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Abstract

Calibration is a necessity for those who operate industrial robots and a cost-effective,
time-efficient means of accomplishing this task is highly desired. This thesis describes
the development of a calibration procedure for six-axis serial robots where the distinctive
feature of the procedure is that it employs the novel Relative Measurement Concept. The
main goal of this procedure is to utilize measurements relative to the end-effector of the
robot, as opposed to those provided in an absolute fixed coordinate frame. Images of a
precision-ruled straight-edge, acquired along its length and focused on the graduations,
yield relative measurement of the positioning errors. Robot parameter deviations can
then be identified so that the nominal parameters, resident in the robot controller, can be
corrected. The objectives of this thesis are to: develop the robot kinematics necessary to
compute the forward and inverse kinematics for any six-axis serial robot, develop a proce-
dure capable of using relative measurements, perform a simulation of the procedure, and
validate the results through experimentation with a Thermo CRS A465 serial robot. Sim-
ulation results are very encouraging and the experimental results lead to the identification

of the multiple sources of error corrupting the experimental calibration measurements.
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Claim of Originality

Certain aspects of the kinematic calibration of six-axis serial robots are presented herein

for the first time. The following contributions are of particular interest:

—

. The implementation of Pieper’s solution to the inverse kinematic problem in Matlab.

2. A closed-form solution and implementation in Matlab for the inverse kinematics of

wrist-partitioned serial robots using DH parameters.

3. A simulation of a kinematic calibration procedure, that uses absolute measurements,

for six-axis serial robots.

4. A simulation of a kinematic calibration procedure, that uses relative measurements,

for six-axis serial robots.

5. An automated data acquisition system that is used to capture numerous images of

a measurement artifact.

6. An error analysis of the experiment designed to validate the Relative Measurement

Concept.

Parts of these results have appeared in three refereed publications and technical reports

1,2, 3.
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Chapter 1

Introduction

Errors in end-effector position and orientation, which afflict all forms of robots, are the
primary indication of their performance and can dictate their possible applications. Over
the past four decades, since their introduction into the industrial world, the performance
characteristics of robots have been greatly advanced. However, the need for precisely
constructed complex parts has also grown substantially over the same time period. To
ensure that robot routines, that are generated through off-line programming, do not suffer
needlessly from deviations in robot geometry generated during construction, some form
of calibration must be performed. This thesis presents a calibration method that uses
relative measurements for robot kinematic parameter deviation identification. Computer
simulations and experimental results were pursued to develop and validate the Relative
Measurement Concept (RMC). The requirements for the new calibration system, which
employs the RMC are that it must perform as well as those based on absolute measure-
ments, successfully estimate all observable parameters, be of minimal additional cost to

the user, and not require the removal of the robot from its workspace.
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1.1 Motivation

Serial robots can be represented as a kinematic chain of links and joints. In between two
successive links is a joint that provides some form of relative motion capability. If the first
joint is commanded to a specific value, all the subsequent links and joints of the chain
are affected. The Thermo CRS A465, illustrated in Figure 1.1 was the robot acquired for
the experimental research of this thesis. It is a six degree-of-freedom serial robot. The
robot is rigidly mounted to a surface through its base and different tools can be mounted
to the robot’s tool flange. The end-effector, rigidly attached to the tool flange, is the
last link in the kinematic chain and represents the means by which the robot can affect
its environment. This particular robot has six revolute joints. The three distal axes all
intersect at a point and this configuration is commonly referred to as wrist-partitioned.
To achieve some desired pose, which places the end-effector of the robot in a specific

position with a specific orientation, each controllable joint variable must be commanded

Figure 1.1: The Thermo CRS A465.



CHAPTER 1. INTRODUCTION 3

to the proper value. Key information concerning the geometry of the robot, and various
ways to use this information, must be stored in the robot controller. The robot controller
is a computer system that accompanies and interfaces with the robot. A geometric model,
which fully describes all the links and interconnections of the robot, is stored in its memory
along with the means to compute how each joint must move to execute a motion.

To predict the end-effector position and orientation, given the joint angles, the forward
kinematics of the robot are computed. To go to a specified position and orientation, the
inverse kinematics are computed to obtain the necessary joint angles. Finally, to move the
end-effector at a specified speed the robot Jacobian must be computed and continuously
updated. The Jacobian relates the linear and angular velocity of the end-effector to the
joint rates. All of these hinge on an accurate kinematic model of the robot. Inaccuracies
in this model result in end-effector positioning and orientation errors as well as deviations
in trajectory and path planning. Thus, the kinematic model stored in the controller is of
great importance to the robot’s potential as a useful machine.

