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Abstract

The variants of general three-legged planar robot platforms are enumerated and classified. Constraint

surfaces corresponding to individual platform legs in the kinematic mapping image space are classified and

parametrized. The parametric equations are free from representational singularities. The entire set consists

of hyperboloids of one sheet and hyperbolic paraboloids. This result corrects an oversight in the body of

literature. These surfaces have important applications to the kinematic analysis of planar three-legged

robot platforms, hence appropriate attention should be given to their classification.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A very useful and elegant approach to the kinematic analysis of parallel robot platforms is
kinematic mapping. A brief sampling of the literature justifies this statement, for example [1–8]. In
this paper we use kinematic mapping to investigate the nature of the kinematic constraints of
general three-legged planar platforms with three degrees of freedom (DOF). The only restriction
on the architecture is that the joints all be lower pairs and that each of the three kinematic chains
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connecting the platform to the fixed base be connected with three single DOF joints. The joints
may be any combination of lower pairs. Each of the three sub-chains contains an actuated joint,
although the active joints may be different in each leg. Platforms possessing holonomic higher
pairs have been treated separately in [9–11].

In this paper we use a mapping of planar displacements that was introduced in 1911 simul-
taneously, and independently, by Gr€uunwald [12] and Blaschke [13]. A very detailed account may
be found in Bottema and Roth [14]. A natural question arises when constrained motions are
considered: what form does the corresponding set of image points take? The answer, in principal,
is simple: it depends on how the motion is constrained.

For general planar three-legged platforms (GP3LP) with three DOF we consider the motions of
the platform by examining the motions of each leg separately. When the joints are restricted to
lower pairs, prismatic (P ) and revolute (R) pairs, then depending on the details of how the kine-
matic chain is arranged the image space point sets can be one of only two types: (1) if the con-
straint is linear (a point on the moving platform remains on a fixed line) the corresponding image
space point set is an hyperbolic paraboloid; (2) if the constraint is circular (a point on the moving
platform remains on a fixed circle) the corresponding image space point set is an hyperboloid of
one sheet. Because these quadric surfaces contain the images of the constrained displacements, it
is natural to call them constraint surfaces. Kinematic analysis of GP3LP reduces to intersection
problems between the constraint surfaces for each leg.

The motivation for this work lies in the fact that the hyperbolic paraboloid has never been so
identified. It has been, until now, classified as a special hyperboloid [3,14]. Because of their useful
applications to platform forward and inverse kinematics [9,15,16], as well as workspace analysis
[6,11,17], it is important to correctly classify the constraint surfaces.

2. Classifying general planar three-legged platforms

A GP3LP with three DOF consists of a moving platform connected to a fixed base by three
simple kinematic chains. Each chain is connected by three independent one DOF joints, one of
which is active. Thus each chain provides the control of one of three DOF of the moving platform.
In this paper we will deal only with lower kinematic pair joints. Since the displacements of the
platform are confined to the plane, only R- and P -pairs are considered.

The possible combinations of R- and P -pairs which connect the moving platform to the fixed
base and constrain the independent open kinematic chains, consisting of successions of three
joints starting from the fixed base, in a GP3LP are [18]:

RRR;RPR;RRP ;RPP ; PRR; PPR; PRP ; PPP :

The PPP chain must be excluded because no combination of pure planar translations can cause
a change in orientation. Thus, there are seven possible kinematic chains. Fig. 1 illustrates topo-
logically symmetric platforms, each characterized by one of the seven allowable simple kinematic
chains.
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2.1. Passive sub-chains

The active joint in a leg is identified with an underscore, RPR, for example. Since any one of the
three joints in any of the seven allowable simple kinematic chains may be actuated there are
twenty-one possible leg architectures.

