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Abstract

The variants of general three-legged planar robot platforms are enumerated and classified. Constraint
surfaces corresponding to individual platform legs in the kinematic mapping image space are classified and
parametrized. The parametric equations are free from representational singularities. The entire set consists
of hyperboloids of one sheet and hyperbolic paraboloids. This result corrects an oversight in the body of
literature. These surfaces have important applications to the kinematic analysis of planar three-legged
robot platforms, hence appropriate attention should be given to their classification.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A very useful and elegant approach to the kinematic analysis of parallel robot platforms is
kinematic mapping. A brief sampling of the literature justifies this statement, for example [1-8]. In
this paper we use kinematic mapping to investigate the nature of the kinematic constraints of
general three-legged planar platforms with three degrees of freedom (DOF). The only restriction
on the architecture is that the joints all be lower pairs and that each of the three kinematic chains
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connecting the platform to the fixed base be connected with three single DOF joints. The joints
may be any combination of lower pairs. Each of the three sub-chains contains an actuated joint,
although the active joints may be different in each leg. Platforms possessing holonomic higher
pairs have been treated separately in [9-11].

In this paper we use a mapping of planar displacements that was introduced in 1911 simul-
taneously, and independently, by Griinwald [12] and Blaschke [13]. A very detailed account may
be found in Bottema and Roth [14]. A natural question arises when constrained motions are
considered: what form does the corresponding set of image points take? The answer, in principal,
is simple: it depends on how the motion is constrained.

For general planar three-legged platforms (GP3LP) with three DOF we consider the motions of
the platform by examining the motions of each leg separately. When the joints are restricted to
lower pairs, prismatic (P) and revolute (R) pairs, then depending on the details of how the kine-
matic chain is arranged the image space point sets can be one of only two types: (1) if the con-
straint is linear (a point on the moving platform remains on a fixed line) the corresponding image
space point set is an hyperbolic paraboloid; (2) if the constraint is circular (a point on the moving
platform remains on a fixed circle) the corresponding image space point set is an hyperboloid of
one sheet. Because these quadric surfaces contain the images of the constrained displacements, it
is natural to call them constraint surfaces. Kinematic analysis of GP3LP reduces to intersection
problems between the constraint surfaces for each leg.

The motivation for this work lies in the fact that the hyperbolic paraboloid has never been so
identified. It has been, until now, classified as a special hyperboloid [3,14]. Because of their useful
applications to platform forward and inverse kinematics [9,15,16], as well as workspace analysis
[6,11,17], it is important to correctly classify the constraint surfaces.

2. Classifying general planar three-legged platforms

A GP3LP with three DOF consists of a moving platform connected to a fixed base by three
simple kinematic chains. Each chain is connected by three independent one DOF joints, one of
which is active. Thus each chain provides the control of one of three DOF of the moving platform.
In this paper we will deal only with lower kinematic pair joints. Since the displacements of the
platform are confined to the plane, only R- and P-pairs are considered.

The possible combinations of R- and P-pairs which connect the moving platform to the fixed
base and constrain the independent open kinematic chains, consisting of successions of three
joints starting from the fixed base, in a GP3LP are [18]:

RRR,RPR, RRP, RPP, PRR, PPR, PRP, PPP.

The PPP chain must be excluded because no combination of pure planar translations can cause
a change in orientation. Thus, there are seven possible kinematic chains. Fig. 1 illustrates topo-
logically symmetric platforms, each characterized by one of the seven allowable simple kinematic
chains.
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Fig. 1. The seven possible leg topologies in symmetric platforms.

