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Abstract

Four-bar mechanisms have been investigated for hundreds, if not thousands of years.

The extensive research interest stems not only from the wide use in the industry but

also from the ability to generate complex kinematic trajectory profiles, one of them

being the function generating input-output (IO) equation.

This thesis aims to generalise the procedure for determining the algebraic IO equa-

tions for any four-bar linkage kinematic architecture using only algebraic means. The

idea is to presume the linkage as an open kinematic chain, and to describe it adopting

the Denavit Hartenberg convention. The overall kinematic displacement of the open

chain can be specified using Study’s kinematic mapping. This mapping allows to char-

acterise the displacement from the base to the end-effector frame as algebraic varieties

in the seven-dimensional projective kinematic image space. To obtain a linkage, the

open chain is conceptually closed by equating the obtained algebraic parametrisation

to its identity, leaving a set of equations that completely describe the linkage. With

the help of elimination theory, the given system of polynomial equations is solved such

that an equation is obtained that depends only on two joint variables. These equa-

tions represent the desired algebraic IO equations for the respective linkage. In total,

there are six algebraic IO equations for each four-bar linkage kinematic architecture.

While the main objective of this thesis is the derivation of the IO equations using

kinematic mapping, the geometric interpretations of the coefficients of the algebraic
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IO equations reveal some deep insight on some of the characteristics of the linkages.

The geometric representation of these parameters is called the design parameter space,

and depending on the position of the points within the design parameter space, it is

possible to directly extract information on the relative mobility classification of the

linkage. Moreover, the utility of the algebraic IO equations is illustrated with detailed

application examples of differential kinematics.
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Chapter 1

Introduction

Four-bar linkages can be found in a multitude of applications, including windshield

wipers, pumps, and suspension systems. They consist of four rigid links coupled by

lower pairs, such as revolute (R), prismatic (P), spherical (S), cylindrical (C) or screw

(H) joints, forming a closed chain. These mechanisms allow for the transformation

of an input motion into a desired output motion which can be described by a math-

ematical function: the input-output (IO) equation. There are different methods for

deriving such equations that either rely on trigonometric functions, require geometric

consideration throughout the derivation, or have only focused on a particular mech-

anism without offering a general solution approach that can be applied to a range

of mechanisms. This research aims to develop a general method based on algebraic

means to obtain the algebraic IO equations for any kinematic architecture of four-bar

linkage: planar; spherical; or spatial.

This chapter is organised as follows. It will provide a broad overview of the topic

by first discussing the background and context, then addressing the research aims,

objectives and questions, the significance and finally, the limitations.
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1.1 Background and Research Problem

Due to the wide usage of mechanisms, they have been studied extensively regarding

position, velocity, and acceleration analysis. Traditional methods that focus on ob-

taining the solutions graphically are still being taught to engineering students; see, for

example [1]. While manual graphical techniques do not require sophisticated math-

ematical skill sets, and may be suitable to analyse planar linkages, the drawbacks

are evident: they are time-intensive, provide only approximate solutions, and when

studying spatial linkages, they require advanced knowledge of descriptive geometry.

Moreover, graphical solutions are only valid for a particular position of the linkage.

For a general overview, graphical position analysis would need to be repeated for

different positions of the input link.

There are also pure numerical methods found in commercial multibody dynamics

software, such as ADAMS. These techniques are reliable and very computationally

robust, but only provide a discrete single instance for a discrete configuration. These

techniques do not provide closed form algebraic equations that characterise the input-

output relationship between variables.

As a result, analytical methods are more popular among researchers. One ana-

lytical method is based on understanding the linkage’s geometry and the resulting

geometric constraints that are imposed by the chosen joints. Generally speaking, this

method involves identifying trigonometric relations, e.g., by defining law of cosines

constraints, or that an R joint is constraining the body to move on a circle, thus,

using the equation of a circle. It is easy to imagine that finding geometric constraints

of simple four-bar linkages can quickly lead to a desired outcome, such as the IO

equation. Derivations using this technique can, for instance, be found in [2]. How-

ever, this technique must be adapted every time a different mechanism is analysed,

and the geometry must be kept under consideration throughout the analysis.
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Another notable analytical method is the vector loop representation. Each link is

represented as a position vector, which are added and equated to zero to form a loop.

For relatively simple linkages with few unknowns and planar motion, this has proven

to be a useful approach. However, once the linkage becomes more complex, using

vectors is no longer possible. For example, a two (three)-dimensional vector loop

equation can only be solved for two (three) unknowns, respectively. Thus, as soon as

more than three equations are necessary to solve for the IO equation of spatial link-

ages, dual quaternions or matrices must be applied. A matrix method for analysing

linkages is, for instance, outlined in [3, 4]. Although this approach is interesting, one

major shortcoming is that solving the equations involves trigonometric terms, which is

computationally more expensive than solving algebraic expressions. Not surprisingly,

the resulting IO equations are also expressed trigonometrically, which is more chal-

lenging to work with as a mechanical designer who, e.g., is synthesising the linkages

that generate the desired IO functions. In contrast to trigonometric IO equations,

algebraic equations can easily be adapted to continuous approximate synthesis that

has proven to converge much faster [5, 6].

In fact, there exist only three algebraic IO equations in the literature, described

in [7, 8, 9]. They describe the IO relations of the planar quadrilateral linkage, and

the Bennett linkage. No other algebraic IO equations have been reported.

Due to the rapid rise of computing power as well as developments of algorithms

that can efficiently handle polynomial equations, the area of analysing mechanisms

using algebraic tools is attracting growing attention. However, none of them has

considered a systematic approach, i.e., an approach that only requires taking the

geometry of the linkage in the problem statement into account, to derive the IO

equations for any type of four-bar linkage using algebraic geometry.
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1.2 Research Aims, Objective and Questions

The aim of this work is to generalise the procedure for determining one single method

to obtain the algebraic IO equation for any kinematic architecture of four-bar linkage:

planar; spherical; or spatial by using only algebraic means. In contrast to previous

procedures, it will follow the same main steps for every linkage architecture, does not

rely on trigonometry, nor any geometric insights other than during the initial problem

statement, and is not restricted to planar linkages.

In order to achieve this research aim, this work is inspired by the significant con-

tributions of the following authors: 1. Hartenberg and Denavit [3] who developed

a standardised approach to describe kinematic chains. In the proposed algorithm in

this thesis, their convention will be applied to describe the linkage as an open kine-

matic chain. Thus, the geometry of the linkage is only considered in the initial step;

2. Study [10] who proposed to view displacements as points on a quadric surface in

a seven-dimensional projective space. While Study’s representation was pushed into

the background for almost a century due to its computational requirements, it was

rediscovered in recent years to help analyse robotic kinematic chains algebraically, for

example [11, 12, 13, 14]. In short, the proposed algorithm will use Study’s representa-

tion to obtain a complete explicit parametrisation of the kinematic chain by mapping

the overall displacement of the end-effector into Study’s kinematic image space. Af-

terwards, the open chain is conceptually closed by applying the closure equation,

thus, equating the parametrisation to its identity, resulting in a set of polynomial

equations; and finally, 3. Buchberger [15] and Walter and Husty [16] who developed

algorithms to solve systems of nonlinear multivariate polynomial equations. Since

this thesis is interested in obtaining the IO equations, intermediate joint angles must

be eliminated from the system of polynomial equations which can be done with the

help of these algorithms.
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In particular, the thesis will seek to answer the following questions:

1. How can the algebraic IO equations of an arbitrary four-bar linkage be obtained

using only algebraic means? What are the steps involved?

2. How does the procedure change if one is interested in another related angle pair

within the linkage?

3. How can mechanical engineers profit from these algebraic IO equations? In

other words, what are possible applications where the algebraic IO equations

can be successfully argued to be superior compared to traditional trigonometric

equations?

1.3 Significance

This thesis offers, for the first time, a generalised procedure to determine the alge-

braic IO equations of any four-bar linkage jointed with lower kinematic pairs. It is

successfully applied to a range of linkages, covering planar, spherical and some spatial

kinematic chains. Due to being completely general, the work from this thesis may also

be applied to a range of other linkages to compute either the algebraic IO equation

of other known linkages, or to derive the algebraic IO equations of linkages that have

not yet been discovered. Either way, this work provides some solid groundwork to

the field of deriving IO equations through algebraic means.

Not only does this study provide important insights into the procedure of deriv-

ing IO equations, it equally reveals for the first time the algebraic versions of some

well-known IO equations. Moreover, this thesis derives all related six angle pair equa-

tions within a four-bar linkage, the vi-vj equations, which have never been stated in

the literature. To date, research on these equations has mostly focused on devel-

oping trigonometric equations. Working with algebraic IO equations provides clear
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advantages to mechanical engineers. Specifically, the algebraic IO equations are a con-

venient tool for differential kinematics at the velocity, acceleration, jerk, or any level.

They provide an excellent alternative to traditional vector analysis and trigonometric

methods. In addition, mechanical designers of linkages profit from using algebraic IO

equations when having to synthesise functional relationships. Even though specific

examples for synthesis are not presented in this thesis, it is widely accepted that

continuous approximate synthesis is the most accurate technique to simultaneously

minimise the design and structural errors to generate desired functions by determin-

ing the most appropriate design parameters of the linkage [17]. The processing time

of continuous approximate synthesis decreases if algebraic rather than trigonomet-

ric equations are implemented as the optimiser only has to integrate algebraic terms

which is computationally less complex.

Finally, the algebraic IO equations offer a new tool of the design parameter space

interpretation for analysing the linkage’s mobility. In particular, this thesis offers a

first investigation of the algebraic design parameter space of the quadrilateral, slider-

crank and spherical linkage where the space is spanned by the different link design

parameters. It turns out that the coefficients of the algebraic IO equation of planar

and spherical 4R linkages can be interpreted as the faces of a stellated octahedron

which partitions the space into regions that completely define the mobility of each

of the links. This fact has never been observed before. Hence, as every point in the

design parameter space represents a particular linkage, mechanical designers can use

this space as a visual tool to immediately extract the relative mobility of every link.

1.4 Claim of Originality

The author claims the originality of the ideas and results presented herein, the main

contributions to the field are as follows:
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1. This thesis offers a generalised procedure for determining the algebraic IO equa-

tions of the quadrilateral, slider-crank, double slider, spherical, Bennett and

RSSR linkage using algebraic geometry tools.

2. This is the first work providing all six of the algebraic IO equations of each of

the quadrilateral, slider-crank, double slider, spherical and RSSR linkage.

3. Another outcome of this work is the derivation of the algebraic IO equations

relating the four distinct joint variable parameters in the quadrilateral, slider-

crank, double slider and the spherical linkage. The resulting algebraic vi-vj

equations have never been stated in the literature.

4. The new algebraic IO equations significantly reduce the effort of differential

kinematics. This approach is original, and, e.g., has been applied exemplary to

the RSSR in order to find the extreme angular accelerations.

5. This work provides the velocity and acceleration level kinematics of the quadri-

lateral, covering the velocity and acceleration IO equations relating all angle

pairings. It agrees with previously known four trigonometric velocity ratios and

offers all six velocity and acceleration ratios.

6. The thesis provides a new interpretation of the algebraic design parameter

spaces for the quadrilateral, slider-crank and spherical linkage. It also explores

important insights into the different regions of the design parameter space which

helps analysing linkages regarding the mobility of every link.

Some of the research presented in this work has been published in 13 peer-reviewed

journal or conference articles: [6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].
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1.5 Limitations

While the algorithm presented is a general algorithm, it is only applied to a limited

number of four-bar linkages in this thesis, including all planar linkages, the spherical

linkage and two spatial linkages. It is always possible that the algorithm reaches its

limits with other linkages, e.g., due to special geometric constellations, high com-

plexity, limited processing capacity, etc. A case by case study would provide more

insights, but considering the limited time, the focus is set on some of the most common

linkages.

In addition, it is well-known that the DH parameters are not unique. Hence,

depending on how they are chosen in the problem statement, they can influence the

resulting IO equations. This does not denote that the results are wrong, the DH

parameters are rather measured differently which needs to be kept in mind when

comparing results from other sources, or when proceeding with the linkage position,

velocity and acceleration analysis. A similar consideration must be made when de-

ciding whether the coordinate systems are assigned clockwise versus counterclockwise

as this may also influence the DH parameters.

To support this work and the benefit of using algebraic IO equations, some appli-

cations have been included, such as mobility analysis, the establishment of the design

parameter space and computing differential kinematics. The procedure of this type

of analysis remains the same for each algebraic IO equation. However, due to the lim-

ited time and space, this work focuses on a selection of examples. Hence, the findings

presented in Chapter 5 might not be transferable to other algebraic IO equations,

or might require different considerations, e.g., when analysing the design parameter

space of the RSSR.
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1.6 Structural Outline

This thesis is organised as follows:

Chapter 1: This chapter introduces the topic, and explains the research aims,

objectives and questions. It also outlines the significance and limitations of this

research.

Chapter 2: This chapter reviews some common kinematics terminology. In

addition, all linkages to be examined are introduced: the quadrilateral, slider-

crank, double slider, spherical, Bennett and the RSSR linkages. This chapter

also discusses the most important works on the IO equations in the literature.

Chapter 3: This chapter presents the mathematical background required for

the proposed algorithm. This includes the introduction of Denavit-Hartenberg

(DH) parameters, the concept of Study’s kinematic mapping as well as elimi-

nation techniques in algebraic geometry.

Chapter 4: This chapter focuses on the proposed algorithm for finding the

algebraic IO equations of different linkages, i.e., all possible planar four-bar,

the spherical and two spatial linkages: the Bennett and the RSSR. For each

kinematic architecture there are six vi-vj IO equations.

Chapter 5: This chapter covers some applications the algebraic IO equations

which are advantageous over trigonometric equations, as well as some new dis-

coveries that the algebraic equations have exposed. This includes singularity

analysis, the mobility classification and velocity and acceleration level kinemat-

ics. While it is technically possible to examine every IO equation presented in

Chapter 4, this chapter is reduced to an exemplary selection of IO equations to

demonstrate its effectiveness.
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Chapter 6: In the conclusion chapter the results are briefly summerised and

the research questions from the introduction are answered.
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Chapter 2

Literature Review

Before diving into the in-depth literature of planar, spherical and spatial linkages, the

following section will give an overall picture of the research area and simultaneously

a clarification of the necessary terminology.

2.1 Kinematics

2.1.1 Terminology

Kinematics is a branch of mechanics and is the science that investigates the mo-

tion of bodies and points without considering the forces that cause them [30]. It is

sometimes described as an extension of geometry, thus, would fall into the branch of

mathematics. However, geometry itself is static: relative positions and orientations;

relative distances and directions. When continuous changes in position and orienta-

tion are required, then differential geometry and kinematics can be used to investigate

velocities and accelerations [31].

In mechanical engineering, kinematics allows the description of the motion of

several rigid bodies, known as links, connected by joints. These systems are called
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kinematic chains. If the kinematic chain forms a closed loop, i.e., every link is at least

connected to two other links, the system is known as a closed kinematic chain. If the

chain remains open, i.e., there exists at least one link that is only coupled to one

other link, the chain is called an open kinematic chain. A closed kinematic chain is

referred to as a mechanism if it has one link that is fixed, meaning this link is chosen

as a reference to determine the motion of all other points in the system with respect

to that link. Open and closed kinematic chains are often called serial and parallel

kinematic chains, respectively [32].

The type of joint, also known as a kinematic pair, chosen in a kinematic chain de-

termines the relative motion of points on the joint pair of rigid bodies, thus, imposes

different types of kinematic constraints. Reuleaux differentiates between lower kine-

matic pairs and higher kinematic pairs [33], where the former allows surface contact

and the latter line or point contact between pair elements. He identified exactly six

lower kinematic pairs, any other joint is considered a higher kinematic pair. Accord-

Figure 2.1: Lower kinematic pairs [31].

ing to Fig. 2.1, the six lower kinematic pairs, their relative constrained motion and
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degree of freedom (dof) are [33]:

(a) Revolute pair R: circular motion with 1 dof and 2 constraints in the plane, 5

in space;

(b) Prismatic pair P : rectilinear motion with 1 dof and 2 constraints in the plane,

5 in space;

(c) Screw pair H : helical motion with 1 dof and 5 constraints in space;

(d) Cylindrical pair C : cylindrical motion with 2 dof and 4 constraints in space;

(e) Spherical pair S : spherical motion with 3 dof and 3 constraints in space;

(f) Planar pair E : planar motion with 3 dof and 3 constraints in space.

If all pairs of a mechanism are lower kinematic pairs, then the mechanism is called

a linkage [31]. Linkages can be categorised in different ways, one according to the

characteristics of the motion of the links: planar, spherical or spatial [34].

A linkage is called planar if each point describes a plane curve in space and all

curves of all points are parallel to one reference plane. A linkage is called spherical

if each of its points describes a curve on a spherical surface, and if these curves are

all concentric with a single reference sphere. Finally, a linkage is called spatial if the

motion of each point is not subjected to any restrictions. Hence, spherical and planar

linkages are special cases of spatial mechanisms where the joint axes are directed in

a special geometric constellation.

Generally, the purpose of a linkage is to transfer a motion of an input link into

a desired motion of an output link [33]. The equation that describes the relation

between input and output is obtained by establishing a kinematic closure equation,

which in this work is called the IO equation.

If the IO equation contains n different circuits that do not intersect, then the
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linkage has n different assembly modes. In order for the linkage to trace the points

in each circuit it must be taken apart and reassembled in a different way. Working

modes are subtly different. In theory, a linkage can change from one working mode into

another working mode by passing through a singular configuration [35]. A complete

disassembly is not necessary. In practice, passing through a singular configuration,

i.e. passing from one working mode into another, is difficult as the linkage becomes

uncontrollable when operating close to this configuration. Hence, the study of singular

configurations of mechanisms is extremely important and is covered in a variety of

books, theses and articles, for example, in [11, 36, 37, 38].

2.1.2 Kinematic Analysis and Synthesis

Generally, in four-bar mechanism kinematics there exist two distinct types of prob-

lems [39]: kinematic analysis and kinematic synthesis. In the former problem, a

mechanism with specified link types and lengths joined with specified types of pairs

is given: the goal is to analyse the prescribed motion. In the latter problem, a desired

task is given and the goal is to identify the mechanism that “best” performs the task.

The nature of the task can be divided into the following three distinct types.

1. Function generation: The motion of the output link is correlated to the

motion of the input link according to a specified function over a specified range

of motion of the output link.

2. Path generation: The path of a point on, or rigidly attached to, a link is

confined to a specified curve.

3. Motion generation: A desired motion of the link coupling the input to the

output link is generated by the motion of the input link.

Moreover, kinematic synthesis is subdivided into three different categories [3].
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1. Type synthesis: The aim is to determine the appropriate type of mechanism,

such as a serial or parallel linkage, gear or cam system, as well as the joint types

to perform the desired task.

2. Number synthesis: The aim is to determine the appropriate number of links

and joints to perform the desired task.

3. Dimensional synthesis: The aim is to determine the appropriate geometric

parameters, such as link lengths, to perform the desired task.

Once the type and number of links and joints have been chosen, the dimensions of

the distances and possibly the angles between the joints must be determined. The

kinematic closure equation for the linkage must generally be derived. The equation,

or equations, obtained are typically trigonometric functions in terms of the input and

output joint values. The coefficients are undetermined distances and angles. We call

these coefficients design parameters, since a unique linkage with well-defined motion

capabilities is determined by choosing a distinct set of design parameters. Similarly,

we refer to variable joint rotation and translation parameters as motion parameters.

For example, in a 4R planar linkage, the link lengths are design parameters, and the

link angles are motion parameters.

Suppose that there are three non-linear equations in the three design parameters.

In this case, there are three distinct kinematic loops in the chain. Then there are

three independent design parameters in each chain, and nine unique values may be

identified for a desired specified task.

Suppose further that the output value(s) must be a specified function of the input

value(s), i.e., there may be more than 1 dof. Exact synthesis will result in nine

distinct values of the input and nine distinct values of the output that satisfy the

function, thereby generating a set of 27 equations in nine design parameters. These
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types of identification problems can be solved by employing Gröbner bases to identify

a univariate polynomial in terms of one of the design parameters, the remaining eight

parameters can be identified with back substitution [40]. In this case, there will be

more than one solution. However, for each set of design parameters, real or imaginary,

the specified function will be exactly generated by the linkage at the prescribed input

and output values, but for all other inputs the generated function will not be exact.

Now, let us consider a four-bar 4R function generator. In this case there is one

input and one output parameter, but only three ratios of the link lengths [41]. In

this case there will be three unknown design parameters and only three IO pairs can

be specified that satisfy the desired function. Only at the specified IO pairs will the

function be generated exactly by the identified 4R mechanism.

If more IO pairs, which satisfy the function, are specified than the number of

design parameters, an exact solution cannot, in general, be obtained. However, the

parameters can be identified with numerical approximation techniques. The identified

linkage will not, in general, satisfy the function exactly. Hence, this approach to the

identification of design parameters is called approximate synthesis.

There exist two main methods to solve dimensional synthesis problems: graphical

and algebraic. In the past, graphical solutions were obtained using hand drawings,

and more recently they are obtained using different CAD software. Algebraic solutions

are obtained by manipulating the geometric constellation using algebra software [39].

With a few exceptions, notably [42, 43], all earlier research in this area uses

trigonometric IO equations which occludes the algebraic-geometry interpretation of

equations. The proposed research aims to find a generalised procedure to derive the

algebraic IO equation that applies to all three types of linkages: planar, spherical

and spatial; to investigate the structure of these algebraic equations and motion

capabilities of the links implied by this structure. Hence, this research is classified into
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the area of function generation using algebraic as opposed to trigonometric means.

Before looking at the relevant research on the linkages that will be examined

in this thesis, they are narrowed down to the ones that provide practicality in the

industry. This requires examining the linkage’s relative dof, which will be covered in

the following section.

2.2 Relative dof

To determine the relative dof of a kinematic chain, which is one of the crucial first

steps in both synthesis and analysis of linkages, Chebychev, Grübler and Kutzbach

independently developed a criterion [44]. It is also known as the mobility formula and

in a three-dimensional space it is given by

m = 6(n− 1)− 5j1 − 4j2 − 3j3 − 2j4 − j5 (2.1)

where

m = relative dof of mechanism

n = number of links

ji = number of joints having i degrees of freedom.

In planar or spherical kinematics, the criterion reduces to

m = 3(n− 1)− 2j1 − j2. (2.2)

Generally, a dof of zero indicates that the given mechanism is a structure and hence

cannot move. A dof of one indicates that the mechanism can be driven by one input

actuator, while a dof of two requires two input actuators to produce a constrained

17



output [34].

To be of practical value and to be able to generate a well-defined IO equation,

most research on function generation, including this thesis, focusses on the types of

mechanism with a dof of one. In the case of planar four-bar linkages, this includes the

quadrilateral, slider-crank, and double slider. Hence, the following sections highlight

some of the ground-breaking research on IO equations and IO classification schemes

of planar, spherical and spatial four-bar linkages. As there exist many different kinds

of spatial linkages, the research is narrowed down to two well-known types, i.e., the

Bennett and the RSSR linkage.

2.3 Planar Four-bar Linkages

Planar four-bar linkages consist of four connected rigid bodies to form a closed kine-

matic chain. As mentioned earlier, a linkage is called planar if each point describes a

plane curve in space, and all curves of all points are parallel to one reference plane.

This limits the usage to R and P joints, whose joint axis are in the case of the R joint

perpendicular to the moving plane or in the case of the P joint located at the line at

infinity of all planes normal to the direction of translation. Hence, depending on the

choice of joints, it can be differentiated between three types of planar linkages: the

quadrilateral linkage which contains four R joints, the slider-crank which is equipped

with three R and one P joint, and the double slider whose links are connected by two

R and two P joints[2]. Applying Eq. (2.2) to each of these three linkages reveals a

dof of one, allowing one input to constrain the motion of the linkage.

Linkages with greater than two P joints will not be considered in the thesis since

such linkages can only generate curvilinear translations.
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2.3.1 Quadrilateral Linkage

In 1954 F. Freudenstein developed an elegant trigonometric equation for planar

quadrilateral linkages [41]. The equation, nowadays known as the Freudenstein equa-

tion, is widely used in function-generation analysis and synthesis theory. It gives

designers a tool to identify the link lengths of mechanisms that optimally transform,

typically in a least-squares sense, a specific input angle into a desired output angle

governed by a specified functional relation, f(θ1) = θ4. Let a4 be the distance between

the centres of the R joints connected to the relatively non-moving base; a1 the driver

or input link length which is moving with an angle θ1; a3 the follower or output link

length which is moving with an angle θ4; and a2 the coupler length of a planar 4R

linkage, see Fig. 2.2, then the displacement of the linkage in terms of the link lengths

a1, a2, a3, a4, the input angle θ1, and the output angle θ4 is governed by the following

IO equation

k1 + k2 cos(θ4)− k3 cos(θ1) = cos(θ1 − θ4). (2.3)

Eq. (2.3) is linear in the ki Freudenstein parameters, which are defined in terms of

the link length ratios as

k1 ≡
(a21 + a22 + a24 − a23)

2a1a2
; k2 ≡

a4
a1

; k3 ≡
a4
a2

.

The Freudenstein equation replaced manual graphical approaches with an analyt-

ical mathematical tool to design linkages for a variety of applications, such as braking

and steering systems in cars, space and aircraft systems, or even laparoscopic surgical

tools. In addition, it became the basis for numerous four-bar analysis and synthesis

publications, for example [2, 3, 45, 46].
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Figure 2.2: Planar 4R function generator.

The first algebraic IO equation for planar quadrilateral linkages was presented

in [8] by Bottema and Roth. Their derivation is purely trigonometric. However, by

substituting tan(θ1/2) = u/w and tan(θ4/2) = v/w the authors map the IO motion

in a (u, v, w)-plane which results in an algebraic version of the equation.

In [7] the authors Hayes, Husty, and Pfurner provided an alternative derivation of

a general algebraic IO equation for the same type of mechanism. It was obtained by

mapping the linkage constraint equations of the input and output links, i.e., circular

motion for the distal R joints, into Study’s soma coordinates [10, 8], converting the

trigonometric expressions into algebraic ones by applying the tangent of the half-

angle, or Weierstraß, substitutions [47], and finally eliminating the Study coordinates

to obtain the quartic IO curve [7, 48]. The resulting equation is an algebraic quartic

equation in terms of input and output joint angle parameters v1 and v4 and is given

by

Av21v
2
4 +Bv21 + Cv24 − 8a1a2v1v4 +D = 0 (2.4)
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where

A = (a1 − a2 − a3 + a4)(a1 − a2 + a3 + a4) = A1A2;

B = (a1 + a2 − a3 + a4)(a1 + a2 + a3 + a4) = B1B2;

C = (a1 + a2 − a3 − a4)(a1 + a2 + a3 − a4) = C1C2;

D = (a1 − a2 + a3 − a4)(a1 − a2 − a3 − a4) = D1D2;

v1 = tan
θ1
2
;

v4 = tan
θ4
2
.

In the design process of linkages for function generation it is equally common to

classify the driver and the follower according to their mobility. For obvious reasons,

this is an important consideration if e.g., the driver is actuated by a motor that

requires full rotations. Hence, it can generally be differentiated between a crank

which allows a full rotation of the respective link, and a rocker whose rotation is

bounded by a specified range. Additionally, some authors further divide rockers into

0-rocker and π-rocker. The 0-rocker allows a rotation through 0◦, but does not allow

a rotation through 180◦. Contrarily, the π-rocker allows a rotation through 180◦,

but does not rotate through 0◦. Classification schemes are not new in the design of

linkages and available in many textbooks or publications, for example [49, 50, 51] . Of

particular interest is the derivation of a classification scheme presented in [52] as the

authors are able to extract three parameters that not only help classifying the planar

four-bar linkages but also spherical quadrilateral linkages which will be covered later

in the section on spherical linkages. The three parameters Ti derived by Murray and
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Larochelle

T1 = −a1 + a2 − a3 + a4

T2 = −a1 − a2 + a3 + a4

T3 = −a1 + a2 + a3 − a4

lead to the classification scheme shown in Tab. 2.1.