Fig. 1. The seven possible leg topologies in symmetric platforms.
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When the value of the activated joint coordinate in a leg is specified, the joint is effectively
locked and may be temporarily removed from the chain. What remains is a kinematic chain
connected with two passive joints. Examining Fig. 1, it is to be seen that the resulting passive sub-
chain is one of only four types: either RR, PR, RP , or PP . However, symmetric PP -type architecture
must be rejected as not useful because such a platform either moves uncontrollably or is not
assemblable when the actuated joint variables are specified [18,19]. Removing PP -type legs from
the group reduces the number of possible leg architectures to eighteen. They are listed, according
to passive sub-chain, in Table 1.

2.2. Enumerating the GP3LP

How many distinct GP3LP with three DOF are there? This number is arrived at by considering
that there are 18 possible kinematic chains to choose from for each of three legs. If the elements
are allowed to be counted more than once the number of possible combinations is given by

Cðn; rÞ ¼ ðnþ r � 1Þ!
r!ðn� 1Þ! ) Cð18; 3Þ ¼ 1140: ð1Þ

3. The Gr€uunwald–Blaschke mapping of plane kinematics

A general displacement in the plane requires three independent parameters to fully characterize
it. The idea is to map the three independent quantities to the points of a 3-D projective image
space. Referring to Fig. 2, the position of a point in a moving plane described by reference
coordinate system E relative to a fixed plane described by coordinate system R can be given by
the homogeneous linear transformation

X
Y
Z

2
4

3
5 ¼

cosu � sinu a
sinu cosu b
0 0 1

2
4

3
5 x

y
z

2
4

3
5; ð2Þ

where the ratios ðx : y : zÞ represent the homogeneous coordinates of a point in E, ðX : Y : ZÞ are
those of the same point in R. The Cartesian coordinates of the origin of E measured in R are (a; b),
while u is the rotation angle measured from the X -axis to the x-axis, the positive sense being
counter-clockwise. Clearly, in Eq. (2) the three characteristic displacement parameters are

Table 1

The 18 possible leg architectures

RR-type PR-type RP -type

RRR RPR RRP
RRR PRR RRP
RRR PRR RPR
PRR PPR PRP
RPR PPR RPP
RRP PRP RPP
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(a; b;u). Image points (points in the 3-D projective image space) are defined in terms of the
displacement parameters (a; b;u) as

ðX1 : X2 : X3 : X4Þ ¼ a sinðu=2Þ � b cosðu=2Þ : ða cosðu=2Þ þ b sinðu=2Þ
: 2 sinðu=2Þ : 2 cosðu=2ÞÞ: ð3Þ

By virtue of the relationships expressed in Eq. (3), the transformation matrix from Eq. (2) may
be expressed in terms of the homogeneous coordinates of the image space. This yields a linear
transformation to express a displacement of E with respect to R in terms of the image point:

X
Y
Z

2
4

3
5 ¼

ðX 2
4 � X 2

3 Þ �2X3X4 2ðX1X3 þ X2X4Þ
2X3X4 ðX 2

4 � X 2
3 Þ 2ðX2X3 � X1X4Þ

0 0 ðX 2
4 þ X 2

3 Þ

2
4

3
5 x

y
z

2
4

3
5: ð4Þ

Since each distinct displacement described by (a; b;u) has a corresponding unique image point,
the inverse mapping can be obtained from Eq. (3): for a given point of the image space, the
displacement parameters are

tanðu=2Þ ¼ X3=X4;

a ¼ 2ðX1X3 þ X2X4Þ=ðX 2
3 þ X 2

4 Þ;
b ¼ 2ðX2X3 � X1X4Þ=ðX 2

3 þ X 2
4 Þ:

ð5Þ

Eq. (5) give correct results when either X3 or X4 is zero. Caution is in order, however, because
the mapping is injective, not bijective: there is at most one pre-image for each image point. It is easy
to see that any image point on the real line X3 ¼ X4 ¼ 0 has no pre-image and therefore does not
correspond to a real displacement of E. The image point must satisfy the condition X 2

3 þ X 2
4 6¼ 0 in

order to represent a real displacement. For a detailed discussion of singular cases see [14].