2.1. Passive sub-chains

The active joint in a leg is identified with an underscore, RPR, for example. Since any one of the
three joints in any of the seven allowable simple kinematic chains may be actuated there are
twenty-one possible leg architectures.
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Table 1

The 18 possible leg architectures
RR-type PR-type RP-type
RRR RPR RRP
RRR PRR RRP
RRR PRR RPR
PRR PPR PRP
RPR PPR RPP
RRP PRP RPP

When the value of the activated joint coordinate in a leg is specified, the joint is effectively
locked and may be temporarily removed from the chain. What remains is a kinematic chain
connected with two passive joints. Examining Fig. 1, it is to be seen that the resulting passive sub-
chain is one of only four types: either RR, PR, RP, or PP. However, symmetric PP-type architecture
must be rejected as not useful because such a platform either moves uncontrollably or is not
assemblable when the actuated joint variables are specified [18,19]. Removing PP-type legs from
the group reduces the number of possible leg architectures to eighteen. They are listed, according
to passive sub-chain, in Table 1.

2.2. Enumerating the GP3LP

How many distinct GP3LP with three DOF are there? This number is arrived at by considering
that there are 18 possible kinematic chains to choose from for each of three legs. If the elements
are allowed to be counted more than once the number of possible combinations is given by

(n+r—1)!

Cln.r) = rl(n—1)!

= C(18,3) = 1140. (1)

3. The Grinwald-Blaschke mapping of plane kinematics

A general displacement in the plane requires three independent parameters to fully characterize
it. The idea is to map the three independent quantities to the points of a 3-D projective image
space. Referring to Fig. 2, the position of a point in a moving plane described by reference
coordinate system E relative to a fixed plane described by coordinate system X can be given by
the homogeneous linear transformation

X cosp —sing al |x
Y| =|sing cosep b||y], (2)
VA 0 0 1]z

where the ratios (x : y : z) represent the homogeneous coordinates of a point in E, (X : Y : Z) are
those of the same point in X. The Cartesian coordinates of the origin of £ measured in X are (a, b),
while ¢ is the rotation angle measured from the X-axis to the x-axis, the positive sense being
counter-clockwise. Clearly, in Eq. (2) the three characteristic displacement parameters are
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Fig. 2. The moving frame E and fixed frame X for any set of legs from Table 1.

(a,b, @). Image points (points in the 3-D projective image space) are defined in terms of the
displacement parameters (a, b, ¢) as
(X1 : X2 : X5 : Xy) = asin(@/2) — bcos(p/2) : (acos(p/2) + bsin(¢p/2)
:2sin(¢@/2) : 2cos(p/2)). (3)
By virtue of the relationships expressed in Eq. (3), the transformation matrix from Eq. (2) may

be expressed in terms of the homogeneous coordinates of the image space. This yields a linear
transformation to express a displacement of £ with respect to X in terms of the image point:

X (X42 — X32) —2X3X4 2(X1X3 +X2X4) X
z 0 0 (X7 +X3) z

Since each distinct displacement described by (a, b, ¢) has a corresponding unique image point,
the inverse mapping can be obtained from Eq. (3): for a given point of the image space, the
displacement parameters are

tan(<p/2) = X3/X4,
a = 2(X1X; + XoX3) /(X5 +X7), ()
b =2(X2Xs — X1 Xa)/ (X2 + X3).
Eq. (5) give correct results when either X3 or Xj is zero. Caution is in order, however, because
the mapping is injective, not bijective: there is at most one pre-image for each image point. It is easy
to see that any image point on the real line X3 = X; = 0 has no pre-image and therefore does not

correspond to a real displacement of £. The image point must satisfy the condition X7 + X7 # 0 in
order to represent a real displacement. For a detailed discussion of singular cases see [14].
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4. Kinematic constraints

Consider an arbitrary RR-type passive sub-chain. The leg architecture can be any of the six
listed in the first column of Table 1. When the active joint variable in this leg is specified the sub-
chain that remains has two passive R-pairs. Regardless of the leg architecture, once the active joint
is locked one of the remaining R-pairs is fixed in 2 and the other moves on a circle of fixed radius
centred on the stationary R-pair. Thus, the motions of an RR-type passive sub-chain are con-
strained by the fact that a point with fixed position in £ moves on the circumference of a constant-
radius, fixed-centred circle in 2.