Linkage type T1 T2 T3

1. crank-rocker + + +
2. rocker-crank + - -
3. double-crank - - +
4. Grashof double-rocker - + -
5. 00 double-rocker - - -
6. 0π double-rocker + + -
7. π0 double-rocker + - +
8. ππ double-rocker - + +

Table 2.1: Classification of planar 4R linkages

2.3.2 Slider-crank Linkage

Another well investigated planar four-bar linkage is the slider-crank whose most fa-

mous application is the piston engine. The linkage allows transforming the recipro-

cating motion of the piston into a rotary motion of the crankshaft. Inversely, in, e.g.,

a hand pump, a rotary motion is transformed into a reciprocating linear motion of

the piston in the suction pipe [53].

Similar to the quadrilateral linkage, the slider-crank consists of four rigid links,

i.e., the driver a1, the coupler a2, the follower (or slider) a3 and the fixed frame a4 [3].

In contrast to the quadrilateral linkage, the fourth joint is exchanged with a prismatic

joint. A general illustration is shown in Fig. 2.3.

The literature differentiates between two slider-crank linkages, the in-line or cen-
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Figure 2.3: Planar RRRP function generator.

tral, and the offset or eccentric slider-crank linkages [54]. It is considered central if the

extended line of the slider intersects the rotation centre of the crank. On the other

hand, an eccentric slider-crank exists if a4 ̸= 0 [31]. Thus, a central slider-crank is a

special case of the eccentric slider-crank.

Centric slider-crank IO equations for function generation can be found in every

basic mechanics book. Two different trigonometric derivations that also apply to the

eccentric linkage are shown in [2, 8]. They use trigonometric constraints to derive a

trigonometric and an algebraic expression of the IO equation, respectively. As, e.g.,

demonstrated in [2], the slider-crank linkage can be classified according to its mobility

of the input link. The two parameters derived by McCarthy and Soh using the law

of cosines yield

S1 = −a1 + a2 + a4

S2 = −a1 + a2 − a4.
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With these two parameters they obtain the full classification scheme shown in Tab. 2.2.

Linkage type S1 S2

1. crank + +
2. 0-rocker + -
3. π-rocker - +
4. rocker - -

Table 2.2: Classification of planar RRRP linkages

2.3.3 Double Slider

The double slider, or PRRP linkage, consists of one P, two R, and another P joint.

In addition to a translational output motion a3, the input motion a1 of the function

generator is also a translation governed by a functional relation expressed by f(a1) =

a3. The most common configuration is the trammel of Archimedes whose prismatic

joint directions are perpendicular to each other, but for a general PRRP mechanism

the P joint axes may have any non-zero angle between them, as illustrated in Fig. 2.4.

This general configuration is also known as the oblique trammel.

a2

a1

a4

a3

x

y

q
4

q
1

Figure 2.4: Planar PRRP function generator.
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By extending the coupler of the mechanism, the trammel of Archimedes has been

used to draw ellipses for hundreds, if not thousands, of years. Without any complex

calculation, it is evident that the IO equation of the trammel of Archimedes yields a

circle governed by

a21 + a23 − a22 = 0. (2.5)

Since 1646 it was also proven by van Schooten [55] that the coupler curve of

oblique trammels also generates ellipses. A general IO equation for the oblique tram-

mel, however, is not explicitly stated anywhere in the literature up to the author’s

knowledge.

2.4 Spherical Four-bar Linkages

While not as commonly used as planar four-bar linkages, spherical four-bar link-

ages are also found in diverse applications, for example, as a three-degree of freedom

camera movement device proposed in [56], or to model the human knee [57]. The

kinematic architecture of the classical spherical manipulators, also known as spher-

ical quadrilateral or spherical 4R linkage, consists of four R joints whose joint axes

intersect at the centre of a sphere. The intersection point of these axes is known as

the geometric centre of the manipulator as shown in Fig. 2.5. In theory, other config-

urations of spherical four-bar manipulators exist, e.g., the planar linkages, discussed

in the previous section, can all exist in spherical kinematics. The corresponding

mechanisms are known as spherical crank-rockers, spherical double rockers or spher-

ical slider-cranks. However, in these cases, the prismatic joints can no longer be

“real” P joints conducting a linear translation, but they rather slide on the arc of the

sphere [58].

As stated by McCarthy [59], planar kinematics is, in fact, a special case of spherical
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Figure 2.5: Spherical 4R function generator.

kinematics. He successfully demonstrated that the motion of planar kinematics can

be described by the motion in the limits of spherical kinematics. While the joint axes

of the spherical 4R linkage intersect in the centre of the sphere, the joint axes of the

planar 4R linkage are all parallel. In Euclidean space E3 parallel lines never intersect,

however, they do meet in a point at infinity in any projective extension of E3 [60, 61].

This suggests that if the radius of a spherical linkage approaches infinity, the linkage

becomes a planar mechanism in the limit [59].

Applying Eq. (2.2) to the spherical 4R linkage reveals a relative dof of 1 [34].

Hence, in general, one given input angle would generate a specific output angle de-

pending on the chosen design parameters τi.

The derivation of an IO equation for spherical 4R linkages has been examined by

several authors. For example, Denavit [4] used Cayley-Klein parameters to describe

the transformation between coordinate frames, Yang [62] used dual quaternions, Pin

et al. [63] used unitary matrices, and McCarthy and Soh [2] used basic coordinate

rotation matrices and trigonometric constraints to derive an IO equation. Not sur-
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prisingly, they all yield the same IO equation. Let τ1 be the twist angle of the driver,

τ2 the twist angle of the coupler, τ3 the twist angle of the follower, τ4 the twist

angle between the fixed ground joints, and θ1 and θ4 the input and output angles,

respectively, then the IO equation for spherical 4R linkages becomes

A(θ1) cos(θ4) +B(θ1) sin(θ4) = C(θ1) (2.6)

where

A = cos(θ1) sin(τ1) cos(τ4) sin(τ3)− cos(τ1) sin(τ4) sin(τ3)

B = sin(θ1) sin(τ1) sin(τ3)

C = cos(τ2)− cos(θ1) sin(τ1) sin(τ4) cos(τ3)− cos(τ1) cos(τ4) cos(τ3) .

The classification scheme for spherical quadrilaterals by [52] and [2] yield the same

table with the parameters Ti as for planar quadrilaterals. In addition, the authors

consider the case where the linkage wraps around the sphere, which is the case if the

sum of the angular arc lengths exceeds 2π.

2.5 Spatial Four-bar Linkages

The list for spatial four-bar linkage kinematic architectures is long. Harrisberger

identified 132 different kinds of spatial four-bar linkage that have one dof according

to Eq. (2.1) [64]. Out of these linkages, only a few have received special attention

by researchers, either due to their practical potential, or because of their paradoxical

nature that violates the Kutzbach criterion, Eq. (2.1). Two of these special linkages

will be used to demonstrate the applicability of the generalised approach to derive an

IO equation, i.e. the paradoxical overconstrained yet movable Bennett and the RSSR
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spatial linkages.

2.5.1 Bennett Linkage

The Bennett linkage is, as the spherical and the planar quadrilateral, composed of

four rigid links that are connected by four R joints. In addition, the linkage satisfies

the following conditions, established by Bennett himself [65]

a1 = a3 a2 = a4

τ1 = τ3 τ2 = τ4
sin(τ1)

a1
=

sin(τ2)

a2

(2.7)

An exemplary Bennett linkage is shown in Fig. 2.6. According to Eq. (2.1) the Bennett

Figure 2.6: Spatial 4R function generator: the Bennett linkage.

linkage has a dof of -2, which in theory makes it unable to move. However, its actual

dof is 1, and thereby, it is the only known paradoxical mobile spatial 4R linkage.

The IO equation is well known, for example [4, 9, 65, 66, 67] show different deriva-
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tions. While the former authors favoured a geometric approach, Denavit used Cayley-

Klein parameters, and Pfurner et al. used an algebraic method to first derive the

Bennett conditions and second, obtain an IO equation in terms of the tangent half

input and output angles.

An important characteristic of the Bennett IO equation is that it only depends

on the twist angles, and not on the link length parameters. The equation is bilinear

in the variables θ1 and θ4. For example this bilinear dependency is illustrated in the

IO equation found in [67]

tan
θ1
2
tan

θ4
2

=
sin

τ1 + τ2
2

sin
τ1 − τ2

2

. (2.8)

The product of the tangent half-angle of the input and the output angle is constant.

A classification scheme for the Bennett linkage is not required since a Bennett linkage

is always a double crank [66].

2.5.2 RSSR Linkage

The RSSR linkage is another interesting spatial linkage. The Kutzbach criterion,

Eq. (2.1) yields a dof of 2. However, one dof is the rotation of the coupler about its

own axis. This rotation does not change or influence the IO equation in any way, and

thus, engineers refer to it as an idle dof. However, the idle dof can have a positive

effect on the durability of the linkage as it helps an even wear of the S joints [34].

Similar to the previous linkages, the IO equation of the RSSR linkage has been

examined by several authors, for example, by [2, 3]. In addition to the link lengths ai

and twist angle parameters τi, the linkage can only be fully described by introducing

an additional parameter, i.e., the link offset di. Hartenberg and Denavit’s derivation

of the IO equation uses their well-known parameters as well as trigonometric relations.
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Figure 2.7: Spatial RSSR function generator.

Following the notation in Fig. 2.7 the IO equation yields

A(θ1) sin(θ4) +B(θ1) cos(θ4) = C(θ1) (2.9)

where

A = − cos(τ4) sin(θ1) +
d1 sin(τ4)

a1

B = −a4
a1

− cos(θ1)

C = −a21 − a22 + a23 + a24 + d21 + d24 + 2d1d4 cos(τ4)

2a1a3
− a4

a3
cos(θ1)−

d4 sin(τ4)

a3
sin(θ1) .

The RSSR linkage can also be classified according to its input and output mobil-

ity. This problem has been solved using different methods, for instance [68, 69, 70].

Of particular interest is the algebraic method presented by Bottema who evaluated

the double points of a special constellation of the homogeneous IO equation, and

subsequently extracted the conditions when the input and output links are rockers,

or cranks [71]. A classification for the general RSSR linkage was finally presented by

Freudenstein and Primose [72].

Both the Bennett and the spherical linkages can be considered as special cases of
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the RSSR linkage. While Hunt [66] views the RSSR as a projection on a unit sphere,

McCarthy and Soh [2] add additional constraints to the RSSR linkage, such that the

offset between the R joints disappears, the distance between the R joints is restricted

to unity, and the axes of the S joints are directed towards the intersection of the

R joint axes. As a result of these constraints made on the RSSR IO equation, the

authors are able to derive a version of the spherical IO equation.

A direct conversion of the IO equation from the RSSR linkage to the planar

quadrilateral was further demonstrated by Hartenberg and Denavit who were equating

the linkage offsets and link twist of the RSSR to zero, making the planar quadrilateral

linkage a special case of the RSSR as well [3].
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Chapter 3

Mathematical Background

3.1 Research Approach and Strategy

As mentioned in the introduction, the main research objective is to generalise the

procedure for determining one single method to obtain the algebraic IO equation for

any kinematic architecture of four-bar linkage: planar; spherical; or spatial.

To achieve this, this research is building on [7] who proposed an algebraic IO

equation for planar 4R mechanisms. Their equation is derived by mapping the cir-

cular constraints inherent to this mechanism into a spatial projection of planar rigid

body displacements, in this case into a projection obtained with Study’s soma coordi-

nates [10]. Using the method of Study’s kinematic mapping, where the constraints of

a mechanism are represented as algebraic varieties in the three- and seven-dimensional

projective kinematic image space representing planar and spatial displacements, re-

spectively, allows for the use of different algebraic geometry tools for analysis.

One shortcoming of [7] is that the geometric constraints of different types of mech-

anism can vary such that a different initial geometric description using line, circle and

sphere equations has to be chosen for different mechanisms. The general approach

32



suggested in this thesis is therefore to consider the linkage as an open kinematic

chain which can be described using the well-known standard Denavit-Hartenberg pa-

rameters. The overall displacement of the end-effector of this chain is subsequently

mapped into Study’s kinematic image space and algebraically closed resulting in a

complete and general description of any four-bar linkage. The polynomial equations

can be manipulated with, e.g., different elimination techniques, such as Gröbner basis

to eliminate intermediate joint variables to obtain the desired IO equation.

The most crucial methods I will be using to achieve my research objective, i.e.,

describing the constraints of mechanisms using Denavit-Hartenberg parameters, the

concept of kinematic mapping as well as elimination techniques in algebraic geometry,

are described in the following sections.

3.2 Euclidean Displacements

It is convenient to consider a general displacement of a rigid body as the displacement

of a reference coordinate system Σ2 that moves with the rigid body relative to a

fixed frame Σ1. Moreover, let the coordinates of points in Σ2 be described by the

lower case pairs (x, y) and those in Σ1 by the uppercase pairs (X, Y ). A general

displacement of Σ2 relative to Σ1 is described by three numbers (a, b, ϕ), where (a, b)

are the coordinates of the origin of Σ2 expressed in Σ1, and ϕ is the angle the x-

axis makes with respect to the X-axis, with counterclockwise rotations considered as

positive. The position of a point in Σ2 described in Σ1 can be given by

 X ′

Y ′

 =

 cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)


 x′

y′

+

 a

b

 . (3.1)

Eq. (3.1) is not a linear transformation because the translation of the sum of the two

vectors x⃗ and y⃗ by the amount d⃗ is x⃗ + y⃗ + d⃗ and not the sum of the translation of
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each vector separately, which is (x⃗ + d⃗) + (y⃗ + d⃗) = x⃗ + y⃗ + 2d⃗. This violates the

definition of a linear transformation:

If T : V 7→ S is a function from the vector space V to the vector space S, then

T is a linear transformation if and only if

(i) T (u⃗+ v⃗) = T (u⃗) + T (v⃗) ∀ u⃗, ⃗v ∈ V

(ii) T (ku⃗) = Tk(u⃗) ∀ u⃗ ∈ V and all scalars.

Clearly, Eq. (3.1) violates (i). Moreover, it is not a linear transformation because

Eq. (3.1) cannot be represented by an n× n matrix. This situation can be remedied

by the use of homogeneous coordinates. They replace cartesian coordinate pairs (x′, y′)

with triples of ratios (x0 : x1 : x2), such that

x′ =
x1

x0

, y′ =
x2

x0

X ′ =
X1

X0

, Y ′ =
X2

X0

.

Substituting these into Eq. (3.1) gives

X1

X0

=
x1

x0

cosϕ− x2

x0

sinϕ+ a

X2

X0

=
x1

x0

sinϕ+
x2

x0

cosϕ+ b.

(3.2)

The first coordinate, X0 and x0 may be thought of simply as scaling factors. As long

as X0 ̸= 0, we can set X0 = x0, multiply Eq. (3.2) through by x0 and write Eq. (3.1)

as a linear transformation, which is computationally extremely convenient:


X0

X1

X2

 =


1 0 0

a cos(ϕ) − sin(ϕ)

b sin(ϕ) cos(ϕ)




x0

x1

x2

 (3.3)
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Eq. (3.3) represents a planar displacement of reference frame Σ2 with respect to Σ1

in the Euclidean plane E2. It should be noted that in North America the conven-

tion for homogeneous coordinates is slightly different from the European convention

presented herein. In North America x0/X0 usually corresponds to the last, while in

the European convention it corresponds to the first coordinate. As we will see later,

the dimensions of the spaces and points that represent the homogeneous coordinates

in this thesis and therefore, the indices of the last coordinate, may vary. For that

reason, this thesis favors European convention.

The concept of using homogeneous coordinates can be extended to three-dimensional

Euclidean space, E3. The linear transformation, preserving orientation and displace-

ments, results in 

X0

X1

X2

X3


=



1 0 0 0

t A





x0

x1

x2

x3


(3.4)

where A is a proper orthogonal 3×3 rotation matrix, and t is a 3×1 position vector.

Surely, as shown above it is one way of interpreting the transformation as a three-

dimensional rotation of A with a subsequent translation by vector t. However, a

different geometric interpretation is known as screw displacement where the spatial

displacement consists of a rotation about a line, the screw axis, and a translation along

the same line. To validate this statement the translation vector t is decomposed into

a vector that is parallel to the rotation axis of A and a vector that is perpendicular

to the rotation axis of A [2]. Hence, the displacement can be rewritten as

D(x) = A(x) + t = A(x) + t⊥ + t∥ (3.5)

Consider D∗(x) = A(x)+t⊥ which represents a transformation about the axis defined
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by A(x). All points undergo a transformation within the plane that is perpendicular

to the axis of rotation. In contrast to D(x), the transformation D∗(x) contains an

invariant point C since the component of t⊥ which is pointing along the rotation axis

is zero. Thus, the screw axis is passing through C and because of D(x) = D∗(x)+ t∥,

the screw axis is pointing along t∥. One important aspect of this theory is that the

axis of rotation remains invariant and is defined by the rotation matrix elements aij

of A alone. The concept is visualised in Fig. (3.1) which was inspired by [73].

i
jk

f

t ||

t^

t

initial position

final position

C
screw axis

Figure 3.1: Concept of a screw displacement.

In general, the axis of rotation v⃗ and the rotation angle ϕ of a 3 × 3 orthogonal

matrix A are defined by [74]

v1 : v2 : v3 = (a32 − a23) : (a13 − a31) : (a21 − a12) (3.6)

cos(ϕ) =
1

2
(a11 + a22 + a33 − 1). (3.7)
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3.3 Study’s Kinematic Mapping

Using matrices, such as Eq. (3.4), is one possibility of representing Euclidean displace-

ments where orientation and distances are preserved. Another possibility was intro-

duced by Eduard Study in 1903 [10]. He demonstrated that rigid body displacements

can be represented as points on a hyper-surface in a seven-dimensional space, known

as kinematic mapping. These points require eight homogeneous coordinates known as

Study parameters or soma coordinates, x = [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]
T ∈ P 7,

soma being the greek word for body. While Study used kinematic mapping for spa-

tial displacement, Grünwald [75] and Blaschke [76] applied kinematic mapping to

planar kinematics, and Müller to spherical kinematics [77]. For many decades kine-

matic mapping was not the preferred choice to solve synthesis or analysis problems of

mechanisms. Kinematicians used matrix or vector methods instead. However, with

the rise of robotic manipulators, computer algebra systems, and the accompanying

ability to solve complex systems of polynomial equations, kinematic mapping is seeing

a revival in recent decades [2, 8, 74, 78].

Given a rotation matrix A and a translation vector t, as it is shown in Eq. (3.4),

then the first four entries of the Study array xi are defined as one of the following

linear combinations of the rotation matrix elements aij of A

x0 : x1 : x2 : x3 =



1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12,

a32 − a23 : 1 + a11 − a22 − a33 : a12 + a21 : a31 + a13,

a13 − a31 : a12 + a21 : 1− a11 + a22 − a33 : a23 + a32,

a21 − a12 : a31 + a13 : a23 + a32 : 1− a11 − a22 + a33.

(3.8)

Study showed that four different combinations of the rotation matrix elements are

needed since certain displacements make one or more of the relations lead to (0 : 0 :

0 : 0), the exceptional generator in P 7 which does not correspond to any displacement
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in E3. Once the xi have been determined, the remaining four entries are computed as

linear combinations of the vector elements of the translation t and the xi determined

above, giving

y0 = 1
2
(t3x3 + t2x2 + t1x1), y1 = 1

2
(t3x2 − t2x3 − t1x0),

y2 = 1
2
(−t3x1 + t1x3 − t2x0), y3 = 1

2
(−t3x0 + t2x1 − t1x2).

(3.9)

These eight Study parameters must fulfil the Study condition in order to represent a

Euclidean displacement, meaning the eight ratios represent a point on Study’s seven-

dimensional quadric S2
6

x0y0 + x1y1 + x2y2 + x3y3 = 0 (3.10)

excluding the exceptional generator A∞

(x0 : x1 : x2 : x3) = (0 : 0 : 0 : 0). (3.11)

As, e.g., demonstrated in [79], the mapping from Euclidean displacements to Study’s

coordinates that fulfil S2
6 , with A∞ being excluded, is bijective. Thus, it is straight-

forward to perform the inverse mapping from P 7 to E3, known as computing the

pre-image, from given coordinates of an image point x = [x0 : x1 : x2 : x3 : y0 : y1 :
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y2 : y3]
T ∈ P 7 with

D=∆−1

x2
0 + x2

1 + x2
2 + x2

3 0 0 0

l x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

m 2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

n 2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3


,

(3.12)

where

∆ = x2
0 + x2

1 + x2
2 + x2

3

l = 2(−x0y1 + x1y0 − x2y3 + x3y2)

m = 2(−x0y2 + x1y3 + x2y0 − x3y1)

n = 2(−x0y3 − x1y2 + x2y1 + x3y0).

In the following section, the derivation of the Study parameters will be presented.

This will help to relate Study’s parametrisation of Euclidean displacements to other

parametrisations, such as Euler parameters, Rodrigues parameters, and dual quater-

nions. The derivation is mainly based on [74] and influenced by [13, 14].

3.3.1 First Four Study Parameters xi

As mentioned, the first four Study parameters are combinations of the elements aij

of A. According to Cayley’s theorem an orthogonal matrix A can be expressed as

A = (I− S)−1(I+ S) (3.13)
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where S is a skew symmetric matrix given by

S =


0 −b3 b2

b3 0 −b1

−b2 b1 0

 .

Thus, this clearly demonstrates that A only depends on three different parameters,

b1, b2 and b3. Expanding Eq. (3.13) yields

A = (I− S)−1(I+ S) =


1 b3 −b2

−b3 1 b1

b2 −b1 1


−1

1 −b3 b2

b3 1 −b1

−b2 b1 1



A = ∆−1


1 + b21 − b22 − b23 2(b1b2 − b3) 2(b1b3 + b2)

2(b1b2 + b3) 1− b21 + b22 − b23 2(b2b3 − b1)

2(b1b3 − b2) 2(b2b3 + b1) 1− b21 − b22 + b23

 (3.14)

where

∆ = 1 + b21 + b22 + b23.

The rotation angle of Eq. (3.14) can be evaluated by substituting the matrix elements

into Eq. (3.7)

cos(ϕ) =
−b21 − b22 − b23 + 1

b21 + b22 + b23 + 1
.

With the tangent half-angle substitution, the expression becomes

tan

(
ϕ

2

)
= ±

√
1− cosϕ

1 + cosϕ
= ±

√
b21 + b22 + b23. (3.15)
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Similarly, the rotation axis can be evaluated by substituting the matrix elements into

Eq. (3.6), resulting in

v1 : v2 : v3 = b1 : b2 : b3. (3.16)

This shows that the rotation axis of Eq. (3.14) is defined by b = (b1, b2, b3), which

can also easily be verified by multiplying A with b resulting in b showing that b is

invariant. The elements of b are also known as Rodrigues parameters, and Eq. (3.14)

is the corresponding Rodrigues parametrisation [8].

Normalising vector b by e⃗ =
b⃗

|⃗b|
and substituting Eq. (3.15) for |⃗b|, the vector

coordinates can be rewritten as

b1 = ex tan
ϕ

2

b2 = ey tan
ϕ

2

b3 = ez tan
ϕ

2
.

The expression can be generalised further by homogenising bi =
ci
c0
. After defining

c0 = cos
ϕ

2
, and substituting tan

ϕ

2
= sin

ϕ

2
/ cos

ϕ

2
, it leads to

c0 = cos
ϕ

2
(3.17)

c1 = ex sin
ϕ

2

c2 = ey sin
ϕ

2
(3.18)

c3 = ez sin
ϕ

2
.

The parameters ci are known as Euler parameters [8]. Similar to the derivation of
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× 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Table 3.1: Multiplication table for quaternions

the Rodrigues parametrisation above, the Euler parametrisation results in

A = ∆−1


c20 + c21 − c22 − c23 2(c1c2 − c0c3) 2(c1c3 + c0c2)

2(2c1c2 + c0c3) c20 − c21 + c22 − c23 2(c2c3 − c0c1)

2(c1c3 − c0c2) 2(c2c3 + c0c1) c20 − c21 − c22 + c23

 (3.19)

where

∆ = c20 + c21 + c22 + c23.

Without loss of generality, the parametrisation is normalised by setting ∆ = 1.

A different way of representing the Euler parametrisation can be achieved via

unit quaternions. Quaternions were discovered independently by B.O. Rodrigues in

1840 [80] and W.R. Hamilton in 1844 [81]. On the basis of complex numbers which

had already been known to represent points in the plane and which could undergo

certain operations, Hamilton wanted to extend this concept to higher dimensions. He

discovered quaternions, a new number system denoted as H, that he defined as

Q = q0 + q1i+ q2j+ q3k

where qi are real numbers and i, j and k are quaternion units. q0 is known as the scalar

part, and the imaginary part consisting of q = (q1, q2, q3) is also known as the vector

part. While addition and scalar multiplication can be performed componentwise, the

multiplication of two quaternions follows the multiplication table given in Tab. 3.1.
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Similar to complex numbers, the conjugate of a quaternion is defined as

Q∗ = q0 − q1i− q2j− q3k;

and the norm of a quaternion is defined as

∥Q∥ =
√

QQ∗ =
√

Q∗Q =
√

q20 + q21 + q22 + q23.

If ∥Q∥ = 1 then Q is a unit quaternion.

According to Euler [82], a rotation of a vector p = p1i+p2j+p3k can be computed

with the following quaternion multiplication

QpQ∗ = (q0 + q1i+ q2j+ q3k)(p1i+ p2j+ p3k)(q0 − q1i− q2j− q3k)

= ((q20 + q21 − q22 − q23)p1 + (−2q0q3 + 2q1q2)p2 + (2q0q2 + 2q1q3)p3)i

+((2q0q3 + 2q1q2)p1 + (q20 − q21 + q22 − q23)p2 + (−2q0q1 + 2q2q3)p3)j

+((−2q0q2 + 2q1q3)p1 + (2q0q1 + 2q2q3)p2 + (q20 − q21 − q22 + q23)p3)k.

Rewriting this expression in matrix form yields

QpQ∗ =


q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23




p1

p2

p3

 .

(3.20)

Comparing Eq. (3.19) with Eq. (3.20), it follows that q20 + q21 + q22 + q23 = 1 in order

for Eq. (3.20) to be a rotation matrix. Hence, it was shown that unit quaternions Q

are another possibility to represent Euclidean rotations.

We have seen different parametrisations, all resulting in the same rotation matrix.

In the following steps, the procedure continues with the notation chosen in the Euler
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parametrisation. Evaluating the rotation axis of Eq. (3.19) with Eq. (3.6) will already

provide three of the first Study parameters

x1 : x2 : x3 = a32 − a23 : a13 − a31 : a21 − a12 = 4c0c1 : 4c0c2 : 4c0c3. (3.21)

However, an additional homogenising coordinate x0 is required which is evaluated

with an auxiliary variable λ such that

(x0 : x1 : x2 : x3) = λ(c0 : c1 : c2 : c3).

It follows that λ = 4c0 and thus, x0 = λc0 = 4c20. Recall the first Euler parameter,

Eq. (3.17), which can be reformulated with the half-angle substitution

c0 = cos
ϕ

2
= ±

√
1 + cosϕ

2
.

With Eq. (3.7) c0 becomes

c0 = ±1

2

√
1 +

(
1
2
(a11 + a22 + a33 − 1)

)
2

= ±1

2

√
a11 + a22 + a33 + 1. (3.22)

Finally, substituting Eq. (3.22) into the expression for x0 yields

x0 = 4c20 = a11 + a22 + a33 + 1. (3.23)

This concludes the derivation for the first four Study parameters of the first line as

shown in Eq. (3.8). As mentioned, other combinations are required if the rotation

matrix would result in xi = (0 : 0 : 0 : 0). The derivations of the remaining three

possibilities of Eq. (3.8) are similar to its first line. They will not be discussed here,

but can be found, for example, in [14].
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3.3.2 Latter Four Study Parameters yi

The derivation of the remaining Study parameters yi requires some understanding of

the algebra of dual quaternions. They were discovered by W.K. Clifford in 1873 [83],

and later it was shown by Study how Clifford’s algebra could be applied to describe

displacements in three-dimensional space. Let ϵ denote the dual unit, which is a

quasi-imaginary number defined as having the following two properties

ϵ ̸= 0, and ϵ2 = 0.

