���� Thesis Subject Development

The steps leading to the procedures developed herein will be summarised below

so as to put this research in a state�of�the�art perspective� First� a few introductory

words on serial and parallel manipulators are in order�

�The term topology is used to indicate a speci�c kinematic architecture� not in the mathematical
sense where it would be concerned with those properties of geometric con�gurations� taken as point
sets� which are invariant under elastic deformations that are homeomorphisms �����
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Figure ���� Typical industrial serial robot applications� welding� packag�
ing� assembly�

	
	
	
 Serial and Parallel Manipulators
 Research and development of

robotic systems in general is motivated by several major factors� Obviously� the

subject is rich from a theoretical standpoint because there are many unresolved prob	

lems� A more important factor is� perhaps� economic� Production methods must

be continuously improved in order to enhance the prosperity of any society� i�e�� to

�



���� THESIS SUBJECT DEVELOPMENT

reconcile the apparent contradiction between rising costs and diminishing returns� It

is widely believed that processes which make use of robotic manipulators must con	

tribute substantially to these methods aimed at producing an ever	widening variety

of goods and services� quantity and quality are ever	increasing� meanwhile incurring

ever	decreasing production costs� Clearly� all this must involve continual improve	

ments of the manipulators themselves�

Currently� most industrial robotic manipulators have anthropomorphic architec	

ture ��� ��� 	���� These robot arms typically consist of an open� or serial chain of

articulated rigid links connecting the manipulator hand� or end e�ector to a rigidly

�xed base� Figure ��� shows industrial serial robots engaged in various activities�

welding� packaging and assembly tasks are commonly assigned to robotic manipula	

tors�

In general they are satisfactory to designers and users because they enjoy the

following advantages ��� ��� ��� ��� ����


�� Their kinematic design is relatively simple�


�� They generally have large workspaces�


�� Human operators can readily identify with an open loop kinematic chain

which may be compared with the human arm� This is a strong advantage in

programming the arm� training operators� etc��


�� Each joint actuator enjoys complete independence�


�� The forward and inverse kinematics are well known and the dynamics have

been thoroughly analysed for many cases�

However� it is broadly acknowledged that they generally su�er from the following

disadvantages ��� ��� ��� ��� ����

�
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�� Serial manipulators require an actuator for each joint� If the actuators are

located at the intermediate joints� their added mass contributes to the total

inertia of the robot� leading to unwelcome dynamic characteristics�


�� In the case of joint mounted actuators� the design of the links must take

into account their cantilever	like structure� Flexibility and balance are also

of concern� The links must be #over	designed to compensate and the vicious

circle of still more massive links continues to grow �����


�� Because of the cantilever loading of links� serial manipulators have a small

pay	load to manipulator weight ratio�


�� If positional accuracy and precision are required� the velocity of the end	

e�ector is limited by the above considerations as well�


�� The alternative to joint mounted actuators is to have a set mounted at the

base� driving the distal joints through a transmission system� However� the

drive	train must be long� and is equally prone to undesired e�ects of �exibility�

A tray of �lled beer glasses can always be carried by a waiter with one hand

if the goal is simply to move the tray� However� if the goal is to carry it through

a crowded room without spilling any beer then the waiter may consider using two

hands� The load is distributed and greater stability is provided� This suggests that

the drawbacks associated with serial architecture can be mitigated by providing the

end e�ector with more than one serial connection to the �xed base� This alternative

architecture is termed parallel�

In parallel manipulators the end	e�ector is attached to the base� or ground� by

more than one kinematic chain� an architecture with closed	loops� Perceived advan	

tages of parallel architectures are cited in ���� ��� ����

�
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�� It is not necessary for each joint to be actuated directly by individual motors�

hence a smaller contribution to the mass of the links� The links� in turn� can

be made lighter�


�� By allowing at least some motors to be base	�xed� they can be larger and

more powerful� Thus� the load	carrying capacity versus the mass of the robot

can be increased� along with the speed of operation�


�� The ensuing reduction in gear drives and transmission systems increases the

inherent accuracy of the robot while simultaneously lowering the component

cost to make one�

A few of the shortcomings of parallel manipulators are �����


�� The workspace is small�


�� The workspace may be densely packed with a variety of singularities��


�� Simultaneous control is required for some or all of the drive motors�


�� Long slender legs� particularly for large �ight simulators� produce undesirable

�exibility and kinematic instabilities �����

For serial manipulators the load	to	weight ratio is typically on the order of �$�

whereas for parallel manipulators it is not unusual to be on the order of ���$ ���� ����

Figure ��� shows the CAE Electronics Airbus A�	
��

 �ight simulator used by KLM

Airlines for pilot training� It can shake its ����� kg pay	load at a frequency of ��

Hz with an amplitude of �� mm ����� an unimaginable task for a serial manipulator�

Because of the improved dynamic characteristics� parallel platforms can move with

greater velocity and acceleration than serial counterparts �		���

�A singularity is a con�guration of relative positions and orientations among the links where the
manipulator becomes uncontrollable� or the articular forces �or torques� required to balance an exter	
nally applied wrench are in�nite� In the vicinity of a singularity the actuators� and the manipulator
itself� are vulnerable to damage�

�



CHAPTER �� INTRODUCTION

Figure ���� Airbus A������� �ight simulator 	courtesy of CAE Electronics Ltd�
�

A prototype for a parallel manipulator� with an architecture similar to the �ight

simulator� is shown in Figure ���� It was developed in a collaborative e�ort between

the Institut National de Recherche en Informatique et en Automatique 
INRIA� in

France and the European Synchrotron Radiation Facility 
ESRF�� The moving plat	

form is used to manipulate a heavy X	ray apparatus with great accuracy� The total

weight of the of the manipulator is �� kg while the experimental apparatus is carries

represents a load of ��� kg� This platform manipulator has a load	to	weight ratio of

���$� while its positioning accuracy is better than ����m �	����

�
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Figure ���� The ESRF platform 	courtesy of INRIA
�

However� parallel architecture is not without its drawbacks� Some investigators

have tried to develop ideas that address various aspects of these shortcomings� The

undesirable �exibility associated with slender legs and small workspace volume is

virtually eliminated with designs for planar� spherical and spatial double	triangular

manipulators put forward by Daniali ����� This feature is achieved by pairs of pla	

nar� spherical and spatial triangles that can move relative to each other� hence the

three legs connecting the moving triangle to the relatively �xed triangle have nearly

zero	length� Earlier examples of this type of parallel architecture are those of a

double	tetrahedral mechanism �	��� 	���� A working prototype was constructed by

Zsombor	Murray and Hyder in ���� �	���� Movable pairs of platonic solid outlines

have been investigated as long ago as ����� when Cauchy investigated an articulated

octahedron �����

�
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Figure ���� The Gough universal rig ����� A tire test�stand from ����

	
	
�
 StewartGough Platforms
 In ���� D� Stewart �	��� �rst suggested

that �ight simulators� like the one shown in Figure ���� could be built on fully	parallel

platform type manipulators with six DOF� In subsequent years such manipulators

came to be known as Stewart platforms� However� a design for a tire test	stand shown

in Figure ���� with the same architecture of a modern �ight simulator� virtually iden	

tical to that proposed by Stewart� had already been contributed by V�E� Gough and

sta� at Cornell nine years earlier ����� Indeed� the development for Goughs universal

rig began in ���� �	���� The term Stewart�Gough platform 
SGP� is therefore used

in an attempt to correct this historical oversight� It is quickly becoming standard ter	

minology in the literature� see Angeles ���� Dietmaier ����� Husty ��	�� Merlet �	�	��

and Nielsen and Roth �	���� for example� Indeed� some propose that the term Gough

platform is more appropriate �	����

��
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Although interesting� and possibly critical� theoretical problems connected with

SGP remain unsolved� the current state	of	the	art has enabled prototypes and com	

mercial manipulators to be designed� built and sold� For instance� the �ight simulator

architecture has been adapted for a wide variety of uses� The ESRF platform is but

one example� A couple of others include a virtual reality platform shown in Figure ���

used to train athletes in equestrian skills� and an antenna positioning device for satel	

lite tracking� also shown in Figure ���� Both prototypes were developed at INRIA

�	���� There are� however� risks attached to patenting designs while related theo	

retical problems are unresolved� For example� there is a ���� patent for a parallel

manipulator ����� intended for use as a �ight simulator� Subsequent investigation ����

shows that every assembly con�guration within its workspace is singular and permits

uncontrollable platform motions�

Figure ���� Equestrian simulator and antenna positioning device 	courtesy
of INRIA
�

The platforms possessing topological symmetry considered in this thesis can be

considered as three DOF planar versions of the six DOF SGP� We therefore call them

planar Stewart�Gough platforms 
PSGP�� Figure ��� shows a typical example�

��
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Figure ���� A typical planar parallel manipulator�

���� Motivation

The body of literature is thick with many kinematic analyses of SGP� In par	

ticular� the FK problem of PSGP has received attention� Due to the nature of

the FK problem� much of the earlier research concentrated on numerical solutions

�	��� 	��� 	��� 	���� While numerical methods are often useful� they yield no in	

sight into theoretical issues� such as the size of the solution space� i�e�� the number of

assembly modes� Furthermore� these methods rely on an initial guess which must be

fairly close to the solution in order to converge �	��� ����

Many e�orts have been made to provide some theoretical insight by viewing the

problem from a di�erent perspective� It was established by Hunt ���� that PSGP with

� RRR 
or� when the middle joint is activated� the kinematically equivalent RPR��

legs admit at most six real assembly con�gurations for a given set of activated joint

inputs� General solution procedures using elimination theory to derive a �th degree

univariate polynomial� which leads to all assembly con�gurations� were developed

by Gosselin and Sefrioui ���� and Wohlhart �	���� The FK problem is solved for

�R stands for revolute joint
 P stands for prismatic joint� see Section ����

��
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all permutations of three	legged planar lower	pair	jointed SGP in Merlet �	���� The

univariate polynomial was again derived by Pennock and Kassner �			�� but the

work was extended to include an investigation of the workspace �		��� Earlier work

by Gosselin ���� provides a useful workspace optimisation scheme for planar� spherical

and spatial platform	type parallel manipulators� A detailed enumeration of assembly

con�gurations of planar SGP can be found in Rooney and Earle �	���� Synthesis

issues are addressed using a straightforward geometric approach by Shirkhodaie and

Soni �	���� while Murray and Pierrot �	��� give an extremely elegant n	position

synthesis algorithm� based on quaternions� for the design of PSGP with three RPR

legs� What appears to be lacking is a derivation of the general univariate to solve the

FK of any lower pair jointed PSGP� This� then� is the primary goal of this thesis� But�

it did not start out that way� The original research proposal was for an investigation

of planar three	legged parallel platforms with active holonomic higher pairs�

The success of most of the methods mentioned above depends largely on the fact

that the platforms are jointed with lower pairs� This allows the platform geometry

to be readily determined� This is a critical point� since all the above methods require

knowledge of the platform geometry� However� when the end	e�ector is replaced with

a disk 
pinion gear� and the three revolutes joining the end	e�ector to the legs are

replaced with racks which remain engaged with the pinion� the geometry suddenly

becomes di�cult� making the level of complexity of the IK and FK problems equal�

This is in contrast to the general observation that the IK problem for lower pair

jointed parallel problems is trivial ����� while the same problem for serial manipulators

is typically complicated� Similarly� the FK problem of parallel platforms is generally

more complex than that of serial manipulators� In fact there is a strange duality

between parallel and serial manipulators� a di�cult problem for one is usually a

simple problem for the other� This duality has yet to be fully explained� although

several attempts have been made �	�	� 	����

��
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The literature� however� appears to be all but devoid of work investigating fully	

parallel platforms whose joints include holonomic higher kinematic pairs� This omis	

sion is unfortunate because such platforms o�er distinct advantages over their lower	

pair	jointed cousins in two respects� First� the locations of the attachment points

connecting each of the three legs to the platform are continuously variable with re	

spect to each other during platform motions� i�e�� the platform has a continuously

variable geometry� This means that a general procedure for the kinematic analysis of

this type of platform can be applied to multiple	arm cooperating robots because any

such procedure is necessarily dependent on the initial assembly con�guration 
IAC�

of the platform ��� �� ���� This leads directly to the second advantage� in that these

platforms can be designed as fully parallel� cooperating� or hybrid devices�

A good deal of attention has been given to rolling	without	slip in the context of

grasp and �ne control� Mimura and Funahashi �	��� looked at grasping and �ne	

motion manipulation by multi	�ngered robotic hands� the Utah%MIT dextrous hand

being an example� Hui and Goldenberg ���� considered a hybrid control architecture

using rolling constraints between a dextrous hand and the rigid object it manipulates�

Yun et al� �	��� investigated control issues of multiple arms with pure rolling contacts�

Various types of contact between hand and object have been studied extensively by

Salisbury and Roth �	���� But� even here the robotic hands are jointed with lower

pairs only� The rolling contact is merely an approximation of contact between the

end	e�ector and workpiece� Particular attention is given to grasp and its e�ect on the

workspace by Chen and Kumar ����� Continuing in this vein� the kinematics of rolling

contact for two surfaces of arbitrary shape were examined by Cole et al ����� Rolling

systems are not peculiar to robotic hands� Automatic Guided Vehicles 
AGV� are an

important class for industrial applications� dangerous materials handling� etc�� The

kinematics and dynamics of a three wheeled � DOF AGV were studied in great detail

in �	���� However� in the case of the AGV� continuous rolling contact is a by	product

��
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of constraints imposed by the operating environment� It is not a design parameter

a�ecting control 
except to detect wheel slip� or kinematic synthesis�

The common thread in the multiple arm and AGV literature cited above is that

the contact between robot and object� or environment� is pure rolling� Grasp and �ne	

motion manipulation by multi	�ngered robotic hands are issues closely connected to

contact type� Work in this area is still open� hence we feel justi�ed in examining the

kinematic analysis of a three	legged PSGP with holonomic higher pairs� However� to

maintain a reasonable scope for this thesis� the device will be treated as a fully	parallel

planar manipulator�

Recently� it has been shown that kinematic mapping has important applications

in planar robot kinematics� A particular mapping �	�� ��� is used by De Sa ����

and De Sa and Roth ���� ��� to classify one parameter planar algebraic motions�

Ravani �		�� and Ravani and Roth �	��� 	�	� employed it to to study planar motion

synthesis� Husty ���� used the same mapping in a novel FK solution procedure for

planar three	legged SGP� He then used it to analyse the workspace of the same type

of platform ����� The particular mapping used is well suited to manipulators with

holonomic higher pairs� as in Figure ���� since it is independent of the geometry of the

platform ����� However� it has never� to the best of our knowledge� been applied with

complete success to the FK problem of our platform� Indeed� no practical solution

procedure for the IK nor FK problems can be found in the literature� Thus the

secondary goal of this thesis� but one of primary interest� is to present a practical

solution procedure that employs kinematic mapping for the IK and FK problem of

planar three	legged platforms with holonomic higher pairs�

It appears that all previous work directly related to fully	parallel PSGP with

holonomic higher pairs is contained in two publications� by the same authors ��� ���

��
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Because of the serendipitous way in which the main theme of the thesis developed

from the study of these two papers� its chronology shall now be presented�

Figure ���� An RRG platform�

	
�
	
 Variation on a Theme
 The research trail began in ���� with my

M�Eng� thesis ���� which aimed to correct a conceptual �aw found in a procedure ���

for solving the inverse kinematics 
IK� problem of a novel planar parallel manipula	

tor suggested by Vijay Kumar at the University of Pennsylvania� The manipulator

consists of a circular disk which rolls without slip along the straight lines of the non	

grounded rigid links of two �R serial legs� Its kinematics are deceptively complicated

because of the rolling contact� A three legged version is illustrated in Figure ���� The

points of contact between each leg and the disk are holonomic higher pairs� These

G	pairs are modelled as a pinion gear meshing with three racks� With the excep	

tion of cams and gears� which are not considered to be robotic mechanical devices�

��
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research on mechanisms containing higher pairs is rare� Gears are common� e�cient

and reliable machine elements but they are unusual as robotic joints�

The IK procedure� developed by Agrawal and Pandravada ���� used the relative

angle between the two rack	pinion normals to indicate the absolute orientation of the

pinion� If the pinion undergoes a pure translation there is obviously no change in its

absolute orientation� yet the angle between the normals must change� This means

the output of the IK algorithm has limited applications�

A thorough literature review revealed only one other paper� by the same authors�

dealing with the kinematics of fully parallel planar platforms with holonomic higher

pairs� The second paper ��� dealt with the workspace analysis of the same two	

legged platform� However the analysis was based on the earlier� �awed IK algorithm�

Absolutely no other publications dealing with this type of fully parallel platform were

found� The initial motivation� then� was to solve the IK and FK problem for a three

legged version of the manipulator� The third leg was added to make the platform

topologically symmetric� That is� the pinion has three degrees of freedom 
DOF� and

therefore needs three motors to fully control it� The two	legged version requires one

leg to have at least two activated joints�

The problem common to all three legged planar platforms with � DOF is that�

unless redundant actuators are used� only three joint inputs can be speci�ed� The

problem unique to the pure rolling contact platform is how the change in location of

the contact point between each rack and the pinion e�ects the displacement� If the

pinion remains stationary while a rack moves� it must be that the rack rolls on the

disk� Conversely� the pinion can roll on a stationary rack� In the above situations� if

the change in location of the contact point along the rack is identical� the displacement

of the disk centre will be di�erent� In the �rst case� the location of the pinion centre

remains �xed� In the second case� it translates along a line parallel to the stationary

��
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rack� Most displacements� however� require a combination of the two types of relative

rolling� Keeping track of the proportions is critical to both the IK and FK problems�

It also appears to be a formidable task�

Our �rst attempt at solving the the IK problem ���� ��� made use of the loop

closure equations and the fact that arbitrary pinion displacements can be decomposed

into the commutative product of a single translation and a single rotation about the

pinion centre� Given the desired pose and initial assembly con�guration 
IAC�� a

set of intermediate joint variables are calculated for the pure translation component�

Then� using this intermediate set as a new IAC� solutions are generated for a �xed axis

rotation� Unfortunately� the direct algebraic result of the displacement decomposition

is that the upper bound on the number of IK solutions is ��� It is well known that

for a three	legged� three DOF planar platform with passive lower pairs there can be

at most � ���� ���� The �� spurious solutions indicate the procedure is not optimal�

Nonetheless� it was the �rst published correct IK solution procedure for this type of

platform� Moreover� since the algorithm solves for one leg at a time� it can be used

on platforms with any number of closed kinematic loops�

The next step was to develop an FK solution procedure� This proved to be

somewhat more challenging than expected� Again� this was due to the unexpected

complications imposed by the holonomic higher pairs� It was decided to use Hustys

kinematic mapping procedure ���� because it is independent of the geometry of the

platform� This feature is very useful because the platform attachment points 
i�e��

the contact points between the pinion and racks�� which really de�ne the platform

geometry� change their relative positions continuously during platform motions�

The procedure that was �rst developed ���� relied on the position of the non	

grounded R	pairs 
called knee joints Ki� i � fA�B�Cg� see Figure ���� in the pinion	
�xed reference frame� E� as inputs to the kinematic mapping procedure� They were

��
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called pseudo inputs because the actual inputs are the change in rack tangent angle�

This was rather an academic exercise because there was no obvious way to relate the

knee joint positions to the change in rack tangent angles until the pinion orientation

was known� Since the FK problem involves the determination of the position and

orientation of the platform given the active joint inputs� this was a cart	before	horse

scenario� to be sure� Even	though it was not entirely practical� it was a start� it was

the �rst attempt at solving the FK problem of this type of manipulator� Indeed�

reworking the IK and FK solution procedures formed the basis of my Ph�D� research

proposal�

In September ���� Manfred Husty made the incisive observation that if the pinion

is considered to be �xed then contact points on the rack move on involutes of the

pinion ����� This means there is a bijective 
one	to	one and onto� correspondence

between the change in rack tangent angle� which determines the change in location of

any rack point on a pinion involute and the location of the corresponding knee joint

in the pinion	�xed frame� E� Employing these involute inputs and some additional

coordinate transformations the kinematic mapping procedure can be used ���� ����

Next� the IK problem was revisited� Using the involute inputs� mentioned above�

a simple procedure was developed to extract the active joint inputs from the pre�

image of a point in the kinematic mapping image space 
which abstractly represents

a platform pose as a point in a three	dimensional 
�	D� homogeneous projective space�

�����

It was then decided to attempt to obtain a symbolic univariate� in terms of an

image space coordinate� whose roots would reveal all FK solutions for any arbitrary

three	legged platform with active holonomic higher pairs� With the aid of the sym	

bolic computer algebra software Maple V� it turned out to be quite simple to derive

the univariate� It is a sixth order polynomial� con�rming the results of Hunt �����

��
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Gosselin ����� and Merlet ����� Its coe�cients contain ���� sums of products of design

constants and joint inputs�

Finally� in another communication with Husty ����� it was realised that the uni	

variate polynomial could be used on any topologically symmetric planar three	legged

platform with three DOF� In fact� the univariate turned out to be applicable to the

FK 
and IK� problem of a wide range of topologically asymmetric platforms as well�

With some clever substitutions ���� the number of terms for the general case drops

from ���� to ����� When the platform architecture is fully speci�ed the number drops

to ��� for one sub	class� and drops again to �� for the remaining two sub	classes� A

detailed derivation of the univariate and enumeration of the coe�cient terms is given

in Chapter �� This is� in essence� the story to be played out in the following pages�

���� Thesis Overview

Optimal trajectory planning and obstacle avoidance in a crowded workspace re	

quires fast computation of FK solutions� Control of the robot requires the availability

of IK solutions� Hence� the main goal of this thesis is to address these issues in detail�

The solution procedures developed are general� and can be used to solve the IK and

FK problems of any topologically symmetric PSGP� including planar platforms with

active holonomic higher pairs�

In Chapter � some elementary concepts are recalled and necessary de�nitions and

nomenclature are stated� Planar three	legged fully	parallel manipulators with � DOF

are classi�ed and those possessing topological symmetry are de�ned to be PSGP�

The manipulators of this class are described together with the holonomic higher pair

architecture� Geometric properties and applications of the higher pair platforms are

discussed� A mobility analysis is presented�

��
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Chapter � is a discussion of the geometric and algebraic tools and concepts used

in the subsequent kinematic analysis of PSGP� It commences with a brief summary

of the projective extension of the Euclidean plane and space� Then Kleins Erlangen

Programme is detailed leading to a discussion of geometry from the Cayley�Klein

perspective� Various representations of planar displacements are reviewed� Lastly�

kinematic mapping is discussed�

The FK problem of PSGP and those with holonomic higher pairs is the focus

of Chapter �� The kinematic constraints in the displacement space are examined�

Then� in order to apply the kinematic mapping� the image of these constraints must

be studied� After establishing the nature of these constraints� it is a simple matter to

derive the general univariate� Finally� upper bounds on the number of FK solutions

are given and rationalised in terms of the constraints�

Chapter � details application of the univariate to the FK problem� Procedures

for determining the coe�cients for all PSGP are described� The solution procedure

for the higher pair platform is included� In addition� procedures for topologically

asymmetric platforms are discussed�

The IK problem is considered in Chapter �� Closed form solutions� in terms of

the coordinates of the kinematic mapping image space� are given� These solutions are

valid for every three	legged� three DOF planar platform jointed with lower pairs� The

kinematic mapping IK solution procedure for the higher pair platform is developed

in detail�

Chapter � presents a workspace analysis as well as simple criteria for the determi	

nation of the existence of a dextrous workspace� Singularity and self	motion detection

are also discussed�

Finally� Chapter � contains conclusions and suggestions for future research�
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General Planar Stewart�Gough Platforms

General planar three	legged fully	parallel manipulators with three degrees	of	freedom

are described and classi�ed in this chapter� Those possessing topological symmetry�

including position of activated joints� are de�ned to be general planar Stewart	Gough

platforms 
PSGP�� First� some elementary concepts are recalled and some necessary

de�nitions and nomenclature stated�

���� Kinematic Chains

A kinematic chain is a set of rigid bodies coupled by mechanical constraints such

that there can be relative motion between them ���� The individual rigid bodies are

called links in the chain� The chains are classi�ed according to how the links are

connected�

�
	
	
 Simple Kinematic Chains
 A kinematic chain is simple if each link

in the chain is coupled to at most two other links ���� The degree of connectivity


DOC� ��� of a link indicates the number of rigid bodies joined to it� If all the

links are binary� having a DOC of two� the chain is closed� For example� a four	bar
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mechanism� Alternately� the chain is open with the �rst and last links having a DOC

of one�

�
	
�
 Complex Kinematic Chains
 A kinematic chain is complex if at least

one of its links has a DOC greater	than	or	equal to three ���� A complex chain may

always be decomposed into simple kinematic sub	chains� Due to the three connection

points between their base and platform� PSGP are complex chains ����� The analysis

presented subsequently relies on decomposing complex chains into simple ones�

���� Degree�of�Freedom

The degree	of	freedom 
DOF� of a kinematic chain is de�ned to be an integer

value corresponding to the minimum number of independent coordinates required to

fully describe� geometrically� an arbitrary con�guration of the chain ���� There is one

coordinate� usually de�ned on the �eld of real numbers� associated with each DOF�

Since any one of these coordinates can change without necessitating a change in the

others they are all independent� Such coordinates are historically called generalised

coordinates �	��� For the study of robot kinematics� generalised coordinates usually

represent measures of distance and angle� A kinematic chain constitutes a mechanism

if its DOF is a positive value� a statically determinate structure if the DOF is zero� a

hyper	static 
statically under	determined� or over	constrained� structure if the DOF

is a negative value ����

A rigid body free to move in three dimensional space has six DOF� The DOF are

generally taken to be three translations parallel to three linearly independent basis

directions and three rotations about three linearly independent axes� although any

system of six generalised coordinates is su�cient� That is� the six numbers need

not be three distances and three angles ����� While it is not necessary that the

��
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rotation axes be the same as the translation directions� it is usually convenient to use

a three	dimensional orthogonal reference frame to describe the space of the motion�

the rotation axes being respectively parallel to the coordinate axes �	���� Mechanical

constraints are imposed on rigid bodies to limit their motion as required� In this

sense� constraints are the complements of DOF� For instance� if a rigid body has two

DOF in Euclidean space� indicated by E�� four constraints must be imposed�

���� Kinematic Pairs

The term kinematic pair indicates a joint between two links� hence the use of

the word pair ���� They are mechanical constraints imposed on the links� Joints

involving surface contact are called lower pairs� Those involving nominal point� line�

or curve contact are higher pairs� Lower pairs enjoy innate practical advantages over

higher pairs� First� applied loads are spread continuously over the contacting surfaces�

Second� they can be� in general� easily and accurately manufactured�

�
�
	
 Lower Pairs
 There are six types of lower pair ����� classi�ed as

follows�

	
 Spair� The spherical S	pair consists of a convex� or solid sphere which

exactly conforms with a spherical shell of identical radius� In other words� a

ball	joint� S	pairs permit three rotational DOF�

�
 Epair� The planar E	pair 
E stands for the German word Ebene� which

means plane� is a special S	pair comprising two concentric spheres of in�nite

radius� To �x one plane relative to the other requires three generalised coor	

dinates� usually determined by two translations and one rotation� Regardless�

the E	pair allows three DOF�

��
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�
 Cpair� The cylindrical C	pair consists of mating convex and concave cir	

cular cylinders� They can rotate relative to one another� about their common

axis� and they can translate relative to each other in a direction parallel to the

axis� Hence� there are two DOF� one rotational and the other translational�

�
 Rpair� The revolute R	pair is made up of two congruent mating surfaces

of revolution� It has one rotational DOF about its axis�

�
 Ppair� The prismatic P 	pair comprises two congruent non	circular cylin	

ders� or prisms� It has one translational DOF�

�
 Hpair� The helical H	pair� or screw� consists of two congruent helicoidal

surfaces whose elements are a convex screw and a concave nut� For an angle 	

of relative rotation about the screw axis there is a translation of distance h in

a direction parallel to the screw axis� The sense of the translation depends on

the hand of the screw threads and on the sense of the rotation� The distance

h is the pitch� When h � �� the H	pair becomes an R	pair� when h � � it

becomes a P 	pair� The H	pair has one DOF which is either speci�ed as a

translation or a rotation� coupled by the pitch� h�

Only planar platforms are considered herein� The only relevant lower pairs are

P 	 and R	pairs� Moreover� all six of the lower pairs listed above can be produced

from combinations of these two ���� Figure ��� 
i� and 
ii� show bodies joined by R	

and P 	pairs� respectively�

Figure ���� The three pairs used� 	i
 R�pair� 	ii
 P �pair� 	iii
 G�pair�

��
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�
�
�
 Higher Pairs
 Higher pairs are important because they often o�er

the most direct means of achieving complex motions� The main drawback is that

they are typically more complicated� implying that they are more expensive to design

and manufacture� A few examples are mating spur gears� rack and pinion� cam and

follower� The higher pairs may be classi�ed according to the nature of the relative

motion between the jointed links�

	
 Pure sliding� The relative motion is pure translation as in� for example� a

reciprocating cam activating a knife	edge or mushroom head follower� or the

�nger tip of a robot hand sliding along a �at surface�

�
 Pure rolling� The relative motion involves rolling without slip� Such as

the tangential pitch circles of mating sets of spur gears� or rack and pinion

systems�

�
 Combination of sliding and rolling� In rotating cam and follower sys	

tems the tip of the follower slides along any constant radius of curvature

portions of the cam surface� As the cam rotates and� relative to the follower�

its radius of curvature changes� the follower rotates about some axis� As this

occurs� the follower tip will also roll on the cam surface�

�
�
�
 Holonomic and Nonholonomic Constraints� GPairs
 The term

holonomic is derived from the Greek word holos meaning integer� It describes con	

straints that may be expressed in integral form� i�e�� in terms of displacements� as

opposed to di�erential form� i�e�� in terms of linear and angular velocities ���� Di�er	

ential form kinematic constraints involving link angular velocities are non�holonomic

unless the motion is planar and occurs without slip ��� ����

The subject of this thesis includes the kinematic analysis of PSGP with holonomic

higher pairs that involve rolling without slip on a straight line� like rack and pinion

gear sets� This type of higher pair� illustrated in Figure ��� 
iii�� is abbreviated as

��
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a G	pair 
G for gear�� Since the platforms examined herein� including the special

architectures� are all planar and there is no slip between the higher pairs� all the

kinematic constraints in this thesis are holonomic�

A very detailed discussion of relevant conditions that make a constraint holonomic

can be found in ����� which is brie�y summarised now for reference� The constraint

equations con�ning the motion of a rigid body can be written as functions

fi
q�� q�� � � � � qm� t� � �� 
����

where the qs are constrained generalised coordinates� t stands for time and the sub	

script i denotes a particular constraint equation� Any limitation placed on the gener	

alised coordinates restricts the position of the rigid body� and hence these are called

position constraints�� Position constraints impose restrictions on the velocity as well�

The velocity constraints are obtained by di�erentiating Equation 
���� with respect

to time�

&fi �
mX
j��

�




qj
fi
q�� q�� � � � � qm� t�

�
&qj '

�




t
fi
q�� q�� � � � � qm� t�

�
� �� 
����

where the &qs are called generalised velocities� Equations 
���� and 
���� are equivalent

in the limitations they impose as long as the initial position is speci�ed�

A more general form for the velocity constraint equations is obtained by replacing

the derivatives by arbitrary coe�cients that are functions of only the generalised

coordinates and time�

mX
j��

aij
q�� q�� � � � � qm� t� &qj ' bi
q�� q�� � � � � qm� t� � �� 
����

Equations 
���� and 
���� represent equivalent constraints if the corresponding co	

e�cients of each generalised velocity and of the velocity	independent term are the

�In ���� these are termed con�guration constraints�

��
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same up to a multiplicative factor� which may itself be a function of the generalised

coordinates and time� gi � gi
q�� q�� � � � � qm� t�� A velocity constraint is derivable from

a position constraint� and vice	versa� if� and only if

aijgi �

fi

qj

� bigi �

fi

t

� 
����

The velocity constraint equations are holonomic 
meaning integrable� if they satisfy

Equation 
����� otherwise they are non	holonomic�

This terminology actually refers to the di�erential form� called the Pfaan form�

of a constraint equation ����� The Pfa�an form is obtained from Equation 
���� by

multiplying it through by dt� giving�

mX
j��

aij
q�� q�� � � � � qm� t�dqj ' bi
q�� q�� � � � � qm� t�dt � �� 
����

When Equation 
���� is satis�ed� multiplying Equation 
���� by the function gi trans	

forms the Pfa�an form to a perfect di�erential of the function fi� This leads to the

following de�nition �����

Definition ������ A velocity constraint is holonomic if there exists an integrat�

ing factor gi for which the Pfaan form of the constraint equation becomes a perfect

di�erential� In this case� it may be integrated yielding the position constraint on the

generalised coordinates�

The concept of a holonomic constraint may be viewed from a geometric perspec	

tive� The generalised coordinates� qi� may be taken to be the basis 
q�� q�� � � � � qm� of

an m	dimensional 
m	D� constraint space� The constrained motion in the constraint

space is the locus of points as the motion evolves in time� Consider a holonomic

constraint f
q�� q�� � � � � qm� t� � �� At any instant t the position of the rigid body is

con�ned to some surface in the constraint space� The corresponding Pfa�an form of