Next, consider an arbitrary PR-type passive sub-chain. These are listed in the second column of
Table 1. When the active joint is locked the passive R-pair is constrained to move on a fixed line
in X.

Finally, consider an arbitrary RP-type passive sub-chain, see the third column of Table 1. When
the active joint is locked the passive P-pair is constrained to move on a fixed point in X. The
kinematic constraint is represented by a planar pencil of lines on a point. When considered
projectively, this constraint is nothing but the dual of the constraint for PR-type legs: a planar
pencil of points on a line. Moreover, if E is considered as the fixed and X as the moving frame, the
kinematic constraints for RP-type legs are identical to those of PR- and RR-type. In this sense RP-
type legs can be considered as kinematic inversions of corresponding PR-type legs. Hence, the
displacements of all PR- and RP-type passive sub-chain are governed by projectively identical
kinematic constraints.

4.1. Circular constraints

The ungrounded R-pair in an RR-type leg is constrained to move on a circle with a fixed centre.
Meanwhile, the platform can rotate about the moving R-pair. This two parameter family of
displacements corresponds to a two parameter family of image points: a hyper-surface [14]. Its
expression can be obtained in the following way: consider the motion of a fixed point in E that is
constrained to move on a fixed circle in X, with radius 7, centred on the homogeneous coordinates
(X, : Y. : Z) and having the equation

ko(X? + Y?) = 2XX.Z — 2YY.Z + X?Z* + Y?Z* — r*Z* = 0. (6)

Eq. (6) represents a circle only when ky = 1. However, to develop the constraint equations we
shall leave it an arbitrary constant for the time being. It is convenient to express Eq. (6) in the
following form:

ko(X? + Y?) + 2XZ + 2k YZ + ks Z = 0, (7)
where

ky = arbitrary homogenising constant,
ki = =X,

ky =Y.,

ks :klz—l—k% —
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Eq. (7) is homogeneously quadratic in the variables X, Y, Z, and homogeneously linear in the
constants k;, i € {0,1,2,3}. There is then a dual relationship between the constants and the
variables, in that Eq. (7) could represent the locus of variable points (X : Y : Z) on a fixed circle
with circle coordinates [ky : ki : ks : k3], or dually as a family of variable circles on a fixed point
with point coordinates (X : Y : Z). Thus, the four k;, i € {0,1,2,3} are defined to be homoge-
neous circle coordinates, while X, Y, Z are the homogeneous point coordinates of the circle’s
point locus.

4.2. Linear constraints

If k) = 0 then Eq. (7) becomes
Z(2k\X +2kY + k3Z) = 0. (8)

Eq. (8) represents two lines. The factor Z = 0 represents the line at infinity in the projective
plane, P, while the factor in parentheses is the equation of a line where the first two /ine coor-
dinates are multiplied by 2. The 2 can be treated as a proportionality factor arising from the
original circle formulation of the equation of constraint. The zrivial factor Z = 0 can be ignored
because only ordinary lines (non-ideal lines) need be considered for practical designs. Looking at
Eq. (8) it is to be seen that

1 1
[kl : k2 : k3] = |:§Ll :§L2 :L3:|7 (9)

where the L, are line coordinates obtained by Grassmann expansion of the determinant of two
points on the line [20].

An RPR leg will be used for illustration. For these legs the line coordinates are determined by
the base R-pair inputs and the corresponding fixed point, £}, i € {4,B,C} (see Fig. 2). The di-
rection of the line is given by the base R-pair input: the joint angle with respect to the fixed base
frame X, ¥s. Additionally, the location of a point on the line is known: the fixed revolute centre,
also expressed in X, Fx. The line equation in X for a given leg is obtained from the Grassmann
expansion:

X Y Z
Fy;s Fyys Fys| =0, (10)
cosds sinds O

where the notation Fy,s, Fy/s, Fy», represent the homogeneous coordinates (X : Y : Z) of the
revolute centre relative to 2. Applying Eq. (9) we obtain