Fig. 2. The moving frame E and fixed frame R for any set of legs from Table 1.
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4. Kinematic constraints

Consider an arbitrary RR-type passive sub-chain. The leg architecture can be any of the six
listed in the first column of Table 1. When the active joint variable in this leg is specified the sub-
chain that remains has two passive R-pairs. Regardless of the leg architecture, once the active joint
is locked one of the remaining R-pairs is fixed in R and the other moves on a circle of fixed radius
centred on the stationary R-pair. Thus, the motions of an RR-type passive sub-chain are con-
strained by the fact that a point with fixed position in E moves on the circumference of a constant-
radius, fixed-centred circle in R.

Next, consider an arbitrary PR-type passive sub-chain. These are listed in the second column of
Table 1. When the active joint is locked the passive R-pair is constrained to move on a fixed line
in R.

Finally, consider an arbitrary RP -type passive sub-chain, see the third column of Table 1. When
the active joint is locked the passive P -pair is constrained to move on a fixed point in R. The
kinematic constraint is represented by a planar pencil of lines on a point. When considered
projectively, this constraint is nothing but the dual of the constraint for PR-type legs: a planar
pencil of points on a line. Moreover, if E is considered as the fixed and R as the moving frame, the
kinematic constraints for RP -type legs are identical to those of PR- and RR-type. In this sense RP -
type legs can be considered as kinematic inversions of corresponding PR-type legs. Hence, the
displacements of all PR- and RP -type passive sub-chain are governed by projectively identical
kinematic constraints.

4.1. Circular constraints

The ungrounded R-pair in an RR-type leg is constrained to move on a circle with a fixed centre.
Meanwhile, the platform can rotate about the moving R-pair. This two parameter family of
displacements corresponds to a two parameter family of image points: a hyper-surface [14]. Its
expression can be obtained in the following way: consider the motion of a fixed point in E that is
constrained to move on a fixed circle in R, with radius r, centred on the homogeneous coordinates
(Xc : Yc : Z) and having the equation

k0ðX 2 þ Y 2Þ � 2XXcZ � 2YYcZ þ X 2
c Z

2 þ Y 2
c Z

2 � r2Z2 ¼ 0: ð6Þ

Eq. (6) represents a circle only when k0 ¼ 1. However, to develop the constraint equations we
shall leave it an arbitrary constant for the time being. It is convenient to express Eq. (6) in the
following form:

k0ðX 2 þ Y 2Þ  +  2k1XZ + 2k2YZ + k3Z2 ¼ 0; ð7Þ
where

k0 ¼ arbitrary homogenising constant;

k1 ¼ �Xc;

k2 ¼ �Yc;

k3 ¼ k21 þ k22 � r2:
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Eq. (7) is homogeneously quadratic in the variables X , Y , Z, and homogeneously linear in the
constants ki, i 2 f0; 1; 2; 3g. There is then a dual relationship between the constants and the
variables, in that Eq. (7) could represent the locus of variable points (X : Y : Z) on a fixed circle
with circle coordinates [k0 : k1 : k2 : k3], or dually as a family of variable circles on a fixed point
with point coordinates (X : Y : Z). Thus, the four ki, i 2 f0; 1; 2; 3g are defined to be homoge-
neous circle coordinates, while X , Y , Z are the homogeneous point coordinates of the circle�s
point locus.

4.2. Linear constraints

If k0 ¼ 0 then Eq. (7) becomes

Zð2k1X þ 2k2Y þ k3ZÞ ¼ 0: ð8Þ
Eq. (8) represents two lines. The factor Z ¼ 0 represents the line at infinity in the projective

plane, P2, while the factor in parentheses is the equation of a line where the first two line coor-

dinates are multiplied by 2. The 2 can be treated as a proportionality factor arising from the
original circle formulation of the equation of constraint. The trivial factor Z ¼ 0 can be ignored
because only ordinary lines (non-ideal lines) need be considered for practical designs. Looking at
Eq. (8) it is to be seen that

½k1 : k2 : k3� ¼
1

2
L1 :

1

2
L2 : L3

� �
; ð9Þ

where the Li are line coordinates obtained by Grassmann expansion of the determinant of two
points on the line [20].