��
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the velocity constraint states that in�nitesimal displacements must be in the corre	

sponding tangent plane to the constraint surface �	����

When the constraint is non	holonomic� the constraint surface cannot be de�ned�

Hence� the velocity constraint cannot be integrated� In this case the Pfa�an form of

the constraint equation restricts in�nitesimal displacements to lie on a tangent plane

that can only be de�ned by the current state of the motion �����

���� Rigid Body Displacements� The Isometry Group

A rigid body displacement can be described geometrically as an isometry� a

bijective mapping of Euclidean space E� onto itself which leaves the distance between

any two points invariant� Although a motion is clearly associated with an isometry�

the isometry does not represent the motion� it is the correspondence between an

initial and a �nal position of a set of points� A motion is a continuous series of

in�nitesimal displacements� Because an isometry maps collinear points into collinear

points� it transforms lines into lines� and hence is a collineation� The invariance of

distance also ensures that triangle vertices are transformed into congruent triangle

vertices� Thus� isometries preserve angle and are also conformal transformations ��	��

The word set has so far been used to mean a collection of geometric objects�

such as points� or lines� It may� however� be used more broadly to mean a collection

of any sort� The set of isometries includes the following transformations� rotation�

translation� screw� re�ection 
in a plane�� central inversion 
re�ection in a point�

����� It is easy to show that the set of isometries� together with a binary operator

which combines them� called product� de�ned on the set� constitutes a group� G� The
elements of G� fx� y� z� � � �g and the product operator satisfy the following axioms
�	���

��
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i� �closure� xy � G � x� y � G
ii� �associativity� 
xy�z � x
yz� � x� y� z � G
iii� �identity� � I � G � Ix � xI � x� � x � G
iv� �inverse� � x�� � G � xx�� � x��x � I� � x � G

The isometry group of the Euclidean plane E� is a sub	group of the isometry

group of E�� Every isometry is the product of at most four re�ections� in E� four

is replaced by three ����� Since a re�ection reverses sense� an isometry is direct or

opposite according to whether it is the product of an even or odd number of re�ections�

The set of direct isometries form a sub	group� This is because any product of direct

isometries is another direct isometry� Whereas� the same does not hold for the set

of opposite isometries� the product of two opposite isometries is a direct isometry�

violating the closure axiom� This is why opposite isometries do not form a sub	

group� The sub	group of direct isometries is also known as the group of Euclidean

displacements� G� ���� �	� ���� The subscript � refers to the number of generalised
coordinates required to specify a displacement� In turn� the isometries are a sub	

group of the Euclidean similarity transformations� also termed the principal group� G�
���� �	� ���� Seven parameters determine a similarity transformation� the additional

one being a magni�cation factor to uniformly scale distances� The G� transformations
are also conformal collineations� but the distance between two points is not� in general�

invariant�

�
�
	
 DOF by Group� ChebyshevGr�ublerKutzbach Formula
 The

relative motion associated with each of the lower pairs listed in Section ��� constitute

a sub	group of G� under the binary product operator 
i�e�� the composition of two
displacements�� The dimension of these sub	groups is de�ned to be the DOF of

the relative motion permitted by the lower pair ���� It is indicated by dim
GS��

��
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where GS � G�� These sub	groups� together with their corresponding dimension� are
identi�ed in Table ����

Lower pair GS dim
GS�
S S �

E E �

C C �

R R �

P P �

H H �

Table ���� Lower pair sub�groups and their dimension�

Let the product of two sub	groups� indicated by G � � G� � G�� be the composition
of the displacements they represent� If the product is also a sub	group of G� then
the dimension of this new sub	group will be dim
G �� � �� Let the product of the

sub	groups of a trivial � kinematic chain with l links be G � � G�� Furthermore� let
dim
G �� � d� The ith kinematic pair imposes ui constraints on the two links it couples�

Clearly� l unconstrained rigid links have d
l� �� relative DOF� given that one of the
rigid links is designated as a non	moving reference link� Any joint connecting two

neighbouring rigid bodies removes at least one relative DOF� If the joint removes

no DOF then the bodies are not connected� If the joint removes three DOF in the

plane� or six DOF in space the two bodies are a rigid structure� Summarising this

discussion� the DOF of a trivial chain can be expressed as

d
l � ���
jX

i��

ui �m � DOF� 
����

where d � dim
G ��� l is the number of links� ui is the number of constraints imposed
by the ith joint� j is the number of joints� and m represents the number of idle DOF�

�Trivial kinematic chains are those whose kinematic pairs have associated sub	groups whose product
is a sub	group of G� ���� For example� the S	� E	� C	� R	� P 	 and H	pairs are all trivial�
�The idle DOF of a chain are the number of independent single DOF motions that do not aect
the transmission of motion from the input to output links of the chain� However� idle DOF have no

��
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of the chain� This equation is known as the Chebyshev	Gr�ubler	Kutzbach 
CGK�

formula ����

���� General Planar Stewart�Gough Platforms De�ned

A general planar Stewart	Gough platform 
PSGP� is de�ned to be a moving

planar platform connected to a �xed base by three identical open kinematic chains�

called legs� Each of the three legs is connected by three independent one DOF joints�

one of which is actuated� Therefore� each independent chain has three DOF� Since

all three legs are identical the actuated joint must be the same one and the same

type in each leg� This de�nition is the logical reduction to the plane of the following

de�nition of the general six DOF spatial SGP�

These six DOF platforms consist of a mobile platform connected to a �xed rigid

base by six articulated legs of variable length ��	�� see Figure ���� Each of the P 	pair

legs� see Figure ���� is joined to the base by a universal joint� 
U 	pair� and to the

moving platform by an S	pair ���� This architecture is described topologically by the

sequence of joints of one of six legs connecting the �xed base to the moving platform�

universal�prismatic�spherical� indicated by UPS� While this architecture is arguably

the most well known� it is not the most general ����� From a geometric perspective� the

general SGP consists of six arbitrary points in a particular reference frame that can

move in constrained relative motion with respect to six arbitrary points in another�

The one condition is that the points of connection between the mobile platform and

each leg move on �xed spheres ��	��

direct bearing on the material presented herein and need not be discussed further� The interested
reader is referred to ��� �� where this concept is discussed in great detail�
�There are a number of types of universal joint� the one used on SGP is but one of the lot� It
comprises two R	pairs whose axes intersect at a �xed angle� see Figure ���� The term has its origin
in the ability of a joint to transmit motion between two intersecting� but non	collinear shafts� Such
a universal joint is called a Hooke� or a Cardan joint� although neither Hooke nor Cardan invented
it �����

��
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Figure ���� A UPS�SGP� 	a
 layout� 	b
 platform and base geometry
	courtesy of Prof� J� Angeles
�

Figure ���� Leg architecture of the UPS�SGP 	courtesy of Prof� J� Angeles
�

If the platform and base points are all coplanar and if the motion is restricted to

the plane of these points� the SGP loses at least three DOF� Three of the legs� and

hence� three pairs of platform	base points� along with three joints in each of the legs

become redundant� Thus� the general PSGP can be viewed as three arbitrary points

in a particular plane that move relative to three arbitrary points in another plane�

��
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parallel to the �rst� For the planar analogue of the UPS	SGP� the base U 	pairs and

platform S	pairs become R	pairs whose rotation axes are perpendicular to the plane

of motion� The moving platform can be connected to the �xed base by three variable

length legs� Each leg can be modelled as a simple kinematic chain�

Indeed� the only lower pairs used in planar mechanisms are R	 and P 	pairs�

This� together with the fact that PSGP have only three legs with three joints each�

suggests that the complexity of the kinematic analysis of these platforms should be�

more or less� independent of architecture� This is not the case� as yet� for SGP� For

instance� the FK problem of a SGP type platform with six �	R legs is computationally

prohibitive ����

It is to be seen in the literature� ���� ��� ��� �	� 	�	� for example� that general

SGP are topologically symmetric� That is� the platform is connected to the base by

six identical kinematic chains� Moreover� the actuated joint in each chain is the same�

In this sense the general PSGP shall be considered as topologically symmetric� but

with three legs of arbitrary though identical architecture� This symmetry� however�

does not necessarily include link lengths and o�set angles�

��	� Classifying Lower Pair PSGPUsing Characteristic Chains

�
�
	
 Characteristic Chains
 The possible combinations of R	 and P 	pairs

constraining the independent open kinematic chains� consisting of successions of three

joints starting from the �xed base� in a PSGP are ���� 	����

RRR� RPR� RRP� RPP� PRR� PPR� PRP� PPP�

We must� however� exclude the PPP chain because no combination of pure planar

translations can cause a change in orientation� Moreover� there are a maximum of

two independent translations in the plane� hence a PPP chain has at most two DOF�

��
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Figure ���� The seven possible topologies for the PSGP�

��
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Since this is less than the required three� a symmetric platform consisting of three

PPP legs can not be considered as a PSGP by our de�nition� Thus� there are seven

possible PSGP topologies� illustrated in Figure ���� each characterised by one of the

seven allowable simple chains� They are referred to as characteristic chains�

It is important to note that in order for legs containing two P 	pairs to possess

three DOF it is necessary for the two translation directions to be non	parallel�

�
�
�
 Characteristic Passive Subchains
 The leg actuation scheme con	

trols the three DOF of the moving platform� The active joint in a leg shall be identi�ed

with an underscore� Since any one of the three joints in any of the seven characteristic

chains may be actuated there are twenty	one possible topologically symmetric PSGP�

When the value of the activated joint coordinate is speci�ed� the joint is locked

and may be e�ectively removed from the characteristic chain� Examining Figure ���

it is to be seen that the resulting passive sub	chain is one of only four types� either

RR� PR� RP � or PP � These are called characteristic passive sub�chains� However�

PP 	type architecture must be rejected as not useful �	��� because such a platform

either moves uncontrollably or is not assemblable when the actuated joint variables

are speci�ed� see Section ������ This reduces the number of possible PSGP to eighteen�

They are listed� according to characteristic passive sub	chain� in Table ����

RR	type PR	type RP 	type

RRR RPR RRP

RRR PRR RRP

RRR PRR RPR

PRR PPR PRP

RPR PPR RPP

RRP PRP RPP

Table ���� The �� possible PSGP�

��
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Figure ���� Reference frames and points if base and platform joints are R�pairs�

��
� Manipulator Descriptions

The planar platforms considered in this thesis can be represented as complex

kinematic chains consisting of three closed sub	chains 
FAFB� FAFC � FCFB�� as in

Figure ���� for instance� In general� they consist of seven articulated rigid elements

which move with constrained relative motion� all grounded to a rigid �xed base� These

eight members are joined by combinations of nine lower R	 and P 	pairs� The three

simple kinematic sub	chains connecting the base to the platform� here termed legs�

each contain two intermediate links� No PSGP leg is joined exclusively with P 	pairs�

�
�
	
 LowerPair PSGP Reference Frames and Points
 To geometri	

cally describe a PSGP six arbitrary points� three in each of two arbitrary reference

frames� must be de�ned� It is convenient to represent the displacements of the moving

platform with respect to the base by describing the pose of a reference frame attached

to the platform in a stationary reference frame �xed to the base� Referring to Figure

��
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��� the �xed base and the moving platform frames are orthogonal and right	handed�

They are labelled ! and E� respectively� Each of the three legs are identi�ed as A�

B and C� Figure ��� illustrates an RPR platform� but the reference frames together

with the �xed and moving points are labelled identically for all eighteen PSGP� The

moving platform is de�ned by the triangle whose vertices are Mi� i � fA�B�Cg�
while the �xed base is de�ned by the triangle whose vertices are Fi� i � fA�B�Cg�
Figure ��� illustrates both triangles� the sides of the �xed one shown as dashed lines�

The three �xed base points are coupled to the three moving platform points by iden	

tical kinematic sub	chains�

The manipulator parameters� that are independent of topology are the locations

of the origins of frames ! and E� indicated by O	 and OE� along with those of the

three �xed base points and those of the three moving platform points� Selection

of these origins and points requires some elaboration� Each of the three legs are

connected to the base by either revolute or prismatic joints� If the base joints are

revolutes� as in Figure ���� the three �xed base points are selected to be the centres

of the three base R	pairs� These are the piercing points of the revolute axes with

the platform plane of motion� Then O	 is chosen to be incident on FA so that the

Cartesian coordinates of FA�	� i�e�� the coordinates of FA in frame !� are 
�� ��� The

basis directions of reference frame ! are chosen such that FB�	 � 
B�� ��� That is�

the orientation of ! is selected so that FB is on the positive x		axis� The Cartesian

coordinates of FC�	 � 
C�� C�� are then� generally� nonzero�

Normally the Fi are expressed in terms of the coordinates in !� Points in ! have

Cartesian coordinates represented symbolically by the uppercase letter pairs 
X� Y �

and homogeneous coordinates by the triples of ratios 
X � Y � Z�� Platform points

�It is important to emphasise that the kinematic analysis used herein is completely independent of

platform geometry� Therefore� the choice of coordinate reference frames is irrelevant� We select the
ones that simplify the computations�

��
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Mi are typically expressed in both frames� ! and E� Their coordinates in E are

indicated symbolically by lowercase letter pairs 
x� y� and homogeneous coordinates

by the triples of ratios 
x � y � z�� It is worthwhile to point out that the forward

kinematics problem reduces to �nding Mi�	 given Mi�E� Fi�	 and the active joint

inputs� Moreover� the inverse kinematic problem involves determining the active

joint inputs given the Mi�� �

If the platform joints are R	pairs� an identical procedure is followed to select the

location for OE� the orientation of E and the coordinates of Mi�E� i � fA�B�Cg�
The centre of the platform R	pair in leg A is taken to be both OE and MA� The

remaining two points� MB and MC � are chosen analogously to FB and FC � giving�

MA�E � 
�� ��� MB�E � 
b�� ��� MC�E � 
c�� c���

Figure ���� Reference frames and points where platform joints are P �pairs�
axis associated with a particular P �pair�

Considering the alternate situation� if the base joints and%or platform joints are P 	

pairs� as illustrated by Figure ���� the procedure seems to become less straightforward�

This is partly because it does not make sense� from a mechanical engineering point

of view� to speak of the axis of a prismatic joint� These joints permit translations

parallel to one direction� One such translation� indicated by � � is shown in Figure

��
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���� Mathematically� the axis of a prismatic joint could be described as the line at

in�nity� N�� of all planes normal to the direction of � � This is illustrated in Figure

���� where ! is the plane containing the P 	pair� � is a particular translation e�ected

by the P 	pair� N� and N� are normals to !� and ( is the plane at in�nity� The two

planes ! and ( intersect in L�� Lines in the direction of � intersect L� in the point
P�� Lines normal to � in plane !� indicated by �� intersect L� in the point P�� The

line N� is the intersection of all planes normal to ! and parallel to �� Moreover�

all normals to !� N� and N� being two of them� intersect N� in the point P�� The

join of P� and P� is N�� which is the axis of the particular prismatic joint� In other

words� the axis of a P 	pair is the absolute polar line to the point at in�nity of the

direction of translation�

Regardless� P 	pairs would be impossible to manufacture if they had no longitu	

dinal axis of symmetry to establish the direction of translation� i�e�� no longitudinal

centre line� We will use these centre lines to establish relevant Fi 
ankle�� Ki 
knee�

and Mi 
hip� points� One must not confuse this centre line with the joint axis� which

is� for mechanical reasons� inaccessible�

The process for selecting the origins and reference points is identical to the R	pair

case with the exception that O	 and OE are selected to be any convenient points on

the appropriate centre lines� The basis directions of ! and respective base points are

selected so that their coordinates are � FA�	 � 
�� ��� FB�	 � 
B�� ��� FC�	 � 
C�� C���

Meanwhile� the basis directions of E and respective platform points are selected so

that their coordinates are � MA�E � 
�� ��� MB�E � 
b�� ��� MC�E � 
c�� c��� Figure

��� illustrates a PRP platform showing the centre lines and the respective reference

frames and points� For topologically asymmetric fully	parallel three	legged planar

manipulators the appropriate procedure is followed leg	by	leg depending on whether

the relevant joints are revolutes or prismatics�

��
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�
�
�
 PSGP with Holonomic Higher Pairs
 A novel RR	type platform

containing active holonomic G	pairs shall now be introduced� It is described by an

RRG characteristic chain� illustrated in Figure ���� Because of the special topology

extra attention is given to its description� It is based on the design proposed by

Agrawal and Pandravada in ��� ��� wherein the kinematics of two �R links manip	

ulating a disk in the plane are examined� When tangential contact is maintained

between the disk and legs it is an RRGGRR single loop platform� When a third

�R leg is added and the G	pairs are active� the result is a special RR	type platform�

provided tangential contact is maintained�

The circular disk rolls without slip on each of the three lines tangent to it� This

rolling system is modelled as a pinion meshing with three racks� Each of the three

legs� A� B and C� connect a rack to a base point via two R	pairs� A rack is rigidly

attached to the disk end of each second link� The racks are constrained to remain in

contact with the pinion� Tangential contact can be maintained mechanically using

passive joints ���� the higher pairs can then be activated via a transmission with no

additional active joints� The group of motions associated with G	pairs has the same

dimension as those of R	 and P 	pairs� dim
G� � ��

What really distinguishes this manipulator from PSGP� which are jointed ex	

clusively with lower pairs� is that the initial assembly con�guration 
IAC� of the

platform must be included in the analysis due to the roll	without	slip condition� If

only displacements are considered� then any IAC may be used as the reference posi�

tion� Activating the higher pairs gives some control over the relative rolling which is

essential for the kinematic analysis presented herein� Moreover� this means it may be

considered as an RR	type PSGP� although a special one�

The R	pairs connecting two links in a leg are referred to as knee jointsKA� KB� KC �

and are constrained to move on circles centred on the three �xed points FA� FB� FC �

��
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Figure ���� A PSGP with holonomic higher pairs�

The position and orientation of the pinion are described by reference frame E� which

has its origin on the disk centre and moves with it� Frame ! has its origin at the

base of leg A and is �xed� In the reference position shown in Figure ���� the basis

directions of E and ! are identical�

The three �xed base points are the centres of the three base R	pairs 
see Figure

����� However� the three platform points are the points of contact between the pinion

and racks� The platform points are not �xed relative to each other� but change from

pose to pose� It will be seen that the variable platform points are not problematic

and that the kinematic analysis is essentially the same as for any RR	type platform�

�
�
�
 Special Geometric Properties
 This mechanical system has some

interesting geometric properties which lead to some unique practical applications�

The general motion of the disk in the plane involves relative motion between the disk

and each serial �R leg� Each rack can roll on the pinion� the pinion can roll on the

��
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racks� or there can be a combination of the two motions� For general planar motion

the system� illustrated in Figure ���� has the following properties�


�� If the pinion rolls on one rack� then it must roll on all�


�� As a consequence of 
�� if one of the higher G	pairs is locked the pinion can

not rotate about its centre�


�� Any� or all of the racks may roll on the pinion�


�� Consider leg A� for example� Suppose that its higher pair is locked but the

other two are not� During a general motion� the pinion will be stationary

with respect to rack A while the other racks are free to roll on the pinion�

Then there are two possibilities�


a� If the relative angle between ��A and ��A changes� the motion of the

pinion is either a translation� or a rotation about a centre other than

its own axis by an angle equal to the change in angle of ��A measured

in !�


b� If the relative angle between ��A and ��A is constant during the motion�

then the pinion rotates about the leg base by an angle equal to the

change in the angle between ��A and !� Regardless� in both cases there

can be no rotation of the disk about its centre� since one of the higher

pairs is locked� Such a motion would violate 
���


�� Let  �i� i � fA�B�Cg� be the change in rack tangent angle in a particular
leg with counter clock	wise rotation considered positive� If  �A has the same

magnitude but opposite sense as either  �B or  �C � then the motion of the

pinion is pure rectilinear translation of its centre� Pure curvilinear translation

can also occur if the magnitude condition is violated however� the opposite

sense condition must be met�


�� If  �A�  �B� and  �C have the same magnitude and sense� then the motion

of the pinion is pure �xed axis rotation about its centre�

��
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Figure ���� A cycloid and an involute of a disk�

The the relative rolling between rack and pinion pairs also leads to an interesting

observation� Consider the following two curve de�nitions� see Figure ����


�� Cycloid� Locus of a point on a circle that rolls without slip on a line�


�� Involute� Locus of a point on a line that rolls without slip on a circle�

These two de�nitions tell us that the circle and line are kinematic inversions� or duals�

since each de�nition can be obtained from the other simply by exchanging the words

circle and line� This may seem like a trivial observation� but it turns out to be of

some importance for the classi�cation of constraint	related surfaces in a quasi	elliptic

geometry� to be discussed later� in the following sense� a model of the elliptic plane

is the surface of a sphere on which straight lines are taken to be great circles�

�
�
�
 Tangency Condition
 By virtue of the pure rolling constraints� the

straight lines along which the disk rolls must always remain tangent to the disk�

Consider a line and a circle in the Euclidean plane� The equation of the line can be

��
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represented by the linear equation

ax ' by ' c � �� 
����

for constant coe�cients a� b� c� and variable points 
x� y�� A circle with centre 
xc� yc�

and radius r is given by


x� xc�
� ' 
y � yc�

� � r� � �� 
����

Equation 
���� can be solved for y to give the familiar slope	intercept form of the

line� and the expression is substituted into Equation 
����� The result is expanded in

powers of x which yields a quadratic�

Ax� 'Bx ' C � �� 
����

where�

A �
a�

b�
' ��

B � �
�
�xc ' ac

b�
'
ayc
b

�
�

C � x�c � r� ' 

c�b� ' yc�
� �

To satisfy the tangency condition� the discriminant of the quadratic must vanish�

p
B� � �AC � ��

The discriminant itself is a quadratic in terms of the constant a�


x�c � r��a� ' 
c' byc��xca' 
b
�y�c � b�r� ' �bcyc ' c�� � �� 
�����

This condition is necessary� but not su�cient to guarantee pure rolling contact�

However� all solutions to the FK and IK problems must satisfy this condition� FK

and IK algorithms can use this condition as a check on the validity of solutions�

��
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���� Applications for RRG�Type Platforms

The applications for RRG	type platforms are a super	set of those of the lower

pair jointed PSGP� That is� they are essentially the same with some notable additions�

Because of its ability to grasp objects while rotating them it can be used for accurate

centring operations� For example� it could be designed to replace a standard four	jaw

chuck in lathe turning operations� thus eliminating costly set	up time� The details

of the forced tangential contact could be set such that rack could disengage from

the pinion in a controlled manner allowing for a reachable workspace with dynamic

boundaries� The RRG	type platform could also be used in situations requiring ad	

justable� variable coupler length four	bar mechanisms that can be changed to Grashof�

change	point� or non	Grashof kinematics� Not only can the coupler curve shape pa	

rameters be adjusted� the curve itself can be made uni	 or bicursal� to suit the needs

of the design at hand� This makes for some welcome �exibility regarding function

generation� rigid body guidance and path generation synthesis problems �����

Changing the rack tangent angles changes the assembly con�guration of the plat	

form� Each distinct set of inputs yields a distinct set of distances between the knee

joints� Referring to Fig� ���� we can lock the racks in two legs so that there is a

desired distance between corresponding knee joints� With no loss in generality we

can select legs A and B� Since two of the actuators are locked� the platform loses �

DOF� Furthermore� the ungrounded links in legs A and B� together with the pinion

are a temporary rigid body with an e�ective length corresponding to the distance

between the two knee joints KA and KB� The resulting four	bar mechanism 
see

Figure ���� can be driven with rack C� If the link lengths are suitably chosen� it will

be a convertible Grashof�Change�Point�Non�Grashof mechanism�

Fig� ��� illustrates the most general situation� where the grounded links in legs

A and B have di�erent lengths� Cases 
i� through 
iii� show the mechanisms that

��
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Figure ��	� Application to planar four�bar mechanisms� 	i
 Grashof� 	ii

change�point� 	iii
 non�Grashof� The excursion arcs and singular positions
of the small and large arm crank pins for each of the three cases are shown
on the right�

result as the e�ective coupler length� b� given in generic units� varies between ��� ���

and ��� The other lengths are constant� � � ��� s � �� and a � �� The sum of

the longest 
�� and shortest 
s� link lengths is less than� equal to� and greater than

the sum of the other two 
a and b� giving Grashof� change	point� and non	Grashof

mechanisms� respectively �		���


i� Lengths� � � ��� s � �� a � �� b � ��

l ' s � ��  a' b � ��

� Grashof crank	rocker�

��
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ii� Lengths� l � ��� s � �� a � �� b � ��

l ' s � �� � a ' b � ��

� Change Point�


iii� Lengths� l � ��� s � �� a � �� b � ��

l ' s � �� � a' b � ��

� Non	Grashof double rocker�

Recall the characteristics of these three variants of a four	bar mechanism� a

Grashof mechanism can be a crank	crank� crank	rocker� or double	rocker mechanism�

depending on which link is �xed� whereas all inversions of a non	Grashof mechanism

are double	rockers� As a reminder� the excursion arcs and singular positions of the

small and large arm crank pins for each of the three cases are shown on the right

of Figure ���� For this application the link lengths in the driving leg� C� and the

disk radius are unimportant provided they allow for the desired coupler lengths and

output error tolerance�

���� Nomenclature and Link Reference Frames

One of the main contributions of this thesis is the derivation of a single univariate

polynomial whose zeros represent the solutions to the FK problem for every PSGP�

as de�ned in Section ���� The single variable is a special displacement parameter in

a certain kinematic image space� The coe�cients of the polynomial are products of

the design constants and input variables� which have a �xed� constant value for any

given pose of the manipulator� Care must be taken to use portable notation� That is�

notation that can be unambiguously used to fully describe any PSGP� regardless of

topology� in order that the univariate can be used in the kinematic analysis�

��
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�
�
	
 Position Vectors
 Position vectors shall� in general� be described

with lowercase bold letters� The points they represent shall be described with the

corresponding uppercase letter� For instance� consider the knee joint�

	 Point� K�
	 Homogeneous point coordinates� 
Kx � Ky � Kz��

	 Position vector� k�

�
�
�
 Platform Pose Variables
 The pose of the platform is described by

the position of the moving frame E� together with its orientation� all expressed in the

�xed frame !� see Figure �����

	 
a� b� are the Cartesian coordinates of the origin of E in !� OE�	�

	 � is the orientation expressed as the angle between the x	 and X	axis� the

positive sense being counterclockwise�

Figure ���
� Platform pose variables�

�
�
�
 Link Reference Frames
 Link reference frames are� with the excep	

tion of !� E and R 
discussed below�� in the case of RRG platforms� assigned using

the well known procedure developed by Denavit and Hartenberg ���� and elaborated

on by Angeles ��� and Craig ����� These frames are usually called D	H reference

frames� D	H frames are usually assigned so that D	H parameters can be used to

characterise a manipulator� Since all platforms dealt with herein are planar� neither

are really required� Regardless� the D	H frames are assigned because the procedure

��
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is well de�ned� systematic and well known� Moreover� if this work is to be extended

to non	planar platforms� the D	H frames will likely be used� For all PSGP� the �xed

base� and the �xed frame at the leg attachment point 
the �xed base point Fi� are

enumerated as link � and frame �� respectively� The orientation of frame � in each leg

is arbitrary� and is selected to be parallel to the �xed base frame !� Thus� the base

reference frame in each leg is indicated simply by !� The platform� and the moving

frame at the attachment point 
the moving platform pointMi� are enumerated as link

� and frame �� respectively� The orientation of these frames is selected to be parallel

to the moving platform frame E� Similarly� the platform reference frame in each leg

is indicated by E� The intermediate links� and their frames� are enumerated as � and

� in each leg� The frames are� of course� �xed relative to the link they represent� The

D	H frames for leg A in an RRR manipulator are shown in Figure ���� 
i��

Figure ���� 
i� shows the D	H reference frames for leg B in an RPR platform�

Frames � 
!� and � 
E� have their origins on the base and platform R	pairs� The

origin of frame � is incident with the origin of frame � 
indicated by !�� but moves

with the base revolute� The origin of frame � is incident with the origin of frame �


indicated by E�� but moves with the platform revolute�

When the base joints are prismatic the basis directions of frame � depend on the

angle between the X	axis and the direction of translation 
represented as the centre

line of the P 	pair�� This is called the angular o�set of the particular frame with

respect to frame � 
!�� A similar angular o�set occurs when the platform joints are

P 	pairs� except they are described in terms of the platform frame E� The angular

o�sets are shown for leg B of a PRP manipulator in Figure �����

The D	H reference frame assignment procedure is only valid for kinematic chains

whose joints are all lower pairs ����� To de�ne the G	pair reference frames a variation

on the procedure in ���� is used� This involves taking the axis of the G	pair to

��



CHAPTER �� GENERAL PLANAR STEWART�GOUGH PLATFORMS

Figure ����� 	i
 D�H reference frames in an RRR platform� leg A� 	ii
 joint parameters�

Figure ����� 	i
 D�H reference frames in an RPR platform� leg B� 	ii
 joint parameters�

be normal to both the direction of translation of the pinion centre relative to the

corresponding rack and to the plane of motion� The positive sense of this axis�

de�ned as the z	axis of a three dimensional Cartesian reference frame� is out of the

page� If the y	axis points towards the pinion centre� the x	axis direction is assigned

to complete a right	handed reference frame� Two frames are assigned in this way� the

rack��xed frame R and the rack frame � that translates with the contact point along

��
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Figure ����� 	i
 D�H reference frames in an PRP platform� leg B� 	ii
 joint parameters�

the rack� The origin of R� indicated by OR� is on the contact point between rack

and pinion when the platform is in its reference position 
see Figure ���� �i� and ���

showing the reference position used throughout this thesis�� which can always be used

as a feasible IAC� Thus� it is selected to be that position where the distance between

OE and O� is minimum in each leg� Figure ���� shows the frame assignments for leg

C in an RRG manipulator� It is important to note that for the RRG platforms the

basis directions of E and ! are parallel in the reference position shown in Figure ����

but reference frame �i is� in general� not parallel to E�

�
�
�
 Fixed Link Design Parameters


	 �ij is the length of link i� i � f�� �g� in leg j� j � fA�B�Cg� See Figures
��� and ���� �ii�� for example�

	 �i�j� �i�j� �i�j � i� j � f!� �� �� Eg i 
� j� are the angular o�sets of P 	pair refer	

ence frame i with respect to reference frame j for legs A� B� C� respectively�

See Figure �����

��
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Figure ����� 	i
 D�H reference frames in an RRG platform� leg C� 	ii
 joint parameters�

	 r is the radius of the disk in RRG platforms� see Figure ����

�
�
�
 Joint Variables


	 dij is the length of prismatic joint i� i � f�� �� �g� in leg j� j � fA�B�Cg�
examples are illustrated in Figures ���� and ����� It is also used to describe the

change in contact point along the rack for the higher pairs in RRG platforms�

see Figure ���� �

	 �i�j� �i�j� �i�j are the joint angles of link i with respect to reference frame j�

i� j � f!� �� �� Eg� i 
� j� for legs A� B� C� respectively� Examples are shown

in Figures ����	����� These are the same symbols used to describe �xed joint

angular o�sets� however both the context 
i�e�� leg type� and the subscripts

should eliminate any confusion�

��
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The three variable joint angles for leg A of an RRR manipulator are illustrated

in Figure ���� 
ii�� The angles shown are ���	 
which is identical to ������ ���� and

�E�� 
which is identical to ������ which represent the relative angles that the x�	� x�	

and xE	axes 
or x�	axes� make with the x		 
or x�	 �� x�	 and x�	axes� respectively�

Figure ���� 
ii� shows the three variable joint parameters for leg B of an RPR

platform� The length d�B gives the distance between the origin of frame � and the

origin of frame �� The angles ���	 and �E�� give the relative angles of the x�	 and xE	

axes measured against the x		 and x�	axes� respectively� The PRP platform� shown

in Figure ���� �ii�� illustrates the variable prismatic lengths d�B and d�B together with

the variable revolute angle� ����� and the two P 	pair angular o�sets� ���	 and ���E �

The RRG platform� in Figure ���� �ii�� shows the two variable angles� ���	 and �����

Also shown is the position of the contact point between the pinion and rack measured

relative to its reference position�

If a leg possesses an intermediate R	pair it will be called a knee joint and labelled

Ki� i � fA�B�Cg� Completing the anthropomorphism� the Mi platform points will

occasionally be referred to as hip points� and the Fi as ankle points�

���� Mobility Analysis

Any planar platform connected to three grounded legs� each joined with three

independent � DOF joints can be characterised in the following way� each leg contains

two intermediate links between the base and platform� giving a total of � links� The

� joints are either R	 or P 	pairs 
or G	pairs for the RRG	type legs�� each imposing �

constraints� Under the condition that no one leg is joined exclusively with P 	pairs�

it can be shown that the dimension of the associated sub	group is d � �� Using the

CGK formula� Equation 
����� gives

�
�� ��� �
��� � � � DOF� 
�����

��
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It is worthwhile to note that the platform has � DOF regardless of the number

of grounded �	link legs to which it is connected by R	 and P 	pairs 
or G	pairs� as the

case may be�� The proof is obtained by showing the left hand side 
LHS� of Equation


���� is always equal to ��

For � links and j joints Equation ��� may be re	expressed as�

�
l � ��� �j � DOF� 
�����

since each joint removes two DOF� The base and platform always count as two links

and each of the n legs contains two intermediate links� Thus for n legs the number

of links is

l � �n' �� 
�����

Furthermore� each leg has three joints� so�

j � �n� 
�����

Substituting Equations 
����� and 
����� into the LHS of Equation 
����� gives

�
�n' �� ��� �
�n� � �n' �� �n � � 
�����

Therefore� n can be any integer� Moreover� this result is valid for any arbitrary

architecture of combinations of the �� types of characteristic chains plus the RRG	

type�

��



CHAPTER �

Kinematic Mappings of Displacements

In this chapter the geometric and algebraic tools used in the kinematic analysis of

PSGP shall be discussed� Collectively� they are a fabric woven from �ne threads

contained in the great classic works of Pl�ucker �		�� 		�� 		�� 		��� Grassmann �����

Klein ���� ���� Study �	���� Gr�unwald ����� Blaschke �	��� Sommerville �	��� 	����

and the relatively new� but nonetheless landmark� contributions of Bottema and Roth

�	��� De Sa ����� Ravani �		��� Husty ��	� ����

It may be argued that the study of robot kinematics is essentially the study of

isometry� Both are primarily concerned with the group of Euclidean displacements�

G� in E� and G� in E�� Since these concepts form the backbone of this thesis� some

discussion is in order� The aim is to begin with general �	D Euclidean displacements�

and treat planar displacements as a special case of the former� Thus� it is to be

hoped that the techniques employed in this thesis may then be generalised to spatial

six DOF parallel platforms� The Isometry group was described in Section ���� The

following sections will build on that discussion by recalling some pertinent concepts

regarding projective� metric and non	metric geometries�
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���� Homogeneous Coordinates

Figure ���� Cartesian coordinates in E��

Let O be the origin of the Cartesian coordinate system� shown in Figure ���� Let

S be a distinct point in the plane� The ray passing through O and S is described

by the coordinate pair 
x� y�� Another distinct point Q 
� O� on ray OS is described

by the pair 
�x� �y�� where � � R 
ie�� a real number�� As � � �� the seemingly

meaningless pair 
���� is obtained �	����

To remedy this representational problem� the point pairs may be represented by

two ratios� given by ordered triples 
x�� x�� x��� If x� 
� �� then the point S can be

uniquely described as�

x �
x�
x�

� y �
x�
x�
� 
����

Then any triple of the form 
�x�� �x�� �x�� 
for � 
� �� describes exactly the same
point S� In other words� two real points are equal if the triples representing them are

��
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proportional� This is because

�x�
�x�

�
x�
x�
� x� and

�x�
�x�

� y�

The coordinates 
x� � x� � x�� are called homogeneous coordinates� When x� � � the

Cartesian coordinate pair 
x� y� is recovered�

The Cartesian coordinates 
�x� �y�� � 
� �� of the family of points on the ray
through Q in Figure ��� can be expressed in homogeneous coordinates as ratios�


�x� �y� � 
x� � �x� � �x�� � 

x�
�
� x� � x���

In E�� as �� �� the homogeneous coordinates 
� � x� � x�� are obtained� There is

no point on the line OS to which this triple can correspond because E� is unbounded�

However� in the projective extension of the Euclidean plane� the triple 
� � x� � x��

describes the point at in�nity �ideal point� on the line OS� Since the same triple is

obtained regardless if �� '� or �� ��� a unique point at in�nity is associated
with the line OS in E�� Hence� an ordinary line adjoined by its point at in�nity is a

closed curve ��	��

The triple 
� � � � �� describes neither an ideal point nor a real point on OS�


x � y � �� � 
� � � � �� seems to imply that S � O� which is a contradiction in the

construction of the ray OS� The trivial triple 
� � � � �� is therefore not included in

the point set comprising the projective extension of E��

All lines inE� which are extended to their points at in�nity have the homogenising

coordinate x� � �� The totality of all the existing points at in�nity 
with the exception

of 
� � � � ��� are described by x� � �� The extended Euclidean plane which includes

�The projective plane� P�� can be thought of as the Euclidean plane� E�� to which the line at in�nity

has been added� The generalisation of this concept of extension is attributed to Herman Grassmann
�����

��
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all the points at in�nity is called the projective plane P�� Since x� � � is a linear

equation� it represents the line at in�nity�

Figure ���� Cartesian coordinates in E��

Entirely analogous statements can be made for the �	D Euclidean space� E��

This space is covered by a Cartesian coordinate system with origin O and axes x� y� z�

The axes are usually de�ned as orthogonal� Such an orthogonal Cartesian system is

illustrated in Figure ���� The homogeneous coordinates 
x� � x� � x� � x�� of the point

S � E� are de�ned as�

x �
x�
x�
� y �

x�
x�
� z �

x�
x�

� x� 
� �� 
����

As in two dimensional projective space� when x� � � the Cartesian coordinate triple


x� y� z� is recovered�

It should be noted that in general the choice of homogenising coordinate is arbi	

trary� Over the course of time the following conventions have developed�

��
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�� In North America and the British Commonwealth the homogenising coordi	

nate is taken to be the last one� The coordinate indices begin with �� In

the plane� 
x� � x� � x�� represent the coordinates of a point� with x� the ho	

mogenising coordinate� In space� a point is described with 
x� � x� � x� � x���

x� being the homogenising coordinate� In general� the homogenising coordi	

nate in an n	D space has the index n ' ��


�� In Europe the �rst coordinate� given the index �� is taken to be the ho	

mogenising one� Thus� x� represents the homogenising coordinate regardless

of the dimension of the coordinate space�

Both conventions shall be employed henceforth� This is to underscore the idea

that such a restriction is arbitrary and unnecessary in the context of projective geom	

etry� discussed in Section ���� However� where required the homogenising coordinate

shall be explicitly identi�ed�

���� Duality

In the Euclidean plane a general line has the equation

Ax'By ' C � �� 
����

where A� B and C are arbitrary constants de�ning the slope and intercepts with the

coordinate axes� The x and y that satisfy the equation are points on the line� Using

homogeneous coordinates this linear equation becomes

X�x� 'X�x� 'X�x� � �� 
����

where the Xi characterise lines 
i�e�� X� � A� X� � B� X� � C� and the xi char	

acterise points� Now Equation 
���� is represented by an equation that is linear in

the Xi as well as the xi� Every term in Equation 
���� is bilinear� or homogeneously

��



CHAPTER �� KINEMATIC MAPPINGS OF DISPLACEMENTS

linear� This should explain the etymology of the term homogeneous coordinates� The

Xi are substituted for the A� B and C to underscore the bilinearity and symmetry�

Equation 
���� may be viewed as a locus of variable points on a �xed line� or

as a pencil of variable lines on a �xed point� The Xi de�ne the line and are hence

termed line coordinates� indicated by the ratios �X� � X� � X��� whereas the xi de�ne

the point and bear the name point coordinates� indicated by the ratios 
x� � x� � x���

Note the distinction that line coordinates are contained in square brackets� � �� while

point coordinates have parentheses for delimiters� 
 �� Equation 
���� is a bilinear

equation describing the mutual incidence of point and line in the plane� Thus� point

and line are considered as dual elements in the projective plane P�� The importance of

this concept is that any valid theorem concerning points and lines yields another valid

theorem by simply exchanging these two words �		�� For example� the proposition


�� Any two distinct points determine one and only one line

is dualised by exchanging the words point and line giving a di�erent proposition�


�� Any two distinct lines determine one and only one point�

In space the mutual incidence of point and plane is given by the bilinear equation

X�x� 'X�x� 'X�x� 'X�x� � �� 
����

where the xi remain point coordinates� however the Xi are now plane coordinates� the

dual elements of �	D projective space P� being point and plane� Because of the duality�

the roles of coe�cient and variable are interchangeable� For instance� Equation 
����

can represent the family points on a �xed plane� or the family planes on a �xed point�

The importance of the principle of duality as a conceptual tool can not be over	

emphasised� It shall be employed frequently in the analysis presented in subsequent

chapters�

��



���� LINE� POINT AND PLANE COORDINATES

���� Line� Point and Plane Coordinates

A necessary and su�cient condition that three distinct points in the plane� repre	

sented by the homogeneous coordinates as 
x� � x� � x��� 
y� � y� � y�� and 
z� � z� � z���

be collinear is that �		� 	�� ��� ���

���������

x� x� x�

y� y� y�

z� z� z�

���������
� ��

It then follows that the line determined by two distinct points 
y� � y� � y�� and


z� � z� � z�� has an equation that is easily obtained employing the Grassmannian

expansion ���� ��� 	����

���������

x� x� x�

y� y� y�

z� z� z�

���������
�

������
y� y�

z� z�

������ x� '
������
y� y�

z� z�

������ x� '
������
y� y�

z� z�

������ x� � ��

where a variable point on a �xed line has point coordinates 
x� � x� � x�� and� dually�

a variable line on a �xed point has line coordinates

�
�
������
y� y�

z� z�

������ �
������
y� y�

z� z�

������ �
������
y� y�

z� z�

������
�
� � �X� � X� � X��� 
����

Comparing the coordinates� it is to be seen that equation 
���� represents this exact

duality�

A similar relation exists when the equation of a plane is written using homo	

geneous coordinates� In E� a necessary and su�cient condition that four points�

whose homogeneous point coordinates are 
x� � x� � x� � x��� 
y� � y� � y� � y���


z� � z� � z� � z�� and 
w� � w� � w� � w��� be coplanar is that �		� �	�

��
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�������������

x� x� x� x�

y� y� y� y�

z� z� z� z�

w� w� w� w�

�������������

� ��

It follows that the plane determined by three distinct points has an equation�

again obtained with the Grassmannian expansion� given by Equation 
����� A variable

point on a �xed plane has point coordinates 
x� � x� � x� � x��� while the principle of

duality means that a variable plane on a �xed point has plane coordinates

�
�����

����������

y� y� y�

z� z� z�

w� w� w�

����������
�

����������

y� y� y�

z� z� z�

w� w� w�

����������
�

����������

y� y� y�

z� z� z�

w� w� w�

����������
�

����������

y� y� y�

z� z� z�

w� w� w�

����������

�
�����

� �X� � X� � X� � X���

���� Geometry

Every geometry of space whose group of transformations are collineations which

contain the sub	group G� can be derived from projective geometry� This geometry

has the smallest set of invariants� It is also the most general� This means that every

theorem valid in projective geometry is also valid in the sub	geometries de�ned by

less general collineations� The sub	geometries usually have a larger set of invariants�

It was Arthur Cayley who �rst realised that �projective geometry is all geometry�

��	� however� it was Felix Klein who provided the means to systematically derive the

sub	geometries �����

��
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�
�
	
 The Erlangen Programme
 In ���� Felix Klein gave his famous in	

augural address at the Friedrich	Alexander University in Erlangen� Germany� the text

of which is now known as the Erlangen Programme ����� Relying on the earlier work

of Arthur Cayley ��	�� it was intended to show how Euclidean and non	Euclidean ge	

ometry could be established from projective geometry� However� Kleins contributions

turned out to be more general� leading to a whole series of new geometries� Today�

they are known as Cayley�Klein� geometries and the spaces in which they are valid

are Cayley�Klein spaces �	��� 
discussed in Section ������� The following summary of

the Erlangen Programme was provided by Klein� himself� in �����

Given any group of transformations� in space which includes the prin	

cipal group� G�� as a sub	group� then the invariant theory of this group
gives a de�nite kind of geometry� and every possible geometry can be

obtained in this way�

According to the Erlangen Programme� the following dual propositions are always

valid �����


�� A geometry on a space de�nes a group of linear transformations� in that

space�


�� A group of linear transformations in a space de�nes a geometry on that space�

�This term is attributed to Sommerville����� �����
�The terms transformation and linear transformation shall be used interchangeably throughout this
thesis� This is because all transformations used in this work are linear�
�The modern understanding of linear transformation is limited to those de�ned on metric vector
spaces� However� in this thesis the term linear transformation refers to any non	singular injective
collineation �i�e�� a one	to	one transformation that maps collinear points onto collinear points�� in
any space� We use the transformations as n� n matrix operators� but care must be taken because
they operate on n� � matrices� and not vectors� For instance� a vector space can not be de�ned on
P� using �	D vectors� whose elements are composed of homogeneous coordinates� because there is
no � element� which� when added to any other element v leaves v unchanged� v� � � v� In P� the
point �� � � � � � �� is not de�ned� Hence� the more general de�nition must be used� The interested
reader is directed to ���� ���� �����

��
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Moreover� the character of a geometry is determined by the relations which remain

invariant under the associated group of linear transformations�

These linear transformations are of the form

Ax � kb� 
����

where x and b are the n'� homogeneous coordinates of two points in an n dimensional

space� A is a nonsingular 
n'�� 
n'�� matrix and k is a proportionality constant
arising from the use of the homogeneous coordinates�

An invariant is de�ned ���� ��� 	��� as a function of the coordinates under the

transformation such that

�
b�� � � � � bn
�� �  p�
x�� � � � � xn
��� 
����

where  is the determinant of the matrix A 
which is� by de�nition� nonsingular�

and p is a weighting factor� If p � � then � is an absolute invariant� otherwise it

is a relative invariant with weight p �	���� Kleins de�nition of a geometry involves

absolute invariants� i�e�� functions of the coordinates which remain unchanged by the

associated group of transformations �����

�
�
�
 Transformation Groups
 The projective transformations in projec	

tive space P� may be thought of as � � matrix operators that are collineations 
it
is important to note that an 
n ' ��	D homogeneous coordinate space is required to

analytically describe the elements of an n	D projective space�� These matrices are

non	singular by de�nition� They are sometimes referred to as structure matrices ����

since changing the structure of the matrix changes the character of the geometry it

��
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represents� A transformation of P� may be written as

P �

�
							�

a� a� a� a�

b� b� b� b�

c� c� c� c�

d� d� d� d�

�







�
� 
����

where the �� elements are arbitrary� but all contain a common factor owing to the use

of homogeneous coordinates� Because there are no restrictions on the elements� with

the exception that the determinant of the matrix never vanishes� they are the most

general geometric transformations in �	D space� Hence� the projective group of all

collineations in P� has �fteen parameters� and is termed G�� ����� The fundamental
invariant of G�� in particular� and n	dimensional projective geometry in general� is

the cross ratio of four collinear points�

The concept of cross ratio is one of the oldest now known to be part of projective

geometry� It is believed that the theory was known to Pappus of Alexandria 
AD

���	���� ���� ��� 	���� It is de�ned as follows �����

Definition ������ If the collinear points A� B� C� and D� at least three of which

are distinct� on a projective line have coordinates 
a� � a��� 
b� � b��� 
c� � c�� and


d� � d��� respectively� then the real number

R
A�B�C�D� �

������
a� a�

c� c�

������

������
b� b�

d� d�

������������
b� b�

c� c�

������
������
a� a�

d� d�

������


�����

if it exists is the cross ratio of the four points in the order A� B� C� D� If the number

does not exist� the cross ratio is said to be in�nite�

��
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The equations of general a�ne transformations in a�ne space A� contain twelve

arbitrary coe�cients� Thus� the ane group is indicated by G��� It should be apparent
that G�� � G��� This transformation group of A� is typically expressed as�

A �

�
							�

a� a� a� a�

b� b� b� b�

c� c� c� c�

� � � �

�







�
� 
�����

A�ne geometry can be considered as more rich than projective geometry because

its set of invariants includes more than just the cross ratio� For example� a�ne

transformations leave the plane at in�nity� x� � �� invariant� which is not the case

for projective transformations� in general�

The group of Euclidean transformations of E�� also a subgroup of G��� are repre	
sented by

E �

�
							�

a� a� a� a�

b� b� b� b�

c� c� c� c�

� � � �

�







�
� 
�����

However� E contains a �  � proper orthogonal sub	matrix 
i�e�� having a determi	
nant of '�� ����� The principal group� G�� represents the most general Euclidean
collineations ����� The Euclidean displacement group G� is characterised by the prop	
erty that both distance and sense are invariant under G� �����

�
�
�
 Invariants
 Recall that an absolute invariant is de�ned to be a func	

tion of the coordinates of an element in the given geometry which remains invariant

under the associated linear transformation group ���� ���� The Euclidean displace	

ment group G� is de�ned in a metric space 
see Section ������� In addition to the

��
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preservation of distance and sense� its set of invariants contains a special imaginary

quadratic form� First consider G� � G�� The equation of an arbitrary circle� k� in E�

with radius r and centre C
xc� yc� is�


x� xc�
� ' 
y � yc�

� � r�� 
�����

Expressing Equation 
����� using homogeneous coordinates x � x�
x� � y �

x�
x� produces


x� � xcx��
� ' 
x� � ycx��

� � r�x��� 
�����

The intersection with the line at in�nity x� � � is given by the equations

x�� ' x�� � �� x� � �� 
�����

The constants r� xc and yc which characterise the circle do not appear in the result�

Thus� every circle in the plane intersects the line at in�nity in exactly the same two

points� namely�

I�
� � �i � ��� I�
� � i � ��� 
�����

They are widely called the imaginary� or absolute circle points �	�� �	� ��� 	���� It

can be shown� in the same way� that every sphere cuts the plane at in�nity in the

imaginary conic�

x�� ' x�� ' x�� � �� x� � �� 
�����

which is called the imaginary� or absolute sphere circle�

These absolute quantities account for the apparent de�ciency of Bezouts theorem

���� 	��� for the intersections of algebraic curves and surfaces� That is� two curves

of order n and m will intersect in at most nm points � similarly� two surfaces of order

n and m will intersect in a curve of� at most� order nm� Clearly� two circles intersect

in at most two points� while two spheres intersect in a circle 
a second order curve��

��
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Since every circle contains I� and I�� two circles intersect in at most four points� and

Bezouts theorem is seen to be true� The same applies for spheres� they intersect in

a curve which splits into a real and an imaginary conic�

To summarise� the invariants of G� include those of the projective and a�ne
planes� but additionally include the line at in�nity and two imaginary conjugate

points on it� namely I� and I�� The invariants of G� include those of projective and
a�ne �	D space� including the plane at in�nity and an imaginary conic on it� the

imaginary sphere circle�

�
�
�
 Metric Spaces
 Metric and non metric geometries may be looked

upon as special cases of projective geometry� Before continuing� some de�nitions are

required�

Definition ������ The Cartesian Product of any two sets� S and T � denoted
S  T � is the set of all ordered pairs 
s� t� such that s � S and t � T �

Definition ������ Let S be any set� A function d mapping S  S into R �the

set of real numbers� is a metric on S i� ����


�� ds�s� � � i� s� � s��


�� ds�s� � �� � si � S�

�� ds�s� � ds�s�� � si � S�

�� ds�s� ' ds�s� � ds�s�� � s�� s�� s� � S�

A metric space is a set S� together with a metric d de�ned on S� A metric

geometry on that space is de�ned by the group of linear transformations which leave

the metric invariant� For example� Euclidean space is a metric space because it

contains the set P of all points� The metric de�ned on P is Euclidean distance�

d �
p

x� � x��� ' 
y� � y��� ' 
z� � z���� 
�����

��
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which is an invariant of G�� Thus� Euclidean geometry is a metric geometry� It
is important to note that a rule to measure distance in a space is not su�cient to

make the space metric� All four conditions in De�nition ����� must be satis�ed�

An example of a geometry containing a distance rule and distinct points with zero

distance between them is Isotropic Geometry� The transformations associated with

the isotropic plane are ���

�
			�
�

X

Y

�



� �

�
			�
� � �

a � �

b c �

�



�

�
			�
�

x

y

�



� � 
�����

Distance in this geometry is measured by the di�erence of the x	coordinates of two

points� d � x� � x�� The distance between two points is clearly invariant under

the transformation in Equation ����� but it is also clear that there exist an in�nite

number of distinct points possessing the same x	coordinate and therefore have zero

distance between them� The complete enumeration of all such degenerate geometries

was given by Sommerville in �	����

�
�
�
 CayleyKlein Spaces and Geometries
 Projective geometry can be

developed from the fundamental elements of point� line� plane and Hilberts axioms

���� of incidence� order and continuity independently of the concept of metric� Thus�

in projective geometry there is no rule to measure and the only absolute invariant is

the cross ratio of four points ����� In de�ning a Cayley�Klein space one could start

with projective geometry and de�ne a rule to measure distance� Usually this is done

by introducing a quadratic form� For instance� Euclidean geometry can be developed

from projective geometry by building upon the foundation of Cayley�s principle ��	�

that projective geometry is all geometry using Kleins Erlangen Programme� i�e�� the

theory of algebraic invariants� Euclidean geometry can be obtained by adjoining� or

��
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constraining� P� with the special quadratic form ����

x�� ' x�� ' x�� � �� 
�����

which represents the absolute sphere circle� It is an imaginary quadric containing

all points with a vanishing norm� This quadratic form is induced by the Euclidean

distance function between the homogeneous coordinates of points 
x� � x� � x� � x��

and 
y� � y� � y� � y��

d �

p

x�y� � y�x��� ' 
x�y� � y�x��� ' 
x�y� � y�x���

x�y�
� 
�����

The quadratic form� or norm� belonging to this rule is

x�� ' x�� ' x���

Equations 
����� and 
����� are fundamental invariants of G�� However� Equation

����� is independent of x�� An entirely di�erent quadratic form in P� can be obtained

by adding x�� to Equation 
������

x�� ' x�� ' x�� ' x�� � �� 
�����

Changing the quadratic form changes the rule for measuring magnitudes� For in	

stance� the signs could be changed as follows�

x�� � x�� � x�� � x�� � �� 
�����

Each new rule gives a di�erent form of space� These are the Cayley�Klein spaces� The

�rst quadratic form� equation 
����� gives Euclidean� or parabolic space� Equation


����� gives Riemann non	Euclidean� or elliptic space� while Equation 
����� gives

Lobachevskii non	Euclidean� or hyperbolic space ���� 	���� In each of these spaces

there is a group of transformations that leaves the norm invariant� These characterise

the corresponding geometries �����

��
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Equation 
����� may be viewed as sphere with no volume� The distance between

two distinct points on this virtual quadric vanishes� The term virtual means that

only complex points lie on it� Similarly� equation 
����� may be viewed as a virtual

ellipsoid� Whereas� Equation 
����� represents a real hyperboloid of two sheets�

The non	Euclidean geometries were serendipitously discovered by e�orts to prove

Euclids parallel axiom� given a line g and a point P � not on g� there is one� and only

one line p through P that does not intersect g� The Euclidean model of Riemanns

elliptical plane is a unit sphere� Straight lines on a sphere are geodesics� i�e�� great

circles� All great circles intersect in two anti	podal points� If the they are taken to

be the same point� then there are no parallel lines in the elliptic plane� because all

lines intersect in a point ��	��

The Euclidean model for Lobachevskiis hyperbolic plane is the points contained

in a unit circle� excluding points on the circumference� Straight lines are chords of

the circle� the end points excluded� Thus� given a line g and a point P not on g in the

hyperbolic plane there are an in�nite number of lines through P that do not intersect

g ��	��

Klein was the �rst to make use of the terms elliptic� parabolic and hyperbolic to

classify these geometries ����� The use of these names implies no direct connection

with the corresponding conic sections� rather they mean the following� A central

conic is an ellipse or hyperbola according as it has no asymptote or two asymptotes�

Analogously� a non	Euclidean plane is elliptic or hyperbolic according as each of its

lines contains no point at in�nity� or two �����

However� many other possibilities exist� For instance �	D Minkowskian geometry

�	��� is well known for its application to Einsteins Special Theory of Relativity �����

It di�ers from the other geometries in that time di�erentials are among its set of

��
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elements� In the following hierarchy� each geometry can be derived from the one

above it by some kind of condition imposed on the transformation group �����

Projective

A�ne HyperbolicElliptic

MinkowskianEuclidean

���� Representations of Displacements

As mentioned in Chapter �� it is convenient to think of the relative displacement

of two rigid	bodies in E� as the displacement of a Cartesian reference coordinate frame

E attached to one of the bodies with respect to a Cartesian reference coordinate frame

! attached to the other �	��� Without loss of generality� ! may be considered as �xed

while E is free to move� Then the position of a point in E in terms of the basis of !

can be expressed compactly as

p� � Ap' d� 
�����

where� p is the � � position vector of a point in E� p� is the position vector of the
same point in !� d is the position vector of the origin of frame E in !� and A is a

� � proper orthogonal rotation matrix 
i�e�� its determinant is '���

It is clear from Equation 
����� that a general displacement can be decomposed

into a pure rotation and a pure translation� The representation of the translation

is straightforward� it is given by the position vector in ! of �E� However� there

are many ways to represent the orientation� For example �xed angle or Euler angle

representations may be used� There are twelve distinct ways to specify an orientation

in each representation� This is because the rotation is decomposed into the product

��
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of three rotations about the coordinate axes in a certain order� with twelve distinct

permutations� The axes of the �xed frame are used in the �xed angle representation


also called roll� pitch� yaw angles ������ while the axes of the moving frame are used

for the Euler angle representation�

�
�
	
 Orientation� EulerRodrigues Parameters
 An invariant repre	

sentation for rotations is given by the Euler�Rodrigues parameters ���� Using Cayleys

formula for proper orthogonal matrices �	�� ���� matrix A in equation 
����� can be

rewritten in the following form �	���

A �  ��

�
			�
c�� ' c�� � c�� � c�� �
c�c� � c�c�� �
c�c� ' c�c��

�
c�c� ' c�c�� c�� � c�� ' c�� � c�� �
c�c� � c�c��

�
c�c� � c�c�� �
c�c� ' c�c�� c�� � c�� � c�� ' c��

�



� � 
�����

where

 � c�� ' c�� ' c�� ' c���

and the ci� called Euler�Rodrigues parameters ��� 	��� are de�ned as

c� � cos �
�
�

c� � sx sin
�
�
�

c� � sy sin
�
�
�

c� � sz sin
�
�
�

The ci may be normalised such that  � �� in which case s � �sx� sy� sz�
T is a unit

direction vector parallel to the axis and � is the angular measure of a given rotation�

The Euler	Rodrigues parameters are quadratic invariants of a given rotation ����

��
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Since s is a unit vector� it is immediately apparent that the ci are not independent�

but related by

c�� ' c�� ' c�� ' c�� � ��

The geometric interpretation of the four Euler	Rodrigues parameters is that an orien	

tation may be viewed as a point on a unit hyper	sphere in a four	dimensional space�

Assembled into a �� array� the Euler	Rodrigues parameters are the unit quaternions
invented by Sir William Hamilton ���� The group of spherical displacements� SO
���

are elegantly represented with unit quaternions�

�
�
�
 Displacements as Points in Study�s Soma Space
 In ���� Eduard

Study showed �	��� that Euclidean displacements may be represented by eight pa	

rameters� or coordinates in a seven dimensional homogeneous projective space� Thus�

displacements can be represented as points� fundamental elements in this space� His

work was undoubtedly inspired by that of Julius Pl�ucker and Felix Klein� Kleins Er	

langen Programme gave rise to a systematic method for constructing new geometries

based on the algebraic invariants of the associated transformation groups� However�

it was Pl�ucker who �rst suggested the idea of taking the line as the fundamental

element of space �		��� Various types of line coordinates were introduced by Cayley

and Grassmann ����� Pl�ucker adopted a coordinate system which is a special form of

these� The success of Pl�uckers work was hindered by the Cartesian analysis that he

employed �		�� 		�� 		��� Klein� Pl�uckers student� introduced the system of coor	

dinates determined by six linear complexes in mutual involution� on any line common

to two linear complexes a one	to	one correspondence of points is determined by the

planes through the line by taking the poles of each plane for the complexes� If a cer	

tain condition is satis�ed connecting the coe�cients of the two complexes� then these

��
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pairs of points form an involution ����� Moreover� Kleins observation that the line

geometry of Pl�ucker is point geometry on a quadric contained in a �ve dimensional

space was of critical importance in the conceptualisation of the soma space �	����

Pl�ucker and soma coordinates are analogous in that the set of all lines� in the

case of Pl�ucker coordinates� and the set of all displacements� in the case of soma

coordinates both exist as the set of points covering special quadric surfaces in higher

dimensional spaces� Points not on the respective quadrics represent neither lines

nor displacements� Since both quadrics have identical forms� it is instructive to �rst

examine how Pl�ucker coordinates come about� and the nature of their constraint

surface� before moving on to Studys soma�

�
�
�
 Pl�ucker Coordinates
 Pl�ucker developed line coordinates �		�� 		��

to address the need of describing lines as the fundamental elements of his neue

Geometrie �		��� Line coordinates may be obtained from Cartesian coordinates by

considering the following� a line on the intersection of two planes� or dually the ray

on two points� In the former case� the Pl�ucker coordinates specify the linear pencil of

planes and are generally called axial Pl�ucker coordinates� In the latter case� they are

called ray Pl�ucker coordinates� If X
x� � x� � x� � x�� and Y 
y� � y� � y� � y�� are the

homogeneous coordinates of two di�erent points on a line� the Grassmannian sub�

determinants ���� of the associated � � matrix composed of the point coordinates�
comprise the homogeneous Pl�ucker coordinates of the line �����

pik �

������
xi xk

yi yk

������ i� k � f�� � � � � �g� i 
� k�

��
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Of the twelve possible Grassmannians� only six are independent� since pik � �pki�
Traditionally� the following six are used

p�� � p�� � p�� � p�� � p�� � p���

These six coordinates collected in a � � matrix are called the Pl�ucker array�

A line� however� is uniquely determined by a point and three direction cosines�

The Pl�ucker coordinates are super	abundant by two� hence there are two constraints

on the six parameters� First� because the coordinates are homogeneous� there are

only �ve independent ratios� It necessarily follows that


p�� � p�� � p�� � p�� � p�� � p��� 
� 
� � � � � � � � � � ���

Second� the six numbers must obey the following quadratic condition�

p��p�� ' p��p�� ' p��p�� � �� 
�����

The quadric condition represented by Equation 
����� is called the Pl�ucker iden�

tity ����� Geometrically� it represents a four	dimensional quadric hyper	surface in

a �ve	dimensional projective homogeneous space� called Pl�ucker�s quadric� P�
� ����

	���� Distinct lines in Euclidean space are distinct points on P�
� �

The Pl�ucker quadric can be derived in the following way ����� Consider the fol	

lowing determinant�  � of a matrix composed of the homogeneous coordinates of two

points X
xi� and Y 
yi� � i � f�� �� �� �g� counted twice� Obviously� the determinant
vanishes because of the linear dependence between rows �� � and �� �� This determi	

nant can be expanded using � � sub	determinants 
Grassmannians� along the �rst
two rows� according to the Laplacian expansion theorem ����� That is� multiply the

compliment of the minor by 
���h� where h is the sum of the numbers denoting the

��
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rows and columns in which the minor appears� This gives

� �  �

�������������

x� x� x� x�

y� y� y� y�

x� x� x� x�

y� y� y� y�

�������������

� 
����
��
��
������
x� x�

y� y�

������
������
x� x�

y� y�

������'


����
��
��
������
x� x�

y� y�

������

������
x� x�

y� y�

������ ' 
���
�
��
��

������
x� x�

y� y�

������

������
x� x�

y� y�

������'


����
��
��
������
x� x�

y� y�

������

������
x� x�

y� y�

������ ' 
���
�
��
��

������
x� x�

y� y�

������

������
x� x�

y� y�

������'


����
��
��
������
x� x�

y� y�

������

������
x� x�

y� y�

������ � �
p��p�� � p��p�� ' p��p��� 
�����

Since p�� � �p��� Equation ���� simpli�es to Equation �����

Now attention is turned towards determining the structure of the quadric hyper	

surface P�
� � The important observation is that Equation 
����� contains only bilinear

cross	terms� This implies that the quadric has been rotated out of its standard posi�

tion� or normal form ����� The quadratic form associated with P�
� � can be represented

using a � � symmetric matrix�M ����

pTMp � �p�� � � � � p���

�
													�

� � � ��� � �

� � � � ��� �

� � � � � ���

��� � � � � �

� ��� � � � �

� � ��� � � �

�













�

�
			�
p��
���

p��

�



� �

��
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This quadratic form can be orthogonally diagonalised with another � � matrix P�
constructed with the eigenvectors of M� The matrix P is easily found to be

P �

p

��

�

�
													�

� � � �� � �

� � � � �� �

� � � � � ��
� � � � � �

� � � � � �

� � � � � �

�













�

�

Now� pre	multiplyingM with the transpose of P and post	multiplying with P itself

gives the diagonalised matrix� D� i�e�� PTMP � D�

D �
�

�

�
													�

� � � � � �

� � � � � �

� � � � � �

� � � �� � �

� � � � �� �

� � � � � ��

�













�

�

Matrix D reveals the normal form of P�
� in canonical form ���� from the matrix

multiplication pTDp � pT 
PTMP�p�

p��� ' p��� ' p��� � p��� � p��� � p��� � �� 
�����

Observing the signs on these six pure quadratic terms� one immediately sees that the

Pl�ucker quadric� P�
� � has the form of an hyperboloid in the �ve dimensional space� In

this space� only the points on P�
� represent lines�

��
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�
�
�
 Study�s Soma
 A general Euclidean displacement of reference frame

E with respect to !� as given by equation 
������ depends on six independent param	

eters� three are required for the orientation of E and three for the position of OE�

Regarding this situation geometrically� distinct Euclidean displacements of E may be

represented as distinct points in a six	dimensional space� Hence� a displacement is

an element of a six	dimensional geometry� However� Study showed �	��� that a co	

ordinate space of dimension eight is necessary to ensure that all the relations among

the entries of equation 
����� are ful�lled� Thus� an array of eight numbers can rep	

resent a displacement as a fundamental element in a seven dimensional homogeneous

projective space� These eight numbers were termed soma by Study �	���� Similar to

the Pl�ucker array� Studys soma are


c� � c� � c� � c� � g� � g� � g� � g���

The �rst four of Studys soma coordinates are the Euler parameters� ci� de�ned

in Section ������ The remaining four� gi i � f�� � � � � �g� are linear combinations of
the elements of d� from Equation 
������ and the ci such that the following quadratic

condition is satis�ed�

c�g� ' c�g� ' c�g� ' c�g� � �� 
�����

Study de�ned these four parameters to be

g� � d�c� ' d�c� ' d�c��

g� � �d�c� ' d�c� � d�c��

g� � �d�c� � d�c� ' d�c��

g� � �d�c� ' d�c� � d�c�� 
�����

��
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Owing to the homogeneity of the Euler	Rodrigues parameters there is an addi	

tional quadratic constraint on the soma� stemming from the denominator of Equation