Then a dual number can be written as

d̂ = xi + ϵyi.

As the name suggests, a dual quaternion is a regular quaternion whose coefficients are

not real numbers but instead consist of dual numbers. Thus, a dual quaternion, or

sometimes referred to as a biquaternion, consists of eight different elements forming

an eight-dimensional vector space over the real numbers

Q̂ = x0 + y0ϵ+ (x1 + y1ϵ)i+ (x2 + y2ϵ)j+ (x3 + y3ϵ)k

= x0 + x1i+ x2j+ x3k+ ϵ(y0 + y1i+ y2j+ y3k)

= x0 + x+ ϵ(y0 + y).

Just as in the addition and scalar multiplication of quaternions, these operations

are conducted componentwise. Furthermore, the multiplication of dual quaternions

follow the same table given in Tab. 3.1, while also considering the definition of the

dual unit ϵ2 = 0.

There are two types of conjugates for dual quaternions. Following the defini-
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tion of the conjugate for regular quaternions, the vector part of the two embedded

quaternions change their signs. Hence, one conjugate for dual quaternions is defined

as

Q̂∗ = x0 − x+ ϵy0 − ϵy.

In addition, there exists the dual number conjugate where the sign of the dual part

changes. Hence, the dual number conjugate is defined as

Q̂ϵ = x0 + x− ϵy0 − ϵy.

The norm of the dual quaternion is defined as

∥Q̂∥ =

√
Q̂Q̂∗.

Expanding the norm and requiring that it equates to one, i.e., (1+ϵ0), the expression

yields

Q̂Q̂∗ = (x2
0 + x2

1 + x2
2 + x2

3) + ϵ(2x0y0 + 2x1y1 + 2x2y2 + 2x3y3) := 1.

Therefore, unit dual quaternions undergo two algebraic constraints, namely

x2
0 + x2

1 + x2
2 + x2

3 = 1 (3.24)

x0y0 + x1y1 + x2y2 + x3y3 = 0. (3.25)

Similar to the above quaternion product representing rotations about the origin,

let us define that the product of dual quaternions Q̂ϵpQ̂
∗ represents Euclidean dis-

placements, where p is a vector in Euclidean 3-space given as p = 1+ϵ(p1i+p2j+p3k).
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Following the multiplication rules, the expression becomes

Q̂ϵpQ̂
∗ = (x0 + x1i+ x2j+ x3k+ ϵ(−y0 − y1i− y2j− y3k))(1 + ϵ(p1i+ p2j+ p3k))

(x0 − x1i− x2j− x3k+ ϵ(y0 − y1i− y2j− y3k))

= (x2
0 + x2

1 + x2
2 + x2

3)

+((x2
0 + x2

1 − x2
2 − x2

3)p1 + (−2x0x3 + 2x1x2)p2 + (2x0x2 + 2x1x3)p3

−2x0y1 + 2x1y0 − 2x2y3 + 2x3y2)ϵi

+((2x0x3 + 2x1x2)p1 + (x2
0 − x2

1 + x2
2 − x2

3)p2 + (−2x0x1 + 2x2x3)p3

−2x0y2 + 2x1y3 + 2x2y0 − 2x3y1)ϵj

+((−2x0x2 + 2x1x3)p1 + (2x0x1 + 2x2x3)p2 + (x2
0 − x2

1 − x2
2 + x2

3)p3

−2x0y3 − 2x1y2 + 2x2y1 + 2x3y0)ϵk.

If Q̂ is a unit quaternion, we can substitute Eq. (3.24) and reformulate the dual

quaternion product in matrix form

Q̂ϵpQ̂
∗ =



1 0 0

l x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

m 2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

n 2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3





1

p1

p2

p3


(3.26)

where

l = 2(−x0y1 + x1y0 − x2y3 + x3y2);

m = 2(−x0y2 + x1y3 + x2y0 − x3y1);

n = 2(−x0y3 − x1y2 + x2y1 + x3y0).

Eq. (3.26) can be compared to the linear transformation, Eq. (3.4), revealing that the
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translation part t can be expressed as a linear combination of the dual quaternion

coefficients, i.e., t = (l,m, n). Therefore, Euclidean displacements can be represented

with the above defined product of unit dual quaternions. As, e.g., shown in [79],

the translation t can subsequently be converted into Study’s image coordinates yi as

it was previously given in Eq. (3.9). This concludes the algebraic derivation of the

8-tupel Study array.

Even though Study’s parameters and dual quaternions can be viewed as analyti-

cally identical, it is important to note that their geometric interpretation differs. Dual

quaternions are two vectors in a dual three-space and Study’s parameters are points

on a quadric in a seven-dimensional space [84].

3.3.3 Geometry of Study’s Quadric

The previous sections unveiled some information on the derivation of Study’s para-

metric representation of Euclidean rigid body displacements. It was also put into

perspective with regard to other representations. To understand the main advantage

of Study’s representation when studying the kinematics of linkages, it is beneficial to

have some fundamental understanding of the geometry of the mapping which is the

focus of this section. Since Study’s array is homogeneous, the mapping can be viewed

as a point in a seven-dimensional projective space, P 7. All these points lie on the

constraint imposed by Eq. (3.10), known as Study’s quadric S2
6 . As mentioned, points

on Eq. (3.25) where x0 = x1 = x2 = x3 = 0, having the parametric representation

[0 : 0 : 0 : 0 : y0 : y1 : y2 : y3],

are known as the exceptional generator, A∞, and do not represent any real dis-

placements. Thus, these points are technically not part of S2
6 . Hence, there exists

a one-to-one correspondence between a point on Study’s quadric and a Euclidean
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displacement, SE(3) \ A∞. Study called the points “soma”, a Greek word mean-

ing “body”. The entirety of all possible displacements in SE(2) and SE(3) must

map to points, curves, surfaces or higher-dimensional objects on S2
6 which are rep-

resented as algebraic polynomials, known as constraint equations [12]. In contrast

to classical trigonometric approaches the algebraic constraint equations contain all

information of the manipulator which allows to determine all solutions to kinematic

analysis problems [85]. Hence, with the appropriate algebraic tools it is possible to

perform different analyses, such as singularity analysis or identifying the number of

assembly modes of the mechanisms generating the displacements.

Admittedly, it is not straightforward to picture, not to mention illustrate S2
6 on a

two-dimensional piece of paper, as it is a six-dimensional quadric surface in a seven-

dimensional space. However, some geometric insights leading to a symbolic sketch

can be observed from Eq. (3.10). The equation consists of bilinear cross-terms, which

suggest that it has been rotated out of its standard position, or normal form [86, 87].

With the help of the principle axes theorem, the cross-terms can be eliminated and

the equation can be transformed into its canonical form, which in return provides

information on its nature [88]. In essence, the theorem states that if M is a symmetric

n×n- matrix, then its quadratic form of xTMx can be rewritten using an orthogonal

change of variable x = Py, such that the new equation becomes yTDy where D is

a diagonal matrix and hence, cross-terms are no longer present in the quadric form.
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Concretely, rewriting Eq. (3.10) using a 8× 8 symmetric matrix yields

xTMx = [x0 . . . y3]



0 0 0 0 1/2 0 0 0

0 0 0 0 0 1/2 0 0

0 0 0 0 0 0 1/2 0

0 0 0 0 0 0 0 1/2

1/2 0 0 0 0 0 0 0

0 1/2 0 0 0 0 0 0

0 0 1/2 0 0 0 0 0

0 0 0 1/2 0 0 0 0




x0

...

y3

 . (3.27)

M is called the matrix of the quadratic form. Introducing a change of variable such

that

x = Py or y = P−1x, (3.28)

where P is an invertible matrix and y = [z0 : z1 : z2 : z3 : w0 : w1 : w2 : w3]
T is a new

8× 1 vector in P 7, the quadratic expression can be written as

xTMx = (Py)T M (Py) = yTPTMPy = yT
(
PTMP

)
y. (3.29)

Since M is symmetric, it is orthogonally diagonalisable, which can be expressed by

M = PDPT = PDP−1, (3.30)

where P is a proper orthogonal matrix and D is a diagonal matrix. Rearranging

Eq. (3.30) reveals that there must be an orthogonal matrix P such that the expression

in the brackets of Eq. (3.29) is a diagonal matrix,

PTMP = D. (3.31)
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One option to derive P is to compute the eigenvectors of M since the eigenvectors of

different eigenspaces must be orthogonal to each other. Hence, P becomes

P =



0 0 0 1 −1 0 0 0

0 0 1 0 0 0 0 −1

0 1 0 0 0 0 −1 0

1 0 0 0 0 −1 0 0

0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 1

0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0



. (3.32)

It may be necessary to interchange two columns of P to ensure that det(P) = 1. This

allows us to compute D using Eq. (3.31)

D =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1



(3.33)

as well as the expression for S2
6 in the rotated coordinate system y

xTMx = yTDy = z20 + z21 + z22 + z23 − w2
0 − w2

1 − w2
2 − w2

3. (3.34)

Clearly, this expression unveils that the Study quadric S2
6 is an hyperboloid of one
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sheet. Similar to the hyperboloid of one sheet in the Euclidean 3-space, this quadric

contains two sets of generator spaces. While the generator lines of the hyperboloid

of one sheet in E3 are skew lines in two reguli, the generator spaces of S2
6 are 3-

spaces in two opposite reguli, which are called A-planes and B-planes, after [78].

However, the 3-spaces in one regulus are not skew in a sense, since some of the 3-

spaces intersect others in the same regulus. In total, there are 3 + 2∞4 different

generator spaces contained on the Study quadric [89]. A- and B-planes follow a

right-handed and left-handed coordinate system, respectively, which makes A-planes

significantly more interesting to applied kinematics. A symbolic sketch of S2
6 that is

showing the A-planes as generator spaces is displayed in Fig. 3.2. As the A-planes are

mostly skew, they generally do not intersect. However, there are exceptions where

they can intersect in a line [90].

Figure 3.2: Symbolic sketch of the Study quadric S2
6 .

In this thesis, emphasis should be placed on three generator spaces: A∞, SO(3)

52



and SE(2). The exceptional generator A∞ is highlighted in blue in Fig. 3.2. Even

though A∞ does not represent real displacements, it plays an important role in deter-

mining the type of other A-planes. An A-plane corresponds to SO(3) if it contains

the identity array [1 : 0 : 0 : . . . : 0]T , which Study called the “protosoma”, and its in-

tersection with A∞ is the empty set. As there are no translational elements in SO(3),

the generator is characterised by y0 = y1 = y2 = y3 = 0. An A-plane corresponds to

SE(2) if it contains the identity and intersects A∞ in a line. It can easily be shown

that the SE(2) generator is characterised by x1 = x2 = y0 = y3 = 0 [90]. Symboli-

cally, SO(3) and SE(2) are highlighted in red and green in Fig. 3.2, respectively.

As e.g., demonstrated in [89], the maximum dimension of linear subspaces on

S2
6 is three. Thus, in addition to the three-dimensional generator spaces discussed

above, there also exists two-dimensional and one-dimensional subspaces on S2
6 . Three-

dimensional generator spaces correspond to a three-parametric set of rotations or

translations, two-dimensional subspaces are planes corresponding to a two-parametric

set of rotations or translations and one-dimensional subspaces are lines corresponding

to a one-parameter set of translations or rotations [78, 91]. Since two A-planes may

intersect in a line, lines are the connecting link between generator spaces of the same

type. For a line on Study’s quadric to represent a rotation or translation of SE(3),

it must pass the “protosoma”, thus, intersect with the hyperplane where y0 = 0.

Eberharter and Ravani classify the straight lines on S2
6 into three categories [89].

1. Simple rotations: these have a proper axis through the origin and the lines are

parametrised by y0 = y1 = y2 = y3 = 0.

2. General rotations: these have a proper axis that does not pass through the

origin. These lines are parametrised by y0 = 0.

3. Translations: these displacements have an improper axis which lies at infinity

perpendicular to the direction of translation. These lines are parametrised by
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x1 = x2 = x3 = y0 = 0.

3.3.4 Transformations in the Kinematic Image Space

This section examines the different coordinate transformations in the kinematic image

space which will greatly facilitate the computations when working with kinematic

chains. Considering coordinate transformations in Cartesian space, we can distinguish

between two types. The first type is taking place in the fixed reference frame, or non-

moving base frame. Hence, rotations and translations are all conducted about and

along the fixed base frame coordinate axes, respectively, and are performed using

pre-multiplication. The second type is taking place in the moving coordinate frame

of the preceding frame in the kinematic chain. Hence, rotations and translations are

conducted about and along the axis resulting from the previous transformation. This

procedure is performed using post-multiplication [92].

Pfurner [14] demonstrates in his PhD thesis how the two transformations can

be written in the kinematic image space, and due to its importance for this thesis,

the derivations will be briefly summarised. Let us consider an arbitrary Euclidean

displacement matrix A ∈ SE(3) with image coordinates of A[a0 : a1 : a2 : a3 : a4 : a5 :

a6 : a7] ∈ S2
6 \A∞, then following Eq. (3.12) the homogeneous matrix representation

with the normalising condition of a20+a21+a22+a23 = 1 corresponding to its pre-image

can be written as

A =

a20 + a21 + a22 + a23 0 0 0

2(−a0a5 + a1a4 − a2a7 + a3a6) a20 + a21 − a22 − a23 2(a1a2 − a0a3) 2(a1a3 + a0a2)

2(−a0a6 + a1a7 + a2a4 − a3a5) 2(a1a2 + a0a3) a20 − a21 + a22 − a23 2(a2a3 − a0a1)

2(−a0a7 − a1a6 + a2a5 + a3a4) 2(a1a3 − a0a2) 2(a2a3 + a0a1) a20 − a21 − a22 + a23


.

(3.35)
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Moreover, consider a fixed transformation T ∈ SE(3) with image coordinates of

T [t0 : t1 : t2 : t3 : t4 : t5 : t6 : t7] ∈ S2
6 \ A∞. The coordinate transformation in terms

of the Study parameters is given as

T =

t20 + t21 + t22 + t23 0 0 0

2(−t0t5 + t1t4 − t2t7 + t3t6) t20 + t21 − t22 − t23 2(t1t2 − t0t3) 2(t1t3 + t0t2)

2(−t0t6 + t1t7 + t2t4 − t3t5) 2(t1t2 + t0t3) t20 − t21 + t22 − t23 2(t2t3 − t0t1)

2(−t0t7 − t1t6 + t2t5 + t3t4) 2(t1t3 − t0t2) 2(t2t3 + t0t1) t20 − t21 − t22 + t23


.

(3.36)

If the transformation is required in the fixed frame, pre-multiplication of the trans-

formation matrix T, i.e., T ·A, where the · operator indicates matrix multiplication,

yields a 4 × 4 matrix. This matrix can be normalised by dividing by (t20 + t21 + t22 +

t23)(a
2
0+a21+a22+a23) and mapped onto Study’s quadric using Eq. (3.8) and Eq. (3.9).

Mapping T · A on S2
6 will be symbolised by the operator ◦, i.e., T ◦ A. The com-

putation of the first four Study parameters is straightforward. However, the latter

four require some additional manipulation as follows. To ensure that A and T are

contained on the Study quadric substituting some variations of Eq. (3.10), such as

t1t5 + t2t6 + t3t7 = −t0t4, t0t4 + t2t6 + t3t7 = −t1t5, a1a5 + a2a6 + a3a7 = −a0a4 and

a0a4+a2a6+a3a7 = −a1a5 greatly simplify the expressions. The final matrix product
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in Study parameters then becomes

T ◦ A = ∆



a0t0 − a1t1 − a2t2 − a3t3

a0t1 + a1t0 − a2t3 + a3t2

a0t2 + a1t3 + a2t0 − a3t1

a0t3 − a1t2 + a2t1 + a3t0

a0t4 − a1t5 − a2t6 − a3t7 − a4t0 − a5t1 − a6t2 − a7t3

a0t5 + a1t4 − a2t7 + a3t6 + a4t1 + a5t0 − a6t3 + a7t2

a0t6 + a1t7 + a2t4 − a3t5 + a4t2 + a5t3 + a6t0 − a7t1

a0t7 − a1t6 + a2t5 + a3t4 + a4t3 − a5t2 + a6t1 + a7t0



(3.37)

where

∆ =
a0t0 − a1t1 − a2t2 − a3t3

(t20 + t21 + t22 + t23)(a
2
0 + a21 + a22 + a23)

.

Since Study parameters are homogeneous ∆ can be omitted. Rewriting Eq. (3.37) as

a matrix product where a corresponds to an 8× 1 vector according to

T ◦ A = Tba, (3.38)

the basis transformation matrix Tb becomes

Tb =



t0 −t1 −t2 −t3 0 0 0 0

t1 t0 −t3 t2 0 0 0 0

t2 t3 t0 −t1 0 0 0 0

t3 −t2 t1 t0 0 0 0 0

t4 −t5 −t6 −t7 −t0 −t1 −t2 −t3

t5 t4 −t7 t6 t1 t0 −t3 t2

t6 t7 t4 −t5 t2 t3 t0 −t1

t7 −t6 t5 t4 t3 −t2 t1 t0



. (3.39)
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Following the same procedure for the coordinate transformation in the moving frame,

the matrix product A ·T can be mapped onto Study’s quadric. After simplification

and rewriting the Study vector that resulted from A ◦T as the matrix product Tma,

i.e.,

A ◦ T = Tma, (3.40)

the matrix describing this type of transformation reads

Tm =



t0 −t1 −t2 −t3 0 0 0 0

t1 t0 t3 −t2 0 0 0 0

t2 −t3 t0 t1 0 0 0 0

t3 t2 −t1 t0 0 0 0 0

t4 −t5 −t6 −t7 t0 −t1 −t2 −t3

t5 t4 t7 −t6 t1 t0 t3 −t2

t6 −t7 t4 t5 t2 −t3 t0 t1

t7 t6 −t5 t4 t3 t2 −t1 t0



. (3.41)

The conclusion drawn from the derivation of Tb and Tm is that any coordinate

transformation, both in the fixed and the moving frame, can be expressed as a projec-

tive transformation in Study’s kinematic image space. It turns out that the elements

of the transformation matrices are linear in the Study parameters and therefore,

provide an efficient tool to compute coordinate transformation in SE(3). Further

inspection of these two matrices show that they commute, i.e., Tb · Tm = Tm · Tb,

thus, as in Euclidean space the order of these two transformations does not affect the

result [14].
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3.4 Denavit-Hartenberg Parameterisation

3.4.1 DH Parametrisation and the Euclidean space

Displacements of kinematic chains are often parametrised using the Denavit-Hartenberg

(DH) convention [93]. They were first introduced by Denavit and Hartenberg in 1955,

and are still widely used in the field of robotics. Nowadays, the literature contains

many variations of the original DH coordinate system and parameter assignment con-

vention. Subtly different coordinate frame attachment rules and parameter definitions

have been devised for mechanical system calibration, dynamic analysis, accounting

for misalignment of joint axis directions, etc., see [92, 94, 95, 96] for several examples.

Therefore, it is important to precisely define the convention used in this work to avoid

confusion and misinterpretation since the corresponding coordinate transformations

are all different from those of Denavit and Hartenberg.

The first step in the DH parametrisation of an arbitrary kinematic chain is to iden-

tify and number all the joint axes. Next comes the allocation of coordinate systems to

each link in the chain using a set of rules to locate the origin of the coordinate system

and the orientation of the basis vectors. The position and orientation of consecutive

links are defined by a homogeneous transformation matrix that maps coordinates of

points in the coordinate system attached to link i to those of the same points de-

scribed in the coordinate system attached to link i− 1. Symbolically, the coordinate

transformation matrix is denoted

i−1
i T.

The forward and inverse kinematics of serial chains are the concatenations of

the individual transformation matrices in the appropriate order [97]. For example,

the forward kinematics problem of determining the position and orientation of the

nth link in a serial kinematic chain described in a relatively fixed non-moving base
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coordinate system 0, given the relevant DH parameters and values for the n joint

variables is conceptually straightforward as matrix multiplication.

link i-1
link i

axis i-1

axis i

axis i+1

i

a

x
y

z

a yz

x

i

i
i

i

d i

i

i -1
i -1

i -1

i -1

Figure 3.3: DH parameter frame assignment and its corresponding DH parameters.

To visualise the four DH parameters, consider two arbitrary sequential neighbour-

ing links, i − 1 and i. Two such links are illustrated in Fig. 3.3. The procedure for

assigning the location of the origin and the basis vectors for the coordinate system

for the ith link in which the DH parameters are defined as follows.

1. Identify all joint axes. Consider neighbours i − 1, i, and i + 1, illustrated in

Fig. 3.3.

2. Identify the common perpendicular between the two axes i and i + 1, or their

point of intersection. At the point of intersection, or where the common per-

pendicular meets the i+1st joint axis, assign the link coordinate system origin,

0i.

3. For coordinate systems 0 and 1, ensure the coordinate axes are aligned when

θ1 = 0.
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4. Assign the zi axis to point along the joint axis i+ 1.

5. Assign the xi axis to point along the common normal between the joint axes i

and i+1. If the axes are parallel, any convenient normal can be selected. If the

axes intersect, assign xi to be perpendicular to the plane containing zi−1 and

zi.

6. Assign the yi axis to complete a right-handed coordinate system.

Now, the four DH parameters [93] are defined in the following way.

θi , joint angle: the angle from xi−1 to xi measured about zi−1.

di , link offset: the distance from xi−1 to xi measured along zi−1.

τi , link twist: the angle from zi−1 to zi measured about xi.

ai , link length: the directed distance from zi−1 to zi measured along xi.

According to this convention the coordinate transformation from the coordinate

system for joint i relative to the coordinate system of the previous joint i− 1 can be

divided into two screw displacement, i.e., two pure rotations and two pure translations

in terms of the DH parameter

T(di) =



1 0 0 0

0 1 0 0

0 0 1 0

di 0 0 1


; T(θi) =



1 0 0 0

0 cos(θi) − sin(θi) 0

0 sin(θi) cos(θi) 0

0 0 0 1


;

T(ai) =



1 0 0 0

ai 1 0 0

0 0 1 0

0 0 0 1


; T(τi) =



1 0 0 0

0 1 0 0

0 0 cos(τi) − sin(τi)

0 0 sin(τi) cos(τi)


.
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Multiplying the rotations and translations following

T(θi) ·T(di) ·T(ai) ·T(τi) (3.42)

yields the transformation between two coordinate frames which is given by

i−1
i T =



cos θi − sin θi cos τi sin θi sin τi ai cos θi

sin θi cos θi cos τi − cos θi sin τi ai sin θi

0 sin τi cos τi di

0 0 0 1


=


A t

0 0 0 1


.

(3.43)

Hence, to describe the end-effector coordinate frame of a kinematic chain with respect

to the base frame, the overall transformation matrix becomes

0
iT =0

1 T
1
2T

2
3T ... i−1

i T. (3.44)

Applying this algebraic representation to simple closed chains, like a mechanism,

requires that the end-effector coordinate frame coincides with the coordinate frame

of the base. Hence, the overall transformation equates to the identity matrix [3].

3.4.2 DH Parametrisation and the Kinematic Projective Im-

age Space

Depending on the number of joints and links in a kinematic chain, it can be ex-

tremely tedious to evaluate Eq. (3.44) in matrix form. Moreover, this representation

may be subjected to representational singularities that are present in the trigonomet-

ric expressions. When studying kinematic chains of rigid bodies, Study’s kinematic

mapping aims to describe distinct three-dimensional displacements of the moving end-

effector frame as distinct points in a seven-dimensional projective kinematic mapping
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image space. Constraints on the motion of the end-effector frame imposed by the

joints in the kinematic chain map to curves or surfaces in the image space and es-

sentially describe the workspace of the manipulator. The equations of these curves

or surfaces are known as constraint equations [12]. An efficient computation method

without having to first evaluate Eq. (3.44) and subsequently map the result onto

Study’s quadric, builds upon Section 3.3.4. More details of the following derivation

in this section are given in [14].

Without loss of generality, we can combine and rename the transformation matri-

ces in Eq. (3.42), i.e.,

Mi = T(θi) Gi = T(di) ·T(ai) ·T(τi) (3.45)

For a revolute joint, the matrix Mi depends only on the variable motion parameter

θi while the matrix Gi depends only on constant design parameters. For a prismatic

joint the matrix Mi would depend on the variable link offset di while θi would be a

constant, changing the design parameter matrix to

Gi = T(θi) ·T(ai) ·T(τi).

Thus, the homogeneous transformation matrices

Mi =



1 0 0 0

0 cos(θi) − sin(θi) 0

0 sin(θi) cos(θi) 0

0 0 0 1


; Gi =



1 0 0 0

ai 1 0 0

0 0 cos(τi) − sin(τi)

di 0 sin(τi) cos(τi)


(3.46)

are mapped onto Study’s quadric using Eq. (3.8) and Eq. (3.9). It turns out that

the Study parameters can be simplified by algebraising the transformations using
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tangent half-angle substitutions for the angle parameters vi = tan(θi/2) and αi =

tan(τi/2) [47]. This implies that

cos θi =
1− v2i
1 + v2i

, sin θi =
2vi

1 + v2i
, (3.47)

cos τi =
1− α2

i

1 + α2
i

, sin τi =
2αi

1 + α2
i

. (3.48)

Hence, the Study parameters for Mi and Gi reduce to

Mi = [1 : 0 : 0 : vi : 0 : 0 : 0 : 0]T ; (3.49)

Gi = [2 : 2αi : 0 : 0 : aiαi : −ai : −diαi : −di]
T . (3.50)

In Section 3.3.4, the distinction between transformations in the fixed and moving

frame led to two different matrices, Tb and Tm, in terms of the Study parameters,

respectively. Hence, the specific transformations in Eq. (3.49) and Eq. (3.50) ex-

pressed in the kinematic image space as a coordinate transformation in the fixed

frame yield according to Eq. (3.39)

Tb(Mi) =



1 0 0 −vi 0 0 0 0

0 1 −vi 0 0 0 0 0

0 vi 1 0 0 0 0 0

vi 0 0 1 0 0 0 0

0 0 0 0 1 0 0 −vi

0 0 0 0 0 1 −vi 0

0 0 0 0 0 vi 1 0

0 0 0 0 vi 0 0 1



(3.51)
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Tb(Gi) =



2 −2αi 0 0 0 0 0 0

2αi 2 0 0 0 0 0 0

0 0 2 −2αi 0 0 0 0

0 0 2αi 2 0 0 0 0

aiαi ai diαi di 2 −2αi 0 0

−ai aiαi di −diαi 2αi 2 0 0

−diαi −di aiαi ai 0 0 2 −2αi

−di diαi −ai aiαi 0 0 2αi 2



(3.52)

Hence, given a concatenation of coordinate frame transformations as in an arbitrary

kinematic chain, the workspace of the end-effector can be described in P7 by

p = Tb(M1 ) ·Tb(G1 ) ·Tb(M2 ) ·Tb(G2 ) · · · · ·Tb(Mn) ·Tb(Gn) · id, (3.53)

where id corresponds to the identity in the kinematic image space,

id = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]T .

Similarly, the specific transformations in Eq. (3.49) and Eq. (3.50) expressed in the

kinematic image space as a coordinate transformation in the moving frame yield
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according to Eq. (3.41)

Tm(Mi) =



1 0 0 −vi 0 0 0 0

0 1 vi 0 0 0 0 0

0 −vi 1 0 0 0 0 0

vi 0 0 1 0 0 0 0

0 0 0 0 1 0 0 −vi

0 0 0 0 0 1 vi 0

0 0 0 0 0 −vi 1 0

0 0 0 0 vi 0 0 1



, (3.54)

Tm(Gi) =



2 −2αi 0 0 0 0 0 0

2αi 2 0 0 0 0 0 0

0 0 2 2αi 0 0 0 0

0 0 −2αi 2 0 0 0 0

aiαi ai diαi di 2 −2αi 0 0

−ai aiαi −di diαi 2αi 2 0 0

−diαi di aiαi −ai 0 0 2 2αi

−di −diαi ai aiαi 0 0 −2αi 2



. (3.55)

Using Eq. (3.54) and Eq. (3.55) to obtain the same result as in Eq. (3.53), i.e., the

displacement of the end-effector in the kinematic image space, it must be written as

p = Tm(Gn) ·Tm(Mn) · · · · ·Tm(G2 ) ·Tm(M2 ) ·Tm(G1 ) ·Tm(M1 ) · id. (3.56)
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3.5 Elimination Theory

Once polynomial equations for a particular mechanism have been established, they

must be manipulated such that certain variables are eliminated. In the case of this

thesis, these variables generally correspond to intermediate joint angles but could also

include other variables, such as slider distances. Systematic elimination of variables

from polynomial equations can be accomplished using Elimination Theory [98]. While

systems of linear equations can be completely solved with Gaussian elimination, or

with Cramer’s rule, other methods, such as resultants [99], Gröbner bases [15] or the

linear implicitisation algorithm [16], have demonstrated to be effective for solving

systems of equations with non-linear polynomials. These three methods will now be

explained briefly. The explanations and definitions for this section are mainly taken

from [16, 98, 100, 101] if not mentioned otherwise.