For a serial robot, any deviation between the nominal geometry of the robot and the
actual geometry defined in its manufacture, will propagate that error to the end-effector.
Geometric errors, which are the primary source of endpoint positioning error, accounting
for up to 95 % [4], can be identified through kinematic calibration. A calibration technique
for identifying these errors is the subject of this thesis. In general, a calibration procedure
entails acquiring measurements of the end-effector, comparing these measurements of the
robot’s pose to the predicted position and orientation, and relating these errors to the

kinematic parameter deviations.
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1.2 Objectives

The first objective of this thesis was to design and develop a calibration procedure, capa-
ble of identifying the deviations from the nominal robot geometry based on the Relative
Measurement Concept (RMC), which is discussed in Chapter 3. This calibration proce-
dure was developed by creating a simulation, where parameter deviations were specified
at the beginning of the program and the goal was to successfully identify these devia-
tions [1, 3, 5]. A number of simulation components were needed, such as the capability to
compute the forward kinematics, inverse kinematics, and the Identification Jacobian ma-
trix. The Denavit-Hartenberg (DH) and the Modified Denavit-Hartenberg (MDH) param-
eterizations were used to model the Thermo CRS A465 and the KUKA KR 15/2 six-axis
serial robots. The capability to substitute the geometry for other similar wrist-partitioned
serial robots is also possible. The Singular Value Decomposition (SVD) was employed to
obtain the pseudo-inverse of the Identification Jacobian matrix, so an approximate solu-
tion for the parameter deviations could be computed in a least-squares sense. To ensure
the proper function of the program components and to assist in the development of the
RMC calibration procedure, a companion simulation, based on absolute measurements,
was also created.

The second objective of this thesis was to validate the procedure with an appropriate
experimental setup. A calibration system, constructed in conjunction with a concurrent
project, consisting of a Charge-coupled Device (CCD) camera and a precision-ruled straight
edge, was utilized in this attempt at validation. A set of measurements from a preliminary

experiment with the KR 15/2 was first analyzed. Multiple sets of measurements were then

acquired with the A465.
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1.3 Advances in the Calibration of Serial Robots

Historically, calibration has been an expensive and labour-intensive task. Efforts over the
past twenty years have been focused on reducing costs and automating the calibration
process. The calibration of serial robots, due to their prominence in the manufacturing
sector and widespread use, has been a well-documented technical problem with many
researchers devoted to its solution. A survey of the more recent advances in serial robot
calibration was performed to explore different concepts and determine the current trends of
the research sector [2]. The focus of the survey was the proposed techniques for improving

calibration in the past ten years. The findings are summarized in what follows.

1.3.1 Calibration Methods

A wide variety of new calibration methods have been developed in the past decade. These
include inverse calibration methods and kinematic calibration methods. With inverse
calibration, the goal is to estimate the end-effector error for the entire workspace of the
robot by taking a discrete number of measurements. This error can then be added to
the end-effector position, as determined by the nominal parameters, to place it at the
desired pose. The objective of kinematic calibration methods is to identify the deviations
in the nominal kinematic parameters of the geometric model of the robot. These methods
generally fall into three categories: endpoint constraints, laser-based methods, and more

recently, camera-based methods.

Inverse Calibration

With inverse calibration, no attempt is made at identifying the geometric model of the
robot, rather a model for the end-effector error is generated. Correction functions are

generated by taking a discrete number of measurements in a portion of the workspace.
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The functions are then applied over a larger portion of the workspace to predict the end-
effector errors. Doria et al. [6] proposed a method in which spline functions, which are
piecewise polynomials, could predict end-point error based on a given joint angle set and
the nominal robot parameters. The end-effector, an attached sphere, was measured by a
fixture with three perpendicular sliders. The robot was mounted onto a solid plate with
this fixture. The Cartesian error would then be used to adjust the position determined
with the nominal parameters.

Zupancic [7] obtained measurements by use of a plate attachment, mounted to the tool
flange, with specifically-placed grooves. A stationary measurement device, consisting of
two linear displacement transducers, were spaced such that they would measure the top
surface and the bottom surface of the groove. This yielded measurements in two directions.
Error distribution functions were then generated in accordance with inverse calibration.

Park et al. [8] applied an inverse kinematic procedure to a robot operation that only
required two poses. By measuring these two poses with an apparatus that consisted of dial
gauges and a tooling ball, the Cartesian error was eliminated by appropriately moving the
end-effector.

The results of inverse calibration are relatively easy to implement with robot controller
software. As the tool frame can be defined by the user, and the predicted errors could be
incorporated as a look-up table or a mathematical function, this frame can be re-defined
for each specific pose. However, the displacements representing these predicted errors are
still afflicted by the parameter deviations. Thus, it is a valid method and would reduce
inaccuracy in the robot poses, but to achieve the best results the kinematic parameters

deviations should be identified.
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Endpoint Constraints

Constraining the endpoint usually entails affixing the end-effector to an external structure.
This constraint forms a closed-loop kinematic structure. As long as sufficient mobility
remains, the joints can still be actuated. Thus, computation of the forward kinematics
for different joint angle sets achieve the same pose of the end-effector. Another way to
constrain the end-effector would be to mate it with a planar surface. Relative motion
with respect to the plane would still be possible, but for each pose of the robot, geometric
constraints are placed on the entries of the general transformation matrix for the robot.