������ which is similar to the non	zero condition for the Pl�ucker coordinates�

c�� ' c�� ' c�� ' c�� 
� �� 
�����

Thus� of the eight soma coordinates only six are independent� but all eight are required

to uniquely describe a displacement �	����

Equation 
����� represents a six	dimensional quadric hyper	surface in a seven	

dimensional space� It is called Study�s quadric� S�
� ��	�� Its form can be determined

in a way analogous to that used for P�
� � After applying the same procedure� the

normal form of S�
� is revealed to be�

c�� ' c�� ' c�� ' c�� � g�� � g�� � g�� � g�� � ��

We see immediately that S�
� has the form of an hyperboloid in the soma space� Of

all the points in the soma space� only those on S�
� represent displacements�

�
�
�
 Vectors in a Dual Projective ThreeSpace
 Another way of look	

ing at the eight soma coordinates is to consider them as two sets of four param	

eters� each of which can represent a vector in a four	dimensional coordinate space

�		�� 	�	�� A spatial Euclidean displacement can then be mapped into the set of two

Study vectors in the four	dimensional space in an analogous way that a line in Eu	

clidean space can be mapped to sets of two Pl�ucker vectors� Employing this concept�

Ravani �		�� introduced the idea of representing a Euclidean displacement as a point

in a dual projective three	space� This� however� leads directly to the representation

of displacements in terms of dual quaternions� see Blaschke �	��� Bottema and Roth

�	��� or McCarthy ���� for example�

��
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Although this representation and that of Study are analytically identical� they

represent completely di�erent geometric interpretations� In the latter case� displace	

ments are represented by points on Studys quadric in its seven	dimensional projective

space� while the former represents displacements by two vectors in a dual projective

three	space�

�
�
�
 Transfer Principle
 A representation identical to the one discussed

in the last section can be obtained using the transfer principle 
Bottema and Roth

�	��� Ravani and Roth �	�	��� Spherical displacements are readily represented using

the four Euler	Rodrigues parameters� That is� if a spherical displacement is mapped

into the points of a real three	dimensional projective space where the coordinates

are four	tupples of Euler	Rodrigues parameters� then spatial displacements can be

mapped into a similar� but dual� space� In other words� the representation of a spatial

displacement is obtained simply by dualising the corresponding spherical displacement


Ravani and Roth �	�	���

��	� Kinematic Mappings of Displacements

So far in this chapter we have discussed various ways to represent displacements�

In all of them� at least six independent numbers are required� This led Study� in ����

�	���� to the idea of mapping distinct displacements in Euclidean space to the points

of a seven	dimensional projective image space� The homogeneous coordinates of the

image space are the eight soma� As mentioned earlier� these eight coordinates are not

independent� They are super	abundant by two� However� two quadratic constraints

must be satis�ed� The non	zero condition� equation 
������ and the displacement

must be a point on S�
� � Equation 
������ It is natural to expect that a six	dimensional

image space would su�ce� However� as previously mentioned� Study �	��� showed

that an �	D coordinate space is required�

��
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�
�
	
 General Euclidean Displacements
 Studys kinematic mapping of

general Euclidean displacements is given by the following equations in terms of the

eight Study soma fci � gig


x� � x� � x� � x� � y� � y� � y� � y�� � 
c� � c� � c� � c� �
g�
�
�
g�
�
�
g�
�
�
g�
�
�� 
�����

Equation 
����� can always be represented as a linear transformation by making

it homogeneous 
see McCarthy ����� for example�� Let the homogeneous coordinates

of points in the �xed frame ! be the ratios �X � Y � Z �W �� and those of points in the

moving frame E be the ratios �x � y � z � w�� Then Equation 
����� can be rewritten

as �
							�

X

Y

Z

W

�







�
� Q

�
							�

x

y

z

w

�







�
� 
�����

where

Q �  ��

�
							�

c�� ' c�� � c�� � c�� �
c�c� � c�c�� �
c�c� ' c�c�� d�

�
c�c� ' c�c�� c�� � c�� ' c�� � c�� �
c�c� � c�c�� d�

�
c�c� � c�c�� �
c�c� ' c�c�� c�� � c�� � c�� ' c�� d�

� � �  

�







�
� 
�����

with  � c�� ' c�� ' c�� ' c��� and the di are the components of the position vector of

OE�	�

Let the transformation matrix T be the image of the elements of Q under the

kinematic mapping� Since  
� � by one of the quadratic constraints� its value is
arbitrary and represents a scaling factor whose value is meaningless in a projective

space� Recall� the homogeneous coordinates of ��x � �y � �z� and of ��x � �y � �z�

��
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represent the same point in the projective plane for any non	zero scalar constants �

and �� Then we may write

T �

�
							�

x�
�
�x�

�
�x�

�

x�

�
��x�x��x�x�� ��x�x�
x�x�� ��y�x��y�x�
y�x��y�x��

��x�x�
x�x�� �x��
x���x��
x�� ��x�x��x�x�� ��y�x�
y�x��y�x��y�x��

��x�x��x�x�� ��x�x�
x�x�� �x���x��
x��
x�� ���y�x�
y�x�
y�x��y�x��

� � � x�
�

x�

�

x�

�

x�

�

�







�
�


�����

This transforms the coordinates of points in frame E to coordinates of the same

points in frame ! 
assuming that the two frames are initially coincident� after a

given displacement in terms of the coordinates of a point on S�
� �

�
�
�
 Planar Displacements
 The transformation matrix T simpli�es con	

siderably when we consider displacements that are restricted to the plane� Three

DOF are lost and hence four Study parameters vanish� The displacements may be

restricted to any plane� Without loss in generality� we may select one of the principal

planes in !� Thus� we arbitrarily select the plane Z � �� Since E and ! are assumed

to be initially coincident� this means
�
							�

X

Y

�

W

�







�
� T

�
							�

x

y

�

w

�







�
� 
�����

This requires that d� � � 
since Z � z � �� E can translate in neither the Z nor z

directions�� sx � sy � �� and sz � � 
the equivalent rotation axis is parallel to the Z

��
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and z axes�� This� in turn� means

c� � ��

c� � ��

c� � sin����

c� � cos����

g� � �d�c� � d�c��

g� � �d�c� ' d�c��

g� � ��

g� � ��

This leaves us with only four soma coordinates to map�


x� � x� � y� � y�� � 
c� � c� �
g�
�
�
g�
�
�� 
�����

The homogeneous linear transformation matrix reduces to

T �

�
							�

x�� � x�� ��x�x� � �
y�x� � y�x��

�x�x� x�� � x�� � ��
y�x� ' y�x��

� � x�� ' x�� �

� � � x�� ' x��

�







�
� 
�����

We may eliminate the third row and column because they only provide multiples

of the trivial equation

Z � z � �� 
�����

��
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Thus� T reduces to a � � matrix�

T �

�
			�
x�� � x�� ��x�x� �
y�x� � y�x��

�x�x� x�� � x�� ��
y�x� ' y�x��

� � x�� ' x��

�



� � 
�����

Planar displacements still map to points on S�
� � but we need only consider a

special sub	set of these points� In fact� we may change our geometric interpretation

altogether� We see that planar displacements can be represented by points in a three	

dimensional projective homogeneous image space� The coordinates of the points are

the four Study parameters 
x� � x� � y� � y��� In this sub	space� the points are not

restricted to a special quadric� They can take on any value with the exception that x�

and x� are not simultaneously zero� Points on the real line de�ned by x� � x� � � are

not the images of real planar displacements because this sub	space is still contained in

the soma space� where the non	zero quadratic condition requires x��'x
�
�'x

�
�'x

�
� 
� ��

It is easy to see that if x� � x� � � the quadratic non	zero condition can only be

violated if x� � x� � �� This condition is of little interest since we are only interested

in real displacements�

�
�
�
 The Gr�unwaldBlaschke Mapping of Plane Kinematics
 An	

other mapping of planar displacements� which is seen to be isomorphic to the Study

mapping� can be derived in a somewhat more intuitive way� Very detailed accounts

may be found in Bottema and Roth �	��� De Sa ���� and Ravani �		��� It was in	

troduced in ���� simultaneously� and independently� by Gr�unwald ���� and Blaschke

�	���

The idea is to map the three independent quantities that describe a displacement

to the points of a �	D image space called !�� A general displacement in the plane

requires three independent parameters to fully characterise it� The position of a point

��
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in E relative to ! can be given by the homogeneous linear transformation

�
			�
X

Y

Z

�



� �

�
			�
cos� � sin� a

sin� cos� b

� � �

�



�

�
			�
x

y

z

�



� � 
�����

where the ratios 
x � y � z� represent the homogeneous coordinates of a point in E�


X � Y � Z� are those of the same point in !� The Cartesian coordinates of the

origin of E measured in ! are 
a� b�� while � is the rotation angle measured from the

X	axis to the x	axis� the positive sense being counter	clockwise� Clearly� in Equation


����� the three characteristic displacement parameters are 
a� b� ��� Image points


points in the �	D homogeneous projective image space� are de�ned in terms of the

displacement parameters 
a� b� �� as


X� � X� � X� � X�� � 

a sin 
����� b cos 
���� �


a cos 
���� ' b sin 
���� �

� sin 
���� � � cos 
����� � 
�����

By virtue of the relationships expressed in Equation 
������ the transformation

matrix from Equation 
����� may be expressed in terms of the homogeneous coor	

dinates of the image space� !�� This yields a linear transformation to express a

displacement of E with respect to ! in terms of the image point�

�
			�
X

Y

Z

�



� �

�
			�

X�

� �X�
� � ��X�X� �
X�X� 'X�X��

�X�X� 
X�
� �X�

� � �
X�X� �X�X��

� � 
X�
� 'X�

� �

�



�

�
			�
x

y

z

�



� � 
�����

Comparing the elements of the �  � transformation matrix in Equation 
�����
with the one in Equation 
����� it is a simple matter to show that the homogeneous

coordinates of the image space !� and those of the soma space are related in the

��
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following way�


X� � X� � X� � X�� � 
y� � �y� � x� � x��� 
�����

Comparing Equation 
����� with Equation 
����� it is evident that the two transfor	

mations are isomorphic�

Since each distinct displacement described by 
a� b� �� has a corresponding unique

image point� the inverse mapping can be obtained from Equation 
������ for a given

point of the image space� the displacement parameters are

tan 
���� � X��X��

a � �
X�X� 'X�X���
X
�
� 'X�

� �� 
�����

b � �
X�X� �X�X���
X
�
� 'X�

� ��

Equations 
����� give correct results when either X� or X� is zero� Caution is in order�

however� because the mapping is injective� not bijective� there is at most one pre�

image for each image point ����� Thus� not every point in the image space represents

a displacement� It is easy to see that any image point on the real line X� � X� � �

has no pre	image and therefore does not correspond to a real displacement of E�

From Equation 
������ this condition renders � indeterminate and places a and b on

the line at in�nity�

��
� Geometry of the Image Space

As mentioned in Section ������ the group of collineations leaving the absolute

quadric invariant gives rise to hyperbolic and elliptic geometry� The geometry is

hyperbolic when the absolute quadric is real and elliptic when it is complex� The

kinematic mapping image space is determined by a group of linear transformations�

��
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and hence collineations� having the form of Equation 
������ It is shown in �	�� ���

that the invariants of this transformation group are


�� Two complex conjugate planes� V��� � X� � iX� � ��


�� The real line � given by the equations X� � X� � �� which is the intersection

of V� and V�� � � V� � V��

�� The complex conjugate points J� � 
� � i � � � �� and J� � 
� � �i � � � ���

which are contained on �� fJ�� J�g � ��

Note that J� and J� are on the 
real� line �� and the planes V� and V� intersect

in �� The planes V� and V� comprise a degenerate imaginary quadric given by the

equation


X� � iX��
X� ' iX�� � X�
� 'X�

� � �� 
�����

Blaschke �	�� observed that this is really a special limiting case of the elliptic

absolute quadric expressed by

�
X�
� 'X�

� � 'X�
� 'X�

� � �� 
�����

As �� � the degenerate invariant quadric of the image space is obtained� Since this

is a limiting case� the geometry of the image space is termed quasi�elliptic �	�� ����

The term quasi	elliptic owes its existence to Blaschke ����

Furthermore� the metric concepts of the distance between two points� the angle

between two planes� and the parallelism of two lines are de�ned �	�� ���� Finally� sets

of transformations in !� are comparable to rotations and translations of Euclidean

geometry� Of interest are two special cases�


�� X� 
� �� X� � � � � � �� These are the ���� half	turns in the Euclidean

plane�

��
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�� 
a� X� � �� X� 
� �� � � �� These are the pure rectilinear and curvilinear

translations in the Euclidean plane�


b� X� � constant� � X� � constant� These are also rectilinear and

curvilinear translations in the Euclidean plane� but the moving frame

E maintains a constant angle non	zero angle with respect to the �xed

frame !�

��



��
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The Forward Kinematics Problem

The forward kinematics 
FK� problem� also termed the direct kinematics ���� or direct

position analysis ��	� involves determining all possible poses of the moving platform

when the actuated joints are locked with speci�c input values� Referring to Fig�

���� the FK problem of a general PSGP can be stated in the following way� given

three base points FA� FB� FC in an arbitrary �xed coordinate system� !� together

with three platform points MA� MB� MC in an arbitrary moving platform coordinate

system� E� and given the three actuated joint input values that e�ectively represent

line segment lengths FAMA� FBMB� FCMC � �nd the positions of E so that the points

MA� MB� MC can be joined to the points FA� FB� FC by line segments whose lengths

and directions are related to the speci�ed input values�

This subject has been the focus of a tremendous volume of research� A brief

sampling of the main contributions� as far as PSGP go� is represented by Peysah

�		��� Gosselin� et al� ���� ��� �	�� Hunt ����� Hunt and Primrose ����� Husty ����

and Merlet ���� 	���� With the exception of the method put forward by Husty in �����

all of the analysis depends on the geometry and architecture of the platform� Only

Merlet �	��� addresses the FK problem of all possible three	legged lower	pair	jointed

planar platforms� However� because plane trigonometry is used to formulate the
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Figure ���� The FK problem�

constraint equations� distinct architectures require distinct sets of equations� which

are further dependent on the platform geometry� While Merlets approach can be

used for every architecture employing lower pairs� it fails for RRG types because the

platform geometry is not constant�

How many distinct three	legged lower	pair	jointed planar platforms with three

DOF are there) This number is arrived at by considering that there are �� possible

kinematic chains to choose from for each leg� A selection of r di�erent elements taken

from a set of n elements� without regard to order� is a combination of the n elements

taken r at a time ��	�� If the elements are allowed to be counted more than once the

number of possible combinations is given by

C
n� r� �

n ' r � ���
r�
n� ��� � 
����

C
��� �� � ����� 
����

When topological symmetry is a requirement� the number is� of course� ��� those

enumerated in Table ���� reproduced here in Table ����

��
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Hustys approach ���� is independent of the platform geometry� He formulates

the FK problem using geometric conditions of the kinematic constraints rather than

the platform geometry� The main contribution of this thesis is the generalisation of

that approach� That is� a single univariate sextic polynomial is derived and used to

solve the FK problem for all PSGP� as well as some platforms with certain mixed leg

types� and including some special topologies incorporating holonomic higher G	pairs�

The coe�cients of the univariate are products of given design parameters and the

single variable is a coordinate in the kinematic mapping image space� It turns out

the image space coordinates corresponding to the six roots of the univariate are linear

functions of each root� yielding the solutions to the FK problem� This should prove

to be an important tool for designers because the general univariate gives symbolic�

not numeric solutions� This means the e�ects of changing design parameters on the

platform kinematics� and by extension dynamics� can be directly evaluated�

RR�type PR�type RP �type

RRR RPR RRP

RRR PRR RRP

RRR PRR RPR

PRR PPR PRP

RPR PPR RPP

RRP PRP RPP

Table ���� The �� characteristic chains�

As mentioned above� the application of the univariate is not restricted to PSGP�

Some mixed leg types can be accommodated� Due to a limitation imposed by the

derivation of the univariate� discussed in Section ���� leg combinations must all belong

to one of the three types in Table ���� This being the case� the univariate may be

applied to the FK problem of ��C
�� ��� � �
��� � ��� di�erent platforms� Addition	

ally� some architectures containing higher pairs can be analysed� which appears to be

missing in all existing literature�

��
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We can solve the FK for some mixed leg type platforms by using the kinematic

mapping procedure� determining the intersections of the three quadrics numerically�

However� even this approach can not be used for platforms containing any mix of PR	

and RP 	type legs� The FK problem formulation becomes computationally singular

because the �xed and moving frames for each of these leg types are di�erent� To put

a number on those we can solve� we �rst compute the number of combinations there

are choosing one leg from each type� i�e�� one RR	� one PR	 and one RP 	type leg�

�� � ����

Next� determine the forbidden PR	RP 	type combinations taken three at a time�

C
��� ��� ��C
�� ��� � ���� ��� � ����

The ��C
�� ��� pure PR	types and RP 	types are allowed� as are RR	PR	types and

RR	RP 	types� We can exchange the roles of E and ! in RR	type legs without

changing the physical description of the kinematic constraints� Hence� there are

��� ' ��� � ��� forbidden combinations� This means that the FK problem of the

��� remaining combinations can be solved� ��� platforms by using the univariate�

��� by �nding the intersection points of their associated constraint surfaces� This

process amounts to numerically computing the univariate� However� the univariate

with numerical coe�cients is architecture and input speci�c and can only be used

for one speci�c platform and input set� whereas the general univariate has symbolic

coe�cients and is not so restricted�

From a basic research point	of	view� the solution procedure presented here is

incomplete� All ���� di�erent architectures must be included in a completely general

algorithm for solving the FK problem which� regretfully� shall not be found directly

in the contents of these pages� For now� the claim of generality can only be applied

to PSGP as herein de�ned�

��



���� KINEMATIC CONSTRAINTS

���� Kinematic Constraints

Husty observed that RPR platform motions are governed by the geometric con	

dition that points with �xed positions in E are bound to move on �xed circles in !

����� This kinematic constraint is represented by a quadratic condition in the image

space which is a surface whose points are the possible poses of the platform� In order

to generalise his approach to all PSGP similar kinematic constraints must be found

for all �� RR	� PR	 and RP 	type platforms�

Consider an arbitrary RR	type PSGP� The characteristic chain can be any of the

six listed in Table ���� When the active joint in each leg is locked the sub	chain that

remains has two passive R	pairs� this is obviously always the case� Regardless of the

characteristic chain� once the active joint is locked one of the remaining R	pairs is

�xed in ! and the other moves on a circle of �xed radius centred on the stationary

R	pair� Thus� the motions of an RR	type platform are constrained by the fact that

three points with �xed positions in E move on the circumferences of three constant

radii� �xed	centred circles in !�

Now� consider an arbitrary PR	type platform� When the active joint in each leg

is locked the passive R	pair is constrained to move on a line with �xed line coordinates

in !� This linear constraint may� however� be thought of as one that is a degenerate

quadratic� i�e�� a circle whose centre lies on a point on the line at in�nity� In a

projective sense the three lines are three degenerate circles� In this sense the RR	

and PR	type platform displacements are governed by the same constraint�

Finally� consider an arbitrary RP 	type platform� When the active joint in each

leg is locked the passive P 	pair is constrained to move on a point with �xed point

coordinates in !� The kinematic constraint is represented by a planar pencil of lines

on a point� When considered projectively� this constraint is nothing but the dual of

��
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the constraint for PR	type platforms� a planar pencil of points on a line� Moreover�

if E is considered as the �xed and ! as the moving frame� the kinematic constraints

for RP 	type platforms are identical to those of PR	 and RR	type� In this sense

RP 	type legs can be considered as kinematic inversions of corresponding PR	type

legs� Hence� the displacements of all PSGP are governed by projectively identical

kinematic constraints� The next goal is to �nd a useful algebraic representation of

the corresponding constraint surface in the image space�

���� Equation of the Image Space Constraint Manifold

Moving points bound to the circumference of a �xed circle represent the most

general displacement constraint for all PSGP because the line constraints are degen	

erate cases of the former� For this reason the general image space constraint manifold

of displacements for individual legs of a PSGP can be derived by considering circle	

bound points in the displacement space�

The ungrounded R	pair in an RR	type leg is forced to move on a circle with a

�xed centre� Meanwhile� the platform can rotate about the moving R	pair� This two

parameter family of displacements corresponds to a two parameter family of image

points� The family of image points constitute a hyper	surface �	��� Its expression can

be obtained in the following way� Consider the motion of a �xed point in E that is

constrained to move on a �xed circle in !� with radius r� centred on the homogeneous

coordinates 
Xc � Yc � Z� and having the equation

	X �XcZ

� � 	Y � YcZ


� � r�Z� � �� 	���


which� when expanded becomes

X� � Y � � �XXcZ � �Y YcZ �X�
cZ

� � Y �
c Z

� � r�Z� � �� 	���


��
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It is convenient to express Equation ��� in the following homogeneous form�

K�	X
� � Y �
� �K�XZ � �K�Y Z �K�Z

� � �� 	���


where

K� � arbitrary homogenising constant�

K� � Xc�

K� � Yc�

K� � K�
� �K�

� � r��

Equation 
���� is homogeneously quadratic in the variables X� Y � Z� and homo	

geneously linear in the constants Ki� i � f�� �� �� �g 
with K standing for kreis� the
German word for circle�� There is then a dual relationship between the constants

and the variables� in that Equation 
���� could represent the locus of variable points


X � Y � Z� on a �xed circle with circle coordinates �K� � K� � K� � K��� or dually

as a family of variable circles on a �xed point with point coordinates 
X � Y � Z��

Thus� the four Ki� i � f�� �� �� �g are de�ned to be homogeneous circle coordinates�

while X� Y � Z are the homogeneous point coordinates of the circles point locus� Note

that four circle coordinates are required since three independent ratios are necessary

to uniquely determine a circle� whereas two independent ratios uniquely determine

a point in the same plane of the circle� If K� � � Equation 
���� represents a line�

which is a real degenerate circle� with line coordinates�

�K� � K� � K�� � ����L� � ���L� � L��� 
����

where the Li are de�ned to be planar	point duals� as in equation 
����� and not as

Pl�ucker line coordinates�

�Here we have changed the coordinates from �X� � X� � X��� as de�ned in Equation ������ to
�L� � L� � L�� so they will no be confused with the image space coordinates �X� � X� � X� � X���

��
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Recall Equation 
����� from the previous chapter� reproduced here for reference�

�
			�
X

Y

Z

�



� �

�
			�

X�

� �X�
� � ��X�X� �
X�X� 'X�X��

�X�X� 
X�
� �X�

� � �
X�X� �X�X��

� � 
X�
� 'X�

� �

�



�

�
			�
x

y

z

�



� � 
����

This linear transformation gives the coordinates of points in the �xed frame ! in

terms of the points in the moving frame E and the kinematic mapping image points

corresponding to a particular displacement� An algebraic expression of the image

space constraint manifold emerges when the expressions for 
X � Y � Z� from Equation


���� are substituted into Equation 
�����

	K�z
�	X�

� �X�
� 
 � 	���


�
K�	�� z�
	x� � y�
 � �z	K�x�K�y
 �Rz�

�
X�

� �

	���

�
Rz� �K�	�� z�
	x� � y�
� �z	K�x�K�y


�
X�

� � 	K�z
� �K�xz
X�X� �

	K�z
� �K�yz
X�X� � 	K�yz �K�z

�
X�X� � 	K�xz �K�z
�
X�X� �

	K�yz �K�xz
X�X�

�
	���
	X�

� �X�
� 

�
� �� 	���


where the substitution K� � R�K�
x
�'y��� R � K�

�'K�
��r�'K�
x

�'y�� has been

made� The R term is used as an ingenious collection of constants� proposed by Husty

����� which reduces the number of �ops required to solve the FK problem by about

��$� Equation 
���� is a quartic in the image space variables Xi� i � f�� �� �� �g� but
dually linear in the circle 
or line� coordinates Ki� i � f�� �� �g� Note that if K� � ��

then R is simply K��

Closer inspection of this quartic reveals that it contains two quadratic factors in

Xi� The factor ���
X
�
�'X

�
� � is exactly the non	zero condition of the planar kinematic

mapping� which must be satis�ed for a point to be the image of a real displacement�

Since only the images of real displacements are considered� this factor is non	zero and

may be safely eliminated� What remains is a quadratic in the Xi� The quantities x�

y� z� R� and Ki� i � f�� �� �� �g are all design constants� Hence� the �rst factor in

���
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Equation 
���� is the point Equation of a quadric surface in the �	D projective image

space� This general quadric is the geometric image of the kinematic constraint that

a point in E moves on either a circle� or a line� in !�

�
�
	
 Identifying the Quadric Constraint Manifold
 After the non	zero

condition factor is eliminated� equation 
���� becomes

K�z
�	X�

� �X�
� 
 � 	���


�
K�	�� z�
	x� � y�
 � �z	K�x�K�y
 �Rz�

�
X�

� �

	���

�
Rz� �K�	�� z�
	x� � y�
� �z	K�x�K�y


�
X�

� � 	K�z
� �K�xz
X�X� �

	K�z
� �K�yz
X�X� � 	K�yz �K�z

�
X�X� � 	K�xz �K�z
�
X�X� �

	K�yz �K�xz
X�X� � �� 	��


This general equation is greatly simpli�ed under the following assumptions�


�� No platform of practical signi�cance will have a point at in�nity� so it is safe

to set z � ��


�� Platform rotations of � � � 
half	turns� have images in the plane X� � �� It

is easy to verify that three constraint surfaces intersect the plane X� � � in

the complex conjugate points 
� � �i � � � ��� Because the Xi are implicitly

de�ned by Equation 
������ setting � � � gives

X� � a�

X� � b�

X� � ��

X� � �� 
�����

The displacement parameters can be determined by substituting the quanti	

ties from Equation 
����� into Equation 
���� giving three constraint equa	

tions in terms of a and b� After checking for these solutions� the image space

coordinates may be normalised by setting X� � ��

���
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�� Without loss of generality the special coordinate systems of Figure ��� can

be used because our approach does not depend on platform geometry 
this

assumption will be applied in section �����

Applying the �rst two assumptions to Equation 
���� gives the simpli�ed constraint

surface 
CS� equation�

CS � K�	X
�
� �X�

� 
 � 	���
 ��	K�x�K�y
 �R�X�
� � 	���
 �R� �	K�x�K�y
��

	K� �K�x
X�X� � 	K�y �K�
X�X� � 	K� �K�y
X�	K�x�K�
X� �

	K�y �K�x
X� � �� 	����


The constraint surface can be identi�ed in many ways� For instance� the quadratic

form could be diagonalised using well established methods from linear algebra ���� to

remove the cross terms� then remove the linear o�sets� Another� somewhat more

elegant� approach is to employ the Grassmannian method found in Zsombor	Murray

and Hayes �	���� A third way is to proceed in a less obvious� but intuitive way by

employing some careful geometric thinking �	���� In what follows� this third approach

shall be used to identify the quadrics� There are two cases to consider� �� if the

platform is RR	type� the Ki are circle coordinates and one may set K� � �� and ��

if the platform is PR	 or RP 	type� the Ki are line coordinates and it is necessary to

set K� � ��

�
�
�
 RRtype� Hyperboloid of One Sheet
 Setting K� � � in Equation


����� gives the following�

H � X�
� �X�

� � 	���
 ��	K�x�K�y
 �R�X�
� � 	K� � x
X�X� � 	y �K�
X�X� �

	K� � y
X� � 	x�K�
X� � 	K�y �K�x
X� � 	���
 �R� �	K�x�K�y
�

� �� 	����


���
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This surface is seen to be an hyperboloid of one sheet� hence indicated by H�

after the subsequent arguments are considered� Equation 
����� resembles a circle in

that it contains the squares of two variables with identical coe�cients� X�
� and X

�
� �

together with a constant term when the value of X� is held constant� This suggests

investigating intersections of the quadric with planes where X� �constant� Collect

X� and X� terms on the left and constant terms� including X� terms� on the right	

hand side of the equation� then complete the squares in X� and X� �	���� After some

algebra� the following equation is obtained�

�
X� � �

�

y � K� ' 
K� ' x�X��

��
'
�
X� � �

�

K� � x' 
K� ' y�X�

��
� r�

�

� 'X�

� �� 
�����

Equation 
����� represents a circle in the planes where X� is a constant� The

circle centre has coordinates


�

�

y �K� ' 
K� ' x�X�� �

�

�

K� � x ' 
K� ' y�X�� � X�

�
� 
�����

and radius

RX�
�

r

�

q

� 'X�

� �� 
�����

As X� is varied� the locus of circle centres de�nes a curve whose parametric equation

can be obtained as follows� Take an arbitrary circle in the plane X� � t and set its

radius to RX�
� ��

r

�

p

� ' t�� � �� 
�����

Since the term �' t� can never vanish for real values of X�� zero can only be obtained

by setting r � �� i�e�� the constraint circle upon which the platform point moves

���



CHAPTER �� THE FORWARD KINEMATICS PROBLEM

must collapse to the �xed revolute centre so that the �xed and moving points are

coincident� Making these substitutions in Equation 
����� gives

	
X� �

�

�
	y �K� � 	K� � x
t



�
�

	
X� �

�

�
	K� � x� 	K� � y
t


�
� �� 	����


Because the two terms are squared and added the only way to satisfy Equation


����� over the real �eld is if the quantities within the square brackets vanish� This

immediately gives the parametric equation

�
			�
X�

X�

X�

�



� �

�

�

�
			�
y � K�

K� � x

�

�



�'

t

�

�
			�
K� ' x

K� ' y

�

�



� � 
�����

Equation 
����� is linear in the single parameter t and is clearly the equation of a

line� This leads to the conclusion that the quadric surface is a family of generally non	

concentric circles whose centre points are all collinear� Furthermore� it is apparent

from Equation 
����� that the smallest circle of the family occurs when X� � �� As

X� increases in value the circles become larger regardless of the sign of X�� The only

possible quadric surface that �ts this geometric description is an hyperboloid of one

sheet� The hyperboloid axis is given by Equation 
������ Note that the axis is not

necessarily perpendicular to the circles� The axis belongs to the hyperboloid and the

curves to which it is perpendicular are� in general� ellipses� However� the hyperboloid

always intersects the planes parallel to X� � constant in circles� Thus� the X�	axis

is perpendicular to the circles� If� however� K� � K� � x � y � � the axis of the

hyperboloid is the X�	axis� and the circles� one in each plane X� � a constant� are

coaxial� Note ifX� is a constant thenX� must also be a constant 
recallX� � � sin���

and X� � � cos����� Points in the planes X� � constant represent positions of the

platform having the same orientation� Curves in these planes represent curvilinear

planar motions�

���
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�
�
�
 Parametric Equation of the Constraint Hyperboloid
 If com	

puter generated images of the constraint hyperboloid are required then a parametrisa	

tion is necessary� The parametric equation of a second order surface requires two pa	

rameters� The implicit form of the constraint hyperboloid� Equation 
������ represents

a circle in the projection of the intersection of the two hyper	planes X� �constant

and X� � �� An arbitrary hyperboloid circle can be parametrised with an angle �� see

Figure ���� The radius of the circle can then be changed by varying the parameter t�

Referring to Figure ���� the hyperboloid circle equation may be written as


X� �X�c�
� ' 
X� �X�c�

� � R�
X�

� �� 
�����

where 
X�c� X�c� are the coordinates of the circle centre and RX�
is its radius�

Figure ���� An arbitrary hyperboloid circle�

The locus of points satisfying Equation 
����� can be generated parametrically

with the angle � such that the following vector equation� illustrated in Figure ���� is

ful�lled�

p � pc 'RX�

��� 
�����

���
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Writing Equation 
����� in component form gives

�
� X�

X�

�
� �

�
� X�c 'RX�

cos �

X�c 'RX�
sin �

�
� � 
�����

Using the expressions in Equation 
����� with X� � t� Equation 
����� can be rewrit	

ten� giving the parametric form of the constraint hyperboloid in terms of the two

parameters t and ��

�
			�
X�

X�

X�

�



� �

�

�

�
			�
�
K� ' x�t�K� ' y� ' 
r

p
t� ' �� cos �

�
K� ' y�t'K� � x� ' 
r
p
t� ' �� sin �

�t

�



� �

� � f�� � � � � ��g�
t � f��� � � � ��g�


�����

Figure ��� is a parametric representation of a constraint hyperboloid where K� �

K� � �� r � �� and the moving platform points have the coordinates x � y � ��

-2
-1

0
1

2

-2
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0
1

2
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Figure ���� A projection of H in the hyper�plane X� � ��
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�
�
�
 PR and RPtype� Hyperbolic Paraboloid
 A very di�erent con	

straint manifold is obtained when the displacement condition is changed so that a

�xed point in the moving frame E is constrained to move on a �xed line in the non	

moving frame !� This condition requires the Ki to represent planar line coordinates�

Hence� it is necessary to set K� � �� Equation 
���� becomes

Z
��K�X � �K�Y 'K�Z� � �� 
�����

The factor Z � � represents the line at in�nity in P�� while the factor in paren	

theses is the equation of a line where the �rst two line coordinates are multiplied by

��� The fact that the second degree equation splits into two linear factors is the
rationalisation for saying that the line is a degenerate circle� The �� can be treated
as a proportionality factor arising from the original circle formulation of the equation

of constraint� The trivial factor Z � � can be ignored because only ordinary lines


non	ideal lines� need be considered for practical designs� The circle coordinates� Ki�

are simply obtained from the line coordinates Li� see Equation 
�����

Transforming the point coordinates 
X � Y � Z� in Equation 
����� using Equation


����� and setting X� � z � � gives an hyperbolic paraboloid� indicated by HP �

HP � 
K� � K�X��X� � 
K� 'K�X��X� '
�

�
�K� ' �
K�x 'K�y��X

�
�'