F; F,
ki i ky i k3] = —% sin ¥s :% cos ¥y : (Fy/ssintdy — Fy;ycosvy)|. (11)

4.3. Image space constraint surface equations

The linear transformation in Eq. (4) gives the coordinates of points in the fixed frame X in terms
of the points in the moving frame E and the kinematic mapping image points corresponding to a
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particular displacement. An algebraic expression of the image space surface corresponding to the
circular constraints emerges when the expressions for (X : Y : Z) from Eq. (4) are substituted into

Eq. (7):

1
<k022(X12 —|—X22) + 2 [ko(x2 + ) + ksz? — 2z(kyx + kzy)]X32

1
+ 1 [ko(x2 + ) + ks + 2z(kyx + kzy)]X42 + (k2% — koxz) X1 X3
— (k222 + k()yZ)XlX4 + (k222 — k()yZ)XzX3 + (k()XZ + k]Zz)X2X4

+ (kyxz — ky yz)X3X4> G (X3 +X42)> = 0. (12)

This quartic contains two quadratic factors in X;. The factor 1/4(X7 + X7) is exactly the non-zero
condition of the planar kinematic mapping, which must be satisfied for a point to be the image of
a real displacement. Since only the images of real displacements are considered, this factor must
be non-zero and may be safely eliminated. What remains is a quadratic in the X;. The quantities x,
v, z (coordinates of leg-platform attachment points which have fixed position in ) and k; are all
design constants. Hence, the first factor in Eq. (12) is the point equation of a quadric surface in the
3-D projective image space. This general quadric is the geometric image of the kinematic con-
straint that a point in £ moves on either a circle, or a line, in X depending on whether £y = 1, or
ko = 0, respectively.

4.4. Identifying the quadric constraint surface
The first factor in Eq. (12) is greatly simplified under the following assumptions:

(1) No platform of practical significance will have a point at infinity, so it is safe to set z = 1.
(2) Platform rotations of ¢ = n (half-turns) have images in the plane X; = 0. Because the X; are
implicitly defined by Eq. (3), setting ¢ = & gives

XX :X3:Xy)=(a:b:2:0). (13)

When we remove the one parameter family of image points for platform orientations of ¢ = © we
can, for convenience, normalise the image space coordinates by setting X, = 1.

Applying these assumptions to the first factor in Eq. (12) gives the simplified constraint surface
equation:

1
ko(Xlz +X22) + Z (ko[x2 +y2] + k3 — 2[k1x + k2y])X32 + (kl — kox)X1X3
+ (kz — koy)X2X3 — (kz + koy)Xl + (kox + kK )Xz + (kzx — kly)X3
1
+ 7 (kolx? + 3] +hs + 2l + kay]) = 0. (14)

The constraint surface can be identified in many ways. We proceed in an intuitive way by
employing some careful geometric thinking. There are two cases to consider: (1) if the leg is RR-
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type, the ; are circle coordinates and one must set k) = 1; and (2) if the leg is PR- or RP-type, the k;
are proportional to line coordinates and it is necessary to set ko = 0.

4.5. RR-type: hyperboloid of one sheet
Setting ko = 1 in Eq. (14) gives the following:

1
H X12 —|—X22 —G—Z(xz +y2 + k3 — 2[k1x + kzy]))(}2 + (k] — X)X1X3

+ (ky = )Xo X5 — (ky + )X, + (x + k)Xo + (kox — kiy) X3
1
+ 707+ + ks + 20kax + koy]) = 0. (15)

This surface is seen to be an hyperboloid of one sheet, hence indicated by H, after the subse-
quent arguments are considered. Intersections of the quadric with planes where X3 = constant are
studied. First we rewrite k3 = k7 + k3 — r? in Eq. (15) (recall r is the radius of the circle centred at
(—=k1, —ky). Collect X; and X, terms on the left and constant terms, including X3 terms, on the
right-hand side of the equation, then complete the squares in X; and X,. After some algebra the
following equation is obtained:

2
,,.2

<X1 —%[{x—kl})ﬁ +k2+y]>2+ <X2 —%[{y—kz})(} —k —x]> = (1 +X7). (16)

Eq. (16) represents a circle in the planes where X3 is a constant. The circle centre has coordi-
nates

1 1
(E[{X — kl}X3 +k2 +y] . E[{y — kz}Xg — kl — x] ZX3>, (17)
and radius
Ry, :% (14 X2). (18)

As X; is varied, the locus of circle centres defines a line. Setting X3 = ¢, the linear parametric
equation is

Xl 1 k2+y ¢ X—kl
X2 :E —kl—x +§ y—k2 . <19)
X; 0 2

This leads to the conclusion that the quadric surface is a family of generally non-concentric
circles whose centre points are all collinear. Furthermore, it is apparent from Eq. (16) that the
smallest circle of the family occurs when X; = 0, and has a radius equal to »/2. As Xj; increases in
value the circles become larger regardless of the sign of X3. Thus, the quadric surface extends to
infinity in two directions.

It is well known that there are only nine different types of quadrics [21]. Intersections of certain
planes with spheres and ellipsoids contain circles, but the surfaces are finite. Parabolic cylinders
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extend to infinity in only one direction, moreover no real plane intersections contain circles. The
hyperbolic cylinders extend to infinity in two directions, but, like the parabolic cylinders, no real
plane intersections contain circles. Circular cylinder plane intersections contain circles, but all of
the same diameter. Additionally, cones contain circles, but contain a degenerate one with van-
ishing diameter. Every plane intersects an hyperbolic paraboloid in either a parabola, an hy-
perbola, or two lines; no circles. It cannot be an hyperboloid of two sheets because it is a
continuous family of circles, the smallest radius being finite. Hence, by process of elimination, the
only possible quadric surface that fits the geometric description of the constraint surface is an
hyperboloid of one sheet.

The locus of circle centres, %, is given by Eq. (19). Note that .# is not necessarily perpendicular
to the circles. The line % is unique and planes to which it is orthogonal, in general, intersect the
hyperboloid in ellipses. Thus, the hyperboloid is generally not one of revolution, it is skew.
However, the hyperboloid always intersects the planes parallel to X3 = constant in circles. Thus,
the X;3-axis is perpendicular to the circles. If, however, k| =k, = x = y = 0 then . and the lon-
gitudinal axis of the hyperboloid coincide with the Xj-axis.

4.6. Parametric equation of the constraint hyperboloid

If computer generated images of the constraint hyperboloid are required then a parametrization
is necessary. The parametric equation of a second order surface requires two parameters. The
implicit form of the constraint hyperboloid, Eq. (15), represents a circle in the projection of the
intersection of the two hyper-planes X; = constant and X; = 1. An arbitrary hyperboloid circle
can be parametrized with an angle {. The radius of the circle can then be changed by varying the
parameter ¢, see Fig. 3. The hyperboloid circle equation may be written as

(X1 — Xi.)* + (X2 — Xao)® — R}, =0, (20)

where (X.,X5.) are the coordinates of the circle centre and Ry, is its radius.
The locus of points satisfying Eq. (20) can be generated parametrically with the angle { such
that the following vector equation is fulfilled:

Fig. 3. An arbitrary hyperboloid circle.
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P=p.+ R (0). (21)

Using the expressions in Eq. (16) with X3 = ¢, Eq. (21) can be rewritten in component form,
giving the parametric form of the constraint hyperboloid in terms of the two parameters ¢ and (:

X | (x — kit + ko + ) + (rV2 + 1) cos{
X ) (v = k)t =kt = x) + (V2 + 1)sin{ |,
X3 2t
(ed{0,....2n}, t€{—00,...,00}. (22)
Fig. 4 is a parametric representation of a constraint hyperboloid with k; = —1, k, = =3, r = 2,

and the moving platform points have coordinates x = 1, y = 3.
4.7. PR- and RP-type: hyperbolic paraboloid