An external sensing device, with several sensed degrees-of-freedom, was developed by
Khoshzaban et al. [9] to calibrate heavy machines with hydraulically-powered serial ma-
nipulators. The device was fixed to the base of the machine and then to the end-effector
of the manipulator, closing the kinematic loop. For smaller industrial robots, Omodei et
al. [10] constructed a measurement artifact in which the end-effector could be inserted into
numerous holes.

Tang and Liu [4] compared three methods based on flat surfaces. With a flat surface
aligned with the base coordinate system of the robot, a suitable pose, where the end-
effector was made to have perfect surface contact with the flat surface, could be achieved.
The three methods involved different apparatus. With the first, a solid block with a flat
surface was mounted on the tool flange of the robot. For the second, a set of linear
displacement transducers, symmetrically arranged, were mounted on the end-effector and
the third involved a laser displacement sensor and a stepped pyramid measurement artifact.
In Ikits and Hollerbach [11], a touch probe was used in conjunction with a fixed plane
described by the general equation of a plane in Cartesian space. Khalil et al. [12] also
evaluated this method through simulation.

Custom-built sensing devices and fixtures are an innovative way in which to potentially

provide a great number of measurements from one contact position. They also make use
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of the built-in joint encoders of the robot. The device proposed by Khoshzaban et al. [9]
allows a certain freedom in the movement of the end-effector, due to the degrees-of-freedom
of the sensing device, but the measurement phase is inherently a manual process. The
sensing device is subject to kinematic errors and the resolution of the joint encoders limit
its potential for other robots, but fine accuracy is not necessary for heavy machines such as
excavators and log-loaders. The measurement artifact of Omodei et al. [10] requires that
each pose be taught to the robot controller. The planar constraint methods suffer from this
disadvantage as well, making them somewhat tedious to set up. Once the teaching process
is completed, the process could be automated. However, if the surface or measurement
artifact is moved, all of the poses must be re-taught. A method that requires very limited

setup and space is highly desired.

Theodolites and Laser-based Methods

Theodolites have been widely-used for the calibration of serial robots. They essentially
provide the horizontal and elevation angles of the line of sight from the base to a mounted
target. They do not provide distance information. However, two or three of these devices
can be used to triangulate a position. As multiple targets can be mounted to the end-
effector, the full pose of the robot could be measured by mounting three targets.

In their development of an automatic theodolite, Driels and Pathre [13] incorporated
a camera into the design of a theodolite. But the automatic theodolite was an additional
2 degree-of-freedom sensing device that needed calibration itself. As with theodolites, this
device reported the horizontal and elevation angles with respect to its own coordinate
system. However, it was automated with stepper motors that would focus the camera
onto the reference target mounted on the robot.

Sultan and Wager [14] used two theodolites to separately determine the location and

orientation of a robot’s joint axes. Abderrahim and Whittaker [15] performed a similar
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calibration technique, termed circle-point analysis, but with a laser tracking device. Both
of these methods required the actuation of one joint at a time. The path of the end-effector
was a circle in Cartesian space that could be measured by their respective systems with a
target mounted on the end-effector. However, with the method of Sultan and Wager [14],
the joint transmission errors could be profiled.

Omodei et al. [16] calibrated a SCARA class robot with a unique laser and mirror
measurement system. A plane mirror and a concave mirror were attached to the end-
effector and it was commanded to traverse a path parallel to the direction of a laser beam.
The beam was reflected onto a screen which was monitored. A deviation in the incident
location yielded a measurement of the orientation of the end-effector.

A 3D laser tracking system and three cat’s eye laser targets were used by Drouet et
al. [17] to calibrate the geometric and elastic errors of a patient positioning system. Due
to the wide range of loads expected in its service, the elastic errors were more promi-
nent. However, the calibration was performed as with industrial manipulators but more
measurements were required to accommodate the elastic error model.

The use of theodolites is inherently a manual operation, however, methods based on
this measurement device are well-established in the literature. The automation of these
devices could be quite beneficial. But, their accuracy would depend on the quality of their
components, and again the geometry stored in the controller would be different from the
machine’s actual geometry. Lasers are a similar device, but can also provide the position
vector to the target. Mirrors, or metallic surfaces, can be used to reflect the beam as
performed by Omodei et al. [16]. In their setup, a camera recorded the position of the
spot on a screen. Although an interesting setup, the robot does not necessarily follow
a path parallel to the laser beam, which could affect the results. Cat’s eye laser targets
reflect the beam back to the source to register the measurement. Laser tracking systems

are based on this principle, only they are automated. Unfortunately, the cost of such a
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system would be relatively high.

Camera-based Methods

Camera-based calibration methods rely on Charge-coupled Device (CCD) cameras that
generate a pixelated image of the reference object. One, or two cameras in a stereo-vision
setup, can be incorporated into the calibration system. Analysis of the images reveals the
error of the pose. If a camera is mounted as the end-effector of the robot, the extrinsic
properties define its relation to the tool flange. Intrinsic properties govern its focal length
and the scale factor. Other considerations when using CCD cameras are, for example,
perspective distortion, radial distortion, and pin-cushioning.