K�y � K�x�X� '
�

�
�K� � �
K�x'K�y�� � �� 
�����

This is seen to be true after the following argument is considered� Equation


����� is a quadric in the Xi� but very di�erent in form from Equation 
������ To

compare them� Equation 
����� too� may be intersected by planes where X� is a

constant� together with X� � �� As X� is varied� a family of mutually skew lines is

obtained wherein all common normals between line pairs are parallel� This means

that Equation 
����� describes a family of mutually skew lines that are all parallel to

���
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a plane� but not to each other� Thus� the family of lines is a regulus of an hyperbolic

paraboloid�

Clearly� a line is not a circle� However� lines in P� are closed by a point at in�nity

just as a circle is closed by any �nite point on it� In a projective sense� lines and

circles are both closed curves 
all circles contain J� and J�� but the circle itself is

continuous�� In this way� a line may be considered a degenerate circle whose centre

is on the line at in�nity� Given this projective geometric connection between these

kinematic constraints� it is not unreasonable to expect similar connections between

the corresponding constraint manifolds in the kinematic mapping image space�

The hyperboloid of one sheet 
as well as the cylinder and cone� which� are degen	

erate hyperboloids� and the hyperbolic paraboloid are the only quadrics ruled with

real lines� These are doubly ruled while cones and cylinders� which appear singly

ruled� contain degenerate double rulings ��	�� In the same way that a line can be

considered a degenerate circle� the hyperbolic paraboloid may be considered a degen	

erate hyperboloid� This is due to the geometric distinction between the two quadrics�

three mutually skew lines� not parallel to any plane� determine an hyperboloid of one

sheet� whereas� three mutually skew lines that are parallel to some plane determine an

hyperbolic paraboloid �	���� Furthermore� there is no special case of the hyperbolic

paraboloid which is a surface of revolution ��	�� unless one argues that a plane is a

degenerate cylinder of revolution closed by a line at in�nity� Still� there is no dilata	

tion� that can transform an hyperbolic paraboloid into a surface of revolution �����

It is apparent on inspection that every real plane intersects the hyperbolic paraboloid

in either a parabola or an hyperbola� Both types of curve are closed only by the

line at in�nity so that the intersection can never be an ellipse or circle without real

�A dilatation is a similarity transformation that applies a positive� non	zero scaling factor with
respect to an invariant point� or line in such a way that all points in space change in a �xed ratio�
These transformations change circles into ellipses �or circles�� lines into lines� planes into planes� and
all second	order curves and surfaces into second	order curves and surfaces� respectively �����

���
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points at in�nity� Consequently the hyperbolic paraboloid cannot be obtained from

any surface of revolution by a dilatation because there are circles on every surface of

revolution� These circles would be transformed into ellipses by a dilatation ��	��

�
�
�
 Parametric Equation of the Constraint Hyperbolic Paraboloid


The general hyperboloid of one sheet� i�e�� not one of revolution� can be constructed

geometrically by rotating a line which joins pairs of points with constant di�erence of

eccentric angle on two equal and similarly placed ellipses in parallel planes �	���� The

hyperbolic paraboloid can also be constructed with a moving line� Let ABA�B� be the

vertices of a regular tetrahedron� Q and Q� are variable points on AB and A�B� such

that AQ � A�Q�� The moving lineQQ� generates an hyperbolic paraboloid �	���� The

quadric surface is covered by two systems of generating lines� Each system is called

a regulus� In this construction two distinct lines in one regulus are used to generate

the lines in the other� Using this approach� Equation 
����� can be parametrised�

However� knowing the plane equation to which the lines of one regulus are parallel�

only one line in the opposite regulus is required� This line can be used as the directrix

of the opposite regulus�

Figure ���� Construction of the hyperbolic paraboloid�

���
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When X� � � then Equation 
����� represents a line� L�� which is contained in

the plane X� � �� indicated by �X�
� �� Now� consider the plane � that also contains

L�� but is perpendicular to �X�
� �� see Figure ���� The X�	axis is parallel to ��

Each line in one regulus� R� intersects every line in the opposite regulus� R�� Let the

line L� be one line in regulus R�� There is one and only one line L contained in the
intersection of regulus R and plane �� L � R � �� Clearly� L intersects L�� L � L��

Moreover� it intersects every line in R�� L � R�� The two lines L� and L are unique
in their respective planes� �X�

� � and ��

Every distinct point on L represents an intersection with a distinct line in R��

For the parametrisation we observe that unique values of X� give unique points on L�
Every di�erent line in R�� which can be called Li since it is uniquely determined by

the plane X� � Ci� has a direction di�erent from all other lines in R� because all lines

in this regulus are parallel to the plane �X�
� � but not to each other� Furthermore�

Li intersects L in a point that must also be contained in X� � Ci� because the quadric

is covered by the intersection points of the generating lines in opposite reguli�

The locus of points on L is a function of the parameter X� � t� This is because

there is one and only one distinct line contained in each planeX� � t that is contained

in R� and intersects L in a point� The points of L are determined by the piercing
points of Li � R� � �� This family of piercing points trace L � R� Thus� L may be
expressed parametrically in terms of X� � t by the three simultaneous equations�

L �

�
			�
f
t�

g
t�

t

�



� � 
�����

A general line in space can be described by a �xed point on the line along with a

direction� For every value of t there is a a unique point on L� which is a point on the

���
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corresponding line Li � R�� The direction of Li is also a function of t since it must

be parallel to �X�
� � which is� itself� parallel to �X�

� t� but to no other line in R��

The locus of points on Li can be obtained by stepping in the direction of Li on a line

through the unique point on L� which is obtained by varying a second parameter� s�

Li � HP �

�
			�
f
t�

g
t�

t

�



�' s

�
			�
a
t�

b
t�

�

�



� � 
�����

This collection of lines is a quadric by virtue of the mixed second order quantities

sa
t� and sb
t�� It is� in fact� the parametric equation of the constraint hyperbolic

paraboloid 
HP �� Determining the functions f
t�� g
t�� a
t� and b
t� will yield the

parametrisation�

The �rst step is to determine the plane �� The condition is that � is perpendicular

to �X�
� �� This being the case� the variableX� can have any value in �� After setting

X� � � in Equation 
������ the equation for L� is obtained�

L� � K�X� � K�X� '
�

�

K� � �
K�x'K�y�� � �� 
�����

The line L� is the line of intersection of the two planes� �X�
� ���� The plane �

is perpendicular to �X�
� � and must also contain L�� Due to this� � can be described

by solving Equation 
����� for either X� or X� and allowing X� to take on any value�

Solving for X� we obtain

� �

��
�

X� �
�
K� 
K�X� � �

�

K� � �
K�x 'K�y���

X� � X�

� 
�����

If K� is less than some predetermined tolerance� i�e�� close to zero� then Equation


����� is solved for X�� giving

���
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� �

��
�

X� �
�
K� 
K�X� '

�
�

K� � �
K�x'K�y���

X� � X�

� 
�����

Note that K� and K� cannot both vanish since K� � k sin 	 and K� � k cos 	� with k

being a non	zero real number�

In what follows either representation of the plane �� Equation 
����� or Equation


������ may be used yielding identical results� Without loss in generality K� can be

assumed su�ciently large for this derivation� Equations 
����� mean that any point

�X� � X� � X�� � � is given by choosing values for X� and X� and then solving

Equation 
����� for X� 
i�e�� the �rst of equations 
������� Thus� the plane �� which

is perpendicular to �X�
� �� is completely described by the �rst of equations 
������

since X� and X� are arbitrary� and independent�

The next step is to �nd an expression for L � R� This is done by �nding the line
of intersection of � and the implicit equation of the hyperbolic paraboloid� Equation


������ This is the unique line in R contained in � which intersects L� � R�� This

equation is obtained by substituting the �rst of �rst of equations 
����� into Equation


������ yielding

� �HP �

X�

K�

	
�	K�

� �K�
�
X� �

�
�

�
	K�

�y �K�K�x
 �K�K�

�
X� �K�K� � 	K�

� �
�

�
K�
�
x



� ��

	����


assuming K� is su�ciently large� This intersection contains two factors� X� � �� and

the line

L � �	K�
� �K�

�
X� �

�
� 	K

�
�y �K�K�x
 �K�K�

�
X� �K�K� � 	K�

� �
�
�K

�
�
x � ��

	����


���



���� EQUATION OF THE IMAGE SPACE CONSTRAINT MANIFOLD

This agrees with the fact that a plane intersecting with a quadric must produce a

second order curve� Here the conic degenerates into two lines� This second factor

must be an expression for L� since it is a line contained in the intersection of � and
HP that is not L�� Since L� and L intersect� and because they are both in HP � these

lines are in the opposite reguli R� and R�

Now� solve Equation 
����� for X�� After setting X� � t the following expression

is obtained�

g	t
 �

�
�
�	K�K�x�K�

�y
 �K�K�

�
t� �

�	K
�
� �K�

�
x�
�
�K�K�y �K�K�

�
K�
� �K�

�

� 	����


g
t� represents the X� coordinate of a point on the line L � R for a particular value
of t� The X� coordinate is obtained by substituting the expression for X� � g
t� into

Equation 
����� which yields another function of only t�

f	t
 �

�
�
�	K�K�y �K�

�x
 �K�K�

�
t� �

�	K
�
� �K�

�
y �
�
�K�K�x�K�K�

�
K�
� �K�

�

� 	����


This gives Equation 
������ which is the desired parametric equation for L in terms
of X� � t� Note that the denominators of the rational functions f
t� and g
t� are

identical� K�
� 'K�

�� Moreover� the denominator is non	vanishing because K�
� and K�

�

are� for the linear kinematic constraints� line coordinates and cannot simultaneously

be zero� All distinct lines in R� must contain a point on L� Furthermore� every
distinct plane �X�

� t contains a distinct line of R� and every unique plane �X�
� t

intersects L in a unique point�

Now� direction vectors for the Li are required� The coe�cients in Equation 
�����

are constants� and may be collected giving

aX� ' bX� ' cX�
� ' dX� ' e � �� 
�����

���
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where a and b are both functions of X� � t� In an arbitrary plane �X�
� t the

direction of the corresponding line is given by the coe�cient ratio �b�a� i�e�� the
slope of the line in the given plane� In other words� the line Li is parallel to the

direction given by

a
t�X� ' b
t�X� � �� 
�����

where a
t� � K� � K�t and b
t� � �
K� ' K�t�� Non	trivial solutions of Equation


����� require

a
t� � X�� b
t� � �X� 
�����

or�

a
t� � �X�� b
t� � X�� 
�����

which are equivalent conditions because the linear sum vanishes� Thus� the locus of

points on a line in the direction of Li is

�
			�
X�

X�

X�

�



� � s

�
			�
�b
t�
a
t�

�

�



� � 
�����

where �� � s � �� These are the projections of the lines in R� onto the plane

�X�
� ��

Combining equations 
����� and 
����� gives the desired parametrisation of the

constraint hyperbolic paraboloid 
HP ��

HP �

�
			�
X�

X�

X�

�



� �

�
			�
f
t�

g
t�

t

�



� ' s

�
			�
�b
t�
a
t�

�

�



� �

�� � t � ��

�� � s � ��

�����

���



���� OBTAINING THE GENERAL UNIVARIATE POLYNOMIAL IN X�

Figure ��� illustrates a parametric representation of a constraint hyperbolic pa	

raboloid with circle coordinates K� � �� K� � �� K� � K� � �� and �xed platform

point coordinates x � y � ��
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Figure ���� A projection of HP in the hyper�plane X� � ��

���� Obtaining the General Univariate Polynomial in X�

The constraint manifold for PSGP is determined by the circle coordinate K��

If K� � � the projection of the manifold into the image sub	space X� � � is an

hyperboloid of one sheet� on the other hand� if K� � � it is an hyperbolic paraboloid�

Expressions for both are embedded in the general constraint surface 
CS� equation

given in Equation 
������ reproduced below as Equation 
������

CS � K�	X
�
� �X�

� 
 � 	���
 ��	K�x�K�y
 �R�X�
� � 	���
 �R� �	K�x�K�y
��

	K� �K�x
X�X� � 	K�y �K�
X�X� � 	K� �K�y
X�	K�x�K�
X� �

	K�y �K�x
X� � �� 	����
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The points on this constraint surface represent all possible displacements of the

platform when two of the three legs are disconnected from the platform� In other

words� they represent the possible displacements of E about the base point to which

the platform is still connected� Three such constraint surfaces are obtained� one

corresponding to each leg� CSA� CSB and CSC �

Figure ���� Convenient reference frames�

Without loss in generality� the special coordinate frames in Figure ��� can be

used 
see assumption � from subsection ������� In the most general case 
i�e�� for any

PSGP� regardless of leg type� the �xed points in the frame ! have the homogeneous

coordinates

FA�	 � 
� � � � ���

FB�	 � 
XB�
� � � ���

FC�	 � 
XC� � XC� � ���

while those of the points �xed in the frame E are

MA�E � 
� � � � ���

MB�E � 
b� � � � ���

MC�E � 
c� � c� � ���

���
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Note that we have not explicitly stated which frame is �xed since they are di�erent

for PR	types and RP 	types� The circle coordinates determined from the Fi are�

KAi � 
K� � A� � A� � A���

KBi � 
K� � B� � B� � B���

KCi � 
K� � C� � C� � C���

where the K� coordinate is the same in all legs� Here it is important to state the

current limitation of this approach� the K� coordinate must be the same value for each

of the three legs in any one PSGP� If this is not done the subsequent system of surface

equations can not be reduced to a univariate because the number of computations

involved becomes too large� There are two ways to resolve this problem� the �rst

is to somehow simplify the constraint equations through better understanding of the

geometry of the image space� the second is to wait until faster computers are available�

This being the case� the use of the univariate is limited to PSGP and architectures

comprising arbitrary legs� but all being either RR	� PR	� or RP 	type� This is why

the univariate is only applicable to the FK problem of ��C
�� ��� � ��� di�erent

platforms�

Substituting the Mi�E and the Ki into Equation 
����� gives the three speci�c

constraint surfaces� CSA� CSB� CSC �

CSA � K�	X
�
� �X�

� 
 �
�

�
R�X

�
� � 	A� �A�X�
X� � 	A� �A�X�
X� �

�

�
R� � �� 	����


CSB � K�	X
�
� �X�

� 
 �
�

�
	R� � �B�b�
X

�
� � 	B� � 	K�b� �B�
X�
X� �

	K�b� �B� �B�X�
X� �B�b�X� �
�

�
	R� � �B�b�
 � �� 	����


CSC � K�	X
�
� �X�

� 
 �
�

�
	R� � �C�c� � �C�c�
X

�
� � 	C� �K�c� � 	K�c� � C�
X�
X� �

	K�c� � C� � 	C� �K�c�
X�
X� � 	C�c� � C�c�
X� �
�

�
	R� � �C�c� � C�c�


� �� 	����


���
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There are a wide variety of ways to obtain a univariate polynomial from these

three surface equations using symbolic computer algebra systems� These include

extension methods� such as homotopy or polynomial continuation �	��� and elimina	

tion methods� such as Sylvester�s dialytic elimination �	��� 	���� Additionally� the

Buchberger algorithm ���� which exploits David Hilberts Nullstellensatz� and Basis

Theorem�� can be used to obtain the reduced minimal Gr�obner bases ��� 	�� ����

For a particular ordering on the power products one of the Gr�obner bases will be the

univariate� if it exists� However� for this particular variety� the univariate in X� can

be easily obtained in two elimination steps �	���� The �rst step is to subtract CSB

from CSA and CSC from CSA� giving two equations� CSAB and CSAC � which are

linear in X� and X��

CSAB �
�

�
	R� �R� � �B�b�
X

�
� � �	K�b� �B� �A�
X�
�B� �A��X� �

�	B� �A�
X� �A� �K�b� �B��X� �B�b�X� �
�

�
	R� �R� � �B�b�
 � �� 	����


CSAC �
�

�
	R� �R� � �C�c� � �C�c�
X

�
� � �	K�c� � C� �A�
X� �K�c� � C� �A��X� �

�	K�c� � C� �A�
X� �K�c� � C� �A��X� � 	C�c� � C�c�
X� �

�

�
	R� �R� � �C�c� � �C�c�
 � �� 	����


Equations 
����� and 
����� are solved simultaneously for X� and X�� The resulting

expressions are then substituted into Equation 
������ yielding a univariate sextic

polynomial in X�� In this most general case� i�e�� leaving K� arbitrary� the univariate

has ���� terms� Here the use of the word term requires some explanation� Of course�

�This theorem� which translates from German as the Zero Theorem ���� or Zero�Point Theorem

�	��� states that the polynomials of any non	unit ideal ��� whose coe�cients are de�ned over an
algebraically closed �eld ��
� will always have common zeros� i�e� solutions�
�This theorem essentially guarantees that every polynomial ideal can be generated with a �nite set
of polynomials� which also means that the variety of the ideal can be expressed by a �nite set of
polynomial equations ��� 	�� In other words� the common solution for the in�nite set of polynomials
of a polynomial ideal can always be represented by a �nite set of polynomials� This �nite set actually
generates the ideal� The Nullstellensatz and Basis Theorem were proved by Hilbert around ���� ����

���
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a sextic univariate polynomial has � terms�

a�X
�
� ' a�X

�
� ' � � �' a�X

�
� ' a�X

�
� � �� 
�����

Each term has a constant coe�cient� but the ai change as the inputs change� What

���� terms means is that the � ai are collectively composed of ���� sums of products

of design constants and inputs 
see Appendix C��

When the circle coordinates are appropriately de�ned� the zeros� or roots� of

this sextic represent the solutions to the FK problem of any PSGP together with the

asymmetric and special architecture platforms mentioned at the outset of this chapter�

The roots of the polynomial give the values of the image space coordinate X� with

X� � �� The remaining coordinates� X� and X� are linearly dependent on X�� Their

respective values are obtained from the simultaneous solution of equations 
�����

and 
������ These coordinates are the points of intersection of the three constraint

surfaces� Each point of intersection represents a pose of the moving platform such

that the platform points are on their respective circles� or lines� representing solutions

to the FK problem� Real intersections occur in pairs� because the complex solutions

always come in conjugate pairs� Hence� there are �� �� �� or � real solutions for a

given FK problem�

Examining Figure ���� it is easy to see that RR	type platforms require three �xed

points in E to move on three �xed non	degenerate real circles in !� Setting K� � �

in the constraint surface equations gives three hyperboloid equations� which reduces

the number of terms in the univariate to ���� all listed in Appendix C�

The PR	types require �xed points in E to move on �xed lines in !� and the

RP 	types require �xed lines in E to move on �xed points in !� These two types are

inversions� one can be obtained from the other by changing the roles of E and !� We

set K� � � and use K�� K�� K� as images of the line coordinates �L� � L� � L��� The

���
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number of terms in the univariate then reduces to ��� They are�

�
�

A�B� �A�B� �A�C� �A�C� �B�C� �B�C�

� �X
i��

aiX
i
� � �� 	����


where a� � a� � a� � a� � �� leaving the rational factor and

a� � �	A�B�C�c� �A�B�C�c� �A�B�b�C� �A�B�b�C� �A�B�C�c� �A�B�C�c�
 �

A�B�C� �A�B�C� �A�B�C� �A�B�C� �A�B�C� �A�B�C��

a� � �	A�B�C�c� �A�B�b�C� �A�B�C�c� �A�B�C�c� �A�B�C�c� �A�B�b�C�
�

a� � �	A�B�b�C� �A�B�C�c� �A�B�C�c� �A�B�C�c� �A�B�C�c� �A�B�b�C�
 �

A�B�C� �A�B�C� �A�B�C� �A�B�C� �A�B�C� �A�B�C��

Conditions for the vanishing of the rational factor� and what they mean� are discussed

in Chapter �� Section ������

Finally� we must deal with the fact that the solution for RP 	type platforms

gives the pose 
a�� b�� ��� of the base frame� !� with respect to the moving frame� E�

However� we require the pose 
a� b� �� of E in !� It is easy to show that � � ����
We then obtain 
a� b� with a coordinate transformation using � as the rotation angle�

See Equation 
���� in Chapter �� Section ������

���� Upper Bounds on the FK Solutions

The geometry of the image of the FK problem indicates that for each PSGP

there should be a maximum of eight solutions� That is� three quadrics can intersect

in� at most� eight real points� However� the general univariate� whose roots indicate

coordinates of the images of all possible solutions is of degree six� which is in agreement

with the broadly accepted �ndings of Hunt ����� Gosselin ����� Merlet ����� among

others� The natural question is how to account for the missing intersection points)

���
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�
�
	
 RRType PSGP
 This over	abundance is easily accounted for in the

case of RR	type platforms� All constraint hyperboloids pass through the imaginary

conjugate points J�
� � i � � � �� and J�
� � �i � � � �� on the line of intersection of the
planes X� � � and X� � �� This is so because of the special structure of these con	

straint surfaces� the planes described by X� � constant intersect all the hyperboloids

in circles� all circles contain J� and J�� This is demonstrated by generating three ar	

bitrary constraint hyperboloids using Equation 
���� and intersecting them with the

plane X� � �� In that equation set X� � �� K� � � and z � �� Then� HA� HB and

HB are obtained with the following substitutions� for HA set K� � K� � x � y � �

and R � R�� for HB set K� � B�� x � b�� K� � y � �� and R � R�� for HC set

K� � C�� K� � C�� x � c�� y � c�� and R � R�� This gives the three hyperboloids

intersected with the plane X� � ��

HA � X�
� �X�

� �
�
�R�X

�
� � �� 	����


HB � X�
� �X�

� �
�
�	R� � �B�b�
X

�
� � 	B� � b�
X�X� � �� 	���


HC � X�
� �X�

� �
�
� 	R� � �	C�c� � C�c�

X

�
� � 		C� � c�
X� � 	C� � c�
X�
X� � �� 	����


Equations 
������ 
����� and 
����� represent the intersections with X� � � of

every possible set of constraint hyperboloids� It is easy to verify that these three

surfaces and the plane X� � � intersect in the two imaginary conjugate points

J� � 
� � i � � � ���

J� � 
� � �i � � � ���

These points have no pre	image and do not correspond to any possible displacement

of the platform with respect to the base 
see Section ������� Thus� two of the hy	

perboloids intersect in a fourth order curve which intersects the third hyperboloid in

eight points� However� the two complex conjugate points J� and J� are common to

every hyperboloid and account for two of the intersection points� Hence� there are�

���
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at most� six real intersections each representing a solution to the FK problem� This

explanation does not hold when the constraint surfaces are hyperbolic paraboloids�

because these quadrics contain no circles that can lie evenly on them ��	��

�
�
�
 PR and RPType PSGP
 The following three constraint equations

are obtained after setting X� � �� K� � � and z � � in Equation 
���� then making

the three sets of substitutions� for HPA set K� � A�� K� � A�� R � �� and x � y � ��

for HPB set K� � B�� K� � B�� R � B�� x � b�� and y � �� for HPC set K� � C��

K� � C�� R � C�� x � c�� and y � c�� This gives the intersection of every possible

set of three constraint hyperbolic paraboloids with the plane X� � ��

HPA � A�X�X� �A�X�X� �
�
�A�X

�
� � �� 	����


HPB � B�X�X� �B�X�X� �
�
�	B� � �B�b�
X

�
� � �� 	����


HPC � C�X�X� � C�X�X� �
�
� 	C� � �	C�c� � C�c�

X

�
� � �� 	����


It is easily veri�ed that these equations are satis�ed by the following image space

point coordinates�


X� � X� � X� � X�� � 
X� � X� � � � ���

This means that every set of three constraint hyperbolic paraboloids contains the line

of intersection of planes X� � X� � �� In other words� this line is a generator for all

possible constraint hyperbolic paraboloids� But� points on this line have no pre	image

and� therefore� do not represent valid platform poses�

Consider the curve of intersection between any two constraint hyperbolic parabo	

loids� This curve must be a degenerate �th order curve that splits into the line

X� � X� � � and a twisted cubic� The twisted cubic is the locus of common

intersection points of every line in each regulus of both surfaces� Since the line

X� � X� � � is a generator of both hyperbolic paraboloids� the twisted cubic must

intersect it in two points� This stems from the fact that X� � X� � � is a projective

���
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generator that closes each surface� As with a line in the opposite regulus� the twisted

cubic will intersect the generator from two di�erent directions� Taking any set of

three distinct constraint hyperbolic paraboloids we can form three distinct twisted

cubic curves of intersection together with the generator X� � X� � �� The common

intersections of the three surfaces will certainly be the points of intersection of the

three twisted cubics and the line� Each cubic meets the line twice� This accounts

for six points shared by the three surfaces� Every set of three distinct constraint

hyperbolic paraboloids contains six such points on the line X� � X� � �� none of

which represents a valid platform pose� However� according to B�ezouts theorem�

there must be two additional intersection points which may� or may not� be valid

poses� Thus� there are at most two real solutions to the FK problem for PR	 and

RP 	type platforms�

This agrees with the fact that the univariate in this case is �nd order� It must be

a �nd order curve for the following physical reason� Consider a PR	type PSGP with

active base revolutes� locking the input joints and removing the platform connection

of one of the legs gives a double	slider elliptical trammel mechanism� The coupler

curve is� in general� elliptical� If the coupler point is the platform connection point

of the third leg� the line of the third leg can intersect the elliptic coupler curve in at

most two points�

���



���
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FK Solution Procedures

���� Application of the Univariate to the FK Problem

Solving the FK problem using the roots of the univariate polynomials developed in

Chapter � requires three platform points with �xed positions in the moving frame that

remain on curves with �xed coordinates in the non	moving frame� Detailed numerical

examples of the procedures developed in this chapter can be found in Appendix A�

The FK problem can be expressed in geometric terms as follows�

RRtype� Place the vertices of a rigid movable triangle on three non	moving

circles respecting an initial pairing of vertex and circle�

PRtype� Place the vertices of a rigid movable triangle on three non	moving

lines respecting an initial pairing of vertex and line�

RP type� Place three movable� but relatively �xed lines on the vertices of a

rigid non	moving triangle� If the triangle is considered as movable and the

three lines as non	moving� the phrasing is identical to the that of the PR	type�

The points� i�e�� triangle vertices� are labelled Mi for RRR� RPR and RPR

platforms with ! considered �xed and E as moving� These points are the Fi for

RPR with ! moving and E �xed� The curves for these four platforms are circles
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centred on the base revolutes for the �rst two and the lines of the axes of symmetry

of the intermediate prismatic for the last two� In order to establish these points

and curves for some of the remaining �� platform types some additional geometric

speci�cations are required� These are the virtual line 
VL�� virtual base 
VB� and the

virtual platform 
VP�� discussed below� They allow the kinematic constraints to be

described in exactly the same way for all PSGP� and hence the same univariate can

be applied to the FK problem of all PSGP� This entire discussion is summarised in

Tables ���� ���� ����� In addition� a detailed procedure for RRG platforms is given in

Section ����

�
	
	
 Regular FK Solution Procedure
 The following procedure is termed

regular because the platform architecture allows either hip or ankle points to lie on

the triangle vertices� The curves are excursion arcs of �xed length links connected

to ground� or platform� by R	pairs� or they are the longitudinal axes of symmetry of

P 	pairs�

The regular solution procedure can be used for RRR� RPR� RPR and RPR

platforms� The following discussion is an explanation of how this solution procedure

works�

RRR Platforms
 The hip points�Mi� with �xed positions in E� move on �xed

circles centred on stationary ankle points� Fi� in !� The circle radii are determined by

the intermediate R	pair angular inputs indicated by ����� � � f�� �� �g� see Figure
��� 
i� showing leg A with � � �� Figure ��� 
i� illustrates the inputs which are

required by the univariate� the pre	image of the output being the pose of frame E

relative to frame !� Table ��� lists the input information required to evaluate the

coe�cients of the univariate� In general none of the coe�cients vanish and the sixth

order univariate must be solved numerically�

���
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Figure ���� Parameters for �i� an RRR and �ii� an RPR platform�

Regular RRR and RPR Platforms

Fixed frame !

Moving frame E

RRR Active joint inputs ����

RPR Active joint inputs d�i

Moving points on circle Mi�E

Circle centres Fi�	

RRR Circle radii ri �
�

��i ' ��i cos �����

� ' 
��i sin �����
�
��
�

RPR Circle radii ri � d�i

Circle coordinates 
K�i � K�i � K�i � K�i� � 
� � Fxi	 � Fyi	 � Ri � 
x�i ' y�i ���

where Ri � K�
�i
'K�

�i
� r�i 'K�i
x

�
i ' y�i �

Table ���� RRR and RPR reference frames and univariate constants�
Note� i � fA�B�Cg and � � f�� �� �g

RPR Platforms
 These platforms are kinematically equivalent to the RRR

ones from the previous paragraph� see Figure ��� 
ii� showing leg B with � � �� The

only di�erence in the input de�nitions is that the circle radii simplify to ri � d�i �

Table ��� lists the required input�

���
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RPR Platforms
 For these platforms the line coordinates of each leg are

determined by the base R	pair inputs and the corresponding ankle point� Fi� For

each leg the direction� given by the base R	pair inputs� together with the location of

a point� the �xed ankle point Fi� on the line are known� The line equation is obtained

from the Grassmannian expansion�

���������

X Y Z

Fxi�� Fyi�� Fzi��

cos ���	 sin ���	 �

���������
� 
�Fzi�� sin ���	�X ' 
Fzi�� cos ���	�Y '


Fxi�� sin ���	 � Fyi�� cos ���	�Z � �� 
����

The line coordinates 
L�i � L�i � L�i�� given by the coe�cients of X� Y and Z

respectively� are transformed� according to the relations and equations derived in

Section ���� to circle coordinates as


K� � K�i � K�i � K�i� � 
� � ��
�
L�i � �

�

�
L�i � L�i�� 
����

The non	zero circle coordinates that determine the univariate coe�cients are

	K�i � K�i � K�i
 � 	���
�
Fzi��
�

sin ���	 � �
Fzi��
�

cos ���	 � 	Fxi�� sin ���	 � Fyi�� cos ���	


�
�

Table ��� lists all the information required to evaluate the univariate coe�cients�

RPR Platforms
 These platforms are considered as inversions of the RPR

platforms� Hence� the roles of E and ! are reversed� the platform is �xed and the

base moves relative to it� In this regard the FK problems of RPR and RPR platforms

are isomorphic� Recall that the order of the joints is given starting from those �xed

to the non	moving base and continues sequentially to the moving platform� Thus� the

orders for RPR and RPR are identical� however the FK solution procedure requires

some additional computations�

���
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The FK solutions extracted from the intersections of the constraint surfaces in

the image space give the pose of the base frame ! with respect to the platform frame

E� The resulting displacement parameters must be transformed to give the pose of

the the platform frame E with respect to the base frame !� This is accomplished

with a coordinate transformation which can be derived in the following way� The

coordinate transformation of an arbitrary point from ! to E is�

T 	�E �

�
			�
cos�

E��
sin�

E��
�
a

E��
cos�

E��
' b

E��
sin�

E��
�

� sin�
E��

cos�
E��

a
E��
sin�

E��
� b

E��
cos�

E��

� � �

�



� � 
����

The transformation in Equation 
���� can be used to operate on any point in !�

Certainly the origin of !� O	� is a point in !� This point has coordinates �� � � � ��
T �

The image of this point under T 	�E is

�
			�
a
��E

b
��E

�

�



� �

�
			�
�
a

E��
cos�

E��
' b

E��
sin�

E��
�

a
E��
sin�

E��
� b

E��
cos�

E��

�

�



� � 
����

Note the subscripts indicate the following� a
��E
and b

��E
are the x	 and y	coordinates

of the origin of coordinate system ! expressed in E� while the transformation T 	�E

transforms coordinates from ! to E� The system of equations represented by Equation


���� is linear in a
E��
and b

E��
� which are the position of the platform frame expressed

in the base frame� the two remaining quantities that are needed to complete the FK

solution�

Solving the system gives� after making the substitution �
��E

� ��
E��


because

the univariate reveals �
��E
��

a
E��

� �
a
��E
cos�

��E
' b

��E
sin�

��E
� 
����

b
E��

� a
��E
sin�

��E
� b

��E
cos�

��E
� 
����

���
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These relations can all be conveniently expressed as a special transformation used to

operate on the univariate output giving the desired FK solutions�

�
			�

a
E��

b
E��

�
E��

�



� �

�
			�
� cos�

��E
� sin�

��E
�

sin�
��E

� cos�
��E

�

� � ��

�



�

�
			�

a
��E

b
��E

�
��E

�



� � 
����

The information required to evaluate the univariate coe�cients for RPR plat	

forms is compared with that of RPR in Table ��� �i�� Relevant parameters are

illustrated in Figure ��� �

Regular RPR Platforms RPR Platforms

Fixed frame ! E

Moving frame E !