Let k be any field, such as the rational numbers Q, the real numbers R, or the

complex numbers C. A monomial, sometimes referred to as a power product, is the

product of variables x1, ..., xn with non-negative integer powers αi, such that

xα1
1 xα2

2 · · ·xαn
n .

This leads to the definition of a multivariate polynomial f(x1, ..., xn), which is speci-

fied as a finite sum of terms where a term is a linear combination of coefficients in k

and monomials,

f =
∑
α

cαx
α.

Consider a set of polynomials fs, then the set of all solutions of the equations

f1(x1, ..., xn) = · · · = fs(x1, ..., xn) = 0 is known as the variety, i.e.,

V(f1, ..., fs) = {(a1, ..., an) ∈ kn | fi(a1, ..., an) = 0, i = 1, 2, ..., s}.
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While a set of equations determines a variety, a variety is not determined by a par-

ticular set of equations. Some generating sets leading to the same solution are, in

fact, “easier” to solve than others. For example, consider a linear system of equations

before and after transforming it using Gauss-Jordan elimination. Finding a better

generating set of a variety requires the definition of ideals. I ∈ k[x1, ..., xn] is an ideal

if

1. 0 ∈ I,

2. f + g ∈ I if f ∈ I and g ∈ I, and,

3. pf ∈ I given that p ∈ k[x1, ..., xn] and f ∈ I.

Thus, the collection of polynomials ⟨f1, ...fs⟩ defines an ideal whose generating set is

the polynomials f1, ...fs ∈ k[x1, ..., xn]. It is important to understand that a variety is

determined by an ideal. The goal usually is to find a “better” generating set for the

ideal that is “easier” to interpret. As some generating sets of ideals allow a “better”

understanding of their algebraic structure, they may allow a “better” understanding

of the geometric structure of its variety.

3.5.1 Resultants

The objective of resultants is to verify whether two polynomials share a common

factor or common root. Moreover, resultants can be used to eliminate a variable

of two multivariate polynomials. If executed in sequence, resultants can be used to

solve multivariate polynomial systems. Let f and g be two polynomials f, g ∈ k[x] of

degree l and m, respectively:

f = a0x
l + a1x

l−1 + · · ·+ cl, a0 ̸= 0, l > 0;

g = b0x
m + b1x

m−1 + · · ·+ bm d0 ̸= 0, m > 0.
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The resultant of these two polynomials can be computed with the determinant of the

Sylvester matrix which is defined by [100]

Res(f, g) = det



a0 b0
a1 a0 b1 b0
a2 a1

. . . b2 b2
. . .

... a2
. . . a0

... b2
. . . b0

al
...

. . . a1 bm
...

. . . b1
al a2 bm b2. . .

...
. . .

...
al bm


,

︸ ︷︷ ︸
m columns

︸ ︷︷ ︸
l columns

(3.57)

where the empty entries of the matrix are zero. Notice that the size of the matrix is

determined by (l +m)× (l +m). The main properties of the resultant which are of

significant importance for elimination are [100]:

1. Res(f, g) is an integer polynomial in the coefficients of f and g.

2. Only if f and g share a non-trivial common factor, Res(f, g) becomes zero.

3. There exists two polynomials A,B ∈ k[x] that fulfil Res(f, g) = Af +Bg. The

degrees of A and B are smaller than m and l, respectively.

To understand how the resultant can be used for elimination, consider two polyno-

mials f, g in the field k[x, y]. Now, f and g can also be viewed as two polynomials

in x with polynomial coefficients in y. This allows to compute the resultant with

respect to x, i.e. Res(f, g, x), which is by definition a polynomial free of the variable

x. Because of the third property above, the resultant is part of the elimination ideal

⟨f, g⟩ ∩ k[y]. It follows that the solutions to Res(f, g, x) = 0 are also solutions where

f = g = 0. For a detailed example, see [100].
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3.5.2 Gröbner Basis

To begin this section, consider Hilbert’s Basis Theorem which guarantees that the

hereinafter explained algorithms will terminate and yield a solution. The theorem

states that every ideal I in k[x1, ..., xn] has a finite generating set, i.e., if I is any

ideal of k[x1, ..., xn], then there exists polynomials f1, ..., fs ∈ k[x1, ..., xn] such that

I = ⟨f1, ...fs⟩. The generating polynomials are also called the basis of I.

One important algorithm to fully understand Gröbner bases is known as the di-

vision algorithm, a recursive procedure which computes a quotient and a remainder.

For instance, in the case of two univariate polynomials f, g ∈ k[x], the algorithm

divides f by g, resulting in a quotient q and a remainder r such that

f = qg + r, and

r = 0 or deg(r) < deg(g).

This algorithm can help to obtain a different generating set of polynomials that

are describing the same variety, for example, by using it to determine the greatest

common divisor g = gcd(f1, ...fs). Since g divides every polynomial f1, ...fs, it follows

that I = ⟨f1, ..., fs⟩ = ⟨g⟩. This particular case is also known as the Euclidean

algorithm [101].

The division algorithm also provides groundwork for solving the ideal member-

ship problem which allows to verify whether a polynomial h is part of a given ideal

I = ⟨f1, ..., fs⟩. It requires computing the greatest common divisor of I, i.e., g =

gcd(f1, ...fs) and subsequently h is divided by g. If the remainder is zero, it follows

that h ∈ I.

The above-mentioned division algorithm can also be extended to multivariate

polynomials. However, while in the previous cases with one variable the order was

implied by the degree of each term, i.e. xm > ... > x2 > x > 1, multivariate
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polynomials need some sort of explicit systematic ordering. There are several well-

established monomial orderings of which three will now be briefly discussed.

• Lexicographic ordering compares the exponents of every variable to establish

a distinct order of the monomials, similarly as it can be found with letters in

dictionaries. The abbreviation commonly used is lex. In other words, let xα

and xβ be two monomials in k[x1, ..., xn], then xα >lex xβ if the leftmost nonzero

entry in the difference of α− β ∈ Zn is positive.

• Graded lexicographic ordering, also known as degree lexicographic ordering, first

compares the total degree of every monomial before comparing the exponents of

every variable. The abbreviation commonly used is grlex or deglex. Concretely,

let xα and xβ be two monomials in k[x1, ..., xn], then xα >grlex xβ if
∑n

i=1 αi >∑n
i=1 βi or if

∑n
i=1 αi =

∑n
i=1 βi and xα >lex xβ.

• Finally, another important monomial ordering often used in elimination theory

is the graded reverse lexicographic ordering. It also compares the total degree

of every monomial in the first place, but in the subordinated comparison of

individual exponents, it compares the exponents of the last indeterminate xn.

The abbreviation commonly used is grevlex or tdeg. More formally, let xα and

xβ be two monomials in k[x1, ..., xn], then xα >grevlex xβ if
∑n

i=1 αi >
∑n

i=1 βi

or if
∑n

i=1 αi =
∑n

i=1 βi and the rightmost nonzero entry in the difference of

α− β ∈ Zn is negative.

Now that monomial orderings for nonlinear multivariate polynomials can be de-

scribed, recall the division algorithm. The idea of the division algorithm in k[x1, ...xn]

is similar to the previously described division algorithm in one variable: f is divided

by f1, ...fs such that the leading terms of f are canceled until the division is no longer
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possible. Thus, f can be reformulated as

f = q1f1 + q2f2 + · · ·+ qsfs + r

where r, qi ∈ k[x1, ..., xn], and r is either zero, or includes solely monomials that are

not divisible by any of the leading terms of fi, i = 1, ...s.

Consider again the ideal membership problem, which verifies whether a given poly-

nomial f ∈ k[x1, ...xn] belongs to an ideal I = ⟨f1, ..., fs⟩. Clearly, if the remainder of

the division of f by F = (f1, ..., fs) is equals zero, then f ∈ I. However, it is possible

that the remainder is not zero, and yet f can belong to I. Thus, to guarantee that the

remainder is always zero if f ∈ I for every f ̸= 0, it requires computing a generating

set G = (g1, ..., gt) ⊆ I such that the leading term of f is divisible by some leading

term of gi where i ∈ {1, ..., t}. This is called a Gröbner basis. In essence, computing a

Gröbner basis for multivariate polynomials is the analogy to computing the greatest

common divisor in the univariate case. This naturally leads to the question, how can

a Gröbner basis be computed? The answer was first presented by Bruno Buchberger

in his PhD thesis [15]. His advisor was Wolfgang Gröbner, whom Buchberger was

naming his findings after. He developed an algorithm based on S-polynomials that

he uses to cancel leading terms. Let f, g ∈ k[x1, ..., xn], then the S-polynomial of f, g

is defined as

S(f, g) =
L

lt(f)
f − L

lt(g)
g (3.58)

where lt are the leading terms, and L the least common multiple of the leading

monomials, lm, of f and g,

L = lcm(lm(f), lm(g)).

Given an ideal I = ⟨f1, ..., fs⟩ ⊆ k[x1, ..., xn], the algorithm requires computing the
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(a) Initial generating equations. (b) Gröbner bases generating equations.

Figure 3.4: Same variety: V (f1, f2) = V (f3, f4).

S(fi, fj)-polynomial for every pair of polynomials, i ̸= j, in the existing ideal, then

applying the division algorithm, i.e., reducing S(fi, fj) relative to the polynomials

f1, ..., fs. If the remainder is not zero, it is added to the current ideal. The procedure

is repeated until every S(fi, fj) = 0, i ̸= j.

Generally, it is possible to compute different Gröbner bases for the same ideal.

The outcome depends on two factors. A different monomial order, and the order of

computing the S-Polynomial influences the Gröbner basis outcome. Notably, this can

lead to unnecessary generating equations, such that one leading term of a generator

divides the leading term of another generator. To avoid this situation, there exists the

so-called reduced Gröbner basis. A Gröbner basis G = {g1, ...gt} is called reduced if

all leading coefficients in G are 1, and G is reduced with respect to G−{gi}, meaning

that no non-zero term in gi is divisible by any leading monomial of gj, for any j ̸= i.

Before proceeding, consider the following illustrative example. Given are two

non-linear equations, one describing a circle with radius 2, centred at the origin, i.e.,

f1 : x2 + y2 − 4 = 0; and one describing an ellipse by f2 : 2x2 + y2 − 5 = 0. The

aim is to determine the real intersections, if they exist. . Plotting the two functions

reveals that there are indeed four intersections, see Fig. 3.4a. However, we can also
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use Gröbner bases to determine a generating set of equations that is “easier” to solve

than the two polynomials of the ideal I = ⟨f1, f2⟩. The monomial ordering is chosen

as x >lex y. First, following Eq. (3.58) the S-polynomial of f1 and f2 becomes

S(f1, f2) =
x2

x2
(x2 + y2 − 4)− x2

2x2
(2x2 + y2 − 5) =

y2

2
− 3

2
.

S(f1, f2) cannot be reduced with respect to f1 and f2. As a result, after multiplying

S(f1, f2) by 2, it is added to the current ideal as

f3 = y2 − 3.

Now that there are three polynomials in the ideal, I ′ = ⟨f1, f2, f3⟩, additional S-

Polynomials have to be computed and reduced with respect to I ′. First,

S(f1, f3) =
x2y2

x2
(x2 + y2 − 4)− x2y2

y2
(y2 − 3) = 3x2 + y4 − 4y2

can be reduced to

S(f1, f3) = 3f1 + (y2 − 4)f3.

Note that the remainder of the division algorithm is zero. Second,

S(f2, f3) =
x2y2

2x2
(2x2 + y2 − 5)− x2y2

y2
(y2 − 3) = 3x2 +

1

2
y4 − 5

2
y2

is multiplied by 2, such that S(f2, f3) = 6x2 + y4 − 5y2 which can be reduced to

S(f2, f3) = 6f1 + (y2 − 8)f3.

Again, the remainder of the division algorithm is zero which terminates the Buch-

berger algorithm. Therefore, the Gröbner basis is G = ⟨f1, f2, f3⟩. However, it is not
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a reduced Gröbner basis yet as the leading monomial of f1 and f2 divide each other.

This can be solved by

f4 = f2 − f1 = 2x2 + y2 − 5− (x2 + y2 − 4) = x2 − 1

which yields the reduced Gröbner basis G = ⟨f3, f4⟩. The two functions f3 and f4

represent four intersecting lines, and as shown in Fig. 3.4b the intersection points of

these four lines compared to the original intersection of f1 and f2 are the same, i.e.

V (f1, f2) = V (f3, f4). The difference is the lower computational effort required to

solve the system of f3 and f4.

Finally, with the understanding of what a Gröbner basis is, and how they can be

computed, it is now possible to discuss how they can be leveraged to eliminate certain

variables in a non-linear multivariate system of equations. The key to computing a

Gröbner basis, describing the same variety, but with generating sets that no longer

contain certain variables, is the choice of the monomial ordering. Let G be a Gröbner

basis of I ⊆ k[x1, ...xn], computed according to the lexicographic ordering, i.e. x1 >

x2 > . . . xn. Furthermore, let 0 ≤ l ≤ n, then

Gl = G ∩ k[xl+1, ..., xn] (3.59)

is the lth elimination ideal Il. A detailed proof of this statement can, for instance, be

found in [98].

When selecting an elimination monomial ordering, at least one of x1, ..., xl has to

be greater than all monomials with the remaining variables. This is not only the case

for the lexicographic but also, e.g., for the graded reverse lexicographic ordering.
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3.5.3 Linear Implicitisation Algorithm

Both resultants and Gröbner basis have some major drawbacks. Computing the

resultant from multipolynomials generally yields a polynomial with high degree that

includes many terms and factors, and when Gröbner bases are computed, the number

of polynomials in the generating set may become very large as the algorithm continues

adding polynomials until the remainder of the division algorithm of all S-polynomials

equals zero. Thus, even though both algorithms terminate in theory, they might not

in practice with the currently available processing power.

For that reason, an additional elimination technique shall be considered. It is

known as the “linear implicitisation algorithm” (LIA) and was first presented by

Walter and Husty [16] whose original publication will be briefly summerised in here.

LIA was developed to have a technique that allows to change a parametric represen-

tation of a kinematic chain into an implicit representation. Of special interest are

implicit representations of curves, surfaces, or higher algebraic varieties that repre-

sent the constrained movements of the kinematic chain without any parameters of the

chosen parametrisation, such as the eight Study parameters. The main advantage of

LIA as opposed to the elimination techniques presented above is that it is computed

linearly.

Before performing LIA, let us consider the expected result, i.e., the minimal num-

ber of required polynomial equations, m, that describe the constraint variety. It is

influenced by the number of dof of a kinematic chain, n. In general, the relation is

given by

m = 6− n,

which, however, should be used with caution as, e.g., redundant dofs can influence m.

LIA computes these implicit constraint equations according to the following steps.

Given is a parametric description of a kinematic chain, such as the Study represen-
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tation

x0 = f0(t1, ..., tn)

x1 = f1(t1, ..., tn)

...

y3 = fs(t1, ..., tn)

(3.60)

where ti are the motion parameters of the chain. If ti is an angular measurement, it

can be algebraised by expressing it as its tangent half-angle. As the name suggests,

motion parameters are those parameters that are variable in the chain, e.g., θ is the

motion parameter of a rotational joint. Design parameters on the contrary have fixed

numerical values that must be decided upon when building a particular kinematic

chain. In general, a typical example of a design parameter is a link length or link

twist. To find the implicit equations LIA assumes a homogeneous polynomial in the

parametrisation parameters with a given degree, known as the ansatz polynomial. For

the eight Study parameters with a linear polynomial, i.e., of degree one, the general

ansatz polynomial using the graded reverse lexicographic monomial ordering reads

C1y3 + C2y2 + C3y1 + C4y0 + C5x3 + C6x2 + C7x1 + C8x0 = 0, (3.61)

where Ci are the unknown coefficients. If the algorithm does not yield any result for

the linear ansatz, an ansatz with higher degree has to be chosen. The general ansatz

polynomial of degree two and three have 36 and 120 terms, respectively. Fortunately,

for simple closed kinematic chains solutions can be computed using the ansatz of

degree one or two. Substituting Eq. (3.60) into Eq. (3.61) and reorganising the result,

such that the expression is collected in its motion parameters, leaves an expression

with coefficients in terms of Ci and the remaining design parameters. Since the

motion parameters are in general non-zero, the coefficients have to vanish for the

equation to be satisfied. This yields a system of linear equations with generally more

equations than unknowns Ci. If solving for Ci does not yield a solution, the degree of
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the ansatz polynomial must be increased by one, otherwise the solution can be back-

substituted into the general ansatz polynomial which unveil the set of polynomials of

the constraint variety.
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Chapter 4

IO Equation Derivation Algorithm

4.1 Overview of the Algorithm

In essence, the idea of a generalised method to derive the algebraic IO equation for

any kind of four-bar linkage is subclassified in several steps:

1. The linkage is opened up, and considered as an open kinematic chain.

2. The open kinematic chain is described using the standard DH convention. More-

over, the tangent half-angle substitution is adopted for angle parameters and

angle variables.

3. The overall kinematic displacement, i.e., the orientation and position of the

end-effector frame with respect to the base frame, is described using Study’s

kinematic mapping.

4. The open kinematic chain is closed by equating the overall displacement to its

identity.

5. The arising set of equations generate an ideal that contains the full geometric

description of the linkage. This ideal is manipulated using elimination theory
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to obtain a single implicit polynomial IO equation that is free of the two inter-

mediate variables. While applying resultants or a sequence of Gröbner bases is

an effective way to eliminate variables of less involved equations, such as the

slider-crank or the quadrilateral, respectively, it turns out that a single appli-

cation of the elimination monomial ordering called “lexdeg” in Maple 2021

leads directly to the desired IO equations of all planar kinematic architectures.

When the ideal generated by the system of polynomials contains coefficients

that are not too large or complicated, this elimination monomial ordering is

very efficient, in the sense that it does not compute an entire basis from the

lexicographic ordering which can give large Gröbner bases. Even though the

algorithm of computing a Gröbner basis always terminates, the processing time

required varies as the intermediate polynomials can be very long. Especially

when dealing with long, spatial kinematic chains, solving the set of polynomials

using Gröbner bases might not be the most efficient approach. It turns out

that for the RSSR linkage it is more efficient to split the kinematic chain into

two parts, followed by eliminating the intermediate joint angles via the linear

implicitisation algorithm in both chains.

These five steps should be kept in mind for the remaining part of this chapter as they

will be followed to derive the IO equations of the different types of linkages: planar,

spherical and spatial.

4.2 Planar Four-bar Linkages

4.2.1 Quadrilateral Linkage

To derive the algebraic IO equation for planar four-bar mechanisms using the DH

convention [93] and Study’s kinematic mapping [10], the four-bar mechanism is con-
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sidered as an open kinematic chain as shown in Fig. 4.1. Following the assignments of

coordinate frames as presented in Section 3.4 the origins of the frames are placed in

the rotational joints with frame 0 located at the base and frame 4 at the end-effector,

i.e., the tip of the last rigid body. The respective DH parameters are listed in Tab. 4.1.

Note that all DH parameters have a direction including the link lengths and link off-

sets. Hence, the four link lengths ai are directed line segments that can also include

a negative value which is simply a link length pointing into the opposite direction as

defined by the corresponding coordinate system. In the case of the 4R chain, all link

twists and link offsets are identically zero. This simplifies the overall transformation

matrix 0
4T, which maps the coordinates of points described in the end-link coordinate

frame to those of the base frame:

0
4T =0

1 T
1
2T

2
3T

3
4T, (4.1)

x

y

x

a

a

1

4

0

0

1

x1

2

x4

a2 2

3

a3

x3

4

Figure 4.1: Open 4R chain.

where the transformation matrices 0
1T, 1

2T, 2
3T and 3

4T are evaluated according to
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Table 4.1: DH parameters for open 4R chain.

joint axis i link length ai link angle θi link offset di link twist τi
1 a1 θ1 0 0
2 a2 θ2 0 0
3 a3 θ3 0 0
4 a4 θ4 0 0

Eq. (3.43). The computed transformation matrix can be mapped onto Study’s quadric

using Eq. (3.8) and Eq. (3.9) resulting in a Study array with zero entries for x1, x2,

y0 and y3. After normalizing, the remaining four Study parameters become

x0 = (2v2v3v4 − 2v2 − 2v3 − 2v4)v1 + (−2v3 − 2v4)v2 − 2v3v4 + 2, (4.2)

x3 = ((−2v3 − 2v4)v2 − 2v3v4 + 2)v1 − 2v2v3v4 + 2v2 + 2v3 + 2v4, (4.3)

y1 = ((v4(a1 − a2 + a3 − a4)v3 − a1 + a2 + a3 + a4)v2 + (−a1 − a2 + a3 + a4)v3

−v4(a1 + a2 + a3 − a4))v1 + ((a1 − a2 + a3 + a4)v3 + v4(a1 − a2 − a3 + a4))v2

+v4(a1 + a2 − a3 + a4)v3 − a1 − a2 − a3 − a4, (4.4)

y2 = (((a1 − a2 + a3 + a4)v3 + v4(a1 − a2 − a3 + a4))v2 + v4(a1 + a2 − a3 + a4)v3

−a1 − a2 − a3 − a4)v1 + (−v4(a1 − a2 + a3 − a4)v3 + a1 − a2 − a3 − a4)v2

+(a1 + a2 − a3 − a4)v3 + v4(a1 + a2 + a3 − a4), (4.5)

where vi = tan (θi/2).

The same Study parameters can be obtained with the knowledge from Section 3.3.4

and 3.4.2 allowing to perform the transformations directly in P 7. Thus, applying

Eq. (3.53) or alternatively Eq. (3.56) to the planar 4R open chain reads

p = Tb(M1 )·Tb(G1 )·Tb(M2 )·Tb(G2 )·Tb(M3 )·Tb(G3 )·Tb(M4 )·Tb(G4 )·id,

p = Tm(G4 )·Tm(M4 )·Tm(G3 )·Tm(M3 )·Tm(G2 )·Tm(M2 )·Tm(G1 )·Tm(M1 )·id,

respectively. With the DH parameters from Tab. 4.1 as well as the 8 × 8 matrices
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given in Eq. (3.52), Eq. (3.51), Eq. (3.55) and Eq. (3.54), the overall displacement p

of the fourth coordinate frame with respect to the base frame can be calculated. As

the Study array is homogeneous, it can safely be divided by any common factor, in

this case 8, resulting in the Study array above, Eq. (4.2-4.5).

To close the planar four-bar chain, the first and last coordinate frames have to

align in both their orientation and position. Algebraically, this is specified using

the kinematic closure equation, where the overall transformation equates to the iden-

tity [93].
4∏

i=1

i−1
i T = I. (4.6)

As stated earlier the identity matrix maps to id = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]T ∈ P 7

which can easily be verified by substituting the identity matrix into Eq. (3.8) and

Eq. (3.9). Fig. 4.2 illustrates the arising planar four-bar linkage with joint angle

variables θi that are measured according to the DH frame assignment. As a conse-

quence of this frame assignment, the initial coordinate frame 0 must be rotated by π

and the input and output angle θ1 and θ4 must be measured differently compared to

Freudenstein’s derivation, for comparison see Fig. 2.2. Equating the Study array of

x0/4

y0/4
q1

q 2

q3

q4

x1 x2

x3

a1

a2

a4

a3

Figure 4.2: Closed 4R kinematic chain.
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the overall transformation to the Study array of the identity matrix, forces

[x0 : 0 : 0 : x3 : 0 : y1 : y2 : 0] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]. (4.7)

Recall that the Study array is homogeneous, meaning Eq. (4.2) can be equated to

any number which in return allows to safely omit this equation. Hence, the three

equations that are equal to zero, Eq. (4.3-4.5), define the ideal of a generic planar

4R linkage and thus, are sufficient to completely describe the linkage. This includes

the IO equation but clearly also any other imaginable information on any planar 4R

linkage. All that is required is to manipulate the three polynomials to extract the

information of interest.

This leads to the final step of the suggested algorithm. In order to extract the IO

equation from the ideal, the undesired intermediate joint angles v2 and v3 have to be

eliminated from the generating set. Gröbner bases provide different possibilities that

lead to the IO equation. For example, a two elimination procedures involving graded

reverse lexicographic order with indeterminate ordering v3 > v2 > v4 > v1, followed

by pure lexicographic ordering of the same indeterminate sequence, produces one

polynomial in the new generating set that no longer contains v2 and v3. Alternatively,

a single application of the elimination monomial ordering “lexdeg” in Maple 2021

leads directly to the desired planar 4R IO equation.

In both cases, after collecting the input and output angle motion parameters v1

and v4, the algebraic IO equation can be written as

Av21v
2
4 +Bv21 + Cv24 − 8a1a3v1v4 +D = 0, (4.8)

where
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A = (a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4) = A1A2,

B = (a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4) = B1B2,

C = (a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4) = C1C2,

D = (a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4) = D1D2,

v1 = tan
θ1
2
,

v4 = tan
θ4
2
.

This algebraic equation is of degree 4 in the v1 and v4 variable parameters, while the

coefficients labelled A, B, C, and D are each products of two bilinear factors which

can be viewed as eight distinct planes treating the four ai link lengths as homogeneous

coordinates. See Section 5.3 for a detailed description of this design parameter space.

Furthermore, it should be noted that Eq. (4.8) is identical to Eq. (2.4) if the phase

shift of the input and output angle as well as the different notation are considered.

Eq. (4.8) is an implicit equation expressing the functional relationship between v1

and v4. This functional relationship defines five others. Depending on the application,

mechanism designers may be interested in generating functions between two other

motion parameters, such as the input and transmission angle, i.e. v1-v3 equation. In

general, all moveable four-bar linkages generate six distinct functions between the four

distinct joint variable parameters taken two at a time, abstractly referred to as vi and

vj. While this is common knowledge in the kinematics community, there do not exist

convenient and consistent ways to determine and express these six functions using

algebraic means. Moreover, only the v1-v4 and v1-v3 IO equations can be found in

the vast body of archival literature, but they are expressed as trigonometric implicit

equations, see [41, 102] for standard examples.

The five related IO equations can be determined by eliminating the relevant in-

termediate joint angle parameters from Eq. (4.3-4.5). By applying the “lexdeg”
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monomial term orderings to the planar 4R variables in the appropriate disjoint lists,

the v1-v2, v1-v3, v2-v3, v2-v4, and v3-v4 IO equations are obtained and listed as follows.

A1B2v
2
1v

2
2 + A2B1v

2
1 + C1D2v

2
2 − 8a2a4v1v2 + C2D1 = 0, (4.9)

A1B1v
2
1v

2
3 + A2B2v

2
1 + C2D2v

2
3 + C1D1 = 0, (4.10)

A1D2v
2
2v

2
3 +B2C1v

2
2 +B1C2v

2
3 − 8a1a3v2v3 + A2D1 = 0, (4.11)

A1C1v
2
2v

2
4 +B2D2v

2
2 + A2C2v

2
4 +B1D1 = 0, (4.12)

A1C2v
2
3v

2
4 +B1D2v

2
3 + A2C1v

2
4 + 8a2a4v3v4 +B2D1 = 0. (4.13)

Eqs. (4.8), (4.9), (4.11), and (4.13) all contain a bilinear quadratic term because they

relate adjacent angle pairs, while Eqs. (4.10) and (4.12) relate opposite angle pairs,

and hence do not possess a bilinear quadratic term.