Zhuang et al. [18] developed a one-stage procedure for the calibration of a camera
and a robot. As with many other researchers, a PUMA 560 robot was used along with
a calibration board. The calibration board is a glass plate with an array of dots painted
on the surface. The board was mounted on a Coordinate Measurement Machine (CMM),
so that it could be displaced in known quantities. This established the world coordinates
of the dots. Images of the calibration board are taken from various robot configurations
and the transformation between the camera frame and the world frame can be identified.
Zhuang et al. [19], used this equipment on a SCARA arm in a similar calibration procedure.
Given the world coordinates of the calibration board and acquiring its image coordinates
with the CCD camera, the intrinsic and extrinsic properties of the camera are identified.
Essentially, these properties determine the pose of the camera, the end-effector, in the
world coordinates.

A single CCD camera was used by Motta et al. [20] to calibrate two robots: an ABB
IRB-2400 and a PUMA 500. The camera was mounted to the tool flange and acquired
images of a calibration board placed at a distance of 0.60 m to 1.00 m from the robot. The

camera parameters were obtained through use of the radial alignment constraint method.
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Rousseau et al. [21] used a unique measurement artifact in their camera-based calibration
method. The target consisted of a number of spheres that were accurately positioned
in three-dimensional space. When an image of the sphere array was taken, the pose of
the camera could be determined as the spheres would be in unique pose. One of the
spheres was oversized to ensure that all the spheres could be identified. The coordinates
of the circles in the image plane were mapped to the physical coordinates of the spheres
to identify the camera pose.

Meng and Zhuang [22] developed a self-calibration method for camera-robot systems.
Self-calibration is a process in which the parameters of the system are determined without
a known scale factor. The rotational aspect of the camera-tool flange transformation can
be successfully identified but the translational component is only known up to a scale
factor. A set of optimal configurations are chosen that have the same scale factor and

then a length standard is incorporated.

1.3.2 Calibration Optimization

Many new and innovative methods to perform calibration were developed in the last
decade. However, some researchers have developed ways in which to improve the calibra-
tion process. These include creating new models to describe robot geometry, simulation
techniques to identify sufficient measurement poses and suitable equipment, indexing of
the calibration methods to classify them according to measurement potential, and the
optimization of robot configuration for measurement purposes.

Zhuang et al. [23], Okamura and Park [24], and Chen et al. [25] proposed new models
in which the geometry of a robot could be described. It is desired that geometric models
be minimal, complete, and parameterically continuous. A model is minimal and complete
when the minimum number of parameters is used to fully describe the geometry of the

robot. It is parameterically continuous when small deviations in robot geometry result
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in small errors of the end-effector. The DH parameterization suffers from singularities
when neighbouring axes are nearly-parallel. Zhuang et al. [23] modified their previously
developed complete and parameterically continuous model to bring it closer to the widely-
used DH model. Okamura and Park [24] and Chen et al. [25] utilize the product-of-
exponentials model, which is based on screw theory.

Adopted by most of the research community, Zak et al. [26] emphasized the need for
simulation of calibration experiments before an actual attempt was made. Hollerbach and
Wampler [27] created a calibration index so that a particular calibration method could be
judged based on the measurements that are performed. Essentially, all calibration methods
can be thought of as closed-loop kinematic chains, where the measurement closes the loop.
The generation of optimal robot configurations for calibration was researched by Zhuang
et al. [28]. By using an observability index, the condition number of the Jacobian matrix,
which relates linear and angular velocities of the end-effector to the joint rates, the effect

of the measurement uncertainties could be minimized.

1.3.3 Distance Measure Method and the RMC

A calibration method, devised by Gong et al. [29] and compared to other methods by
Khalil et al. [12], uses a measurement device that is a combination of a laser displacement
sensor and an optical sensor. It is based on configuring the robot in a pose that places the
end-effector at a known distance relative to another pose. This is similar to the RMC, but
there are significant differences.

In their calibration method, a measurement artifact was constructed where a number of
holes were drilled in an aluminum plate. The centre-to-centre distance between each hole
was measured by a CMM. A CMM typically has an accuracy of £0.01 mm. The optical
sensor, mounted on the tool flange of the robot and requiring hand-to-sensor calibration,

placed the hole’s centre such that it was coincident with the image centre in the image
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plane. The vertical distance from the end-effector to the plate was provided by the laser
displacement sensor. This sort of positioning was most likely accomplished by teaching.
Though it was stated that the measurement process was automated, it does not exploit
the fact that the robot moves relative to its current position. By precisely positioning the
robot at each of the holes, where the distance between all the other holes is known, the
error in this length can be computed. This method has an index value of C' = 1 according
to Hollerbach and Wampler [27]. This index essentially means that for one measurement
with their system, one equation is generated. For the system based on the RMC, C' = 2,
which will be expanded to C' = 3, and possibly to C' = 6, which corresponds to full pose
measurement and the maximum value of the index. This means that a factor of six fewer
measurements would be needed.