Active joint inputs ���	 ���E

Moving points on line Mi�E Fi�	

Fixed points on line Fi�	 Mi�E

Circle coordinates�

K�i � �

K�i
�
�
Fzi�� sin ���	

�
�
Mzi�E sin ���E

K�i ��
�
Fzi�� cos ���	 ��

�
Mzi�E cos ���E

K�i Fxi�� sin ���	 � Fyi�� cos ���	 Mxi�E sin ���E �Myi�E cos ���E

Table ���� RPR and RPR reference frames and univariate constants�

�
	
�
 Virtual Line FK Solution Procedure
 The virtual line 
VL� is one

that is parallel to the direction of the base	�xed or platform	�xed prismatic joints�

but contains either the hip�Mi� or ankle point� Fi 
see Figure ����� It is the line along

which a reference point� of a PR	 or RP 	type platform with an active intermediate

joint� moves with respect to the �xed frame� These lines replace the circular arcs of

point motion� The VL is required for PRR� PPR� RRP and RPP type platforms�

���
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Note that the VL is used only when intermediate joints are active and that it is not

needed for any RR	type platform�

Figure ���� VL parameters for �i� a PRR and �ii� a RRP platform�

PRR Platforms
 For these platforms the VL contains the Mi� However� the

location of Mi�	 is not known a priori� Examining Figure ���� it is to be seen that

a �nite point on the VL can be determined from the known design constants and

inputs ��i � ���	� ���	 and Fi�	�

�
			�
Fix�� ' ��i cos ���	

Fiy�� ' ��i sin ���	

Fiz��

�



� � 
����

Because it is parallel to the direction of the corresponding base P 	pair� the point at

in�nity on this VL has coordinates�

�
			�
cos ���	

sin ���	

�

�



� � 
�����

���
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After determining the VL line coordinates with a Grassmannian expansion� then

transforming them to the required circle coordinates� the following is obtained�

	K�i � K�i � K�i � K�i
 �

�
� �

�

�
Fiz�� sin ���	 � �

�

�
Fiz�� cos ���	 � 	����


	Fix�� � ��i cos ���	
 sin ���	 � 	Fiy�� � ��i sin ���	
 cos ���	

�
�

PPR Platforms
 For this platform the active pair is a prismatic� Thus� the

active input is d�i and the angle ���	 is a design constant� The only di�erence is that

��i � d�i in the VL line coordinates� and hence

	K�i � K�i � K�i � K�i
 �

�
� �

�

�
Fiz�� sin ���	 � �

�

�
Fiz�� cos ���	 � 	����


	Fix�� � d�i cos ���	
 sin ���	 � 	Fiy�� � d�i sin ���	
 cos ���	

�
�

Otherwise� the quantities listed in Table ��� apply to these platforms�

RRP and RPP Platforms
 These platforms are kinematic inversions of the

PRR and PPR platforms� Thus� for computational purposes frame E is considered

�xed and frame ! as moving� and the design constants and variable inputs are labelled

accordingly� The angularR	pair inputs for RRP platforms are ����� with � � f�� �� �g�
while the P 	pair inputs for RPP platforms are d�i� with i � fA�B�Cg� The angle
���E � required for computing the univariate coe�cients� is determined easily enough

from two known angles� the design constant ���E and input angle �����

���E � ���E � ����� 
�����

The circle coordinates for these two platforms di�er only in that the lengths of

the intermediate links in each leg� ��i� are �xed in RRP platforms and variable� d�i �

in RPP platforms� Table ��� lists the quantities required to compute the univariate

���
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coe�cients for these platforms� Note that ��i must be replaced with d�i for RPP

platforms�

Virtual Line PRR Platforms RRP Platforms

Fixed frame � E

Moving frame E �

Active joint inputs ���� ����

Moving points on VL Mi�E Fi�	

Circle coordinates�

K�i � �

K�i
�
�Fzi�� sin ���	

�
�Mzi�E sin ���E

K�i ��
�Fzi�� cos ���	 ��

�Mzi�E cos ���E

K�i 	Fxi�� � ��i cos ����
 sin ���	� 	Mxi�E � ��i cos ���E
 sin ���E�

	Fyi�� � ��i sin ����
 cos ���	 	Myi�E � ��i sin ���E
 cos ���E

Table ���� PRR and RRP reference frames and univariate constants�

�
	
�
 Virtual Base FK Solution Procedure
 The virtual base 
VB� is

formed by the triangle whose vertices are the points of intersection of the links directly

connected to the base and those directly connected to the platform� It is required

to constrain points with �xed positions in a moving frame to �xed curves in a non	

moving frame so the special coordinate systems� similar to those shown in Figure ����

can be used�

It is input speci�c� that is� for every distinct set of variable joint inputs there

is a distinct VB� The VB reference frame� indicated by !V B for RR	 and PR	type

platforms and EV B for RP 	platforms� may be considered as �xed for a given FK

problem� It is used for the FK of RRR� PRR� PPR and RPP platforms� For a

given set of joint inputs the virtual base points 
VBP� are �xed points in the non	

moving frame� For RR	 and PR	type platforms the non	moving frame is !� The

non	moving frame for RP 	type platforms is frame E� since these are thought of as

the kinematic inversion of PR	type platforms� The VB is used when certain base

���
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joints are active� Figure ��� shows the various parameters� �xed and variable� for

PPR and RPP platforms�

Figure ���� VB parameters for �i� a PPR and �ii� an RPP platform�

RRR and PRR Platforms
 For these platforms the VB reference frame is

!V B because its pose is known in !� Recalling sub	section ���� the origin of !V B�

indicated by O	VB � is located on KA� The orientation of !V B is selected so that KB

is on the positive x	V B 	axis� The variable joint inputs determine the locations of the

knee joints in !� KA�	� KB�	 and KC�	� A simple coordinate transformation reveals

the coordinates KA�	V B � KB�	V B and KC�	V B �

Performing the transformation requires the position and orientation of !V B rel	

ative to !� The position� given by O	V B � is determined by the input of leg A� The

orientation� �	V B�	� requires some manipulation� Referring to Figure ���� consider

the quadrilateral de�ned by the four points FA� KA� KB and FB� from which the

vector equation is easily obtained�

�����
KAKB � 


����
FAFB '

����
FBKB������FAKA� 
�����

���
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The orientation can be determined using the components of Equation 
������ yielding

�	V B�	 � atan�
y� x�� 
�����

where

x � FBx�� ' ��B cos ���	 � ��A cos���	�

y � ��B sin���	 � ��A sin���	�

Figure ���� Determining the VB pose for RR� and PR�type platforms�

This information can be used to transform the coordinates of the knee joints from

! to !V B�

ki�	V B � T 	�	V Bki�	� 
�����

where�

T	�	V B �

�
�����

cos	
�V B��

sin	
�V B��

�	Ox�V B��
cos	

�V B��
�Oy�V B��

sin	
�V B��




� sin	
�V B��

cos	
�V B��

Ox�V B��
sin	

�V B��
�Oy�V B��

cos	
�V B��

� � �

�
����� �

���
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Virtual Base RRR and PRR Platforms

Fixed frame !V B

Moving frame E

RRR Active joint inputs ���	

PRR Active joint inputs d�i

Moving points on circle Mi�E

Circle centres Ki�	V B

RRR Circle radii ri � ��i

PRR Circle radii ri � ��i

Circle coordinates 
K�i � K�i � K�i � K�i� �


� � Kxi�	V B � Kyi�	V B � Ri � 
x�i ' y�i ���

where Ri � K�
�i
'K�

�i
� r�i 'K�i
x

�
i ' y�i �

Table ���� RRR and PRR reference frames and univariate constants�

After the inputs are suitably transformed the univariate coe�cients can be de	

termined and used to obtain the FK solutions� But� the solutions are expressed in

the VB frame and must be transformed back to the �xed base frame !� That is� the

univariate yields the pose of the platform as

�
			�
a�

b�

��

�



� �

�
			�
OxE��VB

OyE��V B

�
E��V B

�



� � 
�����

The orientation in ! is easily determined�

�
E��

� �
E��V B

' �
�V B��

� 
�����

A quick examination of the VB geometry 
see Figure ��� where d�A � ��A� reveals

the following FK solutions in the �xed base frame !�

���
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�
�����
a

b

�

�
����� �

�
�����
OxE��

OyE��

�

�
����� �

�
�����

cos	
�V B��

� sin	
�V B��

Ox�V B��

sin	
�V B��

cos	
�V B��

Oy�V B��

� � �

�
�����

�
�����
a�

b�

�

�
����� � 	���


where Ox�V B��
� ��A cos���	 and Oy�V B��

� ��A sin���	

PPR Platforms
 The PPR platforms need a little more work than the

platforms discussed so far� Their constraint surfaces are hyperbolic paraboloids� hence

K�i � �� The VB is determined as for RRR and PRR platforms� However� the

intermediate joint in each leg is a P 	pair� Determining the coordinates of the lines

upon which the platform points move requires the summation of known angles� We

proceed in a way that is similar to how the VL coordinates are determined� The lines

that contain the knee joints are �xed relative to the base frame when a set of joint

inputs are speci�ed� Their directions are determined by the translation directions of

the intermediate P 	pairs� The line coordinates are

	L�i � L�i � L�i
 � 	����


	�Kzi��V B
sin ���	V B � Kzi��V B

cos ���	V B � Kxi��V B
sin ���	V B �Kyi��V B

cos ���	V B 
�

Examining Figure ��� one immediately sees that for any leg� the direction of the

�xed line in the VB frame� !V B is determined by the angle

����V B � 
���� ' ����� ' �
���V B

�

� ���� � �
�V B��

� 
�����

The line equation is obtained from two points on each line� The �rst is the

knee joint centre of the corresponding leg� while the second is the point at in�nity

determined by the translation direction of the intermediate P 	pair� all expressed in

���
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Figure ���� Determining the VB pose for PPR platforms�

!V B� The Grassmannian expansion yields

�	Kzi��V B
sin ����V B 
x� 	Kzi��V B

cos ����V B 
y�

	Kxi��V B
sin ����V B �Kyi��V B

cos ����V B 
z � �� 	����


The corresponding circle coordinates are easily determined 
using Equation 
������

and are listed� together with the other information required to evaluate the univariate

coe�cients in Table ����

The roots of the univariate give the FK solutions relative to the VB frame� !V B�

which must be transformed back to the �xed base frame� !� with Equations 
������


����� and 
������

RPP Platforms
 This platform is simply the kinematic inversion of the PPR

platform� however the FK solution procedure requires some additional computations�

similar to those of the RPR platforms� These involve determining the pose of the

VB� transforming the relevant parameters to that frame� computing the univariate

coe�cients and roots� then transforming the solutions to the �xed base frame� !�

The complication arises from the assignment of E as the non	moving frame and

���
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Virtual Base PPR Platforms RPP Platforms

Fixed frame !V B EV B

Moving frame E !

Active joint inputs d�i d�i

Moving points on line Mi�E Fi�	

Circle coordinates�

K�i � �

K�i
�
�
Kzi��V B

sin ���	V B
�
�
Kzi�EV B

sin ���EV B

K�i ��
�
Kzi��V B

cos ���	V B ��
�
Kzi�EV B

cos ���EV B
K�i 
Kxi��V B

sin ���	V B� 
Kxi�EV B
sin ���EV B�

Kyi��V B
cos ��	V B� Kyi�EV B

cos ���EV B�

Table ���� PPR and RPP reference frames and univariate constants�

determining the pose of ! relative to it� The required solution steps are discussed in

the following paragraphs�

Referring to Figure ���� the active joints are the platform	�xed P 	pairs� indicated

by d�i� Once these three lengths are speci�ed the vertices of the VB� the knee joint

coordinates� are computed� The VB reference frame� EV B is de�ned analogously to

!V B� the origin� OEV B � is located on KA and the orientation is selected such that KB

is located on the positive xEV B 	axis�

Next� consider the quadrilateral de�ned by the four pointsMA� KA� KB andMB�

from which the following vector equation is obtained�

�����
KAKB � 


�����
MAMB '

�����
MBKB�������MAKA� 
�����

The orientation of EV B can be determined using the components of Equation 
������

yielding

�EV B�E � atan�
y� x�� 
�����

���
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Figure ���� Determining the VB pose for RPP platforms�

where

x � MBx�E ' d�B cos ���E � d�A cos���E�

y � d�B sin ���E � d�A sin���E�

With this information the knee joints can be transformed from the platform frame

E� in which they are known by virtue of the architecture� to the VB frame� EV B� using

ki�EV B � T E�EV Bki�E� 
�����

where�

TE�EV B �

�
�����

cos	
EV B�E

sin	
EV B�E

�	OxEV B�E
cos	

EVB�E
�OyEV B�E

sin	
EV B�E




� sin	
EV B�E

cos	
EV B�E

OxEV B�E
sin	

EV B�E
�OyEV B�E

cos	
EV B�E

� � �

�
����� �

The lines that contain the knee joints are �xed relative to the platform frame when

a set of joint inputs are speci�ed� Their directions are determined by the translation

���
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Figure ���� Determining the VB pose for RPP platforms�

directions of the platform	�xed P 	pairs� The line coordinates are

	L�i � L�i � L�i
 � 	����


	�Kzi�EV B
sin ���EV B � Kzi�EV B

cos ���EV B � Kxi�EV B
sin ���EV B �Kyi�EV B

cos ���EV B
�

Examining Figure ��� one immediately sees that for any leg� the direction of the

�xed line in the VB frame� EV B� is determined by the angle

���EV B � 
���� ' ���E� ' �
E�EV B

�

� ���E � �
EV B�E

� 
�����

The data in Table ��� can now be used to compute the univariate coe�cients�

The FK solutions obtained from the roots of the univariate give the pose of the base

frame� !� expressed in the VB frame� EV B�

�
			�
a�

b�

��

�



� �

�
			�
Ox��EV B

Oy��EV B

�
��EV B

�



� � 
�����

���
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However� what is required is the pose of the platform frame� E� expressed in the �xed

base frame� !�

The orientation of frame E in ! is easily determined 
see Figure �����

�
E��

� ��
��E

� �
�
EV B�E

' �
��EV B

�� 
�����

where �
EV B�E

is computed from the variable joint inputs and design constants� as in

Equation 
������ and �
��EV B

is computed from the univariate output�

Next� the origin of ! expressed in E� O	�E� is determined with the transformation�

�
�����
a
��E

b
��E

�

�
����� �

�
�����
Ox��E

Oy��E

�

�
����� �

�
�����

cos	
EVB�E

� sin	
EV B�E

OxEV B�E

sin	
EVB�E

cos	
EVB�E

OyEV B�E

� � �

�
�����

�
�����
a�

b�

�

�
����� � 	����


where OxEV B�E
� d�A cos���E and OyEVB�E

� d�A sin���E�

Transformation Equation ���� is derived analogously to Equation 
������ Its

validity can be con�rmed with a close examination of Figure ���� Finally� the desired

pose of the moving platform frame E in the �xed base frame ! is computed using

the transformation given in Equation ���� reproduced here as Equation �����

�
			�

a
E��

b
E��

�
E��

�



� �

�
			�
� cos�

��E
� sin�

��E
�

sin�
��E

� cos�
��E

�

� � ��

�



�

�
			�

a
��E

b
��E

�
��E

�



� � 
�����

�
	
�
 Virtual Platform FK Solution Procedure
 The virtual platform


VP�� like the VB� is formed by the triangle whose vertices are the points of intersec	

tion of the links directly connected to the base and those directly connected to the

platform� The di�erence being that for a given set of joint inputs the virtual platform

points 
VPP� are �xed points in the moving frame� The moving frame is E for RR	

and PR	type platforms and is frame ! for RP 	type platforms� VPP are required for

���
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Figure ���� VP parameters for �i� an RRR and �ii� a PRP platform�

RRR� RRP � PRR� PRP � PRP and RRP platforms� The main di�erence from the

VB is that here certain types of platform joints are active�

RRR and RRP Platforms
 For these platforms� as well as for the PR	type�

the VP reference frame is indicated by EV P � because its pose is known with respect

to the platform frame� E� It is similar to the VP illustrated in Figure ���� The origin

of this frame� OEV P � is on the knee joint in leg A� KA� The orientation of EV P is

de�ned so that KB is on the positive xEV P 	axis� The position of OEV P�E
is determined

by the input of leg A� Analogous to the determination of the VB orientation� vector

arguments are used to obtain�

�����
KAKB � 


�����
MAMB '

�����
MBKB�������MAKA� 
�����

The orientation can be determined with the two argument inverse tangent func	

tion using the components of Equation 
������ yielding

�EV P �E � atan�
y� x�� 
�����

���
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Figure ��	� Determining the VP for PR�type platforms�

where

x � MBx�E
' ��B cos ���E � ��A cos���E �

y � ��B sin ���E � ��A sin���E �

The knee joint coordinates expressed in the VP frame are determined using this

information in the transformation�

ki�EV P � T E�EV Pki�E� 
�����

where�

TE�EV P �

�
�����

cos	
EV P �E

sin	
EV P �E

�	OxEV P �E
cos	

EV P �E
�OyEV P �E

sin	
EV P �E




� sin	
EV P �E

cos	
EV P �E

OxEV P �E
sin	

EV P �E
�OyEV P �E

cos	
EV P �E

� � �

�
����� �

Next� the transformed knee joint coordinates are used� together with the rest of

the information listed in Table ���� to evaluate the univariate coe�cients and compute

���
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Virtual Platform RRR and RRP Platforms

Fixed frame !

Moving frame EV P

RRR Active joint inputs ���E

RRP Active joint inputs d�i

Moving points on circle Ki�EV P

Circle centres Fi�	

Circle radii ri � ��i

Circle coordinates

K�i �

K�i Fxi��

K�i Fyi��

K�i Ri � 
K�
xi�EV P

'K�
yi�EV P

�� where

Ri � K�
�i
'K�

�i
� r�i 'K�i
K

�
xi�EV P

'K�
yi�EV P

�

Table ���� RRR and RRP reference frames and univariate constants�

the roots� The roots represent the FK solutions� but they yield the pose of the VP

frame� EV P � in the �xed base frame� !�

�
			�
a�

b�

��

�



� �

�
			�
OxEV P ��

OyEV P ��

�
EV P ��

�



� � 
�����

However� what is required is

�
			�

a

b

�

�



� �

�
			�
OxE��

OyE��

�
E��

�



� � 
�����

���
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Finally� the desired solution reveals itself upon examination of Figure ���� One

may immediately deduce

a � a� ' ��A cos����
� 
�����

b � b� ' ��A sin����
� 
�����

�
���

� 
�
��E

� �� ' �
EV P ��

' �
E�EV P

� 
�����

� � �� ' �
E�EV P

� �� � �
EV P �E

� 
�����

PRR and PRP Platforms
 The FK solution procedure for these platforms

is the same as for the RRR and RRP platforms just discussed� except that the

information in Table ��� must be used� This is due to the fact that the constraint

curves are lines and not circles� Other than that� all the equations for RRR and RRP

platforms� from Equation 
����� to 
����� are used in the FK procedure�

Virtual Platform PR�Type Platforms RP �Type Platforms

Fixed frame � E

Moving frame EV P �V P

Active joint inputs PRR � �
��E

RRP � �
���

PRP � d�i PRP � d�i

Moving points on line Ki�EV P
Ki��V P

Circle coordinates�

K�i � �

K�i
�
�Fzi�� sin ���	

�
�Mzi�E sin ���E

K�i ��
�Fzi�� cos ���	 ��

�Mzi�E cos ���E

K�i 	Fxi�� sin ���	 � Fyi�� cos ���	
 	Mxi�E sin ���E �Myi�E cos ���E


Table ���� PR� and RP�type reference frames and univariate constants�

���
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RRP and PRP Platforms
 For these platforms the univariate requires the

description of the displacement of !� the base	�xed frame� with respect to E� the

platform	�xed frame� In these computations� ! is considered to move relative to E�

Here� the VP is an extension of the base� It is a bit confusing� which is unfortunate�

but allows for the use of the univariate� which is fortunate� The VPP are the same

as for the RR	 and PR	type platforms� but the reference frame is di�erent�

Figure ���
� Determining the VP pose for RP�type platforms�

Analogous to RRR and PRR platforms using the VB 
changing the virtual base

to a virtual platform in Figure ��� gives Figure ������ the pose of the VP for RRP and

PRP platforms is determined with Equation 
������ with VB in the right	hand side

changed to read VP� together with the base	�xed joint input for leg A� The vertices

of the VP are the three knee joint centres described in the VP frame� !V P � Consider

Figure ����� the pose information obtained by using Equation 
����� can be used to

transform the the knee joint coordinates in the following way�

ki�	V P � T 	�	V Pki�	� 
�����

���
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where�

T	�	V P �

�
�����

cos	
�V P ��

sin	
�V P ��

�	Ox�V P ��
cos	

�V P ��
�Oy�V P ��

sin	
�V P ��




� sin	
�V P ��

cos	
�V P ��

Ox�V P ��
sin	

�V P ��
�Oy�V P ��

cos	
�V P ��

� � �

�
����� �

After the input data is suitably transformed� it can be used� together with the

rest of the information listed in Table ���� to compute the univariate coe�cients� The

output from the roots of the univariate is the pose of !V P in E�

�
			�
a�

b�

��

�



� �

�
			�
Ox�V P �E

Oy�V P �E

�
�V P �E

�



� � 
�����

However� what is required is

�
			�
a

b

�

�



� �

�
			�
OxE��

OyE��

�
E��

�



� � 
�����

First� the pose of E with respect to !V P is determined� using a transformation

derived analogously to Equation 
�����

�
			�
OxE��V P

OyE��V P

�

�



� �

�
			�
� cos�

�V P �E
� sin�

�V P �E
�

sin�
�V P �E

� cos�
�V P �E

�

� � �

�



�

�
			�
a�

b�

�

�



� � 
�����

These coordinates are then transformed to the base frame using

�
			�
a

b

�

�



� �

�
			�
cos �

�V P ��
� sin�

�V P ��
Ox�V P ��

sin�
�V P ��

cos�
�V P ��

Oy�V P ��

� � �

�



�

�
			�
OxE��V P

OyE��V P

�

�



� � 
�����

���
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Finally� the orientation is computed� completing the solution procedure�

�
E��

� �
�V P ��

� �
�V P �E

� 
�����

���� Mixed�Leg Platforms

As mentioned in Chapter �� some topologically asymmetric platforms can be anal	

ysed using the univariate� However� due to the limitation imposed by the derivation

that K� be the same for all legs 
see Section ����� combinations must all belong to

one of the three types� RR	� PR	 or RP 	type� For example the platform may be

comprised of one RRR leg� one RPR leg� and one RRP leg� The procedure is simply

a combination of the virtual base� regular and virtual platform procedures� A detailed

example is given in Appendix A���

All combinations within a leg type are possible� the issue becomes a matter of

keeping track of the transformations required to compute the univariate coe�cients

and� if needed� solutions in the base frame� As shown in the introduction to Chapter

�� this amounts to ��� di�erent manipulators� The FK problem of the remaining

��� can not be solved by directly evaluating the univariate� The process instead

involves computing the intersections of the three constraint surfaces� which requires

the simultaneous solution of three quadratic equations� However� this procedure will

not be further discussed� instead the reader is referred to ��� ��� ��� ��� 	����

���� Lower�Pair Jointed Platform Summary

The following three tables� ���� ���� and ����� provide a summary of the informa	

tion needed to apply the univariate to the FK problem for any of the ��� manipulators�

including the �� PSGP� discussed earlier�

���
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Platform Geometric constraints Circle and point coordinates

RRR Hip points Mi with �xed
positions in E move on
�xed circles centred on
stationary ankle points
Fi in 	� The circle radii
are determined by the
intermediate R�pair
angular inputs�

K�i � �
K�i � Fxi��
K�i � Fyi��

K�i � K��i 
K��i � r�i 

where

ri �
�
���i 
 ��i cos �����

� 
 ���i sin �����
�
� �
� �

Note� i � fA�B�Cg and � � f�� �� �g�

RPR Kinematically isomorphic
to the RRR platform�

K�i � �
K�i � Fxi��
K�i � Fyi��

K�i � K�
�i


K�
�i
� r�i 

where
ri � d�i �

RRR Hip points Mi with �xed
positions in E move on
�xed circles centred on
stationary knee points
Ki in 	V B � These circle
centres determined by
the base R�pair inputs
are vertices of the VB�

K�i � �
K�i � Kxi��V B


K�i � Kyi��V B



K�i � K��i 
K��i � r�i 

where ri � ��i 
�Kxi��

� Kyi��
� Kzi��

� �

��Fxi�� 
 ��i cos ����� � �Fyi�� 
 ��i sin ����� � ��

and ki��V B � T���V B
ki�� see Equation �������

PRR Kinematically isomorphic
to RRR platforms�

See RRR platform and set ��i � d�i �

RRR Knee points Ki with
�xed positions in EV P 
determined by the
platform R�pair inputs
move on �xed circles in
	� The Ki are the
vertices of the VP�

K�i � �
K�i � Fxi��
K�i � Fyi��

K�i � K��i 
K��i � r�i 

where ri � ��i 
�Kxi�E

� Kyi�E
� Kzi�E

� �

��Mxi�E

 ��i cos ���E� � �Myi�E


 ��i sin ���E� � ��

and ki�EV P � TE�EV P
ki�E see Equation �������

RRP Kinematically isomorphic
to RRR platforms�

See RRR platform and set ��i � d�i �

Table ���� RR�type platform constraints and parameters needed for the
FK solution procedure� Frame E moves relative to ��

���
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Platform Geometric constraints Circle and point coordinates

PRR Hip points Mi with
�xed positions in E move
on �xed VL parallel to
the translation direction
of the grounded P �pairs�

K�i � �

�
Fzi�� sin ����

K�i � � �

�
Fzi�� cos ����

K�i � �Fxi�� 
 ��i cos ����� sin �����
�Fyi�� 
 ��i sin ����� cos �����

Note� K�i � � for all PR�type platforms and
i � fA�B�Cg and � � f�� �� �g�

PPR Kinematically isomorphic
to PRR platforms�

See PRR platform and set ��i � d�i �

RPR Hip points Mi with

�xed positions in E move
on �xed lines in 	� The
line coordinates for each
leg are determined by the
base R�pair inputs�

K�i � �

�
Fzi�� sin ����

K�i � � �

�
Fzi�� cos ����

K�i � Fxi�� sin ���� � Fyi�� cos �����

PPR
Hip points Mi with
�xed positions in E move
on �xed lines in 	V B �
The three knee points
Ki are the vertices of the
VB� The line coordinates
are determined by the
grounded P �pair inputs�

K�i � �

�
Kzi��V B

sin ����V B 

K�i � � �

�
Kzi��V B

cos ����V B 
K�i � Kxi��V B

sin ����V B �Kyi��V B
cos ����V B 

where �Kxi��
� Kyi��

� Kzi��
� �

��Fxi�� 
 d�i cos ����� � �Fyi�� 
 d�i sin ����� � ��

and ki��V B � T���V B
ki�� see Equation �������

PRR
Knee points Ki with
�xed positions in EV P 
determined by the
platform R�pair inputs
move on �xed lines in 	�
The three knee points
Ki are the vertices of the
VP�

K�i � �

�
Fzi�� sin �����

K�i � � �

�
Fzi�� cos ����

K�i � Fxi�� sin ���� � Fyi� cos ����

with �Kxi�E
� Kyi�E

� Kzi�E
� �

��Mxi�E

 ��i cos ���E� � �Myi�E


 ��i sin ���E� � ��

and ki�EV P � TE�EV P
ki�E  see Equation �������

PRP Kinematically isomorphic
to PRR platforms�

See PRP platform and set ��i � d�i �

Table ��	� PR�type platform constraints and parameters needed for the
FK solution procedure� Frame E moves relative to ��

���
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Platform Geometric constraints Circle and point coordinates

RRP Ankle points Fi with
�xed positions in 	 move
on �xed VL parallel to
the translation direction
of the platform��xed
P �pairs�

K�i � �

�
Mzi�E

sin ���E 

K�i � � �

�
Mzi�E

cos ���E 

K�i � �Mxi�E

 ��i cos ���E� sin ���E�

�Myi�E

 ��i sin ���E� cos ���E �

Note� K�i � � for all RP �type platforms and
i � fA�B�Cg and � � f�� �� �g�

RPP Kinematically isomorphic
to RRP platforms�

See RRP platform and set ��i � d�i �

RPR Ankle points Fi with
�xed positions in 	 move
on �xed lines in E� The
line coordinates for each
leg are determined by the
platform��xed R�pair
inputs�

K�i � �

�
Mzi�E

sin ���E 

K�i � � �

�
Mzi�E

cos ���E 
K�i �Mxi�E

sin ���E �Myi�E
cos ���E �

RPP
Ankle points Fi with
�xed positions in 	 move
on �xed lines in EV B �
The three knee points
Ki are the vertices of the
VB� The line coordinates
are determined by the
platform P �pair inputs�

K�i � �

�
Kzi�EV B

sin ���EV B 

K�i � � �

�
Kzi�EV B

cos ���EV B 
K�i � Kxi�EVB

sin ���EV B �Kyi cos ���EV B 

where �Kxi�E
� Kyi�E

� Kzi�E
� �

��Mxi�E

d�i cos ���E� � �Myi�E


d�i sin ���E� � ��

and ki�EV B � TE�EVB
ki�E see Equation �������

RRP
Knee points Ki with
�xed positions in 	V P 
determined by the base
R�pair inputs move on
�xed lines in E� The
three knee points Ki are
the vertices of the VP�

K�i � �

�
Mzi�E

sin ���E �

K�i � � �

�
Mzi�E

cos ���E 
K�i �Mxi�E

sin ���E �Myi�E
cos ���E 

with �Kxi��
� Kyi��

� Kzi��
� �

��Fxi�� 
 ��i cos ����� � �Fyi�� 
 ��i sin ����� � ��

and ki��V P � T���V P
ki�� see Equation �������

PRP Kinematically isomorphic
to RRP platforms�

See PRP platform and set ��i � d�i �

Table ���
� RP�type platform constraints and parameters needed for the
FK solution procedure� Roles of � and E reversed� � moves relative to E�

���
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���� FK Solution Procedure for RRG Platforms

Figure ����� An RRG platform�

RRG platforms are quite di�erent from those with only lower	pair jointed legs�

Nevertheless� the two classes of platform may be considered as instantaneous compu	

tational equivalents because once the rack tangent angles are �xed� the higher	pair

platform momentarily becomes an RR	type PSGP�

For the platform shown in Figure ����� the three variable joint input parameters

are the change in rack tangent angles� due to the change in contact points measured

along each of the three racks� They are given by the three numbers  di � r �i�

i � fA�B�Cg� where the  di are the changes in arclength� the radius of the pinion
is r� and the  �i are the change between the initial and �nal rack tangent angles�

Since tangential contact between rack and pinion is always maintained� the change

in tangent angle is the same as the change normal angle�  �i� This is illustrated in

���
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Figure ���� 
i�� The parameters required to �x the pose of the ith leg are illustrated

in Figure ���� 
ii��

Figure ����� �i� �
i � ��i� �ii� parameters for the ith leg�

When the active higher pairs are locked the platform may be temporarily con	

sidered an RR	type PSGP� The VP can be used in the solution procedure for the

FK problem� The VP for a given set of input rack tangent angles is illustrated in

Figure ����� It is important to emphasise that the pure rolling nature of the higher

pairs make platforms of the type in Figure ���� markedly di�erent from lower	pair	

jointed SGP� The FK analysis cannot be directly reduced to the lower pair SGP case

because of the contact point location ambiguity arising from the rolling constraints�

Furthermore� there exists no such equivalent mechanism which can exactly reproduce

a rack	and	pinion motion 
see Hunt ����� p������ Methods� such as those discussed

in Gosselin and Sefrioui ����� Wohlhart �	���� or Merlet �	��� cannot be used un	

less suitably modi�ed to account for the relative rolling� However� these procedures

tend to be poorly suited to this platform type by virtue of the fact that the platform

attachment points� i�e�� the points of contact between the pinion and racks� change

relative to each other from pose to pose�

���
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Figure ����� The VP for a given set of inputs�

�
�
	
 Involute Inputs
 Expressions for the VPP must be developed so they

can be used as inputs to the kinematic mapping� We want the VPP in terms of

the joint input variables so they can be used to evaluate the univariate coe�cients�

Consider� for now� only leg A in Figure ���� and observe that the knee joint KA has a

�xed position in the reference frame attached to the rack� RA� We know it moves on a

circle in !� but it also experiences motion relative to the moving disk frame E� What

is required is a description of that motion in terms of the joint inputs� This turns out

to be straightforward� if the pinion is �xed and the relative motion of the rack with

respect to E is pure rolling then the original contact point on the rack moves on an

involute of the pinion ����� There is a bijective correspondence� that depends on the

change in rack tangent angle� between positions of a given rack point on its involute

and the knee joint positions� This gives a complete description of the motion of the

���
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Figure ����� Reference systems in leg A after a rotation �
A�

knee joints in terms of the input variables� Due to their positional dependence on an

involute� we call these one parameter sets of knee joint positions involute inputs�

The motion of the knee joints of the remaining two legs must be the same type

as that of leg A relative to E� but the starting points of the involutes are di�erent�

Thus� for every set of three joint input parameters one obtains a set of three VPP

expressed in E� With the VPP transformed as involute inputs the kinematic mapping

can be used�

In what follows the involute inputs will be derived� Figure ���� shows the ref	

erence coordinate systems used to transform the position of the knee joint KA from

the moving rack reference frame� RA� to the relatively �xed pinion reference frame�

E� The origin of RA moves along its involute and R
�
A gives the new position of RA

after a change in tangent angle�  �A� The intermediate system accounting for the

���
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location of the starting point and orientation of the involute� E �
A� is �xed relative to

E� Examining Figure ����� it is easy to see that for each leg the required transforma	

tion to take the coordinates of the knee joint Ki from frame R
�
i to frame E are the

concatenation of transformations expressing points in frame R�
i relative to frame E

�
i

and those expressing points in frame E �
i relative to frame E�

T R�

i�E
� T E�

i�E
T R�

i�E
�

i

�

�
			�
c�E�

i�E
�s�E�

i�E
�

s�E�

i�E
c�E�

i�E
�

� � �

�



�

�
			�
�s �i �c �i r
c �i ' �is �i�

c �i �s �i r
s �i � �ic �i�
� � �

�



� �

where c � cos� and s � sin�

The geometrical signi�cance of T R�

i�E
�

i
is seen when each column is examined ��	��

The �rst column is the direction of the disk tangent in E �
i 
the direction of the x	axis

of frame R�
i�� The second column is the direction in E �

i� towards the centre of the

pinion� of the normal at the new contact point 
the direction of the y	axis of frame