Each of these six IO equations is of degree 4 in the two variable angle parameters,

defining quartic curves in the planes spanned by the different vi-vj angle parameter

pairs. They also all have genus 1. Therefore, following Harnack [103] who developed

a theorem on algebraic curves relating the genus of a curve p to the maximum number

of circuits, or assembly modes, m by

m = p+ 1, (4.14)

one may immediately conclude that a planar 4R mechanism can never have more

than two assembly modes.

For example, consider the v1-v4 equation of a quadrilateral with the following link

lengths: a1 = 2, a2 = 6, a3 = 8 and a4 = 5. As illustrated in Fig. 4.3, for any given

input angle, the linkage can be assembled in two constellations. While the input link

a1 and the base link a4 are the same for both assembly modes, the coupler a2 and the
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Figure 4.3: v1-v4 equation and the corresponding two assembly modes of the linkage where
a1 = 2, a2 = 6, a3 = 8 and a4 = 5.

output link a3 are different which results in two different output angles θ4. With the

tangent half-angle substitution for θ1 and both θ4, such that vi = tan(θi/2), the locus

of the point P (v1, v4) can be traced in the v1-v4-plane, resulting in the red and orange

IO curve as shown in Fig. 4.3. This curve precisely corresponds to Eq. (4.8) with the

given design parameters. By simply examining the plot of the v1-v4 equation, the

following information can be extracted:

• The linkage has two assembly modes: An upper and a lower assembly mode.

• There exists a v4-value for every v1. The curve passes through both v1 = 0 and

v1 = ∞, corresponding to θ1 = 0 and θ1 = π, respectively. Thus, both assembly

modes have a crank as an input link.
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• The output link is restricted by a specific range of bounding values in both

assembly modes. The output link neither rocks through v4 = 0 nor through

v4 = ∞, corresponding to θ4 = π. Thus, both assembly modes have a regular

rocker as an output link.

4.2.2 Slider-crank Linkage

Next, consider the slider-crank linkage that was presented in Section 2.3.2. Following

the proposed procedure to derive the IO equation of the RRRP linkage, the first

step is to consider the RRRP as an open kinematic chain. The linkage is opened

up at the prismatic joint, followed by assigning coordinate frames according to the

DH convention which allows to identify the associated DH parameters of the linkage.

In exactly the same way as the quadrilteral linkage, the RRRP chain is closed by

aligning the base coordinate frame 0 with the end-effector coordinate frame 4. The

coordinate frame attachment as well as the identified DH parameters are shown in

Fig. 4.4. The P-pair z3-axis induces the two link twist angles and a link offset listed

in Tab. 4.2. Again, it should be noted that the link lengths and the link offset are

directed distances with the directions as indicated in the figure.

Moving to the next step, the DH parameters are substituted into Eq. (3.43) for every

Table 4.2: DH parameters for RRRP linkage.

joint axis i link angle θi link offset di link length ai link twist τi
1 θ1 0 a1 0
2 θ2 0 a2 0
3 θ3 0 0 −π/2
4 0 d4 a4 +π/2

i = 1...4. The four transformation matrices are multiplied according to Eq. (3.44),

and the resulting overall transformation 0
4T can be mapped into Study’s kinematic

image space using Eq. (3.8) and Eq. (3.9), resulting in the eight Study’s coordinates

that describe a general slider-crank linkage.
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Figure 4.4: DH parameter assignment for the RRRP linkage.

An alternative and more efficient way is to derive the Study soma coordinates

directly on Study’s quadric by evaluating Eq. (3.53) or Eq. (3.56) with four coordinate

tranformations, thus n = 4. After substituting the DH parameters of Tab. 4.2, the

Study array yields x1 = x2 = y0 = y3 = 0 as the movements of the linkage are all

planar, in the x− y-plane. The remaining Study parameters yield

x0 = (−2v2 − 2v3)v1 − 2v2v3 + 2, (4.15)

x3 = −2v1v2v3 + 2v1 + 2v2 + 2v3, (4.16)

y1 = ((−d4v3 − a1 + a2 + a4)v2 + (−a1 − a2 + a4)v3 + d4)v1

+((a1 − a2 + a4)v3 + d4)v2 + d4v3 − a1 − a2 − a4, (4.17)

y2 = (((a1 − a2 + a4)v3 + d4)v2 + d4v3 − a1 − a2 − a4)v1

+(d4v3 + a1 − a2 − a4)v2 + (a1 + a2 − a4)v3 − d4, (4.18)

where vi = tan (θi/2).
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The Study array is equated to its identity array, x = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]T ∈

P 7, allowing the first and the last coordinate frame in the RRRP linkage to align, as

shown in Fig. 4.4. Since the Study coordinates are homogeneous, this leaves a system

of three equations, namely, I. x3 = 0; II. y1 = 0; III. y2 = 0. Again similar to the

quadrilateral linkage, these three equations define the ideal of a generic slider-crank

linkage. The design parameters of this linkage are notably the three link lengths a1,

a2, and a4, while the motion parameters correspond to the three link angles θ1, θ2,

and θ3 and the link offset d4. As the motion parameters of the desired IO equation

in this linkage are the input angle θ1 and the output slider distance d4, the two

intermediate motion parameters θ2 and θ3 must be eliminated from the generating

set describing the ideal. One possibility is to solve the system of equations using

resultants. Eliminating the intermediate link angle v2 from I. and II. yields

a1v
2
1v

2
3+a2v

2
1v

2
3−a4v

2
1v

2
3+a1v

2
1−a1v

2
3−a2v

2
1+a2v

2
3−a4v

2
1−a4v

2
3−a1−a2−a4 = 0. (4.19)

And eliminating the same intermediate angle v2 from I. and III. yields

−d4v
2
1v

2
3 − 2a1v1v

2
3 + 2a2v

2
1v3 − d4v

2
1 − d4v

2
3 − 2a1v1 + 2a2v3 − d4 = 0. (4.20)

Finally, eliminating the intermediate angle v3 from Eq. (4.19) and Eq. (4.20) reveals

the IO equation for RRRP linkages

v21d
2
4 +Rv21 + d24 + 4a1v1d4 + S = 0, (4.21)
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where

R = R1R2 = (a1 + a2 − a4)(a1 − a2 − a4),

S = S1S2 = (a1 + a2 + a4)(a1 − a2 + a4),

v1 = tan
θ1
2
.

Using resultants is not the only possibility to solve the system of equations to obtain

the IO equation for planar RRRP linkages. For example, applying Gröbner bases on

the generating set with a monomial odering of “lexdeg”, the IO equation, Eq. (4.21),

can be computed in one single step.

The four bilinear factors R1, R2, S1, and S2 can be regarded as four planes inter-

secting in the faces of a four-sided pyramid in the design parameter space orthogonally

spanned by the three lengths a1, a2, and a4, see [22] for a detailed description.

Eq. (4.21) can be verified via the IO equation of the planar 4R linkage, Eq. (4.8),

as follows. Since the slider of the RRRP linkage is perpendicular to the fixed ground

distance a4, we can substitute v4 = tan(−90◦/2) = −1 into Eq. (4.8). In addition,

the original link length a3 of the 4R linkage now becomes the slider distance of the

RRRP, i.e., a3 has to be renamed to d4. After recollecting the equation in its variables

v1 and d4 it yields Eq. (4.21).

Using the same approach, the five remaining joint variable parameter pairings lead
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to the following five additional RRRP algebraic IO equations

R2v
2
1v

2
2 +R1v

2
1 − S2v

2
2 + 4a2v1v2 − S1 = 0; (4.22)

R1v
2
1v

2
3 +R2v

2
1 − S2v

2
3 − S1 = 0; (4.23)

S2v
2
2v

2
3 −R2v

2
2 −R1v

2
3 − 4a1v2v3 + S1 = 0; (4.24)

−v22d
2
4 +R2S2v

2
2 − d24 +R1S1 = 0; (4.25)

−v23d
2
4 +R1S2v

2
3 + d24 + 4a2v3d4 +R2S1 = 0. (4.26)

All six of the RRRP algebraic IO equations are of degree 4, representing quartic

curves in the respective joint variable parameter planes. These six IO equations also

all possess genus 1 meaning again that there is a maximum number of two assembly

modes.

For the RRRP linkages that are rocker-sliders, each distinct circuit of the IO

curve also contains two branches, one for each working mode. When the input angle

reaches minimum or maximum values the mechanism instantaneously stops moving

as the coupler becomes perpendicular to the direction of travel of the P-pair. In

this singular configuration, unless mechanical constraints are imposed, the slider may

move in one of two directions as the rocker input link begins to move again in the

opposite sense. These are defined as the working modes of the particular assembly

mode. Each working mode traces a distinct branch in the particular circuit of the

IO curve. Together, both branches cover the entire circuit. Detailed examples are

covered in [29]. For example, consider the v1-d4 equation of the RRRP with the

following link lengths: a1 = 3, a2 = 2 and a4 = −4. As illustrated in Fig. 4.5, the

linkage has one assembly mode with an input link whose mobility is bounded by v1min

and v1max. At these input angles the linkage is in a singular configuration where it

can change from one working mode into another.
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v1

Figure 4.5: v1-d4 equation of the RRRP linkage where a1 = 3, a2 = 2 and a4 = −4.

4.2.3 Double Slider Linkage

To complete the IO equation derivation of all planar four-bar linkages of interest, this

section shows that the identical approach can be used for the double slider linkage.

The usual first step is to open up the linkage. A suitable opening is located, for exam-

ple, at the intersection of the two slider trajectories. After assigning the coordinate

systems according to the DH convention, the DH parameters are determined as shown

in Fig. (4.6). The DH parameters are also listed in Tab. (4.3). It can be seen that

PRRP elliptical trammel linkages have but two design parameters, namely a2 and τ4,

the coupler length, and the twist angle between the two P-pairs. The remaining four

parameters θ2, θ3, d1 and d4 are the motion parameters with the latter two being the

input and output variables, respectively.

As in the previous cases, the overall displacement of the end-effector frame with

respect to the base frame must be mapped onto Study’s quadric and expressed in
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Table 4.3: DH parameters for PRRP linkage.

joint axis i link angle θi link offset di link length ai link twist τi
1 −π/2 d1 0 −π/2
2 θ2 0 a2 0
3 θ3 0 0 π/2
4 +π/2 d4 0 τ4

x z0/40/4

x1

z2

z1

x2

z3

x3

d1

2

3

a2d4

4

Figure 4.6: DH parameter assignment for the PRRP linkage.

Study parameters. This can either be done by evaluating the displacement with ho-

mogeneous transformation matrices and then mapping the displacement in the image

space, or the transformations in terms of the DH parameters are directly conducted

on the quadric. Again, since there are four coordinate transformations, the general

equations, Eq. (3.53) or alternatively Eq. (3.56), leading to the Study parameters

describing the overall displacements of a general PRRP linkage are

p = Tb(M1 )·Tb(G1 )·Tb(M2 )·Tb(G2 )·Tb(M3 )·Tb(G3 )·Tb(M4 )·Tb(G4 )·id,

p = Tm(G4 )·Tm(M4 )·Tm(G3 )·Tm(M3 )·Tm(G2 )·Tm(M2 )·Tm(G1 )·Tm(M1 )·id,

where the matrices are evaluated with the DH parameters from Tab. (4.3). After
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omitting common factors, the resulting non-zero Study parameters yield

x0 = (−2v2 − 2v3)α4 − 2v2v3 + 2, (4.27)

x1 = −2α4v2v3 + 2α4 + 2v2 + 2v3, (4.28)

y2 = (((d1 + d4) v3 + a2) v2 − a2v3 − d1 − d4)α4 +

(a2v3 − d1 + d4) v2 + (−d1 + d4) v3 + a2, (4.29)

y3 = ((−a2v3 + d1 − d4) v2 + (d1 − d4) v3 − a2)α4

+((d1 + d4) v3 + a2) v2 − a2v3 − d1 − d4, (4.30)

where vi = tan (θi/2).

In the next step, the open chain must be closed which is done applying the closure

equation such that

[x0 : x1 : 0 : 0 : 0 : 0 : y2 : y3] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]. (4.31)

It follows that the three equations involving the Study parameters x1, y2 and y3 are

a generating set, defining an ideal, that describe the constraint variety of the PRRP

linkage on the Study quadric. Applying the same elimination step as for the RRRP

linkage, such as Gröbner basis with a monomial odering of “lexdeg”, the IO equation

yields

(α2
4 + 1)(d21 + d24)− 2(α2

4 − 1)d1d4 − a22(α
2
4 + 1) = 0. (4.32)

The symmetry in the six PRRP IO equations are revealed when we define the following
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three coefficients

T = a22(α
2
4 + 1);

U = a2(α
2
4 − 1);

V = a2(α
2
4 + 1).

Using these coefficients the six algebraic IO equations are

(α2
4 + 1)(d21 + d24)− 2(α2

4 − 1)d1d4 − T = 0; (4.33)

2α4d1v
2
2 + Uv22 + 2α4d1 − 4a2α4v2 − U = 0; (4.34)

2α4d1v
2
3 − V v23 + 2α4d1 + V = 0; (4.35)

α4v2v3 − v2 − v3 − α4 = 0; (4.36)

2α4v
2
2d4 + V v22 + 2α4d4 − V = 0; (4.37)

2α4v
2
3d4 − Uv23 + 4a2α4v3 + 2α4d4 + U = 0. (4.38)

It is to be seen that Eqs. (4.34), (4.35), (4.37), and (4.38) are of degree 3, representing

cubic curves in their respective joint variable parameter planes, while Eqs. (4.33) and

(4.36) are of degree 2, thus, representing two different conics. When the respective

quadratic forms are diagonalised it is easy to show that Eq. (4.33) is an ellipse, while

Eq. (4.36) is an hyperbola which depends only on the link twist α4. Moreover, each

of the six PRRP algebraic IO equations, Eqs. (4.33-4.38), possess genus 0, unlike

the planar 4R and RRRP IO equations. According to Harnack’s theorem it can be

concluded that the PRRP linkage has at most one assembly mode since each IO

equation has a single circuit.
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4.3 Spherical Linkage

It will now be demonstrated that the same procedure can be applied to determine

the IO equation for spherical linkages. The DH parameters for an open spherical 4R

kinematic chain are listed in Tab. 4.4. The assignments of coordinate systems and DH

parameters can be seen in Fig. (4.7). Note that in the spherical case, all link lengths,

ai, and offsets, di, are zero with strict adherence to the DH conventions for assigning

parameters [93]. After evaluating the overall transformation matrix in terms of DH

Figure 4.7: DH parameter assignment for the spherical linkage. Note that this is Fig. 2.5
which is reproduced here for easier reference.

parameters by applying Eq. (3.43), the result can be mapped with Equations (3.8, 3.9)

onto Study’s quadric. Then setting vi = tan (θi/2) and αi = tan (τi/2) into the result

gives a Study array with non-zero entries for x0, x1, x2 and x3, while the yi are all

Table 4.4: Open spherical 4R kinematic chain DH parameters.

joint axis i link length ai link angle θi link offset di link twist τi
1 0 θ1 0 τ1
2 0 θ2 0 τ2
3 0 θ3 0 τ3
4 0 θ4 0 τ4
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identically zero, as expected:

x0 = ((2α4((v2v3v4 + v2 − v3 + v4)v1 + (v3 − v4)v2 + v3v4 + 1)α3

+(2v2v3v4 − 2v2 + 2v3 + 2v4)v1 + (−2v3 − 2v4)v2 + 2v3v4 − 2)α2

+((−2v2v3v4 − 2v2 − 2v3 + 2v4)v1 + (2v3 − 2v4)v2 − 2v3v4 − 2)α3

+(2((v2v3v4 − v2 − v3 − v4)v1 + (v3 + v4)v2 + v3v4 − 1))α4)α1

+(((2v2v3v4 + 2v2 − 2v3 + 2v4)v1 + (−2v3 + 2v4)v2 − 2v3v4 − 2)α3

−(2((v2v3v4 − v2 + v3 + v4)v1 + (v3 + v4)v2 − v3v4 + 1))α4)α2

+(2((v2v3v4 + v2 + v3 − v4)v1 + (v3 − v4)v2 − v3v4 − 1))α4α3

+(2v2v3v4 − 2v2 − 2v3 − 2v4)v1 + (−2v3 − 2v4)v2 − 2v3v4 + 2; (4.39)

x1 = ((((−2v2v3v4 − 2v2 + 2v3 − 2v4)v1 + (−2v3 + 2v4)v2 − 2v3v4 − 2)α3

+(2((v2v3v4 − v2 + v3 + v4)v1 + (−v3 − v4)v2 + v3v4 − 1))α4)α2

−2α4((v2v3v4 + v2 + v3 − v4)v1 + (−v3 + v4)v2 + v3v4 + 1)α3

+(−2v2v3v4 + 2v2 + 2v3 + 2v4)v1 + (−2v3 − 2v4)v2 − 2v3v4 + 2)α1

+((2((v2v3v4 + v2 − v3 + v4)v1 + (−v3 + v4)v2 − v3v4 − 1))α4α3

+(2v2v3v4 − 2v2 + 2v3 + 2v4)v1 + (2v3 + 2v4)v2 − 2v3v4 + 2)α2

+((−2v2v3v4 − 2v2 − 2v3 + 2v4)v1 + (−2v3 + 2v4)v2 + 2v3v4 + 2)α3

+(2((v2v3v4 − v2 − v3 − v4)v1 + (−v3 − v4)v2 − v3v4 + 1))α4; (4.40)

x2 = (((((−2v3 + 2v4)v2 − 2v3v4 − 2)v1 + 2v2v3v4 + 2v2 − 2v3 + 2v4)α3

−(2(((v3 + v4)v2 − v3v4 + 1)v1 + v2v3v4 − v2 + v3 + v4))α4)α2

+(2(((v3 − v4)v2 − v3v4 − 1)v1 + v2v3v4 + v2 + v3 − v4))α4α3

+((−2v3 − 2v4)v2 − 2v3v4 + 2)v1 + 2v2v3v4 − 2v2 − 2v3 − 2v4)α1

+(−(2(((v3 − v4)v2 + v3v4 + 1)v1 + v2v3v4 + v2 − v3 + v4))α4α3

+((2v3 + 2v4)v2 − 2v3v4 + 2)v1 − 2v2v3v4 + 2v2 − 2v3 − 2v4)α2

+(((−2v3 + 2v4)v2 + 2v3v4 + 2)v1 + 2v2v3v4 + 2v2 + 2v3 − 2v4)α3
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−(2(((v3 + v4)v2 + v3v4 − 1)v1 + v2v3v4 − v2 − v3 − v4))α4; (4.41)

x3 = (((2(((v3 − v4)v2 + v3v4 + 1)v1 − v2v3v4 − v2 + v3 − v4))α4α3

+((−2v3 − 2v4)v2 + 2v3v4 − 2)v1 − 2v2v3v4 + 2v2 − 2v3 − 2v4)α2

+(((2v3 − 2v4)v2 − 2v3v4 − 2)v1 + 2v2v3v4 + 2v2 + 2v3 − 2v4)α3

+2α4(((v3 + v4)v2 + v3v4 − 1)v1 − v2v3v4 + v2 + v3 + v4))α1

+((((−2v3 + 2v4)v2 − 2v3v4 − 2)v1 − 2v2v3v4 − 2v2 + 2v3 − 2v4)α3

−(2(((v3 + v4)v2 − v3v4 + 1)v1 − v2v3v4 + v2 − v3 − v4))α4)α2

+2α4(((v3 − v4)v2 − v3v4 − 1)v1 − v2v3v4 − v2 − v3 + v4)α3

+((−2v3 − 2v4)v2 − 2v3v4 + 2)v1 − 2v2v3v4 + 2v2 + 2v3 + 2v4. (4.42)

The same Study parameters result from evaluating Eq. (3.53) or Eq. (3.56) with n = 4

and the DH parameters from Tab. 4.4.

Again, the open kinematic chain is closed by equating the Study array to the

corresponding identity array in Study coordinates, i.e. setting Equations (4.40-4.42)

equal to zero. Subsequently, we use Gröbner bases to eliminate the intermediate angle

parameters v2 and v3 from Equations (4.40-4.42). The soma coordinates are, how-

ever, already too complicated to efficiently use the “lexdeg” elimination monomial

ordering. To obtain this IO equation from the ideal generated by the three soma

coordinates that equate to zero, both v2 and v3 are eliminated by first computing the

Gröbner bases using the Maple 2021 “tdeg” monomial ordering with the list sequence

(v3, v2, v4, v1), meaning that the indeterminate ordering is v3 > v2 > v4 > v1. In this

case, 12 bases are computed, all functions of all four vi. v2 and v3 are eliminated by

computing the bases of these 12 with the reverse monomial ordering by using “plex”.

This results in 10 new bases, with one that is a function of only v1 and v4 and the

four αi, which represents the IO equation. This polynomial splits into three factors.

The first two are (1+ v21)(1+ v24), a product that is always greater than zero, and can
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be safely factored out, leaving the desired IO equation

Av21v
2
4 +Bv21 + Cv24 + 8α1α3 (α

2
4 + 1) (α2

2 + 1) v1v4 +D = 0, (4.43)

where

A = A1A2 = (α1α2α3 − α1α2α4 + α1α3α4 − α2α3α4 + α1 − α2 + α3 − α4)

(α1α2α3 − α1α2α4 − α1α3α4 − α2α3α4 − α1 − α2 − α3 + α4) ,

B = B1B2 = (α1α2α3 + α1α2α4 − α1α3α4 − α2α3α4 + α1 + α2 − α3 − α4)

(α1α2α3 + α1α2α4 + α1α3α4 − α2α3α4 − α1 + α2 + α3 + α4) ,

C = C1C2 = (α1α2α3 − α1α2α4 − α1α3α4 + α2α3α4 − α1 + α2 + α3 − α4)

(α1α2α3 − α1α2α4 + α1α3α4 + α2α3α4 + α1 + α2 − α3 + α4) ,

D = D1D2 = (α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4 − α1 − α2 − α3 − α4)

(α1α2α3 + α1α2α4 − α1α3α4 + α2α3α4 + α1 − α2 + α3 + α4) .

The coefficients of Eq. (4.43), A, B, C, and D, all have two bicubic factors. While

the derivation of this algebraised v1-v4 IO equation is novel and far from intuitive, the

algebraic form of this fourth degree polynomial in the v1-v4 IO angle parameters is not.

The earliest derivations of similar equations representing manipulatable octahedra,

identical in form, are due to Raoul Bricard in 1897 [104]. This fascinating similarity

between movable octahedral and spherical linkage algebraic IO equations is not at all

a coincidence, as will be illustrated in Section 5.3.

It can be shown that Eq. (4.43) is identical to the corresponding trigonometric IO

equation for spherical four-bar linkages found in [2]. The two algebraic IO equations

for planar and spherical 4R linkages already suggest some similarities. As demon-

strated in [59], the motion of the planar 4R linkage represents a special case of the

spherical 4R linkage. To show that the same relationship is true for the IO equations,

we consider the directions of the joint axes. While the joint axes of the spherical 4R
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linkage intersect in the centre of the sphere, the joint axes of the planar 4R linkage

are all parallel. In Euclidean space E3 parallel lines never intersect; however, they do

meet in a point at infinity in any projective extension of E3 [60, 61]. This suggests

that if the radius of a spherical linkage approaches infinity, the linkage becomes a

planar mechanism in the limit [59]. As the link twist parameters αi of the spherical

IO equation are proportional to the ratios of the arc lengths to the sphere radius [31],

we can make the following substitution in Eq. (4.43)

αi ∝ ai
r
. (4.44)

In the resulting equation the first two cubic factors simplify to

lim
r→∞

−1

r

(a1a2a3
r2

− a1a2a4
r2

+
a1a3a4
r2

− a2a3a4
r2

+ a1 − a2 + a3 − a4

)
(
−a1a2a3

r2
+

a1a2a4
r2

+
a1a3a4
r2

+
a2a3a4
r2

+ a1 + a2 + a3 − a4

)
. (4.45)

In the limit the only terms remaining inside the parentheses in Eq. (4.45) are

(a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4) = A1A2. (4.46)

Proceeding with the other cubic factors in the same manner the algebraic IO equation

for a spherical 4R mechanism leads directly to that of a planar 4R, Eq. (4.8), in the

limit. Hence, the same coefficient names A, B, C, and D are used. As mentioned,

this aligns with the results from [59], and further confirms the validity of the derived

IO equations as well as the observation in [2] that there exists a connection between

the planar and the spherical 4R IO equations via the RSSR linkage.

Using the eight bicubic coefficient definitions from Eq. (4.43), the remaining five vi-
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vj equations contain all eight of the bicubic coefficients, but in different permutations:

A1B2v
2
1v

2
2+A2B1v

2
1+C1D2v

2
2+8α2α4(α

2
1+1)(α2

3+1)v1v2+C2D1 = 0; (4.47)

A1B1v
2
1v

2
3 + A2B2v

2
1 + C2D2v

2
3 + C1D1 = 0; (4.48)

A1D2v
2
2v

2
3+B2C1v

2
2+B1C2v

2
3−8α1α3(α

2
2+1)(α2

4+1) v2v3+A2D1 = 0; (4.49)

A1C1v
2
2v

2
4 +B2D2v

2
2 + A2C2v

2
4 +B1D1 = 0; (4.50)

A1C2v
2
3v

2
4+B1D2v

2
3+A2C1v

2
4+8α2α4(α

2
1+1)(α2

3+1) v3v4+B2D1 = 0. (4.51)

As for the planar 4R and RRRP linkage algebraic IO equations, we see that Eqs. (4.48)

and (4.50) do not contain a bilinear quadratic term because they relate angle parings

between the spherical quadrangle edges that intersect in opposite vertices. Each of

Eqs. (4.43)-(4.51) has genus 1 from which can be concluded that the spherical linkage

can have a maximum of two assembly modes.

The v1-v2 IO Equation. The derivation steps are precisely the same as for the

v1-v4 IO equation. Eliminating v3 and v4 from the same three soma coordinates, the

resulting v1-v2 IO equation splits into three similar factors. The first two, (1+v21)(1+

v22), can be safely factored out, leaving Eq. (4.47).

The v1-v3 IO Equation. The derivation steps are precisely the same as for the

previous two IO equations. But, after the elimination of v2 and v4 from the same

three soma coordinates, the resulting v1-v3 IO equation splits into five factors. The

first two are (1 + v21)(1 + v23), and can be safely factored out. The next two are

(α2
2α

2
3 + 2α2α3 + 1)v23 + α2

2α
2
3 − 2α2α3 + 1, (4.52)

(α2
2 − 2α2α3 + α2

3)v
2
3 + α2

2 + 2α2α3 + α2
3. (4.53)

In order for either, or both, of Eqs. (4.52) or (4.53) to be identically zero the arc
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length parameters α2 and α3 must be complex. This means these two factors may

also be eliminated since we are only interested in real linkages, leaving Eq. (4.48).

The v2-v3 IO Equation. To derive this IO equation using elimination methods on

the three soma coordinates requires a very different approach. By first applying the

graded reverse lexicographical order, “tdeg”, to the three soma coordinates using the

list sequence (v1, v4, v2, v3), then applying graded lexicographic order using “grlex”

to the bases identified with “tdeg”. This yields 12 bases, all in terms of the four αi

and the four vi, with the exception of one in the graded lexicographic order set of

bases, which is in terms of the four αi, but only v1, v2, and v3, and is used in the

elimination steps. Next, resultants are used to eliminate v4 first, then v1. This yields

a v2-v3 IO equation that splits into nine factors.