A very different constraint surface is obtained when the displacement condition is changed so
that a fixed point in the moving frame F is constrained to move on a fixed line in the non-moving
frame . This condition requires the k; to represent planar line coordinates. Hence, it is necessary
to set ko = 0 in Eq. (14). Making this substitution we obtain an hyperbolic paraboloid, indicated
by HP:

|
HP : (kX5 — ko) X1 + (ky + kaXs)Xo + (ks = 2lkox + hay)) X5

1

Fig. 4. A projection of H in the hyper-plane X; = 1.
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This is seen to be true after the following argument is considered. Eq. (23) is a quadric in the X;,
but very different in form from Eq. (15). To compare them, Eq. (23) is also intersected with planes
where X; is a constant. As X3 is varied a family of mutually skew lines is obtained that are all
parallel to a plane, but not to each other. The quadric is therefore a regulus of an hyperbolic
paraboloid [21]. This being the case, it cannot be classified as a special hyperboloid as in [3] and
[14].

4.8. Parametric equation of the constraint hyperbolic paraboloid

There is usually more than one way to parametrize a surface. We propose the following one
because it is free from representational singularities. That is, some of the components of the
parametric equation may consist of fractions. The denominators must be free from dependence on
the parameters. One way to achieve this is to use the proposed directrix.

The hyperbolic paraboloid can be constructed using a line, ., in one regulus, #, as the di-
rectrix for the opposite regulus, Z,. This can be done because for all doubly ruled quadric surfaces
each line in regulus Z intersects every line in the opposite regulus, %,.

When X3 = 0 then Eq. (23) represents the line %, contained in the plane X3 = 0, indicated by
ny, = 0. Now, consider the plane = that also contains ., but is perpendicular to my, = 0, see Fig.
5. The X3-axis is parallel to #. Let the line £, be one line in regulus #,. There is one and only one
line % contained in the intersection of regulus # and plane n. Since £ intersects every line in %,
every distinct point on % represents an intersection with a distinct line in %,. The locus of points
on % is a function of the parameter X; = ¢.

A general line in space can be described by a fixed point on the line along with a direction. For
every value of ¢ there is a unique point on the directrix line .#, which is the point of intersection
with the corresponding line .¥; € %,. The direction of .#; is also a function of # since this line must
be parallel to my, = ¢. Stepping in the direction of #; by varying a second parameter s yields the
locus of points on .&;:

S () a(t)
L=HP=|g(t)| +s|b)|. (24)
t 0

Fig. 5. Constructing an hyperbolic paraboloid.
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This collection of lines is a quadric by virtue of the mixed second order quantities sa(¢) and
sb(t). Determining the functions f(¢), g(¢), a(¢) and b(¢) will yield the parametrization of the
constraint HP.

The first step is to determine the plane = that is perpendicular to the plane my, = 0. The
equation for %, is obtained after setting X3 = 0 in Eq. (23):

1
Ly kX + kX + 7 (ks + 2[kix + kay]) = 0. (25)

The line %, is the line of intersection of the two planes my, = 0 and n. The plane & is per-
pendicular to my, = 0 and must also contain %,,. Due to this, = can be described by solving Eq.
(25) for either X; or X, and allowing X3 to take on any value. Solving for X; we obtain

S Xl = é (k1X2 + % [k3 + 2{k1X + kzy}]), (26)
X3 = X;.
If &, is close to zero, then Eq. (25) is solved for X;, giving
n— {X2 :%( — ko X —l—%[/@ —|—2{k1x+k2y}]), (27)
X; = X;.

Note that £, and &, cannot simultaneously vanish because they are proportional to line coor-
dinates of the real line between corresponding pairs of fixed base points and moving platform leg
attachment points. Either representation of the plane n, Eq. (26) or Eq. (27), may be used yielding
identical results.