R�
i�� The third column is the position of the origin of frame R

�
i on the involute� also

expressed in E �
i� The remaining transformation� T E�

i�E
� depends on the angle between

the x	axis of frame E and the rack normal in the home	position� indicated by �E�

i�E
�

The knee joints� shown in Figure ����� all have the same coordinates in their

respective Ri and R
�
i frames�

ki�Ri � ki�R�

i
�

�
			�

�

���i
�

�



� �

Once the changes in rack tangent angle 
joint inputs��  �i� are speci�ed the coordi	

nates of the knee joints 
involute inputs� in frame E� ki�E� are easily determined by

���
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left multiplying the ki�R�

i
with the appropriate T R�

i�E
�

ki�E � T R�

i�E
ki�R�

i
� 
�����

�
�
�
 Remaining Computation Steps
 The VPP expressed in the VP

frame� EV P � are needed to evaluate the univariate coe�cients� We can not simply use

the procedure for RRR or RRP platforms due to the nature of the higher pairs and

because the platform frame moves with the centre of the pinion� not an attachment

point�

We proceed in a slightly di�erent way from Section ������ The �rst step is to

compute the following for use in the transformation T E�EV P � from Equation 
������

OxEV P �E
� KxA�E � 
�����

OyEV P �E
� KyA�E � 
�����

�EV P �E � atan�
�

KyB�E �KyA�E�� 
KyB�E �KyA�E�

�
� 
�����

The coordinates required to evaluate these equations are determined using Equation


������

Now we have everything needed to compute the required transformation� The

right	hand side of Equation 
����� is pre	multiplied with the transformation from

Equation 
������ which is the following concatenation�

T R�

i�EV P
� T E�EV PT R�

i�E
� 
�����

� T E�EV PT E�

i�E
T R�

i�E
�

i
� 
�����

We can use the simplest expression of the VPP� ki�R�

i
� �� � ���i � ��T � to obtain the

required coordinates�

ki�EV P � T R�

i�EV P
ki�R�

i
� 
�����

���
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With the VPP obtained from Equation 
������ together with the base geometry

and IAC� the univariate coe�cients can be evaluated� The roots of the univariate

yield the pose of EV P with respect to the base frame� !�

�
			�
a�

b�

��

�



� �

�
			�
OxEV P ��

OyEV P ��

�
EV P ��

�



� � 
�����

However� the required information is

�
			�

a

b

�

�



� �

�
			�
OxE��

OyE��

�
E��

�



� � 
�����

The solution is evident upon examination of Figure ����� The pinion displacement

parameters� then� are given by�

a � a� ' 
l�A ' r� cos�� d�A sin�� 
�����

b � b� ' 
l�A ' r� sin� ' d�A cos�� 
�����

� � �� ' �E�EV P �

� �� � �EV P �E� 
�����

where�

� � �E�

A�E
' �A � ��

d�A � r �A�

A detailed numerical example is given in Appendix A���

���



���



CHAPTER �

The Inverse Kinematics Problem

The inverse kinematics 
IK� may be stated as� given the position and orientation of

the platform frame E� determine the variable joint inputs and corresponding assembly

modes required for the platform to attain the desired pose� It is generally acknowl	

edged that the IK problem for PSGP is trivial� Closed form algebraic solutions can

usually be found� As for the FK problem� the conventional Cartesian approaches

are architecture and geometry speci�c� There is� as yet� no uni�ed approach to the

problem for the general case� While the kinematic mapping procedure o�ered here

is not the desired uni�ed approach� it does represent a step on the road towards this

goal� The main thing to emphasise is that the kinematic mapping allows for the

development of IK algorithms that are independent of the geometry of the platform

and hence� provide solutions to the IK problem of RRG	type platforms that remain

unsolved by conventional Cartesian approaches ��� �� ���� It is mainly for this reason

that the issue of the IK is broached�

To begin� one observes that the FK problem reduces to determining the intersec	

tion points of three constraint surfaces in the projective homogeneous image space�

Each point of intersection represents a platform pose� It follows that the IK problem

can be solved by working in the opposite direction� start with a given point in the

image space which represents a feasible platform pose and extract a set of active joint
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inputs from the corresponding pre	image� Because the mapping is not bijective 
there

is at most one pre	image for every point in the image space� there are points in this

space that are not the image of a planar displacement�

With the use of kinematic mapping it is a simple matter to determine all IK

solutions by considering the general constraint surface for each leg of the platform in

question� Each leg of the platform can be considered separately because the solutions

are decoupled from leg	to	leg� Hence� the IK problem of every lower pair jointed

three	legged planar platform with three DOF can be solved by determining the joint

input value from the image point satisfying the associated constraint surface equation�

Moreover� the IK problem for RRG	type platforms are also easily determined� This

is a new result� which is not possible with conventional Cartesian approaches due to

the ambiguities introduced by the relative rolling between each rack and the pinion

���� ����

	��� Lower Pair Platforms

The solutions to the IK problem of a given three	legged planar platform with

three DOF are uncoupled between legs ����� That is� the value of the active joint

input in each leg� given a desired platform pose� depends only on the geometry of

the given leg and the pose� Thus� we can solve the IK problem for any of the ����

possible platforms composed of combinations of the �� characteristic chains taken

� at a time using the kinematic mapping� Of course� it is easy to write the three

independent equations for these platforms based on their Cartesian geometry� As a

means	to	an	end this approach is complete� However� each distinct leg type requires

a distinct equation� Solving the IK problem by �nding the pre	image of an image

point in the kinematic mapping image space ultimately lands one in the same pot of

stew� However� it is to be hoped that adopting an approach that is independent of

���
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the geometry of the base and platform will eventually lead to a uni�ed IK solution

procedure� For this reason the following material is presented�

Because of the trivial nature of the problem from a Cartesian point of view it

is natural to expect that the kinematic mapping procedure be simple and straight	

forward� Indeed� this is the case� There are only two main groups of leg type to

consider� RR	type and non	RR	type� Recall that the general constraint surface can

be expressed by Equation 
����� repeated here�

K�z
�	X�

� �X�
� 
 � 	���


�
K�	�� z�
	x� � y�
 � �z	K�x�K�y
 �Rz�

�
X�

� �

	���

�
Rz� �K�	�� z�
	x� � y�
� �z	K�x�K�y


�
X�

� � 	K�z
� �K�xz
X�X� �

	K�z
� �K�yz
X�X� � 	K�yz �K�z

�
X�X� � 	K�xz �K�z
�
X�X� �

	K�yz �K�xz
X�X�
 � �� 	���


Because each platform leg is solved independently the subscripts indicating the

leg to which a parameter belongs� i � fA�B�Cg� may be safely dropped� For a
particular leg� Equation 
���� contains only variables and constants associated with

that leg� Thus� the homogeneous coordinates of points in the platform frame E are

pi�E � 
x � y � z��

Those of points in the �xed base frame ! are

pi�� � 
X � Y � Z��

�
	
	
 RRtype Platforms
 For all characteristic passive sub	chains the

active joint is either an R	pair or a P 	pair� For RR	type platforms the joint input

can always be characterised by the distance between the �xed base point and the

moving platform point� regardless of active joint type� This quantity is the radius� r�

of the constraint circle�

���
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A given image point �X� � X� � X� � X�� represents a platform pose� But� it also

represents a point of intersection of a family of constraint surfaces� The image point

is uniquely �xed by the platform displacement parameters� 
a� b� ��� Each constraint

surface containing this point is a function of the image point itself �X� � X� � X� � X���

the moving platform points 
x � y � z�� and the circle coordinates 
K� � K� � K� � K���

Recall that for RR	type characteristic passive sub	chains the circle coordinates are

de�ned as follows�

K� � arbitrary homogenising constant�

K� � Xc�

K� � Yc�

K� � R�K�	x
� � y�
�

R � K�
� �K�

� � r� �K�	x
� � y�
�

Examining all these quantities together� it is to be seen that the only unknown is

the radius r of the constraint circle� Note� this quantity represents the distance

between corresponding base and platform points� After making the substitution

R � K�
� ' K�

� � r� ' K�
x
� ' y�� in Equation 
���� and expanding then collecting

terms of r yields a quadratic with the form

Ar� 'Br ' C � �� 
����

where

A � �z�	X�
� �X�

� � �X�
�X

�
� 
�

B � ��

C � �z�X�
� 	X

�
� �X�

� 
 � �zX��X�	X
�
� �X�

� 
	K�z � y
�X�	X
�
� �X�

� 
	x�K�z
� �

�z�X�
� 	X

�
� �X�

� 
 � �zX��X�	X
�
� �X�

� 
	x�K�z
�X�	X
�
� �X�

� 
	y �K�z
 �

X�
� �x

� � y� � z�	K�
� �K�

�
 � �z	K�x�K�y
� � �z	X�X
�
� �X�

�X�
	K�y �K�x
 �

�X�
�X

�
� �x

� � y� � z�	K�
� �K�

�
� �X�
� �x

� � y� � z�	K�
� �K�

�
� �z	K�x�K�y
��

���
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This quadratic has a solution of the form�

r � �
p�AC

A
� 
����

While this result means that there are two real solutions� only one is acceptable since

the quantity represents the radius of a circle� which is� by convention� a positive

non	zero number� Thus� there is but one solution for a given RR	type platform leg�

r �

����
p�AC

A

���� � 
����

The fact that there is but one value for r does not� in general� mean that there

is but one solution to the IK problem� This is only so for RPR	type legs� The

remaining RR	type legs all have elbow�up and elbow�down solutions� meaning there

is a maximum of � solutions for each leg� �� � � for a PSGP� The input parameter

for each leg required to attain the desired pose for these legs is easily obtained from

the calculated r using plane trigonometry and the known design parameters� see the

example in Appendix B��� The upper bounds on the number of solutions for each

RR	type PSGP are listed in Table ���� While for arbitrary mixed leg platforms there

can be �� �� �� or � solutions� depending on the architecture of the constituent legs�

RR	type PSGP Maximum solutions

RRR �

RPR �

RRR �

PRR �

RRR �

RRP �

Table ���� Maximum number of IK solutions for RR�type PSGP�

�
	
�
 PR and RPtype Legs
 Solving the IK for PR	 and RP 	type sub	

chains is accomplished by solving the general constraint equation for a single variable�

���
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the unknown direction of the line joining the Fi and the corresponding Mi� Thus�

unlike the FK problem the two types do not have to be considered separately� The

circle coordinates have the uniform de�nition�

K� � ��

K� �
�

�
Z sin ��

K� � ��
�
Z cos ��

K� � R � X sin �� Y cos ��

where the 
X � Y � Z� are the homogeneous coordinates of the �xed base point�

Clearly� the unknown is the angle �� Making the appropriate substitutions in

Equation 
���� gives an equation linear in the sines and cosines of �� Solving for �

gives�

� � atan�
N�D�� 
����

where

N � �z	X�X� �X�X�
� �xX�X� � 	zY � y
X�
� � 	zY � y
X�

�

D � �yX�X� � �z	X�X� �X�X�
 � 	zX � x
X�
� � 	zX � x
X�

�

The input parameter for each PR	 or RP 	type leg required to attain the given

pose is easily obtained from the calculated value of � using plane trigonometry and

known design parameters� Two examples are given in Appendix B��� As for the RR	

type legs� there is one solution for this equation� but not� in general� to the IK problem

for PR	 and RP 	type PSGP� The upper bounds on the number of solutions for these

two types of PSGP are listed in Table ���� Of course� for arbitrary architectures there

can be �� �� �� or � solutions�

���
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PR	type PSGP Max� sol� RP 	type PSGP Max� sol�

PRR � RRP �

PPR � RPP �

RPR � RPR �

PPR � RPP �

PRR � RRP �

PRP � PRP �

Table ���� Maximum number of IK solutions for PR� andRP�type PSGP�

	��� Higher Pair RRG Platforms

A complicating factor in general plane displacement analysis of the RRG plat	

form is the ambiguity that the rolling constraint introduces� That is� �� the desired

�nal disk orientation does not divulge how much of the new position was achieved

by rotation of the grounded and non	grounded links and how much was achieved by

pure rolling between the disk and the legs� By how much has the disk rolled on the

racks and by how much has each rack rolled on the disk) Is there a combination� and

if so� what is the ratio) These questions lead to di�culties in the determination of

the joint inputs�  � � if only the trigonometry in the Cartesian plane is considered�

Furthermore� displacement analysis requires the presence of initial assembly condi	

tions 
IAC� in the kinematic closure equations� This dependency on the IAC means

that analysis is not possible using only the techniques employed on lower pair jointed

SG type platforms by ����� for instance�

Indeed� there exists no practical IK solution procedure for these manipulators�

An algorithm is o�ered in ���� however� the authors fail to account for the orientation

of the end	e�ector in the inertial reference frame� They use instead a relative angle

which can change for certain displacements while the orientation of the end	e�ector

remains constant� The only other algorithm� ����� is problematic because it leads to

many spurious solutions�

���
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�
�
	
 Solution Procedure
 The goal is to determine the inputs required to

attain a desired feasible end	e�ector pose� As for the lower pair PSGP� the constraint

hyperboloids for each leg are �rst examined� An image point 
X� � X� � X� � X�� is

�xed by the given pinion displacement parameters 
a� b� ��� Furthermore� the con	

stants 
K� � K� � K� � K�� are known because the circle centres and radii are all

speci�ed� This leaves the three homogeneous VPP coordinates 
x � y � z� as un	

knowns� It is important to note that for the IK problem the VPP coordinates must

be expressed in the pinion frame� E� and not in the VPP frame� EV P � Thus� we have

three hyperboloid equations and nine unknowns�

Hi � fi
xi� yi� zi�� i � fA�B�Cg� 
����

Since a detailed example is presented in Appendix B��� the leg speci�c subscripts�

i � fA�B�Cg� are again used�

Since no practical design requires the VP to have points on the line at in�nity�

L�� it is safe to set zi � �� reducing the quantity of unknowns to six�

Hi � fi
xi� yi�� i � fA�B�Cg� 
����

At least three more equations are required� Consider the involute input Equa	

tions 
������ With zi � �� these are a set of six equations expressing the knee joint

coordinates in the moving frame� E� in terms of the three unknown rack tangent angle

inputs�  �i� This gives nine equations and nine unknowns� coming in independent

sets of three� That is� xi� yi� �i can be solved independently for each i � fA�B�Cg�

Hi � fi
xi� yi�

xi � gi
 �i�

yi � hi
 �i�

�����
����
� i � fA�B�Cg 
����

���
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where fi is a function in the two variables xi and yi� which are themselves single

variable functions gi and hi� respectively� in terms of  �i�

Substituting the expressions for xi � g
 �i� and yi � h
 �i� into Hi gives the

univariate function

Hi
 �i� � a� ' a� �i ' a�
 �i�
� ' a� cos �i ' a� sin �i '

 �i
a� cos �i ' a� sin �i�� 
����

where the ai are coe�cients in the �eld of real numbers�

a� � X�
� 'X�

� '
�

�

X�

� 'X�
� �
�l�r ' l�� ' r� 'K�� 'K�
X�X� 'X�X�� '

K�
X�X� �X�X���

a� � ��

a� �
r�

�

X�

� 'X�
� ��

a� � 
l� ' r�

�
�

�
K�
X

�
� �X�

� ��X�X� 'X�X� 'K�X�X�

�
�

a� � 
l� ' r�

�
�

�
K�
X

�
� �X�

� ��X�X� �X�X� � K�X�X�

�
�

a� � r

�
�

�
K�
X

�
� �X�

� � 'X�X� 'X�X� 'K�X�X�

�
�

a� � r

�
�

�
K�
X

�
� �X�

� � 'X�X� �X�X� 'K�X�X�

�
�

Solve Hi
 �i� for  �i� and use this value to determine xi and yi from the gi and

hi� This immediately yields the knee joint coordinates in the moving pinion frame�

Hi
 �i� represents a curve� The roots of this function� i�e�� the zero	crossings in the

 � � H
 �� plane� give the change in rack tangent angles� which are the solutions

to the IK problem� The upper bound on the number of solutions depends on the

number of roots� These will now be examined�

���
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The curve is characterised as a quadratically dominant oscillating curve� That is�

the curve H
 �� is the locus of points oscillating about the parabola

Hp � a� ' a�
 ��
�� 
�����

Examining Figure ���� it is evident that the amplitude of the oscillations is minimum

at  � � �� As  � moves away from zero� in either direction along the  � 	axis the

amplitude increases and the frequency decreases� The period 
the term is used even

though this is not a periodic function� strictly speaking� is about � radians� If a�  �

it is possible to have more than two zeros� If� however� the range of the change in

rack tangent angles is restricted to a value smaller than � radians� more than two full

rotations� the maximum number of zeros is �� This gives the expected upper bound

on the number of IK solutions for each leg�
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Figure ���� The one parameter curve H	�

 oscillating about a parabola
in the �
 �H	�

 plane�

It is a simple matter of plane trigonometry to extract the assembly con�gura	

tion
s� from the nine parameters� xi� yi� and  �i� The solutions are decoupled among

legs and there is an upper bound on the number of solutions to the IK problem of

�� � �� A detailed numerical example can be found in Appendix B���

���
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Workspace and Singularities

One of the general drawbacks of parallel manipulators� as mentioned in Chapter ��

is the smaller workspace as compared to serial manipulators� Moreover� the rela	

tively small workspace can be densely packed with singularities� These two issues are

discussed in the following sections�


��� Workspace Analysis

Whether or not solutions to the IK problem of a manipulator exist raises the issue

of its workspace� The total workspace of the manipulator� usually called the reachable

workspace� is de�ned as the area� or volume within which a reference point on the end

e�ector can be made to coincide with a given point ����� There are various de�nitions

of subsets of the reachable workspace� For instance� the dextrous workspace is de�ned

as the set of points in the reachable workspace that the end e�ector can reach with

any orientation �����

The workspace of PSGP has received a large amount of attention and has been

fully established by Gosselin ����� Pennock and Kassner �		��� Merlet and Mouly

����� Indeed� various interactive software packages for design� motion and trajectory
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planning ���� ��� already exist� However� only recently has kinematic mapping been

applied to workspace analysis by Husty ����� By virtue of the ruled constraint surfaces

which describe all possible positions of the end	e�ector it is a useful� informative and

overlooked visualisation aid and design tool� Moreover� it facilitates computations

when more than one end	e�ector reference point is considered �����

Figure ���� An RPR platform�

�
	
	
 Reachable Workspace
 Here an RPR platform is considered� as

reported in ����� but the procedure may be adapted to any PSGP� The following is

a summary of the procedure described by Husty ����� The image of the reachable

workspace can be obtained in the following way� The leg lengths� di� must be within

the joint limits dimin � di � dimax� i � fA�B�Cg� This condition means that for each
leg there correspond two coaxial constraint hyperboloids� They bound the region of all

possible positions and orientations of the platform� assuming the platform attachment

points of the other two legs have been disconnected� Performing the same procedure

for each leg in turn yields three solid regions bounded by six hyperboloids� each pair

���
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coaxial� Figure ��� shows the three solids for the platform illustrated in Figure ����

Note that the origin of frame E is located on the centroid of the platform�
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Figure ���� The kinematic image of the reachable workspace for an RPR platform�

The parametric equation for the constraint hyperboloid given by Equation 
�����

is reproduced� and modi�ed by adding the subscript i to the radius r� here as Equation


���� representing the constraint solid�

�
			�
X�

X�

X�

�



� �

�

�

�
			�
�
K� ' x�t�K� ' y� ' 
ri

p
t� ' �� cos �

�
K� ' y�t'K� � x� ' 
ri
p
t� ' �� sin �

�t

�



� �

� � f�� � � � � ��g�
t � f��� � � � ��g�
imin � i � imax�


����

Note that rimin � dimin and rimax � dimax and the parameter lines t � constant

correspond to those positions which belong to a constant orientation�

���
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Figure ���� Pre�Image of a constraint solid for leg A�

The next step is to obtain the pre	image of the constraint solids� This is done

by substituting Equation 
���� into Equation 
������ The pre	image depends on the

platform reference point 
x � y � ��� which makes it relatively easy to compute di�erent

Cartesian workspaces for di�erent points on the end	e�ector� Figure ��� shows the

pre	image of the solid region bounded by the smallest hyperboloid Hmin� determined

with dmin� and by the largest Hmax� corresponding to dmax� The envelopes of the one

parameter families of circles represent the boundaries of the reachable workspace of

the end	e�ector when the connections for legs B and C between base and platform

have been removed�

For each constraint solid there are four envelops� The two belonging to Himax

are denoted by eimax and eimax� and those belonging to Himin by eimin and eimin � To

obtain a description of the workspace four cases must be distinguished�


�� eimax and eimin both contain overlapping circles 
i�e�� valid poses�� The

workspace is given by Wi � eimax � eimin �

���
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�� eimax consists of areas of overlapping circles� but not eimin � The workspace is

Wi � eimax � 
eimin � eimin��


�� eimin consists of areas of overlapping circles� but not eimax� The workspace is

Wi � 
eimax � eimin�� eimin �


�� Both eimax and eimin are devoid of overlapping circles� Then the workspace is

Wi � 
eimax � eimin�� 
eimin � eimin��

The intersection of the workspaces Wi of the three legs gives the reachable workspace

W �

W � WA �WB �WC � 
����

�
	
�
 Dextrous Workspace
 The dextrous workspace is de�ned by Kumar

���� as a set of points in the reachable workspace about which the end	e�ector can

rotate through ����� Husty ���� has shown that a necessary condition for the existence

of a dextrous workspace is that the disk Dimax� which is the disk bound by eimax �

contain overlapping circles� Moreover� Dimax should not be completely covered by

any hole in the workspace� This condition can be expressed

eimax � eimin � 
����

Figure ��� is an example of a dextrous workspace for leg A� In this leg the

dextrous workspace is located between eimin and eimax� The existence of a dextrous

portion of the whole workspace depends on the intersection of the dextrous workspace

of each leg�

�
	
�
 PR and RPtype Platforms
 Figure ��� shows a PPR platform�

The constraint surfaces for these� and for all PR	 and RP 	type platforms are hyper	

bolic paraboloids� The constraint solids consist of pairs of identically shaped� but dis	

placed hyperbolic paraboloids� The left	hand side of Figure ��� illustrates the image

���
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Figure ���� A PPR platform�

space solid corresponding to the reachable workspace of one leg of an PPR platform�

The image of the reachable workspace is the solid bounded by the intersection of the

three pairs of constraint solids representing the joint limits�
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Figure ���� The kinematic image of the reachable workspace for a PPR
platform and the corresponding pre�image�
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The right	hand side of Figure ��� shows the pre	image of the solid bounded by the

extreme hyperbolic paraboloids for leg A of the platform� As for the RPR platform

analysed earlier� for each solid there are four envelops� To obtain a description of the

workspace� the same four cases� as in Section ������ must be distinguished� Examining

the four cases leads to an identical criteria for the existence of a dextrous workspace

as expressed in Section �����

�
	
�
 Workspace ofRRG Platforms
 The determination of the workspace

of RRG platforms remains� essentially� an unsolved problem� It was attempted by

Agrawal and Pandravada in ���� ���� but the IK procedure upon which the workspace

analysis is based is fraught with formulation singularities� This is because of the

seemingly impossible task of modelling pinion displacements in E�� A better approach

remains elusive� but should be found in the kinematic mapping image space�

While no means of determining the constraint solid for these platforms has yet

been found� it is worthwhile to study the e�ects of displacements on the hyperboloid

axis� This is because the characterisation of the associated family of hyperboloids

may be obtained by characterising the family of lines of their axes� Recall that a line

in a �D space is uniquely de�ned by four generalised coordinates� This means that

there are �� unique lines in space�

If the line coordinates are related by one equation� then�� lines are excluded and

the �� remaining lines constitute a linear complex� represented by the equation� A

single equation may also represent a surface� or curve� for there are �� lines tangent

to a given surface� or cutting a given curve� Such an equation is called the line

equation of the surface or curve �	����

�The terms complex and congruence� used to indicate �� and �� systems of lines� were �rst intro	
duced by Pl�ucker in ������

���
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If the coordinates are related by two simultaneous linear equations then there are

�� lines satisfying these equations� which constitute a linear congruence described

by the set of equations� A congruence contains all congruent lines of two complexes�

it may be regarded as their mutual intersection �		���

If three equations are simultaneously veri�ed by the four coordinates the cor	

responding lines� �� in number� constitute a ruled surface 
Strahlen��ache �		����

represented by the system of three equations� A ruled surface may be considered

as the mutual intersection of three complexes� i�e�� as the geometric locus of lines

belonging to all three complexes�

Four equations relating the four coordinates means that there are a �nite number

of lines� ��� which satisfy the equations� In line geometric terms� such a system can

be represented by the mutual intersection of four complexes� or two ruled surfaces

�		��� Ordinarily� no line satis�es �ve conditions�

The parametric equation of the axis of the constraint hyperboloid for an RR	type

leg is given by Equation 
������ reproduced below as Equation 
�����

�
			�
X�

X�

X�

�



� �

�

�

�
			�
y � K�

K� � x

�

�



�'

t

�

�
			�
K� ' x

K� ' y

�

�



� � 
����

The radius of a circle in the plane X� � const�� Equation 
������ is reproduced below�

RX�
�

r

�

q

� 'X�

� �� 
����

where r is the constraint circle radius in E�� In the image space plane X� � � this

radius is simply r��� Clearly� since r is the �xed length of the grounded link� the

constraint hyperboloid striction curve and shape parameters are invariant under any

feasible planar displacement associated with the corresponding leg�

���
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Figure ���� An RRG platform�

For the RRG platform� shown in Figure ���� K� and K� are design constants 
the

Cartesian coordinates for the base of the given leg expressed in the �xed frame !�

and x and y are the knee joint locations with respect to the moving frame E� which

are constants for each distinct displacement considered separately� Equation 
����

is a representation of the line of the image circle centres in terms of parameter t�

��  t ��

Let us now consider two distinct arbitrary poses of any leg of the platform� These

poses are characterised by 
x�� y�� for the �rst and 
x�� y�� for the second� Let t and

s be the parameters for �rst and second poses� respectively� Clearly� for each distinct

pose the line coordinates of the axis will change� The signi�cance of this is that

the associated hyperboloids are not coaxial� Thus� the constraint solid can not be

obtained as for lower pair PSGP� This is a direct result of the use of higher pair joints�

���
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For each distinct set of rack tangent angles� the relative location of the pinion contact

points change� In this sense� the platform geometry changes continuously during any

motion� If the axes of the corresponding constraint hyperboloids intersect we obtain

the following relation�

�
			�

K� ' y�

�K� � x�

�

�



�' t

�
			�
x� � K�

y� � K�

�

�



� �

�
			�

K� ' y�

�K� � x�

�

�



�' s

�
			�
x� �K�

y� �K�

�

�



� � 
����

These are three linearly independent equations� We see immediately from the third

equations 
�t � �s� that a condition for the two lines to intersect is that s � t� i�e��

the point of intersection occurs when the two parameters take on identical values�

From the �rst two equations in 
���� we obtain after setting s � t�

t �
y� � y�
x� � x�

�
x� � x�
y� � y�

� 
����

We can rearrange Equation 
���� to read

�
y� � y��
� � 
x� � x��

�� 
����

Clearly� there are no real values for the constants x�� x�� y�� y� which satisfy Equa	

tion 
����� We must conclude that all axes for a given leg are mutually skew and lie in

a ruled surface� Substituting the involute inputs from Equation 
����� into Equation


���� indicates that the surface is non	algebraic�� indeed it is transcendental� Figure

��� shows the set of axes for a set of displacements of one leg of an RPR platform�

While we have yet to determine the true nature of this surface� we are certain it is

related to its associated involute�

�The equation of an algebraic surface can be reduced to a �nite number of terms involving posi	
tive integer powers of its variables� If the equation contains variables that are the arguments of
transcendental functions� it cannot be so expressed and is non�algebraic�

���
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Figure ���� The set of axes for a set of displacements of one leg of an RPR platform�


��� Singularities

Manipulator singularities occur when di�erent FK and%or IK solutions coincide

���� ���� A singularity is de�ned algebraically as a rank de�ciency of the associated

Jacobian�� The geometric de�nition amounts to an instantaneous change in the DOF

of the platform� That is� either one or more DOF is lost� or one or more uncontrollable

DOF are gained� This means that when a platform approaches a singularity either

the platform can undergo in�nitesimal motions when the actuators are locked� or

�nite changes in the inputs produce no platform motion� Both situations are highly

undesirable�

�The Jacobian has come to mean the matrix that maps the vector of output rates �i�e�� the time
rate of change of the platforms generalised coordinates� to the vector of input rates �the time rate
of change of the variable joint inputs��

���



CHAPTER 
� WORKSPACE AND SINGULARITIES

Work in the area of singularity analysis of parallel platforms is extensive� Merlet

���� uses Pl�uckers line geometry 
called Grassmann geometry by Merlet�� to give

a comprehensive enumeration of the conditions on the position and orientation of

the legs of planar and spatial SGP which lead to singular con�gurations of the plat	

form� Mohamed and Du�y �	��� classi�ed singularities into three groups based on

the nature of the rank de�ciency of the Jacobian� These are stationary con�gurations

where DOF are gained� immovable structure where DOF are lost� and uncertainty

con�gurations where the Jacobian is indeterminate� Gosselin ���� presented a similar

classi�cation scheme� Ma and Angeles ���� introduced a somewhat di�erent idea�

Here they are classi�ed as� i� con�guration singularity which is an inherent manip	

ulator property that occurs at some points within the workspace� �� architecture

singularity� which is caused by the manipulator architecture and can prevail over the

entire workspace� �� formulation singularity� caused by the failure of the kinematic

model of the platform for certain con�gurations�

Singular assembly con�gurations of parallel platforms have the property that the

set of joint inputs is not su�cient to de�ne the pose� This is due to the gain� or loss

of an in�nitesimal� or even continuous DOF� Hartmann gives a comprehensive exami	

nation of singular SGP in ����� Sefrioui and Gosselin �	�	� 	��� examined the loci of

singular positions in the platforms workspace for a �xed orientation� They observed

that the loci are conic sections� Later� Collins and McCarthy ���� employed planar

quaternions to obtain an algebraic� but implicit� expression of a quartic surface in a

�	D projective space that represents all singular poses of all possible RPR platforms�

In the most general case� the singularity surface contains a double line at in�nity�

They further investigate special architectures where the quartic reduces to a quartic

�The subject of line geometry owes its origin to Pl�ucker� Types of coordinates of the line were
introduced by Cayley and Grassmann
 Pl�ucker line coordinates are a special form of these� but the
discovery of line geometry itself is entirely Pl�ucker�s work ����� So� it is appropriate to use the term
coined by Pl�ucker himself� line geometry�

���
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ruled surface� two planes and an hyperboloid of one sheet� and pairs of hyperbolic

paraboloids�

�
�
	
 SelfMotions
 Notwithstanding the LADD 
linear actuation device�

actuator ����� awareness of platforms with one 
or more� DOF continuous motion

while active joints are locked did not seem to exist until examples were revealed in

���� by Husty and Zsombor	Murray ����� In that paper� line geometry is used to show

that when the six legs of a spatial SGP remain in a speci�c linear complex� congruence

or hyperboloidal ruled surface then the platform will execute a �nite one DOF motion

while all legs remain at constant length� These motions are termed self�motions� Their

existence was essentially identi�ed� and classi�ed to a certain extent� simultaneously

but independently by Borel �	�� and Bricard �	��� They were investigating continuous

motions where some points on a rigid body are each constrained to remain on the

surface of as many given �xed spheres� which is the case for spatial SGP� This was the

topic of a competition conducted by LAcad�emie des Sciences de lInstitut National de

France in ����� The prize	winning papers were those of Borel and Bricard �	�� 	���

Self	motions are uncontrollable in the context of P 	pair actuated SGP and� one might

imagine� would be most unwelcomed by pilots engaged in training exercises on board

a �ight simulator prone to such motions� Still� mechanisms that exhibit these motions

may be useful� The LADD actuator is a good example �����

Research in the area of self	motions is beginning to gain attention� See ���� ���

	��� for example� Nonetheless� it is unnerving that self	motions are only now being

seriously considered because parallel manipulators have been commercially available

since ���� �	���� Moreover� there exists a patented design for a �ight simulator ����

which has self	motions in every point of the workspace ����� That means no matter

how the platform is assembled with legs of given �xed length it is movable when it

���
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is supposed to be a structure� It turns out that the associated Jacobian matrix is

always rank de�cient �����

�
�
�
 RRType PSGP Continuous SelfMotons
 In ����� Husty shows

that it is possible to construct planar RR	type platforms that exhibit self	motions in

one assembly mode� but are structures in others� It is well known that two congruent

rigid triangles whose corresponding vertices are joined by legs of equal �xed lengths

can exhibit continuous relative motion� The relative motion is a curvilinear trans	

lation� The reason for this self	motion is that the three constraint hyperboloids all

share a common circle which leads to a one parametric set of solutions� Additionally�

however� this variety contains discrete solutions� Therefore� it is possible to construct

platforms which are continuously movable in one assembly mode and rigid structures

in others�

�
�
�
 PPType PSGP Continuous SelfMotons
 If the image space con	

straint surface corresponding to possible displacements of a PP 	type leg is quadratic�

it must be a degenerate quadric that splits into a real and an imaginary plane� This

is because only curvilinear motion of the platform can result when the two of the

platform attachment joints are disconnected� Once the angular input of the active