With the RMC, the relative nature of the movements, prone to error derived from the
inaccuracy of the robot model and not its repeatability, is utilized. With an attached CCD
camera, which does not require hand-to-sensor calibration, the end-effector is moved in
increments along the length of a precision-ruled straight edge. By not having to perform
hand-to-sensor calibration, the error chain is shorter and errors generated in the camera
calibration would not propagate to the robot calibration. The ruler is commercially avail-
able and fabricated according to certain standards governing flatness and tolerances. It
has an accuracy of approximately £0.003 mm. The cost of this ruler is approximately
$560.00, compared to $50,000.00 for a CMM. Images are taken at each of the increments.
The shifts in the images, when compared to a reference image, yields the difference data.
An equivalence to the method offered by Gong et al. [29] would be teaching all the robot
poses so the camera was centred on the intersection of the edge of the ruler and each
graduation of the ruler. This is a highly arduous task given the repeatability of the robot.

The measurements acquired using the RMC are not reduced to a single dimension as

in the distance measurement method. Errors in two coordinate directions are currently
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measured, hopefully to be expanded to a third with a laser displacement sensor. Our goal
is to measure relative displacement errors in all three coordinate directions and substitute

them for absolute measurements, not reduce them to one dimension.

1.4 Thesis Overview

In this chapter, the problem of geometric errors, that afflict all manner of robots, was
introduced. The source of these errors were discussed along with the need for the calibra-
tion of robots. Advances and innovations in the calibration of serial robots, and matters
relating to calibration, over the last decade, were reviewed and it was found that most rely
on absolute measurement positioning sensors or camera-based techniques. Camera-based
methods, like the one incorporating the RMC, were found to be the most cost-effective
and promising.

Presented in Chapter 2 is the theoretical background needed for the geometric mod-
elling of robots, the computation of the forward and inverse kinematics, and the derivation
of the Identification Jacobian matrix. The fundamentals of robot kinematics, leading to
homogeneous transformation matrices, are discussed, followed by the description of the
DH and MDH parameters, which includes the assignment of coordinate frames and the
robot parameters. Brief descriptions of the Thermo CRS A465 and the KUKA KR 15/2
are given along with their associated DH and MDH parameters and coordinate frame
assignments. Two methods for the computation of the inverse kinematics for six degree-
of-freedom serial robots are derived: Pieper’s solution and a closed-form solution that uses
the DH parameters. Finally, the derivation of the Identification Jacobian is reported along
with its pertinence to calibration.

Chapter 3 serves to introduce the RMC and describes a conventional calibration method,

based on absolute measurements, used as a reference model. The fundamentals of robot
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kinematics, explored in Chapter 2, are used in the development of both of these methods.
The SVD matrix factorization method is presented as it is used to compute the pseudo-
inverse of the Identification Jacobian matrix in both methods. The method in which the
RMC measurements are utilized in a calibration scheme is discussed as well as the benefits
of the experimental system.

Chapter 4 presents the simulation results for the absolute and relative cases. The
implementation of the essential components of the simulations, pose generation, measure-
ment acquisition, the incorporation of noise, parameter identification, and convergence,
are described. Results from both cases are offered along with particular issues that would
influence the experimental trials.

In Chapter 5, the setups for both experiments, based on the KUKA KR 15/2 and
the Thermo CRS A465, are described. In the case of the A465, an automated camera-
based measurement acquisition system was developed. Several observations are made
concerning the experimental data and the influences of measurement noise. The results of
the kinematic calibration procedure, with this data, are reported.

Chapter 6 summarizes the achievements made in this thesis. Several conclusions are
offered from the results of the simulations and preliminary experiment towards a kinematic
calibration procedure based on relative measurements. Finally, recommendations for future

work and experimental testing are suggested.



Chapter 2

Robot Kinematics

The fundamental principles of robot kinematics, which allow one to represent a physical
robotic manipulator as a geometric model, will be discussed in this chapter. The simu-
lations created to perform the kinematic calibration, which utilize absolute and relative
measurements, employ these principles to compute the position and orientation of the end-
effector (forward kinematics), the corresponding joint angles necessary to attain a specific
pose (inverse kinematics), and the Identification Jacobian matrix used for kinematic pa-
rameter deviation identification (differential kinematics).

Robots are an arrangement of links connected together with joints which allow rela-
tive motion between the links. Joints can either be rotational, where the relative motion
consists of a rotation about an axis defined at the joint, or prismatic, where the relative
motion consists of a translation parallel to the longitudinal axis of the joint, or combi-
nations involving these basic joints. Spherical, cylindrical, screw, and planar joints can
be modelled as combinations of prismatic and revolute joints. A series of rigid links con-
nected together via joints is modelled as a kinematic chain. Within this chapter, the
mathematical concepts required to geometrically model robots as kinematic chains will be

presented. This includes the computation of the forward kinematics, inverse kinematics

16
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and the Identification Jacobian.