The first five of these factors are simple to divide out since they are trivially non-

zero: the first is -1; the other four are the squares of a single αi added to a positive

integer. The next three factors are functions of v2 and v3, but only α1, α2, and α3:

(α1α2 − α1α3 + α2α3 + 1)2v22v
2
3 + (α1α2 + α1α3 − α2α3 + 1)2v22+

8α1α3(α
2
2+1)v2v3+(α1α2−α1α3−α2α3−1)2v23+(α1α2+α1α3+α2α3−1)2; (4.54)

(α1α2α3 + α1 − α2 + α3)
2v22v

2
3 + (α1α2α3 − α1 + α2 + α3)

2v22−

8α1α3(α
2
2+1)v2v3+(α1α2α3+α1+α2−α3)

2v23+(α1α2α3−α1−α2−α3)
2; (4.55)

α3(α1α2+1)(α1−α2)v
2
2+2α1α3(α

2
2+1)v2v3−α1(α2α3+1)(α2 − α3)v

2
3+

α2(α1 + α3)(α1α3 − 1). (4.56)

In order for Eqs. (4.54), (4.55), and/or (4.56) to be identically zero the arc length
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parameters α1, α2, and/or α3 must be complex numbers, so these three factors can

safely be divided out, leaving only Eq. (4.49) as the desired IO equation.

The v2-v4 IO Equation. The derivation steps for the v2-v4 IO equation are the

same as those for the v1-v4, v1-v2, and v1-v3 IO equations. The second set of Gröbner

bases computed using the pure lexicographic order with list sequence (v3, v1, v2, v4)

lead to an IO equation that splits into five factors, of which the first two are trivial.

The next two are

(α2
1α

2
2 + 2α1α2 + 1)v22 + α2

1α
2
2 − 2α1α2 + 1, (4.57)

(α2
1 − 2α1α2 + α2

2)v
2
2 + α2

1 + 2α1α2 + α2
2. (4.58)

For either, or both of Eqs. (4.57) and (4.58) to equate to zero, it requires both α1

and α2 to be complex. Therefore, both of these can be factored out, leaving only the

desired v2-v4 IO, Eq. (4.50).

The v3-v4 IO Equation. Finally, the derivation steps for the v3-v4 IO equation

are precisely the same as for the v2-v4 IO equation. After the elimination of v1 and

v2 from the same three soma coordinates, the resulting v3-v4 IO equation splits into

three factors. The first two are safely divided out, leaving Eq. (4.51).

4.4 Spatial Four-bar Linkages

4.4.1 Bennett Linkage

The IO equation for the Bennett linkage is derived following the same procedure.

First, as illustrated in Fig. (2.6) the coordinate frames are attached to the linkage

according to the DH convention. The DH coordinate frame assignment allows to
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define the DH parameters for the linkage. It turns out that the Bennett linkage does

not contain any link offsets di. However, it contains four motion parameters, the

variable joint angles of the R joints, θi, and the design parameters ai and τi. The DH

parameters for the Bennett linkage are given in Tab. 4.5.

Figure 4.8: DH parameter assignment for the Bennett linkage. Note that this is Fig. 2.6
which is reproduced here for easier reference.

Table 4.5: DH parameters for the Bennett linkage.

joint axis i link angle θi link offset di link length ai link twist τi
1 θ1 0 a1 τ1
2 θ2 0 a2 τ2
3 θ3 0 a3 τ3
4 θ4 0 a4 τ4

To evaluate the overall transformation of the position and orientation of the last

joint with respect to the base coordinate system, the DH parameters from Tab. 4.5 are

substituted into Eq. (3.43), and multiplied according to Eq. (3.44). This transforma-

tion matrix can then be mapped onto Study’s quadric and expressed in Study param-

eters. The other method, leading to the same result, requires setting up Eq. (3.53)
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or Eq. (3.56) as in the previous four linkages. Subsequent substitution of the DH

parameters from Tab. 4.5 then also reveals the eight Study parameters.

Since the Bennett linkage is subjected to a set of special conditions, they can

be used to further simplify the Study array. The Bennett conditions from Eq. (2.7)

are reformulated with Weierstraß substitution, i.e., the tangent half-angle substitu-

tion [47]. This implies that

cos τi =
1− α2

i

1 + α2
i

, sin τi =
2αi

1 + α2
i

. (4.59)

Hence, the Bennett conditions can be expressed algebraically as

a2 =
a1α2(α

2
1 + 1)

α1(α2
2 + 1)

;

a4 =
a1α2(α

2
1 + 1)

α1(α2
2 + 1)

; (4.60)

a3 = a1;

α3 = α1;

α4 = α2;

where αi = tan (τi/2). Eq. (4.60) is substituted into the Study array which reduces

the number of unknown parameters, and yields

x0 = α3
1α

4
2v1v2v3v4 + α3

1α
4
2v1v2 − α3

1α
4
2v1v3 + α3

1α
4
2v1v4 + α3

1α
4
2v2v3 − α3

1α
4
2v2v4

+α3
1α

4
2v3v4 + 4α2

1α
3
2v1v2v3v4 − α1α

4
2v1v2v3v4 + α3

1α
4
2 − 2α3

1α
2
2v1v3

+2α3
1α

2
2v1v4 + 2α3

1α
2
2v2v3 − 2α3

1α
2
2v2v4 − α3

1v1v2v3v4 + 4α2
1α2v1v2v3v4

+α1α
4
2v1v2 − α1α

4
2v1v3 − α1α

4
2v1v4 − α1α

4
2v2v3 − α1α

4
2v2v4 + α1α

4
2v3v4

−α3
1v1v2 − α3

1v1v3 + α3
1v1v4 + α3

1v2v3 − α3
1v2v4 − α3

1v3v4 − 4α2
1α

3
2 − α1α

4
2

−2α1α
2
2v1v3 − 2α1α

2
2v1v4 − 2α1α

2
2v2v3 − 2α1α

2
2v2v4 + α1v1v2v3v4 − α3

1

−4α2
1α2 − α1v1v2 − α1v1v3 − α1v1v4 − α1v2v3 − α1v2v4 − α1v3v4 + α1, (4.61)

x1 = −2α3
1α

3
2v1v2v3v4 + 2α2

1α
4
2v1v2v3v4 − 2α3

1α
3
2v1v2 − 2α3

1α
3
2v3v4 − 2α3

1α2v1v2v3v4
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+2α2
1α

4
2v1v4 − 2α2

1α
4
2v2v3 + 2α1α

3
2v1v2v3v4 − 2α3

1α
3
2 − 2α3

1α2v1v2 − 2α3
1α2v3v4

−2α2
1α

4
2 + 4α2

1α
2
2v1v4 − 4α2

1α
2
2v2v3 − 2α2

1v1v2v3v4 − 2α1α
3
2v1v2 − 2α1α

3
2v3v4

+2α1α2v1v2v3v4 − 2α3
1α2 + 2α2

1v1v4 − 2α2
1v2v3 + 2α1α

3
2 − 2α1α2v1v2

−2α1α2v3v4 + 2α2
1 + 2α1α2, (4.62)

x2 = −2α3
1α

3
2v1v3v4 + 2α3

1α
3
2v2v3v4 − 2α2

1α
4
2v1v2v3 − 2α2

1α
4
2v2v3v4 − 2α3

1α
3
2v1

+2α3
1α

3
2v2 − 2α3

1α2v1v3v4 + 2α3
1α2v2v3v4 − 2α2

1α
4
2v1 − 2α2

1α
4
2v4 − 4α2

1α
2
2v1v2v3

−2α1α
3
2v1v3v4 − 2α1α

3
2v2v3v4 − 2α3

1α2v1 + 2α3
1α2v2 − 4α2

1α
2
2v4 − 2α2

1v1v2v3

+2α2
1v2v3v4 + 2α1α

3
2v1 + 2α1α

3
2v2 − 2α1α2v1v3v4 − 2α1α2v2v3v4

+2α2
1v1 − 2α2

1v4 + 2α1α2v1 + 2α1α2v2, (4.63)

x3 = α3
1α

4
2v1v2v3 − α3

1α
4
2v1v2v4 + α3

1α
4
2v1v3v4 − α3

1α
4
2v2v3v4 + α3

1α
4
2v1 − α3

1α
4
2v2

+α3
1α

4
2v3 − α3

1α
4
2v4 + 2α3

1α
2
2v1v2v3 − 2α3

1α
2
2v1v2v4 − 4α2

1α
3
2v2v3v4 − α1α

4
2v1v2v3

−α1α
4
2v1v2v4 + α1α

4
2v1v3v4 + α1α

4
2v2v3v4 + 2α3

1α
2
2v3 − 2α3

1α
2
2v4 + α3

1v1v2v3

−α3
1v1v2v4 − α3

1v1v3v4 + α3
1v2v3v4 − 4α2

1α
3
2v1 − 4α2

1α2v2v3v4 − α1α
4
2v1

−α1α
4
2v2 + α1α

4
2v3 + α1α

4
2v4 − 2α1α

2
2v1v2v3 − 2α1α

2
2v1v2v4 − α3

1v1 + α3
1v2

+α3
1v3 − α3

1v4 − 4α2
1α2v1 + 2α1α

2
2v3 + 2α1α

2
2v4 − α1v1v2v3 − α1v1v2v4

−α1v1v3v4 − α1v2v3v4 + α1v1 + α1v2 + α1v3 + α1v4, (4.64)

y0 = −2a1α
4
1α

2
2v1v2v3v4 + 4a1α

3
1α

3
2v1v2v3v4 − 2a1α

2
1α

4
2v1v2v3v4 − 2a1α

4
1α

2
2v1v2

−2a1α
4
1α

2
2v3v4 − 2a1α

2
1α

4
2v1v4 − 2a1α

2
1α

4
2v2v3 − 2a1α

4
1α

2
2 − 4a1α

3
1α

3
2 − 2a1α

2
1α

4
2

−4a1α
2
1α

2
2v1v2 − 4a1α

2
1α

2
2v1v4 − 4a1α

2
1α

2
2v2v3 − 4a1α

2
1α

2
2v3v4 + 2a1α

2
1v1v2v3v4

−4a1α1α2v1v2v3v4 + 2a1α
2
2v1v2v3v4 − 2a1α

2
1v1v4 − 2a1α

2
1v2v3

−2a1α
2
2v1v2 − 2a1α

2
2v3v4 + 2a1α

2
1 + 4a1α1α2 + 2a1α

2
2, (4.65)

y1 = −a1α
4
1α

3
2v1v2v3v4 + a1α

3
1α

4
2v1v2v3v4 − a1α

4
1α

3
2v1v2 − a1α

4
1α

3
2v3v4

+a1α
4
1α2v1v2v3v4 + a1α

3
1α

4
2v1v4 − a1α

3
1α

4
2v2v3 − 4a1α

3
1α

2
2v1v2v3v4

+4a1α
2
1α

3
2v1v2v3v4 − a1α1α

4
2v1v2v3v4 − a1α

4
1α

3
2 + a1α

4
1α2v1v2 + a1α

4
1α2v3v4
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−a1α
3
1α

4
2 + 2a1α

3
1α

2
2v1v4 − 2a1α

3
1α

2
2v2v3 − a1α

3
1v1v2v3v4 − 2a1α

2
1α

3
2v1v2

−2a1α
2
1α

3
2v3v4 + 4a1α

2
1α2v1v2v3v4 − a1α1α

4
2v1v4 + a1α1α

4
2v2v3

−4a1α1α
2
2v1v2v3v4 + a1α

3
2v1v2v3v4 + a1α

4
1α2 + 4a1α

3
1α

2
2 + a1α

3
1v1v4

−a1α
3
1v2v3 + 4a1α

2
1α

3
2 + 2a1α

2
1α2v1v2 + 2a1α

2
1α2v3v4 + a1α1α

4
2 − 2a1α1α

2
2v1v4

+2a1α1α
2
2v2v3 + a1α1v1v2v3v4 − a1α

3
2v1v2 − a1α

3
2v3v4 − a1α2v1v2v3v4 + a1α

3
1

+4a1α
2
1α2 + 4a1α1α

2
2 − a1α1v1v4 + a1α1v2v3 + a1α

3
2 + a1α2v1v2 + a1α2v3v4

−a1α1 − a1α2, (4.66)

y2 = −a1α
4
1α

3
2v1v3v4 + a1α

4
1α

3
2v2v3v4 − a1α

3
1α

4
2v1v2v3 − a1α

3
1α

4
2v2v3v4 − a1α

4
1α

3
2v1

+a1α
4
1α

3
2v2 + a1α

4
1α2v1v3v4 − a1α

4
1α2v2v3v4 − a1α

3
1α

4
2v1 − a1α

3
1α

4
2v4

−2a1α
3
1α

2
2v1v2v3 + 4a1α

3
1α

2
2v2v3v4 − 2a1α

2
1α

3
2v1v3v4 − 4a1α

2
1α

3
2v2v3v4

+a1α1α
4
2v1v2v3 + a1α1α

4
2v2v3v4 + a1α

4
1α2v1 − a1α

4
1α2v2 + 4a1α

3
1α

2
2v1

−2a1α
3
1α

2
2v4 − a1α

3
1v1v2v3 + a1α

3
1v2v3v4 + 4a1α

2
1α

3
2v1 + 2a1α

2
1α

3
2v2

+2a1α
2
1α2v1v3v4 − 4a1α

2
1α2v2v3v4 + a1α1α

4
2v1 + a1α1α

4
2v4 + 2a1α1α

2
2v1v2v3

+4a1α1α
2
2v2v3v4 − a1α

3
2v1v3v4 − a1α

3
2v2v3v4 + a1α

3
1v1 − a1α

3
1v4 + 4a1α

2
1α2v1

−2a1α
2
1α2v2 + 4a1α1α

2
2v1 + 2a1α1α

2
2v4 + a1α1v1v2v3 − a1α1v2v3v4 + a1α

3
2v1

+a1α
3
2v2 + a1α2v1v3v4 + a1α2v2v3v4 − a1α1v1 + a1α1v4 − a1α2v1

−a1α2v2, (4.67)

y3 = −2a1α
4
1α

2
2v1v3v4 + 2a1α

4
1α

2
2v2v3v4 − 4a1α

3
1α

3
2v2v3v4 − 2a1α

2
1α

4
2v1v2v3

+2a1α
2
1α

4
2v2v3v4 − 2a1α

4
1α

2
2v1 + 2a1α

4
1α

2
2v2 − 4a1α

3
1α

3
2v1 − 2a1α

2
1α

4
2v1

+2a1α
2
1α

4
2v4 − 4a1α

2
1α

2
2v1v2v3 − 4a1α

2
1α

2
2v1v3v4 + 4a1α

2
1α

2
2v2 + 4a1α

2
1α

2
2v4

−2a1α
2
1v1v2v3 − 2a1α

2
1v2v3v4 + 4a1α1α2v2v3v4 − 2a1α

2
2v1v3v4 − 2a1α

2
2v2v3v4

+2a1α
2
1v1 + 2a1α

2
1v4 + 4a1α1α2v1 + 2a1α

2
2v1 + 2a1α

2
2v2. (4.68)

Again, to form a closed-loop chain, it requires that the base and the fourth coordinate
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frames align. Hence, the Study array is equated to the identity array,

[x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]. (4.69)

As the Study coordinates are homogeneous, i.e., a point represented by these coordi-

nates remains unchanged if every entry is multiplied by the same factor, the system

of equations which has to be solved consists of seven equations. These seven polyno-

mials, Eq. (4.62-4.68), that equate to zero, generate the ideal containing all geometric

information about a general Bennett mechanism.

The last step is to extract the IO equation from the ideal by eliminating the

intermediate link angles using Gröbner bases. Using the Maple 2021 “tdeg” monomial

ordering and with list sequence (x1 > ... > xn) → (v2 > v3 > v4 > v1) followed by

“plex” with the same list sequence reveals one polynomial that no longer contains v2

and v3. Similar to the planar linkages a single application of the ordering “lexdeg”

leads to the same result

(v24 + 1)(v21 + 1)((α1 − α2)v1v4 − α1 − α2) = 0. (4.70)

Since the expressions (v24 + 1) and (v21 + 1) can never be zero, we can safely divide

Eq. (4.70) by these two terms. This yields the IO equation for the Bennett linkage

(α1 − α2)v1v4 − α1 − α2 = 0, (4.71)

where αi = tan (τi/2) and vi = tan (θi/2). Eq. (4.71) is identical to the IO relation

of the Bennett linkage obtained in [67] after algebraisation with tangent half-angle

substitutions. With the “lexdeg” monomial ordering the remaining five algebraic IO

equations yield

(α1 − α2)v1v2 + α1 + α2 = 0; (4.72)

v1 + v3 = 0; (4.73)

(α1 − α2)v2v3 − α1 − α2 = 0; (4.74)
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v2 + v4 = 0; (4.75)

(α1 − α2)v3v4 + α1 + α2 = 0. (4.76)

4.4.2 RSSR Linkage

The final four-bar linkage whose IO equation is being derived with the presented

algorithm is the RSSR linkage. In contrast to the previous linkages, this type of

linkage does not only contain R pairs that provide 1 dof, but also two S pairs that

each provide 3 dof. Each of the two S joints of the RSSR can be modelled as three R

joints whose rotation axes are mutually orthogonal and intersect at the sphere centre.

Hence, eight coordinate frames are attached to the linkage. The chosen coordinate

systems are illustrated in Fig. 4.9 and the corresponding DH parameters are found

in Tab. 4.6. Note that the only link twist that is a design parameter is τ8. The

twists between the three mutually orthogonal R joint axes comprising the S joints are

±π. We arbitrarily use the positive value, as the sign has no impact on the resulting

algebraic IO equation, relating the two link angles of the R joints, θ1 and θ8, to one

another.

Figure 4.9: RSSR function generator.

We begin with a serial RSSR kinematic chain and determine the forward kine-
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Table 4.6: DH parameters for the RSSR linkage.

joint axis i link angle θi link offset di link length ai link twist τi
1 θ1 d1 a1 0
2 θ2 0 0 π/2
3 θ3 0 0 π/2
4 θ4 0 a4 0
5 θ5 0 0 π/2
6 θ6 0 0 π/2
7 θ7 0 a7 0
8 θ8 d8 a8 τ8

matics. The required multiplication of the individual DH transformations matrices

from one coordinate frame to another yields the overall homogeneous transformation

matrix that describes the relationship between the first and last coordinate frames.

To close the kinematic chain, we want the first and last coordinate systems to align

in both their orientation and position. Algebraically, this is again specified using

the kinematic closure equation, where the overall transformation equates to the iden-

tity [93]
8∏

i=1

i−1
i T = I. (4.77)

The elements of this algebraic DH transformation matrix are then directly mapped

into Study’s kinematic image space where the constraint manifold could be analysed

as it was successfully demonstrated for the planar 4R, spherical 4R, and Bennett

linkages earlier. However, applying Gröbner bases or other elimination methods to

symbolically obtain the IO equation for the RSSR linkage is computationally too

demanding using algebraic geometry and computer algebra software, such as Maple

2021. To solve the polynomial equation this linkage requires a different approach.

A very efficient and elegant algebraic geometry approach, which, for example, has

already been successfully applied in [9], is to split the closure equation in two by

multiplying both sides by the inverses of half of the DH transformations. In the case
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of the RSSR, the closure equation becomes

0
1T

1
2T

2
3T

3
4T = I 7

8T
−1 6

7T
−1 5

6T
−1 4

5T
−1. (4.78)

This step essentially divides the linkage into two serial chains joined at the 4th coordi-

nate frame located in the second S joint., i.e., one chain between the coordinate frame

0 and 4, and one chain between the coordinate frame 4 and 8, which correspond to

the expressions on the left and right sides of the equation, respectively, which we call

the left RS and right RS dyads. In this way, mapping the left hand side of Eq. (4.78)

into Study’s kinematic image space yields eight polynomials describing the left RS

dyad

x0 = 4v1v2v3v4 − 4v1v3 − 4v2v3 − 4v3v4,

x1 = − 4v1v2 + 4v1v4 + 4v2v4 + 4,

x2 = 4v1v2v4 + 4v1 + 4v2 − 4v4,

x3 = − 4v1v2v3 − 4v1v3v4 − 4v2v3v4 + 4v3, (4.79)

y0 = − 2d1v1v2v3 − 2d1v1v3v4 − 2d1v2v3v4 + 2a1v1v2 − 2a4v1v2 − 2a1v1v4

+ 2a4v1v4 + 2a1v2v4 + 2a4v2v4 + 2d1v3 + 2a1 + 2a4,

y1 = 2a1v1v2v3v4 − 2a4v1v2v3v4 + 2d1v1v2v4 − 2a1v1v3 + 2a4v1v3 + 2a1v2v3

+ 2a4v2v3 + 2a1v3v4 + 2a4v3v4 + 2d1v1 + 2d1v2 − 2d1v4,

y2 = 2a1v1v2v3 + 2a4v1v2v3 + 2a1v1v3v4 + 2a4v1v3v4 − 2a1v2v3v4 + 2a4v2v3v4

+ 2d1v1v2 − 2d1v1v4 − 2d1v2v4 + 2a1v3 − 2a4v3 − 2d1,

y3 = − 2d1v1v2v3v4 + 2a1v1v2v4 + 2a4v1v2v4 + 2d1v1v3 + 2d1v2v3 + 2d1v3v4

+ 2a1v1 + 2a4v1 − 2a1v2 + 2a4v2 + 2a1v4 − 2a4v4.

And finally, mapping the right hand side of Eq. (4.78) into Study’s kinematic image

space yields eight additional polynomials describing the right RS dyad

x0 = 4v5v6v7v8 − 4v5v6 − 4α8v5v7 − 4α8v5v8 − 4v6v7 − 4v6v8 + 4α8v7v8 − 4α8,
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x1 =− 4α8v5v6v7v8 + 4α8v5v6− 4v5v7− 4v5v8 + 4α8v6v7 + 4α8v6v8 + 4v7v8− 4,

x2 = 4α8v5v6v7 + 4α8v5v6v8 + 4v5v7v8 + 4α8v6v7v8 − 4v5 − 4α8v6 + 4v7 + 4v8,

x3 = 4v5v6v7 + 4v5v6v8 − 4α8v5v7v8 + 4v6v7v8 + 4α8v5 − 4v6 − 4α8v7 − 4α8v8,

y0 =− 2a7α8v5v6v7v8 + 2a8α8v5v6v7v8 − 2d8v5v6v7 − 2d8v5v6v8 − 2α8d8v5v7v8

− 2d8v6v7v8 − 2a7α8v5v6 − 2a8α8v5v6 + 2a7v5v7 + 2a8v5v7 − 2a7v5v8

+ 2a8v5v8 − 2a7α8v6v7 − 2a8α8v6v7 + 2a7α8v6v8 − 2a8α8v6v8 + 2a7v7v8

− 2a8v7v8 + 2α8d8v5 + 2d8v6 − 2α8d8v7 − 2α8d8v8 + 2a7 + 2a8, (4.80)

y1 =− 2a7v5v6v7v8 + 2a8v5v6v7v8 + 2α8d8v5v6v7 + 2α8d8v5v6v8 − 2d8v5v7v8

+ 2α8d8v6v7v8 − 2a7v5v6 − 2a8v5v6 − 2a7α8v5v7 − 2a8α8v5v7 + 2a7α8v5v8

− 2a8α8v5v8 − 2a7v6v7 − 2a8v6v7 + 2a7v6v8 − 2a8v6v8 − 2a7α8v7v8

+ 2a8α8v7v8 + 2d8v5 − 2α8d8v6 − 2d8v7 − 2d8v8 − 2a7α8 − 2a8α8,

y2 = 2α8d8v5v6v7v8 − 2a7v5v6v7 − 2a8v5v6v7 + 2a7v5v6v8 − 2a8v5v6v8

− 2a7α8v5v7v8 + 2a8α8v5v7v8 + 2a7v6v7v8 − 2a8v6v7v8 − 2α8d8v5v6

− 2d8v5v7 − 2d8v5v8 − 2α8d8v6v7 − 2α8d8v6v8 + 2d8v7v8 − 2a7α8v5

− 2a8α8v5 +2a7v6 +2a8v6 +2a7α8v7 +2a8α8v7 −2a7α8v8 +2a8α8v8−2d8,

y3 = 2d8v5v6v7v8 + 2a7α8v5v6v7 + 2a8α8v5v6v7 − 2a7α8v5v6v8 + 2a8α8v5v6v8

− 2a7v5v7v8 + 2a8v5v7v8 − 2a7α8v6v7v8 + 2a8α8v6v7v8 − 2d8v5v6

+2α8d8v5v7 +2α8d8v5v8 −2d8v6v7 −2d8v6v8 −2α8d8v7v8 −2a7v5 −2a8v5

− 2a7α8v6 − 2a8α8v6 + 2a7v7 + 2a8v7 − 2a7v8 + 2a8v8 + 2α8d8.

To obtain the RSSR algebraic IO equation, the parametric equations of the Study

coordinates of Eqs. (4.79) and (4.80) need to be expressed implicitly as a polynomial

equation in the desired motion parameters v1 and v8 in the seven-dimensional kine-

matic mapping image space. This requires an algorithm that eliminates the unwanted

motion parameters vi where i ∈ {2, . . . , 7}. One implicitisation algorithm that allows
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for the transformation from the explicit parametric Study representation into a set

of implicit polynomial equations was presented in Section 3.5.3, the linear implici-

tisation algorithm. The resulting constraint equations are implicit polynomials that

form an algebraic variety in P7 and can be manipulated with different tools to obtain

the IO equation.

The two serial RS chains of the RSSR linkage consist of one revolute and one

spherical joint each. Clearly, the S joint spherical displacements, SO(3), are com-

pletely contained on sub-spaces of the Study quadric as there is no translation in-

volved and thus, all four yi Study coordinates are identically zero. In other words,

the displacements constrained by the S joints form special A-planes on the Study

quadric. Further, the R joint in the serial RS chain rotates the S joint in a planar

displacement thereby moving this special A-plane on S2
6 . It is well known that a

3-space can be represented by the intersection of four hyperplanes in the kinematic

image space. To determine the RSSR algebraic IO equation we must identify these

hyperplanes, one set for each serial RS chain. To obtain their implicit equations the

linear implicitisation algorithm will be employed. The main goal of the linear implici-

tisation algorithm is to find the minimal number of implicit equations that describe

the mechanical constraints in the image space. It allows for the elimination of motion

parameters which, in the case of the RSSR, correspond to the variables v2, v3, . . . , v7.

On the other hand, the design parameters ai, di and αi are fixed values that depend

on the chosen linkage. However, to obtain the implicit polynomials for the spher-

ical special 3-spaces v1 and v8 are temporarily also considered as design parameter

constants.

To begin, we assume that the resulting variety is defined by linear constraint

equations, and hence a general linear ansatz polynomial can be written, using the
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graded reverse lexicographic monomial ordering [100], as

C1y3 + C2y2 + C3y1 + C4y0 + C5x3 + C6x2 + C7x1 + C8x0 = 0. (4.81)

This linear ansatz polynomial has eight unknown coefficients Ci, i ∈ {1, · · · , 8}. In the

case of the left hand side of the RSSR chain, Eq. (4.79) is substituted into Eq. (4.81)

and after reorganising such that the variable angle parameters of the spherical dis-

placement are collected, yields

(−2C1d1v1 + 2C3a1v1 − 2C3a4v1 + 4C8v1 − 2C4d1 − 2C2a1 + 2C2a4 − 4C5)v2v3v4

+ (2C2a1v1 + 2C2a4v1 − 2C4d1v1 − 4C5v1 + 2C1d1 + 2C3a1 + 2C3a4 − 4C8)v2v3

+ (2C1a1v1 + 2C1a4v1 + 2C3d1v1 + 4C6v1 − 2C2d1 + 2C4a1 + 2C4a4 + 4C7)v2v4

+ (2C2d1v1 + 2C4a1v1 − 2C4a4v1 − 4C7v1 − 2C1a1 + 2C1a4 + 2C3d1 + 4C6)v2

+ (2C2a1v1 + 2C2a4v1 − 2C4d1v1 − 4C5v1 + 2C1d1 + 2C3a1 + 2C3a4 − 4C8)v3v4

+ (2C1d1v1 − 2C3a1v1 + 2C3a4v1 − 4C8v1 + 2C2a1 − 2C2a4 + 2C4d1 + 4C5)v3

+ (−2C2d1v1 − 2C4a1v1 + 2C4a4v1 + 4C7v1 + 2C1a1 − 2C1a4 − 2C3d1 − 4C6)v4

+ (2C1a1v1 + 2C1a4v1 + 2C3d1v1 + 4C6v1 − 2C2d1 + 2C4a1 + 2C4a4 + 4C7) = 0. (4.82)

To fulfil this equation, the coefficients of the motion parameters in Eq. (4.82) must

vanish since the v2, v3, and v4 orientation angle parameters are, in general, non-zero.