An RPR leg will be used for illustration. For these legs the line coordinates are determined by
the base R-pair inputs and the corresponding fixed point, Fi, i 2 fA;B;Cg (see Fig. 2). The di-
rection of the line is given by the base R-pair input: the joint angle with respect to the fixed base
frame R, #R. Additionally, the location of a point on the line is known: the fixed revolute centre,
also expressed in R, FR. The line equation in R for a given leg is obtained from the Grassmann
expansion:

X Y Z
FX=R FY =R FZ=R
cos#R sin#R 0

������
������ ¼ 0; ð10Þ

where the notation FX=R, FY =R, FZ=R, represent the homogeneous coordinates (X : Y : Z) of the
revolute centre relative to R. Applying Eq. (9) we obtain

½k1 : k2 : k3� ¼
�
� FZ=R

2
sin#R :

FZ=R
2

cos#R : ðFX=R sin#R � FY =R cos#RÞ
�
: ð11Þ

4.3. Image space constraint surface equations

The linear transformation in Eq. (4) gives the coordinates of points in the fixed frame R in terms
of the points in the moving frame E and the kinematic mapping image points corresponding to a
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particular displacement. An algebraic expression of the image space surface corresponding to the
circular constraints emerges when the expressions for (X : Y : Z) from Eq. (4) are substituted into
Eq. (7):

k0z2ðX 2
1

�
þ X 2

2 Þ þ
1

4
k0ðx2
	

þ y2Þ þ k3z2 � 2zðk1xþ k2yÞ


X 2
3

þ 1

4
k0ðx2
	

þ y2Þ þ k3z2 þ 2zðk1xþ k2yÞ


X 2
4 þ ðk1z2 � k0xzÞX1X3

� ðk2z2 þ k0yzÞX1X4 þ ðk2z2 � k0yzÞX2X3 þ ðk0xzþ k1z2ÞX2X4

þ ðk2xz� k1yzÞX3X4

�
1

4
ðX 2

3

�
þ X 2

4 Þ
�

¼ 0: ð12Þ

This quartic contains two quadratic factors in Xi. The factor 1=4ðX 2
3 þ X 2

4 Þ is exactly the non-zero
condition of the planar kinematic mapping, which must be satisfied for a point to be the image of
a real displacement. Since only the images of real displacements are considered, this factor must
be non-zero and may be safely eliminated. What remains is a quadratic in the Xi. The quantities x,
y, z (coordinates of leg-platform attachment points which have fixed position in E) and ki are all
design constants. Hence, the first factor in Eq. (12) is the point equation of a quadric surface in the
3-D projective image space. This general quadric is the geometric image of the kinematic con-
straint that a point in E moves on either a circle, or a line, in R depending on whether k0 ¼ 1, or
k0 ¼ 0, respectively.

4.4. Identifying the quadric constraint surface

The first factor in Eq. (12) is greatly simplified under the following assumptions:

(1) No platform of practical significance will have a point at infinity, so it is safe to set z ¼ 1.
(2) Platform rotations of / ¼ p (half-turns) have images in the plane X4 ¼ 0. Because the Xi are

implicitly defined by Eq. (3), setting / ¼ p gives

ðX1 : X2 : X3 : X4Þ ¼ ða : b : 2 : 0Þ: ð13Þ
When we remove the one parameter family of image points for platform orientations of / ¼ p we
can, for convenience, normalise the image space coordinates by setting X4 ¼ 1.