2.1 Forward Kinematics

The computation of the forward, or direct, kinematics for a robot is the process in which
the position and orientation of the end-effector, the last link of the kinematic chain, is cal-
culated given the variable joint inputs and geometric model. However, the representation
of points, vectors, and transformations using matrix operations must first be discussed as

well as the parameterization conventions.

2.1.1 Transformations

A transformation, or mapping, is a matrix operation that transforms the coordinates of
a point in one frame into coordinates for the same point expressed in another frame.
Attached to each joint of a robot, along with its base and end-effector, is a coordinate
frame and so it is of key importance to be able to represent points in these frames and
express them relative to any desired frame. Matrices and vectors will be used to describe
points, orientations, translations, rotations, and general transformations.

A point, P, as seen in Figure 2.1, has the coordinates p,, p,, and p, relative to reference

Figure 2.1: Representation of a point in a reference frame.
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frame Fy,,. A reference frame, for the purposes of this thesis, is a stationary coordinate
system in which all other constructs, such as points, vectors, or frames themselves are
described. Fj,, is defined by origin Oy, and three orthogonal unit vectors: i, j, and
k, which are directed along the z, y, and z axes. Thus, the orthogonal component-wise
expression for point P is:

P = p,i+p,j+pk. (2.1)

This expression of point P can also be represented using vector form:

Ds

P

In this form, the entries of the rows represent coordinates in the three linearly independent
orthonormal basis directions.

A vector is used to describe the distance between two points in space as well as a
specific direction. The point P and the origin of reference frame Fy,, can be used in
the assignment of a position vector directed towards and terminated at point P while

originating from O,,., as seen in Figure 2.2. The coordinates of O,,, are (0,0, 0)7. Thus,

A
Ly

Figure 2.2: Representation of a vector in a reference frame.
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the expression for the position vector p is:

P = (p.—0)i+(p,—0)j+ (p. -0k

= p,i+p,j+pk (2.3)

A vector with a left-hand superscript, such as *¥?*p, means the vector is described in that
specific coordinate frame. Thus, the vector p of Equation 2.3, could have been written
T¥%p. Note that the expression obtained in Equation 2.3 is identical to that in Equation 2.1.
The vector form of this expression is identical to that of Equation 2.2.

The means to use homogeneous transforms will now be discussed. A 3 x 3 rotation

matrix,
Ny Oy Qg

R=|n, o q |> (2.4)

N, 0 a,

can be created by concatenating three unit vectors, n, o, and a. With respect to Figure 2.3,
the n direction of F,,, is expressed in the z, y, and z coordinate directions of the reference

frame, Fjy,, in the first column of Equation 2.4. Thus, to express points defined in F,,

Figure 2.3: Representation of a coordinate frame relative to a reference frame.
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Figure 2.4: Point P expressed in frames Fiy, and Foq.

in the coordinates of Fjy,:

a:yzp _TYz Rnoa noap +d. (25)

The coordinates of vector *¥?p, expressed with respect to F3,,, are computed by first
aligning Fpo, with Fy, through the rotation *?R,.,, applying this to "°p, and then
translating them by the distance between the origins of the frames, d. This can be seen
in Figure 2.4.

However, this operation, related in Equation 2.5, is not a linear transformation. The
operation is not distributive under the two properties of vector addition, T(u + v) =
T(u)+T(v), or scalar multiplication, T(cu) = ¢T(u), where T represents a transformation
matrix [30]. A convenient matrix multiplication approach, that combines rotations and
translations into one operation, is desired. This is achieved through the use of homogeneous

coordinates. An additional row is included in the description of positions:

Uz

Cz
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where p,, py, and p, are related to a,, by, and c, by:

=)

(2.7)

b
pm:ﬁ,py:?ﬁapz:

S'IQS’

The homogenizing coordinate, w, is used to define directional and positional vectors.
A vector which has a homogenizing coordinate equal to one yields the Cartesian difference
in position between two points. A vector whose homogenizing coordinate is equal to zero
is used to indicate a direction with respect to the reference frame. When w = 0, the vector
represents the point at infinity through which all parallel vectors pass.

The means to algebraically represent coordinate frames, using homogeneous coordi-
nates, has now been established. With respect to a reference frame, another coordinate
frame can be described by amalgamating four vectors, three directional vectors and one
positional, into one matrix. The orientation and position of this new frame, the working
frame, relative to the reference frame is determined by the entries within this matrix.
In general, to transform points described in F,,, to their counterparts in F,,, shown in

Figure 2.3, the matrix:

Ng Oy Gy dg

msznoa= oo d y (28)
N, 0, A, d,

<

0 0 0 1

is used, where the first three columns consist of entries that define the directions of the
three mutually orthogonal unit basis vectors of F,o, relative to the reference frame Fy,,

and the entries of the last column define the position of the origin of F,..,, the working
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frame, with respect to Fy,,. Thus, the relation replacing Equation 2.5 is:

4 W r 9 ¢ )
p(E pn
p R d p
Yy L _ 3x3 3x1 ) ] Y (2‘9)
Y2 Da
1 0 0 0 1 1
\ 7 L - \ V

where the structure of the transformation matrix is illustrated.