In matrix form, this can be expressed as



2a1v1 + 2a4v1 −2d1 2d1v1 2a1 + 2a4 0 4v1 4 0

−2d1v1 −2a1 + 2a4 2a1v1 − 2a4v1 −2d1 −4 0 0 4v1

−2a1 + 2a4 2d1v1 2d1 2a1v1 − 2a4v1 0 4 −4v1 0

2a1v1 + 2a4v1 −2d1 2d1v1 2a1 + 2a4 0 4v1 4 0

2d1 2a1v1 + 2a4v1 2a1 + 2a4 −2d1v1 −4v1 0 0 −4

2d1 2a1v1 + 2a4v1 2a1 + 2a4 −2d1v1 −4v1 0 0 −4

2d1v1 2a1 − 2a4 −2a1v1 + 2a4v1 2d1 4 0 0 −4v1

2a1 − 2a4 −2d1v1 −2d1 −2a1v1 + 2a4v1 0 −4 4v1 0





C1

C2

C3

C4

C5

C6

C7

C8



=



0

0

0

0

0

0

0

0



.

Solving for the unknown Ci and back-substituting their solutions into the general
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linear ansatz polynomial Eq. (4.81) reveals all four hyperplanes that satisfy the va-

riety in P7. The solution shows that C1, C3, C4, and C8 are all free parameters

with arbitrary values while C2, C5, C6, and C7 are expressions containing the design

parameters and, after simplifying, are each linear in four of the Study parameters,

and therefore hyperplanes. These four hyperplanes collected in terms of the Study

parameters are

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x3 + (−2d1v

2
1 − 2d1)y0

+ 4a1v1y1 + (2a1v
2
1 − 2a4v

2
1 − 2a1 − 2a4)y2, (4.83)

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x2 − 4a1v1y0 + (−2d1v

2
1 − 2d1)y1

+ (−2a1v
2
1 + 2a4v

2
1 + 2a1 + 2a4)y3, (4.84)

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x1 + (2a1v

2
1 + 2a4v

2
1 − 2a1 + 2a4)y0

+ (2d1v
2
1 + 2d1)y2 − 4a1v1y3, (4.85)

0 = (a21v
2
1 − a24v

2
1 + d21v

2
1 + a21 − a24 + d21)x0 + (−2a1v

2
1 − 2a4v

2
1 + 2a1 − 2a4)y1

+ 4a1v1y2 + (2d1v
2
1 + 2d1)y3. (4.86)

The same procedure can be performed with the right-hand side of the RSSR by substi-

tuting Eq. (4.80) in the general linear ansatz polynomial, Eq. (4.81). In this case, the

motion parameters to be eliminated are v5, v6 and v7. Solving the resulting homoge-

neous matrix equation for the new unknown Ci yields the following four hyperplanes

in a similar way. They are

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x3

+ (−2α2
8d8v

2
8 + 2d8v

2
8 + 8a7α8v8 − 2α2

8d8 + 2d8)y0

+ (−4d8α8v
2
8 − 4α2

8a7v8 + 4a7v8 − 4d8α8)y1

+ (−2a7α
2
8v

2
8 + 2α2

8a8v
2
8 − 2a7v

2
8 + 2a8v

2
8 + 2a7α

2
8 + 2α2

8a8 + 2a7 + 2a8)y2,

(4.87)
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0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x2

+ (4d8α8v
2
8 + 4α2

8a7v8 − 4a7v8 + 4d8α8)y0

+ (−2α2
8d8v

2
8 + 2d8v

2
8 + 8a7α8v8 − 2α2

8d8 + 2d8)y1

+ (2a7α
2
8v

2
8 − 2α2

8a8v
2
8 + 2a7v

2
8 − 2a8v

2
8 − 2a7α

2
8 − 2α2

8a8 − 2a7 − 2a8)y3, (4.88)

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x1

+ (−2a7α
2
8v

2
8 + 2α2

8a8v
2
8 − 2a7v

2
8 + 2a8v

2
8 + 2a7α

2
8 + 2α2

8a8 + 2a7 + 2a8)y0

+ (2α2
8d8v

2
8 − 2d8v

2
8 − 8a7α8v8 + 2α2

8d8 − 2d8)y2

+ (4d8α8v
2
8 + 4α2

8a7v8 − 4a7v8 + 4d8α8)y3, (4.89)

0 = (a27α
2
8v

2
8 − 2a7a8α

2
8v

2
8 + a28α

2
8v

2
8 + α2

8d
2
8v

2
8 + a27v

2
8 − 2a8a7v

2
8

+ a28v
2
8 + d28v

2
8 + α2

8a
2
7 + 2a7a8α

2
8 + a28α

2
8 + α2

8d
2
8 + a27 + 2a7a8 + a28 + d28)x0

+ (2a7α
2
8v

2
8 − 2α2

8a8v
2
8 + 2a7v

2
8 − 2a8v

2
8 − 2a7α

2
8 − 2α2

8a8 − 2a7 − 2a8)y1

+ (−4d8α8v
2
8 − 4α2

8a7v8 + 4a7v8 − 4d8α8)y2

+ (2α2
8d8v

2
8 − 2d8v

2
8 − 8a7α8v8 + 2α2

8d8 − 2d8)y3. (4.90)

Solving Eqs. (4.83), . . ., (4.86) for the four yi and substituting these expressions into

Eqs. (4.87), . . . , (4.90) leaves four equations in the four unknown Study parameters

xi. This suggests solving the system of four equations for the four unknown xi.

However, doing so leads only to the trivial solution xi = yi = 0, i ∈ {0, 1, 2, 3}, which

we call the null point. This result can be explained geometrically in P7 as follows:

the two special 3-spaces representing the displacements of the S joints are two SO(3)

A-planes that are moved around on S2
6 under the action of the two R joints, and only

ever intersect in the null point.

But, there is a solution. Further inspection of the four equations shows that the
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equations form a homogeneous system of linear equations. Expressing this linear

homogeneous system in matrix-vector form Ax = 0, we know that this system only

has a nontrivial solution when the determinant of the 4 × 4 coefficient matrix A

with respect to the xi vanishes [105]. Thus, after computing the determinant of the

Jacobian and omitting the factors that can never vanish, the general algebraic IO

equation of the RSSR linkage arises directly from the determinant as

Av21v
2
8 + 8d1α8a7v

2
1v8 + 8d8α8a1v1v

2
8 +Bv21

+8a1a7(α8 − 1)(α8 + 1)v1v8 + Cv28 + 8d8α8a1v1 + 8d1α8a7v8 +D = 0,
(4.91)

where

A = (α2
8 + 1)A1A2 + E,

B = (α2
8 + 1)B1B2 + E,

C = (α2
8 + 1)C1C2 + E,

D = (α2
8 + 1)D1D2 + E,

and

A1 = (a1 − a4 + a7 − a8), A2 = (a1 + a4 + a7 − a8),

B1 = (a1 + a4 − a7 − a8), B2 = (a1 − a4 − a7 − a8),

C1 = (a1 − a4 − a7 + a8), C2 = (a1 + a4 − a7 + a8),

D1 = (a1 + a4 + a7 + a8), D2 = (a1 − a4 + a7 + a8),

E = (d1 − d8)
2α2

8 + (d1 + d8)
2.

Eq. (4.91) is an implicit biquadratic algebraic curve of degree 4 in the joint angle

parameters v1 and v8, as one would expect.

To verify this result, the IO equation of an arbitrary linkage was animated in

GeoGebra. The model enabled measurement of the output angle for any given input

angle. Tracing the locus of each input-output pair results in a curve which is compared
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with the herein derived IO equation, Eq. (4.91). The chosen design parameters for

the example linkage are a1 = 3, a4 = 5, a7 = 9, d8 = 3, a8 = 11 and τ8 = 60◦. While

v8

v1

(a) IO equation geometrically generated in Geo-
Gebra. (b) Derived IO equation according to Eq. (4.91).

Figure 4.10: Example RSSR function generator with a1 = 3, a4 = 5, a7 = 9, d8 = 3, a8 = 11
and τ8 = 60◦.

the result of the GeoGebra file is displayed in Fig. (4.10a), substituting the same

design parameters into Eq. (4.91) yields the curve in Fig. (4.10b). As can be seen,

the curves are congruent which further suggests that Eq. (4.91) is indeed correct.

Following [2, Sec. 11.4] the IO equation of the RSSR linkage can be directly

transformed into the IO equation of the planar 4R linkage since the planar 4R is a

special case of the RSSR. This requires substituting α8 = d1 = d8 = 0 into Eq. (4.91).

After renaming the link lengths and the output angle such that the coupler becomes

a2, the output link a3, the base link a4, and the angle of the output v4 instead

of the notation from Fig. (4.9), i.e., a4, a7, a8, and v8, respectively, the RSSR IO

equation reduces to the IO equation, Eq. (4.8), as derived in Section 4.2.1 for planar

4R linkages.
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Chapter 5

Applications

Thanks to the algebraic nature of the IO equations derived earlier, it is a simple task

to get extensive information on the linkage. While it must be acknowledged that the

IO equations themselves are not all new, the algebraic forms lead to computationally

efficient and mathematically elegant tools for synthesis and analysis for four-bar link-

ages that are entirely new. To demonstrate the simplicity of these calculations, some

applications will be discussed in the following chapter which will include the mobil-

ity, velocity and acceleration analysis. While the algebraic IO equations also provide

serious advantages in terms of processing time to synthesis problems, the application

chapter will be restricted to analysis applications. The reader interested in kinematic

synthesis using algebraic IO equations is referred to [17, 24]. All computations and

results presented can be obtained trigonometry-free using basic calculus knowledge

which may, e.g., benefit robotic real-time operations. Consider a serial 6R robotic

arm that must compute its own joint angles to enable the end effector to move a tool

through a desired sequence of motions. If any one of the required transformation

matrices contain a representational singularity, causing its determinant to vanish,

then the particular joint will need to provide an infinite amount of torque. To avoid
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causing damage to the motor drive, the controller will stop the motion of the arm.

If the robot kinematics were free of representational singularities this scenario would

not exist.

In particular, the mobility analysis will focus on analysing the singularities of a

linkage as well as specifying a general mobility classification. It can be shown that

the mobility classification of some linkages is closely linked to the linkage design

parameter space which will be discussed in the second part of this chapter.

It should be noted that in general the singularity analysis and the mobility classi-

fication follow the same steps for every linkage. For that reason this thesis will limit

itself to a few examples. The singular analysis and the mobility classification will be

demonstrated on the example of the slider-crank and quadrilateral linkage, respec-

tively. In addition, the design parameter space of the quadrilateral, slider-crank and

spherical linkage will be outlined.

In the last part of this chapter, the utility of the algebraic IO equations will

be emphasized by discussing the differential kinematics of two linkages, the planar

four-bar as well as an example of the RSSR.

5.1 Singularity Analysis

The study of singular configurations is not trivial and fills numerous articles, books,

and also leads to many discussions among kinematicians. They all agree though that

if a mechanism approaches a singular configuration, the mechanism becomes uncon-

trollable because the dof of the mechanism instantaneously changes. A mechanical

singularity, if it exists, is defined to be a configuration of a mechanism where the

subsequent behaviour of the mechanism as it exits the singularity, if it can, is not

predictable, or the forces or torques required to leave the singularity become either
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infinite or nondeterministic.

Singularities can be obtained by examining the tangent space of the IO equation.

Since the IO equation is, in general, an n-dimensional implicit function of the input

and the output variables, the tangent space can be evaluated by taking the derivative

of the IO equation with respect to time [36]. Given the input and output variable are

denoted as x and y, respectively, then the tangent space is defined as

JOẋ+ JIẏ = 0, (5.1)

where

JO =
∂IO

∂x
, and JI =

∂IO

∂y
.

The determinants of the input Jacobian JI and the output Jacobian JO can be used

to classify the linkage’s singular configurations. There are three different singularity

groups.

1. If det(JI) = 0 the linkage is in an input singularity, also referred to an inverse-

kinematics singularity. For a serial robot arm this occurs at the workspace

boundary where the arm is completely stretched out. In the example of the

RRRP, it can be used to determine the maximal slider distance d4min/max. In

this position the linkage loses one, or more, dof and is said to be locked.

2. If det(JO) = 0 the linkage is in an output singularity, also referred to direct-

kinematics singularity. This configuration occurs when the input link is at a

dead-point where the rotation of the input link must change direction. Thus,

in the example of the RRRP, it can be used to determine the upper and lower

limits of the input rotation, v1min/max. In this configuration the linkage gains a

dof.

3. If both det(JI) = 0 and det(JO) = 0 the linkage is in a combined singularity.

This typically requires special link lengths.
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Consider the four different examples of the slider-crank linkage in Fig. (5.1). These

figures display the algebraic IO curves of four scenarios where the input corresponds

to a a) crank, b) π-rocker, c) 0-rocker, and d) rocker. Clearly, the algebraic curves

are considered in two dimensions, the input and output motion parameters, which

reduces the tangent space to tangent lines. The location of these tangent lines on the

curve can be computed using simple calculus. The idea to find the values for d4min/max

and v1min/max remains always the same: First, reformulate the equation such that it is

considered as a function of one motion parameter, i.e., f(v1) and f(d4), respectively.

Second, find the extrema by taking the derivative with respect to the other motion

parameter, set the resulting equation to zero and solve for the extreme value.

Specifically, to find the input and output singularities using the algebraic IO equa-

tion of the slider crank, Eq. (4.21) must first be solved for d4 and v1, respectively which

yields

d4=
−2a1v1 ±

√
−
(
a1v21 + a2v21 − a4v21 − a1 + a2 − a4

) (
a1v21 − a2v21 − a4v21 − a1 − a2 − a4

)
v21 + 1

;

v1=
−2a1d4 ±

√
−
(
a21 + 2a1a2 + a22 − a24 − d24

) (
a21 − 2a1a2 + a22 − a24 − d24

)
a21 − 2a1a4 − a22 + a24 + d24

.

(5.2)

Differentiating with respect to the motion parameters v1 and d4, respectively, equat-

ing the results to zero and solving for the same motion parameter yields the ex-

pressions containing information on the singularity locations. The input singularity,

corresponding to the maximal slider positions d4min/max, are located at

v1crit = ±
√

(a1 + a2 − a4) (a1 + a2 + a4)

a1 + a2 − a4
;

v1crit = ±
√

(a1 − a2 − a4) (a1 − a2 + a4)

a1 − a2 − a4
.

(5.3)

With the bilinear factors defined in the original IO equation, Eq. (4.21), this expres-
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(a) Crank: a1 = 1, a2 = 4 and a4 = 2. (b) π-rocker: a1 = 3, a2 = 2 and a4 = 4.

v1

(c) 0-rocker: a1 = 3, a2 = 2 and a4 = −4. (d) Rocker: a1 = 4, a2 = 1 and a4 = 2.

Figure 5.1: RRRP example with maximal slider positions d4min/max and boundaries of the
input rotation angles v1min/max.
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sion reduces to

v1crit = ±
√
R1S1

R1

;

v1crit = ±
√
R2S2

R2

.

(5.4)

The output singularities, corresponding to the boundaries of the input rotation angles

v1min/max, if they exist, are located at

d4crit = ±
√

(a1 + a2 + a4)(a1 − a2 − a4) = ±
√
S1R2;

d4crit =
√

(a1 + a2 − a4)(a1 − a2 + a4) = ±
√
R1S2.

(5.5)

This example clearly demonstrates that singularity analysis calculations of alge-

braic IO equations are simple and intuitive. The same concept can be applied to

any other algebraic IO equation derived earlier, but including additional examples is

deemed to be unnecessary.

5.2 Mobility Classification

While the singularity analysis focuses on examining the possible range and limits

of a linkage, the following mobility classification is aiming to identify under which

conditions a link becomes a crank, 0-rocker, π-rocker or rocker. Clearly, this type

of discussion is only suitable if an R joint, i.e., the motion parameter vi, is involved.

As mentioned in the introduction of this chapter, the mobility classification will be

conducted on the example of the quadrilateral linkage.

The mobility of the links in the quadrilateral linkage is established through whether

the link is able to reach the two extreme positions where:

1. The link aligns with and extends the previous link. This corresponds to a link

angle of θi = 0◦, or vi = 0. A simple verification whether there exists real

solutions for vi = 0 in the IO equation is sufficient to determine whether the
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link can physically reach this position.

2. The link aligns and overlaps with the previous link. This corresponds to a link

angle of θi = 180◦, or vi = ∞. Since each IO equation in the plane spanned

by the coordinate axes vi and vj contains double points at infinity on each of

the vi and vj axes, the type of double point determines whether the link can

physically reach this position.

Hence, the examination of these two points is sufficient to determine whether a par-

ticular joint enables a crank, a rocker, a π-rocker, or a 0-rocker link motion [52, 27].

The conditions are shown in Tab. 5.1 which requires some additional explanation on

double points. The maximum number of double points, DPmax, for an arbitrary

Table 5.1: Mobility Conditions for an R joint.

solution for vi = 0 double point at vi = ∞ link mobility
R crunode/cusp crank
R acnode 0-rocker
C crunode/cusp π-rocker
C acnode rocker

algebraic curve of degree n can be determined by [66]

DPmax =
(n− 1)(n− 2)

2
. (5.6)

For a planar algebraic curve to possess a double point, its degree must be n > 3.

Hence, this analysis does not apply to PRRP linkages, but it does apply to the R-

pairs in an RRRP linkage.

To determine the type of double point, it requires homogenising the algebraic

curve, and subsequently, evaluating the discriminant of the resulting equation at the

double point. This reveals whether the double point has a pair of real or complex

conjugate tangents [74, 106] in turn yielding information about the topology of the

mechanism [48, 106]. Let v0 be the homogenising coordinate of the homogenised

algebraic IO equation IOh, then the following discriminant yields information on the
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(a) crunode (b) cusp (c) acnode

Figure 5.2: Different types of double points.

double point at infinity on the vj axis:

∆ :=

(
∂2IOh

∂vi∂v0

)2

− ∂2IOh

∂v2i

∂2IOh

∂v20


> 0 ⇒ crunode;

= 0 ⇒ cusp;

< 0 ⇒ acnode.

(5.7)

If the tangents are complex conjugates the double point is an acnode: a hermit

point that satisfies the equation of the curve but is isolated from all other points on the

curve. If the double point has two real distinct tangents, it is a crunode, also known

as an ordinary double point. In this case, the algebraic curve is intersecting itself.

Finally, if the double point has two real coincident tangents, it is a cusp. In this

point, the algebraic curve changes direction which creates a sharp point [74, 107].

Typical examples of the different types of double points are shown in Fig. (5.2).

Clearly, if a double point is identified as an acnode, the point is isolated from the

rest of the curve. This implies that the link length is unable to reach θi = 180◦. For

example, a double point analysis of the v1-d4 equation of the RRRP at infinity on the

d4 axis yields that it is always an acnode, independent of the lengths of the links and

offsets, which is reassuring as this means the travel of the prismatic slider is always

finite. Let us determine the double points for the v1-v4 IO curve for a planar 4R.

First homogenise Eq. (4.8) using the homogenising coordinate v0, then redefine the
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IO equation as

IOh := Av21v
2
4 +Bv20v

2
1 + Cv20v

2
4 − 8a1a3v

2
0v1v4 +Dv40 = 0. (5.8)

Computing the partial derivatives of IOh with respect to the three homogeneous

coordinates gives

∂IOh

∂v0
:= 2Bv0v

2
1 + 2Cv0v

2
4 − 16a1a3v0v1v4 + 4Dv30 = 0, (5.9)

∂IOh

∂v1
:= 2Av1v

2
4 + 2Bv20v1 − 8a1a3v

2
0v4 = 0, (5.10)

∂IOh

∂v4
:= 2Av21v4 + 2Cv20v4 − 8a1a3v

2
0v1 = 0. (5.11)

Finally solve the system of four equations (5.8)-(5.11) for v0, v1, and v4. In this case,

similar for all the IO equations, there are two solutions which are independent of the

design parameters a1, a2, a3, and a4. These two solutions are double points at infinity

on the v1 and v4 axes, named DP1 and DP2:

DP1 = {v0 = 0, v1 = v1, v4 = 0}; (5.12)

DP2 = {v0 = 0, v1 = 0, v4 = v4}. (5.13)

Proceeding with the double point analysis of all six vi-vj equations, the points at

infinity on each axis result in 12 discriminants. However, as the vi-vj equations are

all dependent on each other, only four are distinct. Each one describes the nature of

the double point at infinity of each vi for i ∈ {1...4}:

∆v1 = −4(a1 + a2 − a3 − a4)(a1 + a2 + a3 − a4)

(a1 − a2 + a3 − a4)(a1 − a2 − a3 − a4);

∆v2 = −4(a1 − a2 − a3 + a4)(a1 − a2 + a3 + a4)

(a1 − a2 + a3 − a4)(a1 − a2 − a3 − a4);
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∆v3 = −4(a1 − a2 + a3 + a4)(a1 + a2 − a3 + a4)

(a1 + a2 − a3 − a4)(a1 − a2 + a3 − a4);

∆v4 = −4(a1 + a2 − a3 + a4)(a1 − a2 − a3 + a4)

(a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4).

Using the bilinear factors defined by Eq. (4.8) these discriminants can be rewritten

compactly as

∆v1 = −4 A1A2B1B2, (5.14)

∆v2 = −4 A1B2C1D2, (5.15)

∆v3 = −4 A1B1C2D2, (5.16)

∆v4 = −4 A1A2C1C2. (5.17)

From these conditions we can extract the following information. If ∆v1 ≥ 0, then

the double point at infinity on the v1 axis is either a crunode or a cusp. Knowing

that v1 = ∞ corresponds to θ1 = 180◦ this implies that the link a1 can physically

reach the extreme position where a1 aligns with and overlays the previous link a4.

Similarly, if ∆v1 < 0, then the double point at v1 = ∞ is an acnode which in turn

indicates that a1 cannot physically reach the extreme position where a1 aligns with

and overlays a4. Analogous conclusions can be drawn from Equations (5.15), (5.16),

and (5.17).

As previously mentioned, to fully understand the mobility of every link, it equally

requires the analysis of whether the other extremes where the link under investigation

aligns with, but does not overlay, the previous link. We need to investigate whether

the linkage is assemblable at vi = 0. Clearly, one possibility to obtain a condition

with this information can be derived using the six vi-vj equations by substituting

vi = 0 and solving for vj. Again, due to the equations’ dependencies, we obtain four
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distinct conditions, one for each vi:

Ωv1 = [−(a1 − a2 − a3 + a4)(a1 − a2 + a3 + a4)

(a1 + a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv2 = [−(a1 + a2 − a3 − a4)(a1 + a2 + a3 − a4)

(a1 + a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv3 = [−(a1 + a2 + a3 − a4)(a1 − a2 − a3 − a4)

(a1 − a2 − a3 + a4)(a1 + a2 + a3 + a4)]
1
2 ;

Ωv4 = [−(a1 − a2 − a3 − a4)(a1 + a2 − a3 − a4)

(a1 − a2 + a3 + a4)(a1 + a2 + a3 + a4)]
1
2 .

Using the bilinear factors from Eq. (4.8) these expressions can be rewritten compactly

as:

Ωv1 =
√

−C1C2D1D2; (5.18)

Ωv2 =
√

−A2B1C2D1; (5.19)

Ωv3 =
√

−A2B2C1D1; (5.20)

Ωv4 =
√

−B1B2D1D2. (5.21)

With this information we can establish a completely generic classification scheme

to determine the relative mobilities of every link in the simple closed kinematic chain.

Using the bilinear factors the classification can be constructed according to Tab. 5.2-

5.5. The beauty of this classification scheme lies in its completely generic nature,

covering both positive and negative values for the ai. This result requires the ai to

be considered as directed line segments. For example a1 > 0 means that it is directed

from the joint with a4 to a2, a1 < 0 means a1 points in the opposite direction.

Moreover, the classification scheme is directly linked to the algebraic IO equations.
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These results allow to explain the different spatial sections that are spanned by the

linear factors in the design parameter space which will be discussed in the next section.

Table 5.2: Mobility of a1 relative to a4.

A1A2B1B2 C1C2D1D2 mobility of a1
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

Table 5.3: Mobility of a2 relative to a1.

A1B2C1D2 A2B1C2D1 mobility of a2
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

Table 5.4: Mobility of a3 relative to a2.

A1B1C2D2 A2B2C1D1 mobility of a3
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

Table 5.5: Mobility of a4 relative to a3.

A1A2C1C2 B1B2D1D2 mobility of a4
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

It is straightforward to use this same analysis applied to the spherical 4R as well as

the planar RRRP linkages to determine the relative mobility conditions for each link

in the chain. However, in the interest of brevity, it will not be listed here.
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5.3 Design Parameter Spaces

The first graphical representation of the design parameter space of planar and spheri-

cal 4R linkages can be found in [108, 109, 110]. In the case of the planar 4R it reveals

plane bound regions in a three-space having the Freudenstein parameters as mutually

orthogonal basis vectors. However, the full symmetry of the group of planar 4R link-

ages is obscured by the trigonometric description of the IO equation. In addition, it is

not possible to represent all vi-vj equations of one type of linkage in the same design

parameter space. For example, the trigonometric Freudenstein equation relating the

vi input of the quadrilateral linkage to the corresponding vj output angle contains

different Freudenstein parameters than the trigonometric equation relating the input

to the transmission angle. As a result the design parameter space where the axes are

spanned by the Freudenstein parameters differs for every equation.

This is different with the algebraic IO equations. The symmetries of the alge-

braic IO equations for the spherical and planar 4R and the planar RRRP and PRRP

linkages are fully revealed graphically when one considers the link lengths ai, link

offsets di, and link twist angle parameters αi as design parameters, see [22, 25, 27].

For planar and spherical 4R function generators the scale of the linkage is irrelevant.

This allows to consider these four ai and four αi design parameters as homogeneous

coordinates, and to assign a4 and α4 which normalises the four coordinates, thereby

setting a4 = 1 for the planar and α4 = 1 as the spherical design space parameter coor-

dinates and treat the remaining three lengths or twist angles as mutually orthogonal

basis vectors.

In the planar 4R design parameter three-space, each of the distinct eight bilinear

factors in Eqs. (4.8)-(4.13) represent eight distinct planes. These eight planes intersect

in 12 lines which are the edges of a stellated octahedron having order 48 octahedral

symmetry [111]. Johannes Kepler named this topology “stella octangula”, which is
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(b) Spherical 4R degenerate bicubic surfaces.

Figure 5.5: Planar and spherical 4R design parameter spaces.

Latin for “eight-pointed star”, referring to the eight vertices, see Fig. 5.5a. In the

entire universe of polytopes, it is the only regular compound of two tetrahedra [111]:

two tetrahedra which intersect in an octahedron. Each distinct point in the design

parameter space represents a distinct planar 4R linkage. The eight planes segment

the design parameter space into regions that represent the mobility of the linkages

contained in that region [27, 19].

For the spherical 4R, the eight bicubic factors in the four coefficients A, B, C,

and D in Eq. (4.43) are symmetric singular cubic surfaces, see Fig. 5.5b, which each

possess three distinct finite lines and three common lines at infinity [25]. Note that a

cubic surface can contain as many as 27 lines [112]; those that contain less than 27 are

called singular, while those that contain exactly 27 are non-singular. Each of these

cubic surfaces possess three ordinary double points [25]. It is also shown in [112] that

a cubic surface possessing three ordinary double points can have, at most, 12 lines,

which is the case for these eight cubic surfaces. Of these 12 lines on each surface, six

are complex and six are real. Of the six real lines three are at infinity. The remaining
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(b) In the range −1 ≤ αi ≤ 1.

Figure 5.6: Eight cubic surfaces in the spherical 4R design parameter space.

three lines on each surface intersect each other in an equilateral triangle.

Different pairs of the eight cubic surfaces have one finite line in common, meaning

there are 12 distinct finite lines among the eight surfaces. The finite lines contain

the twelve edges of another stellated octahedron. The faces of the same stellated

octahedron are also found in the design parameter space of planar 4R linkages. The

edges of this regular double tetrahedron can be regarded as the intersection of the

bilinear factors of the coefficients of the planar 4R and the singular cubic surfaces

formed by the coefficients of the spherical 4R IO equations in the design parameter

spaces. This is as remarkable as it is fascinating! Fig. 5.6 illustrates the eight cubic

surfaces and the three finite lines on each. This illustrates the connection between

Bricard’s movable octahedra mentioned in Section 4.3 and the intersection of the

spherical 4R and planar 4R design parameter spaces.