Applying these assumptions to the first factor in Eq. (12) gives the simplified constraint surface
equation:

k0ðX 2
1 þ X 2

2 Þ þ
1

4
ðk0½x2 þ y2� þ k3 � 2½k1xþ k2y�ÞX 2

3 þ ðk1 � k0xÞX1X3

þ ðk2 � k0yÞX2X3 � ðk2 þ k0yÞX1 þ ðk0xþ k1ÞX2 þ ðk2x� k1yÞX3

þ 1

4
ðk0½x2 þ y2� þ k3 þ 2½k1xþ k2y�Þ ¼ 0: ð14Þ

The constraint surface can be identified in many ways. We proceed in an intuitive way by
employing some careful geometric thinking. There are two cases to consider: (1) if the leg is RR-
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type, the ki are circle coordinates and one must set k0 ¼ 1; and (2) if the leg is PR- or RP -type, the ki
are proportional to line coordinates and it is necessary to set k0 ¼ 0.

4.5. RR-type: hyperboloid of one sheet

Setting k0 ¼ 1 in Eq. (14) gives the following:

H : X 2
1 þ X 2

2 þ 1

4
ðx2 þ y2 þ k3 � 2½k1xþ k2y�ÞX 2

3 þ ðk1 � xÞX1X3

þ ðk2 � yÞX2X3 � ðk2 þ yÞX1 þ ðxþ k1ÞX2 þ ðk2x� k1yÞX3

þ 1

4
ðx2 þ y2 þ k3 þ 2½k1xþ k2y�Þ ¼ 0: ð15Þ

This surface is seen to be an hyperboloid of one sheet, hence indicated by H , after the subse-
quent arguments are considered. Intersections of the quadric with planes where X3 ¼ constant are
studied. First we rewrite k3 ¼ k21 þ k22 � r2 in Eq. (15) (recall r is the radius of the circle centred at
(�k1;�k2). Collect X1 and X2 terms on the left and constant terms, including X3 terms, on the
right-hand side of the equation, then complete the squares in X1 and X2. After some algebra the
following equation is obtained:

X1

�
� 1

2
½fx� k1gX3 þ k2 þ y�

�2

þ X2

�
� 1

2
½fy � k2gX3 � k1 � x�

�2

¼ r2

4
ð1þ X 2

3 Þ: ð16Þ

Eq. (16) represents a circle in the planes where X3 is a constant. The circle centre has coordi-
nates

1

2
½fx

�
� k1gX3 þ k2 þ y� : 1

2
½fy � k2gX3 � k1 � x� : X3

�
; ð17Þ

and radius

RX3
¼ r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ X 2

3 Þ
q

: ð18Þ

As X3 is varied, the locus of circle centres defines a line. Setting X3 ¼ t, the linear parametric
equation is

X1

X2

X3

2
4

3
5 ¼ 1

2

k2 þ y
�k1 � x

0

2
4

3
5þ t

2

x� k1
y � k2
2

2
4

3
5: ð19Þ

This leads to the conclusion that the quadric surface is a family of generally non-concentric
circles whose centre points are all collinear. Furthermore, it is apparent from Eq. (16) that the
smallest circle of the family occurs when X3 ¼ 0, and has a radius equal to r=2. As X3 increases in
value the circles become larger regardless of the sign of X3. Thus, the quadric surface extends to
infinity in two directions.

It is well known that there are only nine different types of quadrics [21]. Intersections of certain
planes with spheres and ellipsoids contain circles, but the surfaces are finite. Parabolic cylinders
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extend to infinity in only one direction, moreover no real plane intersections contain circles. The
hyperbolic cylinders extend to infinity in two directions, but, like the parabolic cylinders, no real
plane intersections contain circles. Circular cylinder plane intersections contain circles, but all of
the same diameter. Additionally, cones contain circles, but contain a degenerate one with van-
ishing diameter. Every plane intersects an hyperbolic paraboloid in either a parabola, an hy-
perbola, or two lines; no circles. It cannot be an hyperboloid of two sheets because it is a
continuous family of circles, the smallest radius being finite. Hence, by process of elimination, the
only possible quadric surface that fits the geometric description of the constraint surface is an
hyperboloid of one sheet.