Unless otherwise stated, the transformations used in this thesis are coordinate trans-
formations, as opposed to geometric transformations. A coordinate transformation can
be thought of as moving the coordinate system relative to a stationary object while a
geometric transformation is used to displace the object relative to a stationary coordinate
system. A geometric transformation is the inverse of the corresponding coordinate trans-
formation. The transformation operator is denoted T, where the left superscript indicates
a reference frame and the right subscript indicates the working frame described relative
to that reference frame. With reference to Figure 2.4, the vector pye, is transformed into

vector Py, via the transformation *¥“T,,,, and computed by:

_zyz

pzyz = Tnoa Proa- (210)

If F,,o, originated at the same point as the reference frame and its coordinate directions

were the same as well, then the matrix would be a 4 X 4 identity matrix,

zyzr:[‘noa =

(2.11)

o o O
o =
o
o o O
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XN

Figure 2.5: Representation of a coordinate frame that is coincident relative to a
reference frame.

A visual representation of this can be seen in Figure 2.5. This can be thought of as a
starting point in the construction of a complex transformation from a series of elementary
transformations.

There are two elemental displacements: translations and rotations. A translation is a
linear displacement in a specified direction and a rotation is an angular displacement about
a specified axis. With translations, the origin of a frame is displaced by a fixed amount
while the orientation of the frame remains constant. Consider the three frames, Fyy., Froa,

and F,,o of Figure 2.6. The translation between F,,,, and F,. can be described with a

3]
»

Figure 2.6: The two interpretations of a translation of frame F,,,.
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transformation matrix. F,,, has already been described relative to Fy,, with *¥*T,,,. The
translation to Fy.y can be given relative to Fy,, or with respect to Fyo,. Interpretations
of both of these cases can be seen in Figure 2.6.

The effect of specifying the translation relative to the reference or working frame is
to either pre- or post-multiply the transformation in the overall series of transformations.
With reference to Equation 2.10, the translational transform would appear immediately
before or after *¥*T,,,. Pre-multiplication is for transformations defined relative to the
reference frame while post-multiplication is reserved for transformations defined with re-
spect to working frame. The translation transformation matrix, with respect to the Fy,,

reference frame, is:

__noa

TTranslation (ta:a ty7 tz) - Tnoal = (2 12)

The operation will only affect the positional elements, p,, p,, and p, of the general trans-
formation matrix of Equation 2.8 when multiplied. The rotation portion is unaffected by
such a transformation.

For rotational transformations, an angular displacement is specified about a particular
axis. The right-hand-rule convention is used for positive angular displacements. The
minimum impact of a rotation is that it will change the direction of two axes of the working
frame. This occurs when the angle is specified about one of the axes of the working frame.
If the angle is specified about an axis of the reference frame, where the working frame is
arbitrarily oriented relative to the reference frame, then all three directions for the axes of
the working frame will change. To identify the rotation transformation matrix, consider

the two frames, Fy,, and F,,, which originate at the same point but F,,,, has been rotated
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Figure 2.7: Two frames with the same origin, Fyy, and Fyoq, where frame Fyo, has
been rotated by an angle a about the z axis.
by an angle, «, about the x axis, or n axis, as depicted in Figure 2.7. A point, P, exists
in the yz plane, as well as the oa plane, and is described relative to both frames with
the appropriate distances. The expressions that relate the position of the point in the

reference frame to those in the current frame are:

Pz = Pn (213)
Py = PoCOSQ — Pgsina, (2.14)
D: = DPoSina + p,COSa. (2.15)

By arranging the expressions of Equations 2.13 to 2.15 into matrix form and including

the homogenizing coordinates,

Pz 1 0 0 0 Pr
0 cosa —sina O
O Po (2.16)
P2 0 sina cosa O Pa
1 0 0 0 1 1

Recall that the two frames share the same origin, thus the translational portion is (0, 0,0, 1)7.
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The transformation matrices for rotations about the z, y, and z axes by angles of a,

3, and 0, respectively, can be computed with:

1 0 0 0
0 cosa —sina 0

TRotation(xa Oé) = ’ (217)
0 sina cosa 0
0 O 0 1
cosf 0 sing 0
0 1 0 0

TRotation(ya ﬁ) = ) (218)
—sinB 0 cosB O
0 0 0 1
cosf# —siné 0 O
sinf cosfd 0 O

TRotation(z, 6) = (2.19)
0 0 10
0 0 0 1

The elementary displacements are depicted in Figure 2.8.
z z za
a a
a
p 6
a 0
B ) 0
V.0 y Yy
n xn X n

Figure 2.8: The elementary transformations.
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The elementary transformations presented in this chapter are used to construct more
complex transformations based on various conventions for the geometric modelling of
robots. The translations and rotations used to describe robots configurations, from the
base, to the joints, and finally to the end-effector, are dependent upon the geometry of the
robot and the joint angles provided for a specific pose. These conventions will be explored

next.