With the six algebraic vi-vj equations, and the previously identified mobility clas-

sification using double points and discriminants in Section 5.2, it becomes evident

that the planes spanning the faces of the stellated octahedron contain complete in-
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Figure 5.7: Intersection of the planar 4R stellated octahedron in the design parameter space
with the plane a1 = 0.5.

formation on the relative mobility of every link in the chain! In fact, the stellated

octahedron face planes segment the design parameter space into distinct regions which

each describes the relative mobility of a1, a2, a3 and a4. For a better understanding

of this concept, let us have a look at the following example.

Consider the intersection traces of the bilinear factors in the parameter plane

a1 = 0.5 spanned by a2 and a3 in the design parameter space where a2 and a3 are

the horizontal and vertical axes, respectively. Here the bilinear factors are parallel

and orthogonal plane trace lines. Together with Tabs. 5.2-5.5, the mobility of all link

lengths of the quadrilateral linkage can now be identified, resulting in Fig. 5.7 where
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r indicates that the corresponding link is a rocker, c a crank, π a π-rocker, and 0

a 0-rocker, while NA indicates the linkage is not assemblable. This analysis can be

conducted for every area separated by the bilinear factors in the design parameter

space, resulting in a complete geometric mobility classification of planar four-bar

linkages which is directly linked to the six algebraic vi-vj IO equations.

Another interesting design parameter space is revealed by the algebraic IO equa-

tions of the slider-crank linkage, Eq. (4.21)-(4.26). The four bilinear coefficient factors

R1, R2, S1, and S2 each contain one of the four possible permutations of addition to,

and subtraction from, a1 of the remaining link lengths a2 and a4. These bilinear

factors can be thought of as four distinct planes in a space spanned by three mutually

orthogonal basis direction vectors for each one of the link lengths a1, a2, and a4, con-

stituting the design parameter space. Each distinct point in the space represents the

three directed link lengths of a distinct planar RRRP linkage. These four planes each

contain a triangular face of a regular square pyramid whose axis is perpendicular to

the plane a4 = 0, illustrated in Fig. 5.8c. The four planes bound four distinct regions

in planes parallel to a4 = 0, where each bounded region contains points representing

linkages with different relative link mobility characteristics. Let us consider the inter-

sections of a1 and a2 with planes where a4 is greater than, less than, and identically

equal to zero. Different non-zero values for a4 simply scale the amplitude of a desired

slider position as a function of the input angle parameter: d4 = a4f(v1). Fig. 5.8c

shows intersections of the design parameter pyramid with the three planes a4 = ±1

and a4 = 3 illustrating the scaling effect for different values of a4. Fig. 5.8a illustrates

the intersection of the regular square pyramid with the plane a4 = 1 while Fig. 5.8b

illustrates the intersection of the regular square pyramid with the plane a4 = −1.

In each intersection of a1 and a2 with planes where a4 > 0 the four parameter

planes of the algebraic IO equations intersect in the four plane traces illustrated in
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Figure 5.8: RRRP design parameter space.

Fig. 5.8a. These traces have the equations R1 = 0, R2 = 0, S1 = 0, and S2 = 0.

Linkages consisting of points on these plane traces represent either folding linkages or

non-movable structures. Points in the regions separated by the plane traces represent

linkages with very specific displacement capabilities, while points on the interior of the

square that has vertices (a1, a2) = (±1, 0), (0,±1) represent non-assemblable linkages.

To determine which linkage types occupy the eight distinct trace-bound regions on the

exterior of the unit squares, the procedure is analogous to the quadrilateral linkage as

outlined in Section 5.2. For brevity, let us limit the discussion to the relative mobility

of the input link. Using Eq. (4.21) the double point analysis and the condition whether

the input link is assemblable at v1 = 0 yields

∆v1 = −4 R1R2 ;

Ωv1 = ±
√

−S1S2.

With the decision Tab. 5.1, this results in the relative mobility classification of the

input link, i.e., a1 with respect to a4, as provided in Tab. 5.6. As the conditions solely

depend on the four bilinear coefficient factors R1, R2, S1, and S2 from the algebraic IO

equations, each region in the design parameter space contains linkages with different

relative input mobility as illustrated in Fig. (5.9). Locations of unique points in this

space define unique planar RRRP mechanisms with relative mobility limits implied by
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Table 5.6: Relative mobility classification of the input link of the slider-crank.

R1R2 S2S2 mobility of a1
≤ 0 ≤ 0 crank
≤ 0 > 0 π-rocker
> 0 ≤ 0 0-rocker
> 0 > 0 rocker

a1

a2

Roc
ke

rRocker
 
 
 
 

Not
assemblable
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Crank
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Figure 5.9: Feasible linkage type regions of the input link within the design parameter space
in the planes a4 = ±1.

the location of the individual points. These results provide a comprehensive numerical

classification scheme based on algebraic parameters, but it also provides an elegant

and straightforward graphical method to design planar RRRP linkages with desired

mobility characteristics.

5.4 Differential Kinematics

While IO equations can help mechanism designers with position analysis and syn-

thesis, e.g., by finding the most appropriate link lengths for a desired output path,

velocity and acceleration values provide information that can be used to evaluate
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e.g., the mechanical advantage of the linkage, or the magnitude of the forces acting

on the mechanism. Using the algebraic IO equations, the velocity and acceleration

loop equations can be directly computed by differentiating with respect to time. For

brevity, the velocity and acceleration loop equations are computed for the quadrilat-

eral and the RSSR linkage. However, the approach is general and also applies to any

other algebraic IO equation presented in this thesis.

5.4.1 Quadrilateral: v̇i-v̇j Equations

For the velocity level kinematics, let us consider again the quadrilateral linkage. This

example is ideal to demonstrate how the algebraic IO equations fill the gap of today’s

research. After the works from Kraus [113] and Rosenauers [114] on extreme values

in the quadrilateral, Freudenstein published a graphical method using instant centres

of velocity (ICV) for determining an extreme of the output to input angular velocity

ratio θ̇4/θ̇1 [115, 116]. In his first theorem, he states that this ratio can be expressed

by the ratio of the values of the relative directed distances between the three ICVs

located on the x0-axis in the following way:

θ̇4

θ̇1
=

dP13P14

dP13P14 + dP14P34

, (5.22)

where P indicate the ICVs, as shown in Fig. (5.10). The directed distances dP14P34

and dP13P14 can be positive or negative depending on their relative directions. Taking

this concept one step further, Freudenstein’s first theorem also applies to the ICVs on

each of the three other Aronhold-Kennedy lines of three collinear ICVs with respect

to a number line coincident with the line of three ICVs having its origin on the

central ICV. This fact has never been discussed in the literature. The six ICVs are

known as velocity poles and the curves they move along are described as polodes,

see [33, 117, 3, 2] for example. However, it seems that the following three velocity

ratios expressed as ratios of the absolute values of the relative locations of the three
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Figure 5.10: The six instantaneous centres of velocity.

ICVs on the three other Aronhold-Kennedy lines, see Figure 5.10, have never been

stated explicitly as:

θ̇1

θ̇2
=

dP24P12

dP24P12 + dP12P14

; (5.23)

θ̇3

θ̇2
=

dP13P12

dP13P12 + dP12P23

; (5.24)

θ̇4

θ̇3
=

dP24P23

dP24P23 + dP23P34

. (5.25)

Clearly, in addition to theses four ratios, Eq. (5.22)-(5.25), there must be two other

velocity ratios of interest, namely θ̇3/θ̇1 and θ̇4/θ̇2. To obtain expressions for all

velocity ratios, the algebraic IO equations can be used as follows.

The equation relating the time rates of change of the joint angle parameters v1

and v4 can be determined as the first time derivative of Eq. (4.8):(
(Av24 +B)v1 − 4a1a3v4

)
v̇1 +

(
(Av21 + C)v4 − 4a1a3v1

)
v̇4. (5.26)
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Because Eq. (5.26) equates to zero, the velocity parameter ratio can be expressed as

v̇4
v̇1

= −(Av24 +B)v1 − 4a1a3v4

(Av21 + C)v4 − 4a1a3v1
, (5.27)

which can also be directly obtained as the implicit derivatives of Eq. (4.8) with respect

to v1 and v4. It is important to note that for the ith link, v̇i ̸= θ̇i since vi = tan (θi/2).

But it is a simple matter to show that

v̇i =
θ̇i(1 + v2i )

2
, (5.28)

and that

θ̇i =
2v̇i

(1 + v2i )
. (5.29)

Hence, the reciprocal of the mechanical advantage is

θ̇4

θ̇1
= −((Av24 +B)v1 − 4a1a3v4)(1 + v21)

((Av21 + C)v4 − 4a1a3v1)(1 + v24)
. (5.30)

Using the remaining vi-vj equations the remaining velocity parameter equations

are expressed as the following ratios

v̇2
v̇1

= − (A1B2v
2
2 + A2B1)v1 − 4a2a4v2

(A1B2v
2
1 + C1D2)v2 − 4a2a4v1

, (5.31)

v̇3
v̇1

= − (A1B1v
2
3 + A2B2)v1

(A1B1v
2
1 + C2D2)v3

, (5.32)

v̇3
v̇2

= −(A1D2v
2
3 +B2C1)v2 − 4a1a3v3

(A1D2v
2
2 +B1C2)v3 − 4a1a3v2

, (5.33)

v̇4
v̇2

= −(A1C1v
2
4 +B2D2)v2

(A1C1v
2
2 + A2C2)v4

, (5.34)

v̇4
v̇3

= −(A1C2v
2
4 +B1D2)v3 + 4a2a4v4

(A1C2v
2
3 + A2C1)v4 + 4a2a4v3

. (5.35)

Following Freudenstein’s geometrical method only four of the ratios could be estab-

lished. However, it is an easy task to differentiate all six algebraic vi-vj IO equations

to obtain all velocity ratios. With these velocity profiles, extrema for all joints can be

calculated. Moreover, these velocity profiles also lay the foundation to calculate the
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acceleration profiles which are crucial to examine the forces acting on the mechanism

which will be discussed next.

5.4.2 Quadrilateral: v̈i-v̈j Equations

The acceleration level IO equations, also known as acceleration loop equations, express

the angular acceleration parameter generated by joint angle parameter vi in terms

of vj. The v̈1-v̈4 IO equation expresses v̈4 in terms of v̈1 at any instant in time as a

function of the configuration at that time. That is, if a set of numerical values for

four constant link lengths a1-a4 are given in a feasible state of numerical values for

v1, v4, v̇1, v̇4, and v̈1, then v̈4 is determined. This in turn means that if the mass

centres and distributions are known, the extreme values for v̈1, and v̈4 can be used to

identify the extreme values of the bearing reaction forces generated by the motion.

According to Freudenstein in [115], the maximum output angular acceleration,

assuming constant input angular velocity is computed first for a crank-rocker then

drag-link as

θ̈4max =
θ̇21a1
a2a3

(a1 + a2) and
θ̇21a4
a2a3

(a2 + a4). (5.36)

But the configuration conditions he lists in the paper are incorrect, and the crank-

rocker and drag-link he uses in an example are actually both non-Grashof double-

rockers. A reliable way to calculate the extrema of the link’s accelerations can, how-

ever, be obtained using the velocity loop equations from the previous section.

The time derivative of Eq. (5.26) is

((Av24 +B)v1 − 4a1a3v4)v̈1 + ((Av21 + C)v4 − 4a1a3v1)v̈4

+ (Av24 +B)v̇21 + (Av21 + C)v̇24 + (4Av1v4 − 8a1a3)v̇1v̇4. (5.37)

The angular acceleration parameters, v̈i, are related to the angular accelerations,
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θ̈i, as

v̈i =
1

2
(θ̈i + θ̇i

2
vi)(1 + v2i ), (5.38)

and

θ̈i =
2v̈i

(1 + v2i )
− θ̇2i vi. (5.39)

The five other angular acceleration parameter equations are

((A1B2v
2
2 + A2B1)v1 − 4a2a4v2)v̈1 + ((A1B2v

2
1 + C1D2)v2 − 4a2a4v1)v̈2

+ (A1B2v
2
2 + A2B1)v̇

2
1 + (A1B2v

2
1 + C1D2)v̇

2
2 + (4A1B2v1v2 − 8a2a4)v̇1v̇2, (5.40)

(A1B1v
2
3 + A2B2)v1v̈1 + (A1B1v

2
1 + C2D2)v3v̈3

+ (A1B1v
2
3 + A2B2)v̇

2
1 + (A1B1v

2
1 + C2D2)v̇

2
3 + 4A1B1v1v3v̇1v̇3, (5.41)

((A1D2v
2
3 +B2C1)v2 − 4a1a3v3)v̈2 + ((A1D2v

2
2 +B1C2)v3 − 4a1a3v2)v̈3

+ (A1D2v
2
3 +B2C1)v̇

2
2 + (A1D2v

2
2 +B1C2)v̇

2
3 + (4A1D2v2v3 − 8a1a3)v̇2v̇3, (5.42)

(A1C1v
2
4 +B2D2)v2v̈2 + (A1C1v

2
2 + A2C2)v4v̈4

+ (A1C1v
2
4 +B2D2)v̇

2
2 + (A1C1v

2
2 + A2C2)v̇

2
4 + 4A1C1v2v4v̇2v̇4, (5.43)

((A1C2v
2
4 +B1D2)v3 + 4a2a4v4)v̈3 + ((A1C2v

2
3 + A2C1)v4 + 4a2a4v3)v̈4

+ (A1C2v
2
4 +B1D2)v̇

2
3 + (A1C2v

2
3 + A2C1)v̇

2
4 + (4A1C2v3v4 + 8a2a4)v̇3v̇4. (5.44)

These equations allow to evaluate extreme angular accelerations which in return

can be used to determine the inertial reaction forces in the frame-attached bearings of

the mechanism. Since the velocities and accelerations are obtained directly, calculat-

ing the extrema is made significantly easier compared to traditional vector methods.
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An example of determining the velocity and acceleration extrema of the quadrilateral

is provided in [20], and an example of the RSSR will follow hereinafter.

5.4.3 RSSR: Extreme Angular Velocity and Acceleration Ex-

ample

Finally, let us consider an example to determine the extreme output angular veloci-

ties and accelerations for a constant input angular velocity. These are important for

bearing sizing, among other design considerations that are vital to robust mechanical

design of linkages. While there have been some investigations in the literature exam-

ining these extreme values for the RSSR, and the configurations in which they occur,

there are no straightforward methods to be found that give explicit algebraic equa-

tions for computing the extremes for the RSSR, see [118] for an example. In contrast,

following the procedure as outlined for the quadrilateral in the previous chapter, the

velocity and acceleration IO equations resulting from Eq. (4.91) can be computed in

two steps. To identify extreme angular velocity and acceleration outputs for a con-

stant input angular velocity requires that the angle parameters be transformed back

into angles. While θ̇1 may be constant the corresponding parameter v̇1 is not since it

is configuration dependent. That is

v̇1 =
θ̇1(v

2
1 + 1)

2
. (5.45)

The next step is to take the first two time derivatives of Eq. (4.91), which will not be

listed here in the interest of brevity. The extreme angular velocities and accelerations,

along with the configurations in which they occur in both assembly modes can be

easily obtained computationally with the following two algorithms.

Extreme RSSR angular velocity algorithm.

If values for a1, a4, a7, a8, d1, d8, and α8 are specified and the input angular velocity
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is a constant specified value, we wish to determine the critical values θ1crit that result

in θ̇8max/min
, so we need to eliminate θ8 from both the position and angular velocity

IO equations.

1. Convert v1 and v8 in the IO equation to angles as vi = tan(θi/2) and solve for

θ8.

2. Substitute the expression for θ8 from Step 1 into the θ̇1-θ̇8 equation and solve

for θ̇8, which gives θ̇8 = f(θ1) since θ̇1 is a specified constant.

3. Solve
dθ̇8
dθ1

= 0 for θ1crit and determine the values of θ̇8max/min
corresponding to

each distinct value of θ1crit .

Extreme RSSR angular acceleration algorithm.

If values for a1, a4, a7, a8, d1, d8, and α8 are specified and the input angular velocity

is a constant specified value, we wish to determine the critical values θ1crit that result

in θ̈8max/min
, so we need to eliminate θ8 and θ̇8 from the position, angular velocity and

acceleration IO equations.

1. Convert v1 and v8 in the IO equation to angles as vi = tan(θi/2) and solve for

θ8.

2. Substitute the expression for θ8 from Step 1 into the θ̇1-θ̇8 equation and solve

for θ̇8, which gives θ̇8 = f(θ1) since θ̇1 is a specified constant.

3. Substitute the expressions for θ8 and θ̇8 into the θ̈1-θ̈8 equation.

4. Solve the resulting equation for θ̈8, which gives θ̈8 = f(θ1) since θ̈1 = 0.

5. Solve
dθ̈8
dθ1

= 0 for θ1crit and determine the values of θ̈8max/min
corresponding to

each distinct value of θ1crit .

For an example, let the DH parameters be a1 = 1/8, a4 = 4, a7 = 1, a8 = 1/8,
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.

(a) RSSR angular velocity profile.

..

(b) RSSR angular acceleration profile.

Figure 5.11: RSSR angular velocity and acceleration profiles for a1 = 1/8, a4 = 4, a7 = 1,
a8 = 1/8, α8 = tan((60π/180)/2), d1 = 2, d8 = 2, θ̇1 = 10 rad/s.

α8 = tan((60π/180)/2), d1 = 2, d8 = 2 and the constant input angular velocity

be θ̇1 = 10 rad/s. Using the two algorithms above the output angular velocity and

acceleration are expressed in terms of the input angle, see Figs. 5.11. The extreme

angular accelerations for an RSSR linkage have not been reported in the literature

until now. Even if this is not precisely so, it is clear that the algebraic form of the

RSSR equation in the form presented herein has distinct advantages for computation

compared to any other representation. The extreme angular accelerations θ̈8max/min

and critical input angles are computed and listed in Tab. 5.7.

Table 5.7: θ̈8max/min
and θ1crit for θ̇1 = 10 rad/s.

Assembly Mode θ̈8max/min
rad/s2 θ1crit rad

1 18.91834314 0.8463167974

-30.06554948 4.506090280

2 -17.03055542 2.201742476

27.91274981 4.631288097
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To the best of the author’s knowledge, computational examples determining the ex-

treme output angular accelerations, and corresponding configurations cannot be found

in the body of archival literature.

146



Chapter 6

Conclusion

In this chapter, the key findings are summarised by answering the research questions

provided in the introduction of this thesis and by discussing the main contribution to

the field. This chapter will also examine the limitations and propose opportunities

for further research.

This thesis aimed to generalise the procedure for determining one single method

to obtain the algebraic IO equations for any kinematic architecture of a four-bar

linkage using only algebraic means. The proposed method consisted of considering

the linkages as an open kinematic chain which is described using the standard DH

parameters. Subsequently, the overall displacement of the end-effector of the chain is

mapped into Study’s kinematic image space and the linkage is conceptually closed by

equating the resulting set of polynomials to the identity which results in a complete

and general description of the linkage. Finally, the polynomial equations are manip-

ulated using elimination techniques from algebraic geometry to obtain the desired

algebraic IO equations.

The algebraic IO equations of all planar linkages discussed in this thesis, namely

the quadrilateral, slider-crank and double slider linkages, are derived following the
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exact same procedure. Clearly, the DH parameters differ with each linkage in the

initial problem statement. However, due to the simplicity of the linkages and the

constraint to move in a plane, the overall displacements map to four Study parameters

each. Equating these four polynomials to the identity in Study’s kinematic image

space, leaves only three equations that define the ideal which contains all information

on each of the planar linkages. Applying Gröbner bases with elimination ordering

“lexdeg” in Maple 2021 to eliminate two DH link variables reveals six algebraic IO

equations for each planar four-bar linkage. Each of these six equations is relating two

link variables and share the same coefficients.

Similar to the planar linkages, the IO equation of the spherical linkage was derived

by establishing the DH parameters, and mapping the displacement of the four-bar

chain on Study’s quadric. As expected, the last four Study parameters have zero en-

tries since there are no translational movements. After equating the overall displace-

ment to its identity, the ideal describing the linkage also consists of three polynomial

equations. Interestingly, the Gröbner basis elimination ordering “lexdeg” is com-

putationally very demanding. Instead, the monomial orderings “tdeg” followed by

“plex” lead, with one exception, to the desired algebraic IO equations. Eliminating

the first and last link variables to obtain the IO equation relating the two interme-

diate joint variables, the v3-v3 equation, required a different sequence of monomial

orderings: “tdeg” followed by “grlex”.

The derivation of the algebraic IO equation of the Bennett linkage follows the

same steps as for the planar linkages. First, the linkage is described using DH pa-

rameters. As this linkage involves spatial movements, the overall displacement of the

end-effector with respect to the base frame maps to eight Study parameters which

simplify by substituting the well-known Bennett conditions. Thus, after equating

the set of polynomials to the identity, the ideal describing the linkage consists of

148



seven polynomial equations. Joint variables are eliminated using Gröbner bases with

elimination ordering “lexdeg” that yields all six algebraic IO equations.

In contrast to all previous discussed IO equation derivations, the second spatial

linkage, the RSSR, requires a different elimination procedure. While describing the

linkage with standard DH parameters and establishing the closure equation by equat-

ing the overall displacement to its identity remains the same, the linkage is separated

into two dyads which are both expressed explicitly using Study parameters. Apply-

ing the linear implicitisation algorithm yields four hyperplanes in terms of the Study

parameters for each dyad which can be solved to obtain the algebraic IO equation of

the RSSR linkage.

Taken together, these results suggest that the procedure described herein is a

sophisticated method for obtaining algebraic IO equations of four-bar linkages. There

are no geometric insights of the linkage required except in the initial statement when

the DH parameters are defined. Moreover, there are no trigonometric expressions

involved which facilitates computing IO equations with modern algebra software.

The most important limitation, however, lies in manipulating the ideal that results

from equating the Study parameters to the identity. The more complex the kinematic

chain, such as spatial chains with lower pairs containing more than one dof, the larger

the polynomials, and the more motion and design parameters are involved in the ideal.

As the example of the RSSR has shown, it was not possible to apply Gröbner bases

in order to eliminate the intermediate joint angles. While computing a Gröbner basis

would in theory lead to a solution, the algorithm does not necessarily finish in practice

with the processing power available for this thesis. Nonetheless, this work has shown

that Gröbner bases constitute a great elimination tool for all planar and spherical

four-bar linkages.

Although this thesis was limited to a selection of linkages, the results indicate that
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it is feasible to use the suggested procedure to obtain algebraic IO equations for other

less investigated linkages. Clearly, having access to additional IO equations opens up

new perspectives in terms of finding a linkage that approximates a desired function

with minimal error. This could ultimately lead mechanical designers to choose from

a wider variety of linkages that “best” approximate the desired task.

In addition, Chapter 5 illustrated some concrete applications of the derived al-

gebraic IO equations. One promising application of the algebraic IO equations is

the evaluation of singular positions of the linkage using simple calculus. In addition,

this work has also revealed that the algebraic IO equations can easily be analysed

to examine the linkages’ relative mobility by determining the nature of its double

points and whether a link is assemblable at vi = 0. One interesting aspect that

emerged from the mobility analysis of the quadrilateral linkage is its representation

in the newly interpreted design parameter space which is spanned by the different link

length parameters. Every point in this space symbolises a proper linkage that lies in a

region with particular mobility information. Thus, mechanical designers can use this

tool for quickly analysing a given linkage on the link’s relative mobility. Finally, the

algebraic IO equations can be beneficial in determining the velocity and acceleration

kinematics. As an example has shown, the algebraic IO equations can be efficiently

differentiated and used to find extreme velocities and accelerations.

Overall, the results presented in this thesis are encouraging and should be vali-

dated by applying the algebraic IO equation derivation technique to other linkages,

such as the Bricard orthogonal 6R linkage. Furthermore, this study provides a back-

bone for continuous approximate synthesis as the optimisers of computer algebra soft-

ware require less processing time for integrating algebraic over trigonometric terms.

Not only does this thesis provide the algebraic IO equations, but it also revealed al-

gebraic velocity and acceleration equations that can be used for kinematic synthesis.
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Research into using these algebraic IO equations for kinematic synthesis is already

underway.
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Wien, Zürich, 1970.

[55] F. van Schooten. Mathematische Oeffeningen. Gerrit van Goedesbergh, 1646.

[56] C.M. Gosselin and J.-F. Hamel. The agile eye: a high-performance three-degree-

of-freedom camera-orienting device. In Proceedings of the 1994 IEEE interna-

tional conference on robotics and automation, pages 781–786. IEEE, 1994.

[57] N. Sancisi, D. Zannoli, V. Parenti-Castelli, C. Belvedere, and A. Leardini. A

one-degree-of-freedom spherical mechanism for human knee joint modelling.

Proceedings of the Institution of Mechanical Engineers, Part H: Journal of En-

gineering in Medicine, 225(8):725–735, 2011.

[58] C.H. Chiang. Spherical kinematics in contrast to planar kinematics. Mechanism

and machine theory, 27(3):243–250, 1992.

[59] J. M. McCarthy. Planar and Spatial Rigid Motion as Special Cases of Spherical

and 3-Spherical Motion. Journal of Mechanisms, Transmissions, and Automa-

tion in Design, 105(3):569–575, 1983.

[60] H.S.M. Coxeter. Non-Euclidean Geometry, 5th Edition. University of Toronto

Press, Toronto, On., Canada, 1965.

[61] W.T. Fishback. Projective and Euclidean Geometry, 2nd Edition. John Wiley

& Sons, Inc., New York, N.Y., U.S.A., 1969.

158



[62] An Tzu Yang. Application of quaternion algebra and dual numbers to the

analysis of spatial mechanisms. PhD thesis, Columbia University Morningside

Heights, New York, 1963.

[63] W. Pin, L. Hong, and W. Shi’en. New method for input-output equation of

spherical four-bar mechanism. In 2011 International Conference on Multimedia

Technology, pages 4986–4989, Hangzhou, China, 2011. IEEE.

[64] E.L. Harrisberger. Gross motions of a space mechanism. PhD thesis, Purdue

University, 1963.

[65] G.T. Bennett. A New Mechanism. Engineering, 76:777, 1903.

[66] K.H. Hunt. Kinematic Geometry of Mechanisms. Clarendon Press, Oxford,

England, 1978.

[67] J.E. Baker. Kinematic Investigation of the Deployable Bennett Loop. Journal

of Mechanical Design, 129(6):602–610, 2006.

[68] M. Skreiner. Methods to identify the mobility regions of a spatial four-link

mechanism. Journal of Mechanisms, 2(4):415–427, 1967.

[69] H. Nolle. Ranges of motion transfer by the R-G-G-R linkage. Journal of Mech-

anisms, 4(2):145–157, 1969.

[70] E.L. Harrisberger. Space crank mechanisms. Machine Design, 36(10):170–175,

1964.

[71] O. Bottema. The motion of the skew four-bar. Journal of Mechanisms, 6(1):69–

79, 1971.

[72] F. Freudenstein and E.J.F. Primrose. On the Criteria for the Rotatability of

the Cranks of a Skew Four-bar Linkage. ASME Journal of Engineering for

Industry, 98(4):1285–1288, 1976.

159



[73] N.M. Abbasi. Review of the geometry of screw axes. Retrieved December 6,

2022, from https://www.12000.org/my notes/screw axis/index.htm, 2006.

[74] M.L. Husty, A. Karger, H. Sachs, and W. Steinhilper. Kinematik und Robotik.

Springer-Verlag Berlin Heidelberg New York, 1997.

[75] J. Grünwald. Ein Abbildungsprinzip, welches die ebene Geometrie und Kine-
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3. American Mathematical Society, 1994.

[102] S.S. Balli and S. Chand. Transmission Angle in Mechanisms (Triangle in Mech).

Mechanism and Machine Theory, 37(2):175–195, 2002.

162
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