The locus of circle centres,L, is given by Eq. (19). Note thatL is not necessarily perpendicular
to the circles. The line L is unique and planes to which it is orthogonal, in general, intersect the
hyperboloid in ellipses. Thus, the hyperboloid is generally not one of revolution, it is skew.
However, the hyperboloid always intersects the planes parallel to X3 ¼ constant in circles. Thus,
the X3-axis is perpendicular to the circles. If, however, k1 ¼ k2 ¼ x ¼ y ¼ 0 then L and the lon-
gitudinal axis of the hyperboloid coincide with the X3-axis.

4.6. Parametric equation of the constraint hyperboloid

If computer generated images of the constraint hyperboloid are required then a parametrization
is necessary. The parametric equation of a second order surface requires two parameters. The
implicit form of the constraint hyperboloid, Eq. (15), represents a circle in the projection of the
intersection of the two hyper-planes X3 ¼ constant and X4 ¼ 1. An arbitrary hyperboloid circle
can be parametrized with an angle f. The radius of the circle can then be changed by varying the
parameter t, see Fig. 3. The hyperboloid circle equation may be written as

ðX1 � X1cÞ2 þ ðX2 � X2cÞ2 � R2
X3

¼ 0; ð20Þ

where ðX1c;X2cÞ are the coordinates of the circle centre and RX3
is its radius.

The locus of points satisfying Eq. (20) can be generated parametrically with the angle f such
that the following vector equation is fulfilled:

Fig. 3. An arbitrary hyperboloid circle.
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p ¼ pc þ RX3
ðfÞ: ð21Þ

Using the expressions in Eq. (16) with X3 ¼ t, Eq. (21) can be rewritten in component form,
giving the parametric form of the constraint hyperboloid in terms of the two parameters t and f:

X1

X2

X3

2
64

3
75 ¼ 1

2

½x� k1�t þ k2 þ yð Þ þ ðr
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

p
Þ cos f

½y � k2�t � k1 � xð Þ þ ðr
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

p
Þ sin f

2t

2
64

3
75;

f 2 f0; . . . ; 2pg; t 2 f�1; . . . ;1g: ð22Þ
Fig. 4 is a parametric representation of a constraint hyperboloid with k1 ¼ �1, k2 ¼ �3, r ¼ 2,

and the moving platform points have coordinates x ¼ 1, y ¼ 3.

4.7. PR- and RP -type: hyperbolic paraboloid

A very different constraint surface is obtained when the displacement condition is changed so
that a fixed point in the moving frame E is constrained to move on a fixed line in the non-moving
frame R. This condition requires the ki to represent planar line coordinates. Hence, it is necessary
to set k0 ¼ 0 in Eq. (14). Making this substitution we obtain an hyperbolic paraboloid, indicated
by HP:

HP : ðk1X3 � k2ÞX1 þ ðk1 þ k2X3ÞX2 þ
1

4
ðk3 � 2½k1xþ k2y�ÞX 2

3

þ ðk2x� k1yÞX3 þ
1

4
ðk3 þ 2½k1xþ k2y�Þ ¼ 0: ð23Þ

Fig. 4. A projection of H in the hyper-plane X4 ¼ 1.
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This is seen to be true after the following argument is considered. Eq. (23) is a quadric in the Xi,
but very different in form from Eq. (15). To compare them, Eq. (23) is also intersected with planes
where X3 is a constant. As X3 is varied a family of mutually skew lines is obtained that are all
parallel to a plane, but not to each other. The quadric is therefore a regulus of an hyperbolic
paraboloid [21]. This being the case, it cannot be classified as a special hyperboloid as in [3] and
[14].

4.8. Parametric equation of the constraint hyperbolic paraboloid

There is usually more than one way to parametrize a surface. We propose the following one
because it is free from representational singularities. That is, some of the components of the
parametric equation may consist of fractions. The denominators must be free from dependence on
the parameters. One way to achieve this is to use the proposed directrix.