R	pair is �xed no rotation of leg or platform is possible� Still� the image of a two

parameter family of displacements must be a two parameter constraint manifold� but

because � is constant� the image space coordinates X� � f
�� and X� � g
�� must

also be constant� Hence� the �nite part of the two dimensional constraint manifold is

linear and must be a hyper	plane�

Upon normalising the image space coordinates� by setting X� � �� all planes

corresponding to possible displacements of the PP 	type leg still connected are parallel

to X� � �� There are three possibilities�

���
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�� All three planes are parallel and contain only one line in the plane at in�nity

in common� This situation represents �� solutions at in�nity� The platform

cannot be assembled with the given inputs�


�� One plane is parallel to two that are incident� Again� this represents ��

solutions at in�nity� The platform cannot be assembled with the given inputs�


�� All three planes are incident� This means that there are �� real solutions�

The platform can be assembled� but it is free to translate when it should

be a rigid structure� This type of unwanted� unexpected and uncontrollable

motion is a self	motion �����

From a line geometric perspective� these three cases mean that whenever the platform

can be assembled given a set of active joint inputs the Jacobian matrix derived from

the line equations for each of the three legs� is always rank de�cient�

The inescapable conclusion is that there is no practical design merit associated

with PP 	type PSGP as a three DOF platform� This� however� does not preclude

designs of topologically asymmetrical three legged planar platforms with at most one

PP 	type leg� On the other hand� the self	motion property provides possibilities to

design very sti� one DOF planar platforms which are relatively easy to actuate� like

the LADD actuator mentioned above�

�
�
�
 Singularity Detection
 Recall the rational factor in the special uni	

variate� Equation 
������ for PR	 and RP 	type platforms�

A�B� � A�B� � A�C� ' A�C� 'B�C� � B�C�� 
����

Equation 
���� is a relation between the directions of the three lines connecting the

�xed and moving platforms� It has the following geometric signi�cance� if it equals

�Merlet �
�� shows that the Jacobian matrix of a parallel platform in a given con�guration is trans	
pose of the matrix whose columns are the Pl�ucker coordinates for each leg in the corresponding
pose�

���
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zero after the input joints are locked then the centre lines of the passive P 	pairs form

a planar linear pencil 
i�e�� the family of all lines passing through one point in the

plane�� When the P 	pairs are mutually parallel the apex of the pencil is at in�nity�

This stems from the fact that the expression is the determinant of the following

homogeneous matrix

�
			�
A� A� �

B� B� �

C� C� �

�



� � 
�����

If the determinant of 
����� is equal to zero� there is a linear dependence among the

lines causing the rank de�ciency� Either the three lines have a single point in common�

or at least two are incident� If two of the directions are parallel while the leg forces

exert a couple 
i�e�� with A� � B� � C� � ��� then two of the lines are coincident

and all three are still in a pencil�

The vanishing of the rational factor means the selected inputs place the platform

in a singular con�guration where the platform exhibits in�nitesimal motions� If the

pencil apex is �nite the platform can resist no moment about this point and the

platform experiences a transitory mobility� This means the platform can rotate about

the intersection point� If the apex is at in�nity� the platform can resist no force

perpendicular to the direction of the passive prismatics and the platform acquires an

uncontrollable translational DOF�

The above discussion suggests a simple way to detect such singularities in any

planar three	legged platform� including RRG type� When active joint inputs are

speci�ed these joints may be taken to be locked� The eight links of the parallel

mechanism are e�ectively reduced to �ve �		��� two of which are the base and the

moving platform� What remains are three links connecting �xed points to moving

points� These three pairs of points de�ne three lines in the plane of the platform�

���
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Here we may� without loss in generality� call the �xed points Fi and the moving points

Mi� i � fA�B�Cg� even though either the �xed or moving points may� depending on
the leg architecture� be the knee joint Ki� Recall from Section ��� that the line

coordinates for a line L in the plane are obtained from two points on the line� If the
two points are 
x� � x� � x�� and 
y� � y� � y�� the line coordinates can be written as

�
�
������
x� x�

y� y�

������ �
������
x� x�

y� y�

������ �
������
x� x�

y� y�

������
�
� � �L� � L� � L���

The condition for the incidence of three lines� say one for each leg of the manip	

ulator Li� can be expressed as

���������

L�A L�A L�A

L�B L�B L�B

L�C L�C L�C

���������
� ��

The vanishing of this determinant represents exactly the singularity given by the

vanishing of Equation 
����� The line geometric explanation is that the three lines

lie in a planar linear pencil� It is worthwhile pointing out that these singularities are

determined without calculating the Jacobian�

�
�
�
 Singularity Quanti�cation
 The workspace of a given three	legged

planar platform is likely to contain some points where the platform will be in the

singular con�guration described above� It is always of interest to know the proximity

to these locations for trajectory and path planning tasks� A simple means to quantify

this proximity is to compare the area of the triangle enclosed by the Li lines on the

vertices Vi � Li
� � Li
�� i � fA � �� B � �� C � �g ���� with the average area of
the �xed and moving triangles� The ratio A�Aave� or its reciprocal can be used� The

point coordinates of the Vi� indicated by 
v�i � v�i � v�i�� are obtained by expanding

���
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the singular determinant representing three lines that intersect on the same point�

���������

L� L� L�

L�i�� L�i�� L�i��

L�i�� L�i�� L�i��

���������
� ��

This gives the following point coordinates�

�
�
������
L�i�� L�i��

L�i�� L�i��

������ �
������
L�i�� L�i��

L�i�� L�i��

������ �
������
L�i�� L�i��

L�i�� L�i��

������
�
A � 
v�i � v�i � v�i��

The area A of triangle VA� VB� VC is given by the Grassmannian volume ����

A �
�

�v�Av�Bv�C

���������

v�A v�A v�A

v�B v�B v�B

v�C v�C v�C

���������
� 
�����

When A vanishes the legs are in a pencil� however when A becomes in�nite the

legs are parallel and are still in a pencil� but the apex is on the line at in�nity�

Figure ��� illustrates three possible singular con�gurations of RRR platforms� As a

performance indicator� an extremely small area ratio mean the con�guration is close

to singular� but so does an extremely large area ratio�

Figure ���� Three possible RRR platform singular con�gurations�

���
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Concluding Remarks

���� Conclusions

This thesis has presented a kinematic analysis of planar three	legged platforms

in general� and PSGP in particular� This analysis involved the use of a kinematic

mapping procedure to derive a univariate polynomial that can be applied to the FK

problem of every PSGP� The univariate can also be applied to topologically asymmet	

ric platforms provided the legs are all of one of three types� RR	� PR	� or RP 	type�

Furthermore� it can be used to solve the FK of PSGP	type manipulators with active

holonomic higher pairs�

As a prelude to the study� a classi�cation of planar three	legged platforms was

reviewed� and PSGP were de�ned in that context� The holonomic higher pair archi	

tecture was detailed and special geometric properties were given� A detailed mobility

analysis was performed�

Relevant geometric and algebraic tools and concepts were reviewed� Next� var	

ious representations of displacements were discussed� leading to derivations of the

kinematic mapping employed in the subsequent kinematic analysis�
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The application of kinematic mapping to the FK problem was then examined�

First� the relevant kinematic constraints for RR	� PR	 and RP 	type platforms were

described in the displacement space� Next� the images of these constraints in the

kinematic mapping image space were examined and classi�ed as either hyperboloids

of one sheet� or hyperbolic paraboloids� The hyperboloids all contain the imaginary

points J�
� � �i � � � �� and J�
� � i � � � ��� while the hyperbolic paraboloids all

have the the intersection of the hyper	planes X� � � and X� � �� 
X� � X� � � � ���

as a common generator� The variety of the polynomial representation of three such

image space quadrics leads directly to the univariate� It is obtained after eliminating

two image space coordinates from three simultaneous constraint surface equations�

The roots of the univariate yield all solutions to the given FK problem� Because

the coe�cients are determined symbolically� not numerically� the e�ects of design

constants and joint inputs on solutions are immediately quanti�able� The upper

bounds on the number of solutions to the FK problem were rationalised in terms of

image space and Cartesian space representations of the relevant kinematic constraints�

Use of the univariate is limited to RR	� PR	 and RP 	type architectures� However�

the FK problem of any �	legged planar fully	parallel platform with � DOF� including

those with active holonomic higher pairs� but excluding those with PR	 and RP 	type

mixed legs� can be solved by solving three simultaneous quadric equations� There are

��� PR	RP 	type mixed leg three DOF planar platforms jointed exclusively with R	

and P 	pairs� The FK of the remaining ��� lower	pair jointed planar platforms are

solvable either by direct application of the univariate� or by locating the intersection

points of the � constraint surfaces�

Not discussed were the possible platforms containing one PP 	type leg� These

are ��� in number� Such platforms would seem to be problematic from a design

perspective� nonetheless� their inclusion beings the complete set of planar �	legged

���
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lower	pair platforms with � DOF to ����� It would be ideal to reformulate the

problem such that the FK problem of all ���� platforms could be solved with a single

univariate�

The IK problem for PSGP was detailed� Closed form solutions are obtained

from the pre	image of points in the image space representing feasible displacements�

Then a simple variation of the procedure was given for PSGP	type manipulators

with holonomic higher pairs� This procedure� unlike the one in ����� yields all feasible

solutions without generating spurious ones�

Finally� Hustys investigation of the workspace space analysis for RPR platforms

was generalised to include all PSGP� This generalisation includes a simple criteria

to test for the existence of a dextrous workspace� Additionally� some observations

on the workspace analysis of PSGP	type manipulators with holonomic higher pairs

using the kinematic mapping image space were discussed� Lastly� a simple test for

self motions� and quanti�cation of these singularities was proposed�

���� Suggestions for Future Research

Kinematic mapping is a valuable visualisation tool for complex problems in planar

and spatial kinematics� It has proven to be useful in our solution procedure for the FK

and IK problem of PSGP� as well as for workspace and singularity analysis� Clearly�

it has potential as a mainstream tool in the formulation of manipulator control and

analysis algorithms� It has not yet acquired wide acceptance because it is rooted in

��th century geometry� Geometry is generally ignored in secondary� post	secondary�

and advanced education curricula throughout most of the world� It still maintains a

tenuous grip in central Europe� but this too is slipping� Solutions to current research

problems in robot kinematics were solved by geometers of the ��th century� For

example� at the beginning of this century Borel �	�� and Bricard �	�� predicted self

���
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motions of SGP� This type of singularity remained essentially hidden until �����

when it was rediscovered by Husty and Zsombor	Murray ����� The lesson is that a

thorough understanding of geometry combined with some algebraic skill is required

to understand and solve a broad range of kinematics problems� Skill at algebraic

manipulation of symbols is not enough� Indeed� there exists an inverse relationship

between the complexity of geometric and algebraic formulations of the same problem

�����

Having said that� what remains to complete the kinematic analysis of planar

three	legged platforms is to formulate the FK problem in such a way that one symbolic

univariate polynomial can be used to obtain solutions for all architectures� This

univariate is likely to be found hiding somewhere in the kinematic image space� The

same uni�ed approach may also be brought to bear upon workspace and singularity

analysis� Additionally� variations of the PSGP with holonomic higher pairs should

be investigated� For example� it may be fruitful to examine RPG� RRG� or any of

the three GGG architectures� Moreover� lower and higher pair mixed leg platforms�

if feasible� are probably worth investigation�

���



APPENDIX A

FK Examples

In what follows several examples illustrating how to apply the univariate to the FK

problem are examined in detail� They include procedures for regular PSGP� mixed

leg� and RRG	type platforms� The �rst two RPR examples demonstrate that the

univariate exactly reproduces published results� thereby verifying the univariate poly	

nomial algorithm�

A��� Husty RPR Example

This example is taken from ����� The base geometry and variable joint inputs

listed in Table A��� are used to compute the corresponding circle parameters� These

Ki and Ri� needed to compute the univariate coe�cients� are determined with the

appropriate relations found in Table ����

i Fi�� Mi�E ri � d�i 
K�i � K�i � K�i � K�i� Ri

A 
� � � � �� 
� � � � �� � 
� � � � � � ��� 	�

B 
� � � � �� 
� � � � �� � 
� � � � � � �� �

C 
� � � � �� 
� � � � �� � 
� � � � � � �� ��

Table A��� Husty RPR geometry� joint inputs and circle parameters�
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Figure A��� The three constraint hyperboloids for the Husty RPR example
where �� � t � � and ��� � t � ���� respectively�

Substituting these data into the equation for the general univariate yields the

following�

����X�
� � ����X�

� � ����X�
� ' ���X

�
� � ��X�

� ' �X� ' � � �� 
A���

This equation has six distinct roots�


X��� � ��������


X��� � ��������


X��� � ������� 
A���


X��� � �������


X��� � ������ ' ������i�


X��� � ������� ������i�

Back substitution of the four real solutions listed in Equations 
A��� into Equation

���
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Solution a b � 
deg��

� 	������ ������ 	�������

� 	������ 	������ 	������

� 	������ 	������ �������

� ������ 	������ �������

Table A��� Husty RPR� four real solutions�


����� and Equation 
����� gives two equations linear in X� and X�� The values of X��

X� and X�� together with the unit homogenising coordinate� X� � �� are the image

of the FK solutions projected into the hyperplane X� � �� The three constraint

hyperboloids� each generated with Equation 
������ are shown in Figure A��� Two

views of the three hyperboloids are shown� in the �rst �� � t � � and in the second
���� � t � ���� respectively�

Figure A��� The four real solutions for the Husty RPR example�

���
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The preimages are found by repeated application of Equation 
������ The four

real solutions� i�e�� platform poses� are listed in Table A��� and graphically illustrated

in Figure A���

These results agree exactly with those in ����� But� exactly the same equations

are used to obtain the univariate� and hence agreement of the solutions is not a

convincing validation of the procedure� For this reason� the next example is used

because the methods for deriving the univariate are completely di�erent�

A��� Gosselin�Sefrioui RPR Example

This example is taken from ����� The kinematic parameters and links lengths

from that example are used to extract the geometry data listed in Table A��� while

the circle parameters are determined with the appropriate relations found in Table

����

i Fi�� Mi�E ri � d�i 
K�i � K�i � K�i � K�i� Ri

A 
� � � � �� 
� � � � �� ����� 
������	��������� 	��������

B 
����� � � � �� 
����� � � � �� ����� 
���������������� ��������

C 
� � �� � �� 
����� � ����� � �� �� 
�������	��� ��������

Table A��� Gosselin�Sefrioui RPR geometry� joint inputs � circle parameters�

Substituting these data into the equation for the general univariate gives�

�������X�
� � ���������X�

� � �������X�
� � ��������X�

� � ��������X�
��

������X� � � � �� 	A��


���
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The six distinct real roots are


X��� � ��������


X��� � ��������


X��� � ������� 
A���


X��� � �������


X��� � �������


X��� � �������

The preimages of the corresponding image points are found by repeated application

of Equation 
������ The six real solutions to the posed FK problem are listed in

Table A��� These solutions are in exact agreement with those reported in ����� This

represents a stronger validation for the procedure used here because the equations�

and indeed the geometry� used are di�erent from those used in �����
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Figure A��� The three constraint hyperboloids for the Gosselin�Sefrioui
RPR example where �� � t � � and ��� � t � ���� respectively�
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Solution a b � 
deg��

� 	������ ������� 	�������

� 	������ 	������� 	������

� 	������� ������ �������

� 	������� 	������ �������

� ������� 	������ �������

� ������� 	������ ��������

Table A��� Gosselin�Sefrioui RPR� six real solutions�

A��� RRR Example

Without loss in generality� design parameters can be assigned to an RRR platform

such that for one set of joint inputs the VB� de�ned by the inputs� has the same

geometry as the base of the RPR platform in the Husty example� The intermediate

links and the platform are dimensionally identical to those from the example� In this

case the solutions to the FK problem� expressed in the VB frame� are identical to

those from the example� This being the case� the constraint hyperboloids are also

identical�

Therefore� the base geometry and base	�xed R	pair inputs are arbitrary� but must

determine VBP identical to the Fi in the Husty example� The result is a platform

with the design parameters and joint input angles listed in Table A���

i Fi�	 Mi�E ��i ��i � ���� deg�

A 
������ 
������ � � � �

B 
������ 
������ � � � ��������

C 
������ 
������ ������ � � ��������

Table A��� RRR geometry and joint input angles�

���
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Solution a b � 
deg��

� ������ ������ 	�������

� ������ 	������ �������

� ������ 	������ �������

� ������ ������ �������

Table A��� RRR� four real solutions�

This example is easily solved using the procedure described for RRR platforms

in Chapter �� However� we already know the solutions with respect to the VB frame�

these are listed in Table A��� What remains is to transform these solutions to the

base frame� !� This is accomplished using Equation 
����� and Equation 
������ The

solutions are enumerated in Table A�� and illustrated in Figure A���

Figure A��� The four real solutions for the RRR example�

���
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A��� RRR Example

In this example the platform geometry and �xed lengths of the platform	attached

links and platform	�xed R	pair inputs are all selected so the resulting VP is dimen	

sionally identical to the platform in the Husty RPR example� Moreover� the �xed

base points and the �xed lengths of the base	attached links are identical to the same

example� Thus� the base and platform geometry� link lengths� and inputs are listed

in Table A��

i Fi�	 Mi�E ��i ��i � ���E deg�

A 
������ 
������ �
p
����� � ��������

B 
������ 
�%������ �
p
����� � ��������

C 
������ 
�%���%���� � � � ��

Table A��� RRR geometry and joint input angles�

The example can be solved with the procedure described for RRR platforms in

Chapter �� However� the poses of the VP frame� EV P � are already known� and listed

in Table A��� What remains is to transform these solutions to give the pose of the

platform frame E� This task is accomplished using Equation 
����� and 
������ Note�

because the orientation of EV P was contrived to be identical to E the orientations of

the platform in this example agree exactly with the ones in the Husty RPR example�

The four solutions are illustrated in Figure A���

Solution a b � 
deg��

� ������ ������ 	�������

� ������ 	������ 	������

� 	������ ������ �������

� ������ ������ �������

Table A��� RRR� four real solutions�

���
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Figure A��� The four real solutions for the RRR example�

A��� PPR Example

This example illustrates the use of the VL procedure� Here the �xed link angles

were selected for convenience� The known design constants and P 	pair inputs are

listed in Table A���

i Fi�	 Mi�E d�i � ���� deg� ���� ����
A 
������ 
������ �%� � � �� ��

B 
������ 

p
�
�
� � � �� � � �� �� ���

C 
������ 
�
p
�

��
� �

p
�

�
� �� � � ��� �� �

Table A�	� PPR geometry and joint input angles�

���
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We proceed with the computations described for PPR platforms in Chapter

�� The circle coordinates are computed using Equation 
������ Then� using these

coordinates together with theMi in Table A�� the univariate coe�cients are evaluated�

The three hyperbolic paraboloids are illustrated in Figure A��� showing one of the

intersections�

Note that because the VL is used the coordinate K�A is� in general� not zero�

Thus the �� term univariate for PR	type platforms must be used� For this example

the univariate takes the satisfying form�

X�
� � �X� � � � ��
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Figure A��� A projection of the hyperbolic paraboloids where �� � t � �
and ��� � s � ���
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The preimage of the solutions the roots of this quadratic are the two real solutions

listed in Table A����

Solution a b � 
deg��

� � ��� 	�������

� � ��� ��������

Table A��
� PPR� two real solutions�

Figure A��� The two real solutions for the PPR example�

A�	� RPR Example

This example is also based on the Husty RPR example presented earlier� Here�

the inputs are based on solution � from that example� The procedure requires that !

moves relative to E� Thus� the moving points are the Fi� while the �xed ones are the

Mi� The variable joint inputs are the platform	�xed revolute angles� ���E � The circle

coordinates are computed as

K�i � ��

K�i �
�

�
Mzi sin ���E �

K�i � ��
�
Mzi cos ���E �

K�i � Mxi�E sin ���E �Myi�E cos ���E �

���
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The platform geometry� joint inputs and circle coordinates are given in Table A����

i Fi�� Mi�E �
��E
deg� 
K�i � K�i � K�i�

A 
� � � � �� 
� � � � �� �������� 
������ � ������ � ��

B 
� � � � �� 
� � � � �� �������� 
������� � ������ � ��������
C 
� � � � �� 
� � � � �� 	������� 
������� � ������� � ��������

Table A���� RPR geometry� joint inputs and circle parameters�

The data in Table A��� determine the three image space constraint hyperbolic

paraboloids� A projection of the three surfaces is illustrated in Figure A��� which

shows one of the intersection points� Substituting these data into the univariate

-6-4-202468

-8
-6

-4
-2

0
2

4
6

-1

-0.5

0

0.5

1

X

X

X

1

2

3

Figure A��� A projection of the hyperbolic paraboloids where �� � t � �
and ��� � s � ���

equation gives the following quadratic�

��������X�
� ' �������X� � ������� � �� 
A���

���
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� PR�TYPE MIXED LEG EXAMPLE

The roots of Equation 
A��� yield the pose of ! with respect to E� These solutions

are transformed� using Equation 
����� to give the pose of E in !� Both sets of

solutions are listed in Table A����

Solution � � Solution � �

a
��E

	������ ������ a
E��

������ ������

b
��E

������ ������ b
E��

	������ ������

�
��E


deg�� 	������� ������� �
E��


deg�� ������� 	�������

Table A���� RPR FK solutions�

Figure A�	� The two real solutions for the RPR example�

Figure A�� illustrates the two real solutions for this example� Clearly� solution �

is not realizable� While the base points are on their respective lines� they violate the

joint limits in that for the given input angles the solutions require the base points to

be on the portion of the line unreachable by the prismatic joint� This illustrates that

this procedure requires some extra veri�cation that solutions are realizable�

A�
� PR�Type Mixed Leg Example

Mixed leg platforms are analysed using the same variety of procedures sum	

marised in Tables ���� ��� and ����� however procedures can di�er from leg to leg�

���
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As mentioned earlier� platform legs must all belong to one of the three types� In the

following example leg A is RPR� leg B is PPR� and leg C is PRP � all belonging to

the PR	type�

The base and platform points are listed in Table A���� the �xed link angles in

Table A���� while the active joint inputs are in Table A����

i Fi�	 Mi�E

A 
������ 
������

B 
������ 
������

C 
������ 
������

Table A���� Mixed PR�type leg base and platform points�

Angle deg�

���� ���

���� ���

���� ���

���E ���

Table A���� Mixed PR�type leg �xed link angles�

Joint input Value

���� ������� deg�

d�B ������

d�C ������

Table A���� Mixed PR�type leg active joint inputs�

Consulting Table ��� the regular procedure can be used by leg A� the virtual base

is required by leg B� and the virtual platform by leg C� The platform is illustrated

in Figure A���� showing the �xed joint angles together with the virtual components�

Note that the architecture simpli�es computations by virtue of the fact that the

platform and VP frames� E and EV P � are coincident� Meanwhile� the origins of !

and !V B are coincident� but the basis directions are di�erent�

���



A�
� PR�TYPE MIXED LEG EXAMPLE

Figure A��
� The mixed PR�type leg platform�

Examining Figure A���� one sees the vertices of the VB are the points FA� KB and

FC � while the vertices of the VP areMA�MB and KC � Determining the orientation of

�
�V B��

requires some additional observation� Equation 
����� and 
����� can not be

used outright as the length d�A is not known a priori� However� this quantity is the

distance between O	 and O	V B � Since the origins are coincident� this length vanishes�

and Equation 
����� is rewritten as Equation 
A���

����
FAKB �

����
FAFB '

����
FBKB� 
A���

while Equation 
����� becomes Equation 
A���

�	V B�	 � atan�
y� x�� 
A���

���
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where

x � FBx�� ' d�B cos ���	�

y � d�B sin ���	�

Using the data from Tables A��� and A��� we obtain

�	V B�	 � �������� 
deg���

The next step is to compute the circle coordinates and VPP required to evaluate the

univariate coe�cients� For leg A we have

K�A � �� 
A���

K�A �
�

�
sin����V B

� 
A���

K�A � ��
�
cos����V B

� 
A����

K�A � �� 
A����

where

����V B
� ���� � �	V B�	 � �������� 
deg��� 
A����

For leg B the coordinates of KB�	V B are required� First� KB�	 are computed

from the given inputs and design constants� These are transformed to KB�	V B with

Equation 
������ Then the circle coordinates can be evaluated with

K�B � �� 
A����

K�B �
�

�
sin ����V B � 
A����

K�B � ��
�
cos ����V B � 
A����

K�B � KxB�	V B sin����V B � 
A����

���
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where

����V B � ���� � �	V B�	 � �������� 
deg��� 
A����

For leg C the coordinates of FC�	V B are needed� We simply transform FC�	 with

the transformation matrix from Equation 
������ The coordinates of KC�EV P must

also be determined� But� because of the coincidence of E and EV P � these coordinates

are obtained directly from the input for leg C and the �xed angle ���E� Then�

K�C � �� 
A����

K�C �
�

�
sin ����V B � 
A����

K�C � ��
�
cos ����V B � 
A����

K�C � FxC�	V B sin ����V B � FyC�	V B cos ����V B � 
A����

where

����V B � ���� � �	V B�	 � ������� 
deg��� 
A����

The above information� required to evaluate the univariate coe�cients� is tabu	

lated as the circle coordinates and VPP in Tables A��� and A����

i K�i K�i K�i

A ������ ������ �

B ������ ������ ������

C ������ 	������ 	������

Table A���� Mixed PR�type leg circle coordinates�

Substituting the data from Tables A��� and A��� into the univariate equation

gives the following quadratic�

�������X�
� � �������X� � ������ � �� 
A����

���
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i V PPxi�EV P V PPyi�EV P

A a� � � a� � �

B b� � ����� b� � �

C c� � ������ c� � ������

Table A���� Mixed PR�type VPP�

The roots yield the image points of the FK solutions in the VB frame� A projection

of the three image space constraint hyperbolic paraboloids is shown in Figure A����

The coordinates of OE must be transformed using the rotation from !V B to !� while
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Figure A���� A projection of the hyperbolic paraboloids where �� � t � �
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the orientation of E is

� � �
E��V B

' �
�V B��

� 
A����

���
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The �nal FK solutions are illustrated in Figure A���� while Table A��� lists both sets

of solutions�

Solution � � Solution � �

a
�V B

	������ 	������ a ������ ������

b
�V B

������ ������ b ������ ������

�
�V B


deg�� 	������� �������� � 
deg�� 	������� �������

Table A���� Mixed PR�type FK solutions�

Figure A���� The two real solutions for the mixed PR�type leg example�

Note that the two solutions illustrated in Figure A��� represent two di�erent

platforms because of the di�erence in the direction of increasing d�C for each one�

Thus� only one assembly con�guration is realizable� the result of the fact that joint

limits are not taken into account by the FK solution algorithm� This presents no

practical di�culty in implementation of the algorithm because the workspace of a

given platform is known a priori and solutions can be quickly checked to see if they

fall within bounds�
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APPENDIX A� FK EXAMPLES

A��� RRG Example

This example deals with the FK of an RR	type platform with active holonomic

higher pairs� For these platforms the initial assembly con�guration 
IAC� must be

speci�ed� Thus� the IAC is enumerated in Table A���� Whereas Table A��� gives the

coordinates of the base points FA� FB� FC in the �xed frame !� the change in rack

tangent angles� and the corresponding knee joint positions in E� as well as EV P 
the

VPP determined by their positions on their respective involutes�� given by Equations


����� and 
������ respectively� The link lengths� in generic units� are� r � �� ��i � ��

��i � ���

i d�i�R �
E�

i�E


deg�� � �
���

deg�� �

���

deg��

A � ��� � ��� ���

B � ��� � �� ��

C � �� � ��� ��

Table A��	� IAC for the RRG platform�

i Fxi�� Fxi��  �i 
deg�� Kxi�E Kyi�E Kxi�EV P
Kyi�EV P

A � � ����� 	������� 	������ � �

B ��
p
� � ��� ������ 	������� ������� �

C �
p
� ' � �

p
� ' �� ��� 	������ ������� ������ �������

Table A��
� Fixed base points� joint inputs� and VPP in E and EV P �

The three inputs�  �i� determine the geometry of the VP� The VPP are computed

using Equation 
������ Substituting the VPP from Table A��� into Equation 
�����

determines the three constraint hyperboloids illustrated in Figure A���� showing one

of the intersections� The circle coordinates are calculated for each leg using the

relations found in Table ���� Then the circle coordinates� together with the IAC

and ki�EV P from Tables A��� and A��� are substituted into the univariate� Equation
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A��� RRG EXAMPLE


������ giving the following sixth degree polynomial�

���������X�
� ' ���������X

�
� ' ���������X

�
� ' ��������X

�
� ' �������X

�
�'

������X� ' ������� � ��

The roots consist of two real and two pairs of complex conjugate values for X��


X��� � ��������


X��� � ��������


X��� � ������� ' ������i� 
A����


X��� � �������� ������i�


X��� � ������ ' ������i�


X��� � ������� ������i�

The real values are used to compute the corresponding values of X� and X�� The

preimage of these coordinates yield the pose of EV P in !� Transforming these dis	

placement parameters using Equation 
����� gives the required FK solutions� Both

sets of solutions� corresponding to the real value of X� are listed in Table A����

Solution � � Solution � �

a
EV P ��

	������ 	������ a
E��

������ ������

b
EV P ��

������ ������ b
E��

������ �������

�
EV P ��


deg�� 	������� 	������ �
E��


deg�� 	������ ������

Table A���� RRG FK solutions�

The rack tangent angle inputs�  �i� in Table A���� expressed relative to the

disk frame E� reveal the geometry of the VP� The origin of E is on the disk centre�

Once the orientation and position of the VP� and hence E� are obtained as a triple

of displacement parameters 
a� b���� it is a simple matter of plane trigonometry to
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Figure A���� The constraint hyperboloids in the X� � � projection of the
image space�

Figure A���� The two real solutions� 	i
 solution �� 	ii
 solution ��

determine the relative link angles for the assembly con�guration that correspond to

the solution� Figure A��� illustrates the two real assembly con�gurations� where the

vertices of the VP are on their respective circles�
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APPENDIX B

IK Examples

B��� RR�Type Legs

Figure B��� IK problem for RPR legs�

Solving the IK problem for RPR legs� see Figure B��� involves a straightforward

application of Equation 
����� reproduced below�

r � d�i �

����
p�AC

A

���� � 
B���



APPENDIX B� IK EXAMPLES

B��� Non�RR�Type Legs

Figure B��� IK problem for RPR legs�

B
�
	
 RPR Legs
 Solving the IK problem for RPR legs� see Figure B���

involves a straightforward application of Equation 
����� reproduced below�

� � ���� � atan�
N�D�� 
B���

B
�
�
 RPP Legs
 For RPP legs� the IK problem involves some additional

computation� The desired input parameter is d�i � whereas the output from the IK

algorithm is the angle �� Simple trigonometric analysis of Figure B�� reveals� after

application of the law of sines�

���E and ���� are design constants�

� � atan�
N�D��

��E � � ' � � ��

� � j���E � ��Ej�

d�i � r
sin �

sin ����
�

���



B��� RRG EXAMPLE

Figure B��� IK problem for RPP legs�

B��� RRG Example

Table B�� gives the manipulators initial assembly con�guration 
IAC�� The Fxi��

and Fyi�� are the coordinates of the base of each leg expressed in the �xed frame� !�

The initial rack normal angles in the moving frame� E� are �i�E� The relative angles

between the �rst link and base� and between the second and �rst links are ���	 and

����� respectively� The location of the contact point along a rack measured in the

corresponding rack frame� Ri� is d�i�Ri � The link lengths� in generic units� are� r � ��

��i � �� ��i � ���

i Fxi�� Fyi�� �i�E ���	 ���� d�i�Ri

A � � ���� ���� ���� �

B ��
p
� � ���� ��� ��� �

C �
p
� ' � �

p
� ' �� ��� ���� ��� �

Table B��� Initial assembly con�guration 	IAC
�
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The desired pose of the end	e�ector and the corresponding image point are one

of the solutions from the FK example in Appendix A���

�
			�

a

b

� 
deg��

�



� �

�
			�
�����

������

������

�



� �

�
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X�

X�
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�������
�����

�����

�����

�







�
�

After making the appropriate substitutions� the following three univariate functions

are obtained�

HA
 �A� � ������� ' ��
 �A�
� � ������� cos �A � ������ sin �A '

 �A
����� cos �A � ������� sin �A��

HB
 �B� � ������� ' ��
 �B�
� � ������� cos �B ' ������� sin �B �

 �B
������ cos �B ' ������ sin �B��

HC
 �C� � ������� ' ��
 �C�� ������� cos �C ' ������ sin �C �

 �C
������ cos �C ' ������� sin �C��

The values of  �i from each solution are used to evaluate Equations 
������ giv	

ing the corresponding knee joint coordinates 
xi� yi�� These are listed in Table B���

The relative link angles for each assembly con�guration are determined using plane

trigonometry and the given position and orientation of the pinion end	e�ector 
i�e��

the moving frame� E�� Note that the solution in the �rst row of Table B�� is in exact

agreement from the corresponding FK example in Section A��� Figure B�� illustrates

one of the eight real assembly con�gurations�

���



B��� RRG EXAMPLE

 �A KxA�E KyA�E  �B KxB�E KyB�E  �C KxC�E KyC�E

	����� 	������ 	����� 	��� ����� 	������ ���� 	����� ������

������ 	����� 	������ 	������ ����� 	������ 	������ ����� ������

Table B��� Change in rack tangent angle and corresponding knee joint
coordinates for each leg�

Figure B��� One of the eight real solutions�
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APPENDIX C

Maple V Worksheet
 Univariate

Derivations

In this Appendix the Maple V worksheet used to derive the general univariate is

listed� There are a couple of points to note� First� The image space coordinates in

the worksheet are those used in the Study kinematic mapping and not the Gr�unwald	

Blaschke mapping 
the one used in derivations in the text of this thesis�� see Equation


������ Second� because it is di�cult� if not impossible� to use subscripted variables

in Maple V none are used� As a result equations in the worksheet appear somewhat

di�erent� for instance 
�C�B�b�� appear as 
� C� B	 b	�� Finally� only the coe�cients

of the ��� and �� term versions of the univariate are listed� The ���� term version

produced the following error message when the version that included these terms was

LATEXed�

TeX capacity exceeded� sorry �main memory size���������
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