Without loss in generality &, can be assumed sufficiently large for this derivation. Eq. (26) mean
that any point [X; : X5 : X3| € mis given by choosing values for X, and X3. Thus, the plane 7, which
is perpendicular to my, = 0, is completely described by the first of Eq. (26), since X, and Xj are
arbitrary, and independent.

The next step is to find an expression for ¥ € #. This is done by finding the line of intersection
of m and the implicit equation of the hyperbolic paraboloid, Eq. (23). This is the unique line in #
contained in 7 which intersects ¥, € #,. This equation is obtained by substituting the first of Eq.
(26) into Eq. (23), yielding

4% (41K + 21X + [koks — 2082y + kkar} s + 206 + 262 — 2kikoy + kika) = 0, (28)
assuming k, is sufficiently large. This intersection apparently contains two factors, the plane
X; =0, and the line

This does not agree with the fact that a plane intersecting with a quadric must produce a second
order curve. Here the conic should degenerate into two lines. In fact, it does. The first factor is an
artifact of the representation. Recall Fig. 5 and Eq. (25), the plane X3 = 0 contains the line ¥, and
no other line of the quadric. Then Eq. (29) must be an expression for &, since it is a line contained
in the intersection of = and HP that is not %#,. Since ¥, and % intersect, and because they are
both in HP, these lines are in the opposite reguli %, and %.
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Now, solve Eq. (29) for X,. After setting X3 = ¢ the following expression is obtained:

(2[k1k2x -+ k%y] — k2k3)t — 2(k12 + 2k§)x + 2k1k2y — kik;

g(t) = 4(k% +kg) (30)

which represents the X, coordinate of a point on the line ¥ € # for a particular value of 7. The X,
coordinate is obtained by substituting the expression for X, = g(¢) into Eq. (26) which yields
another function of only

(2lkikay + k3x] — kyks)t + 2(26% + k2)y — 2kykox + koks

This gives the desired parametric equation for % in terms of X3 = ¢. Note that the denomi-
nators of the rational functions f(¢) and g(¢) are identical: k7 + k3. Moreover, the denominator is
non-vanishing because ki and &3 are, for the linear kinematic constraints, line coordinates and
cannot simultaneously be zero.

Now, direction vectors for the .#; are required. The coefficients in Eq. (23) are constants, and
may be collected giving

aXi +bXo + X7+ dX; + e =0, (32)

Fig. 6. A projection of HP in the hyper-plane Xy = 1.
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where a and b are both functions of X3 =¢. In an arbitrary plane ny, = ¢ the direction of the
corresponding line is given by the coefficient ratio —b/a, i.e., the slope of the line in the given
plane. In other words, the line .%; is parallel to the direction given by

a(t)X; +b(t)X, =0, (33)
where

a(t) = kit — ky, (34)

b(t) = ky + kat. (35)

Combining the points on the directrix with the directions of the lines in the regulus gives the
desired parametrization of the constraint HP:

X 1) —b(1)
HP: | X | = |g(®) | +s| a(t) |, —oco<t<oo, —oo<s<oo. (36)
X; t 0

Fig. 6 illustrates a parametric representation of a constraint hyperbolic paraboloid with circle
coordinates ko = 0, ky = 1, k, = k3 = 0, and fixed platform point coordinates x =y = 0.

5. Conclusions

In this paper we have shown that the only possible kinematic mapping image space surfaces
corresponding to the kinematic constraints in arbitrary legs of a GP3LP are either hyperboloids of
one sheet, or hyperbolic paraboloids. Our tools for classifying these constraint surfaces were el-
ementary concepts of classical geometry regarding quadrics in three dimensional Cartesian space.
Parametrizations for each constraint surface were derived. The parametrizations are always im-
plementable because they are singularity free regarding the parameters. These surfaces are im-
portant in the applications to kinematic analysis of GP3LP: the forward and inverse kinematic
problems [9,15,19], together with workspace analysis and visualization [6,11,17].
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