The hyperbolic paraboloid can be constructed using a line, L, in one regulus, R, as the di-
rectrix for the opposite regulus,R0. This can be done because for all doubly ruled quadric surfaces
each line in regulus R intersects every line in the opposite regulus, R0.

When X3 ¼ 0 then Eq. (23) represents the line L0 contained in the plane X3 ¼ 0, indicated by
pX3

¼ 0. Now, consider the plane p that also contains L0, but is perpendicular to pX3
¼ 0, see Fig.

5. The X3-axis is parallel to p. Let the line L0 be one line in regulus R0. There is one and only one
line L contained in the intersection of regulus R and plane p. Since L intersects every line in R0,
every distinct point on L represents an intersection with a distinct line in R0. The locus of points
on L is a function of the parameter X3 ¼ t.

A general line in space can be described by a fixed point on the line along with a direction. For
every value of t there is a unique point on the directrix line L, which is the point of intersection
with the corresponding lineLi 2 R0. The direction ofLi is also a function of t since this line must
be parallel to pX3

¼ t. Stepping in the direction of Li by varying a second parameter s yields the
locus of points on Li:

Li ¼ HP ¼
f ðtÞ
gðtÞ
t

2
4

3
5þ s

aðtÞ
bðtÞ
0

2
4

3
5: ð24Þ

Fig. 5. Constructing an hyperbolic paraboloid.
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This collection of lines is a quadric by virtue of the mixed second order quantities saðtÞ and
sbðtÞ. Determining the functions f ðtÞ, gðtÞ, aðtÞ and bðtÞ will yield the parametrization of the
constraint HP.

The first step is to determine the plane p that is perpendicular to the plane pX3
¼ 0. The

equation for L0 is obtained after setting X3 ¼ 0 in Eq. (23):

L0 : �k2X1 þ k1X2 þ
1

4
ðk3 þ 2½k1xþ k2y�Þ ¼ 0: ð25Þ

The line L0 is the line of intersection of the two planes pX3
¼ 0 and p. The plane p is per-

pendicular to pX3
¼ 0 and must also contain L0. Due to this, p can be described by solving Eq.

(25) for either X1 or X2 and allowing X3 to take on any value. Solving for X1 we obtain

p ¼ X1 ¼ 1
k2

k1X2 þ 1
4
½k3 þ 2fk1xþ k2yg�

� �
;

X3 ¼ X3:

�
ð26Þ

If k2 is close to zero, then Eq. (25) is solved for X2, giving

p ¼ X2 ¼ 1
k1

� k2X1 þ 1
4
k3 þ 2fk1xþ k2yg½ �

� �
;

X3 ¼ X3:

�
ð27Þ

Note that k1 and k2 cannot simultaneously vanish because they are proportional to line coor-
dinates of the real line between corresponding pairs of fixed base points and moving platform leg
attachment points. Either representation of the plane p, Eq. (26) or Eq. (27), may be used yielding
identical results.

Without loss in generality k2 can be assumed sufficiently large for this derivation. Eq. (26) mean
that any point ½X1 : X2 : X3� 2 p is given by choosing values for X2 and X3. Thus, the plane p, which
is perpendicular to pX3

¼ 0, is completely described by the first of Eq. (26), since X2 and X3 are
arbitrary, and independent.

The next step is to find an expression for L 2 R. This is done by finding the line of intersection
of p and the implicit equation of the hyperbolic paraboloid, Eq. (23). This is the unique line in R
contained in p which intersects L0 2 R0. This equation is obtained by substituting the first of Eq.
(26) into Eq. (23), yielding

X3

4k2
4½k21
�

þ k22 �X2 þ ½k2k3 � 2fk22y þ k1k2xg�X3 þ 2½k21 þ 2k22 �x� 2k1k2y þ k1k3
�
¼ 0; ð28Þ

assuming k2 is sufficiently large. This intersection apparently contains two factors, the plane
X3 ¼ 0, and the line

L : 4ðk21 þ k22ÞX2 þ k2k3
�

� 2½k22y þ k1k2x�
�
X3 þ 2ðk21 þ 2k22Þxþ k1k3 ¼ 0: ð29Þ

This does not agree with the fact that a plane intersecting with a quadric must produce a second
order curve. Here the conic should degenerate into two lines. In fact, it does. The first factor is an
artifact of the representation. Recall Fig. 5 and Eq. (25), the plane X3 ¼ 0 contains the lineL0 and
no other line of the quadric. Then Eq. (29) must be an expression forL, since it is a line contained
in the intersection of p and HP that is not L0. Since L0 and L intersect, and because they are
both in HP, these lines are in the opposite reguli R0 and R.
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Now, solve Eq. (29) for X2. After setting X3 ¼ t the following expression is obtained:

gðtÞ ¼ ð2½k1k2xþ k22y� � k2k3Þt � 2ðk21 þ 2k22Þxþ 2k1k2y � k1k3
4ðk21 þ k22Þ

; ð30Þ

which represents the X2 coordinate of a point on the line L 2 R for a particular value of t. The X1

coordinate is obtained by substituting the expression for X2 ¼ gðtÞ into Eq. (26) which yields
another function of only t:

f ðtÞ ¼ ð2½k1k2y þ k21x� � k1k3Þt þ 2ð2k21 þ k22Þy � 2k1k2xþ k2k3
4ðk21 þ k22Þ

: ð31Þ

This gives the desired parametric equation for L in terms of X3 ¼ t. Note that the denomi-
nators of the rational functions f ðtÞ and gðtÞ are identical: k21 þ k22. Moreover, the denominator is
non-vanishing because k21 and k22 are, for the linear kinematic constraints, line coordinates and
cannot simultaneously be zero.

Now, direction vectors for the Li are required. The coefficients in Eq. (23) are constants, and
may be collected giving

aX1 þ bX2 þ cX 2
3 þ dX3 þ e ¼ 0; ð32Þ

Fig. 6. A projection of HP in the hyper-plane X4 ¼ 1.
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where a and b are both functions of X3 ¼ t. In an arbitrary plane pX3
¼ t the direction of the

corresponding line is given by the coefficient ratio �b=a, i.e., the slope of the line in the given
plane. In other words, the line Li is parallel to the direction given by

aðtÞX1 þ bðtÞX2 ¼ 0; ð33Þ
where

aðtÞ ¼ k1t � k2; ð34Þ
bðtÞ ¼ k1 þ k2t: ð35Þ

Combining the points on the directrix with the directions of the lines in the regulus gives the
desired parametrization of the constraint HP:

HP :
X1

X2

X3

2
4

3
5 ¼

f ðtÞ
gðtÞ
t

2
4

3
5þ s

�bðtÞ
aðtÞ
0

2
4

3
5; �16 t61; �16 s61: ð36Þ

Fig. 6 illustrates a parametric representation of a constraint hyperbolic paraboloid with circle
coordinates k0 ¼ 0, k1 ¼ 1, k2 ¼ k3 ¼ 0, and fixed platform point coordinates x ¼ y ¼ 0.

5. Conclusions

In this paper we have shown that the only possible kinematic mapping image space surfaces
corresponding to the kinematic constraints in arbitrary legs of a GP3LP are either hyperboloids of
one sheet, or hyperbolic paraboloids. Our tools for classifying these constraint surfaces were el-
ementary concepts of classical geometry regarding quadrics in three dimensional Cartesian space.
Parametrizations for each constraint surface were derived. The parametrizations are always im-
plementable because they are singularity free regarding the parameters. These surfaces are im-
portant in the applications to kinematic analysis of GP3LP: the forward and inverse kinematic
problems [9,15,19], together with workspace analysis and visualization [6,11,17].
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