2.1.2 Denavit-Hartenberg Parameters

The standard model used to algebraically represent the kinematic geometry of a robot was
proposed by Denavit and Hartenberg [31]. Under their convention, a coordinate frame
is attached to each joint of the robot, from which coordinate transformation matrices are
derived, which are then used to compute the kinematics and dynamics of the system.
Thus, there are two main tasks; assigning the coordinate frames and then characterizing
the associated robot parameters used in the matrix operations.

The general procedure in which coordinate frames are assigned is as follows:

(i) Identify all the joint axes of the robot. All joints are represented by a z axis. For
rotary joints, it indicates the axis of rotation. For prismatic joints, it indicates the

direction of translation.

(ii) Identify the common perpendiculars between neighbouring joint axes. The origin of
the i frame lies on the (i + 1) axis at its intersection with the common normal
between the i** and (i+ 1)** axes. The z; axis is directed along this common normal.

In general, there are three cases that can arise in terms of its direction.

A. The neighbouring joint axes are skew lines. In this case, a unique common
normal exists between the axes and the direction of this line is the direction of

the z axis for the current coordinate frame.
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B. The neighbouring joint axes intersect. In this case, the z axis will be assigned
in the direction perpendicular to the plane that contains the two z axes of the

neighbouring joint axes.

C. The neighbouring joint axes are parallel. In this case, there are an infinite
number of common normals. The common normal co-planar with the previous

z axis will be chosen to represent the z; axis.
(iii) In general, assign the z; axis to be directed along the joint axis ¢ + 1.
(iv) Assign the z; axis to be the relevant direction specified in the three cases of (ii).
(v) Assign the y; axis to complete the right-hand rule.

Note that the assignment of the base reference frame, Fjp, is not included in these
steps. Any convenient location will suffice, and this is usually chosen to be somewhere in
the base of the robot and defines the world coordinate system. This means that the frame
assignments are not unique. Moreover, the positive directions of rotations and translations
associated with joint variables are arbitrary; however, convenient choices should be made.
For rotations, the positive direction is taken as that defined by the right-hand-rule for axes
and for translations, the positive direction is along the length of the actuator towards its
distal end.

Once the coordinate frames have been assigned, the Denavit-Hartenberg (DH) param-
eters must be extracted. Each of these parameters may be thought of corresponding to
an elementary transformation. The orientation and position of each frame, relative to the
previous one, can be obtained through the multiplication of the elementary transforma-
tion matrices. A set of four DH parameters exists for each joint of the robot. The four
parameters comprise: a controlled joint variable, either an angular displacement in the

case of revolute joints or a linear displacement in the case of prismatic joints, and three
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Figure 2.9: The Denavit-Hartenberg transformation.
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constant parameters, based on the geometry of the link and the interconnection to the

next link. The joint angle, 8, and the link offset, d, defined in the list below, are the

parameters associated with the interconnection. The link length, a, and the link twist,

o, are associated with the geometry of the link. As a and a are always constants, they

represent a fixed relation between two successive joints.

With reference to Figure 2.9, the four independent DH parameters and their relations

between adjacent frames, F; and Fj,,, are defined as follows:

(i) 6;+1 is the angle of rotation about the z; axis. The z; axis is rotated by the angle

;1 to form an intermediate coordinate frame, F4, whose z4 axis is parallel to the

Z;+1 axis and z4 axis coincident with the z; axis.

(i) diy1 is a translation along the z4 axis. The second intermediate coordinate frame,
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(iii)

(iv)

Fg, is obtained by translating the origin of F)4 along the z, axis a distance of d;;.
The zp axis of this coordinate frame is coincident with the z;,; axis while the zp axis

remains coincident with the z; axis.

a;y1 is a translation along the zp axis. The third intermediate coordinate frame,
Fe, is defined by translating the origin of the Fp along the zp axis a distance of
a;; 1. The origin of this frame is coincident with that of the final frame’s origin, O;4;.
The z¢ axis of this frame is coincident with the z;,; axis and originates at the same

point. The 25 axis of this frame is parallel to the z; axis.

a;11 is the angle of rotation about the zo axis. The final frame is achieved by
rotating the z¢ axis with respect to the xz¢ axis by an angle of ;4 to align itself

with the 2;,; axis. Now, Fjy is fully defined, with respect to F;.

There are three intermediate frames so generated. These frames are important in the

respect that, in general, the (i + 1)'* frame is always defined relative to the (i) frame,

and not the base reference frame. Thus, after an elementary displacement, in which an

intermediate frame is generated, the next frame after that will be defined relative to

that intermediate frame, and so on. Thus, all the transformation matrices involved in

this procedure are post-multiplied, starting with the rotation of #;,; about z;, denoted

T Rrotation(2i, 0i+1). The expression, involving the elementary displacements, for the general

DH transformation is thus obtained as:

1
Ti+1 = TRotation (zh 6i+1)TTranslation (Oa Oa di—H )TTranslation (ai—{-—la Oa O)TRotation (.’LC, (6788 )

(2.20)
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The resulting general transformation matrix,
i ]
cosfiy; —sinfycosayy;  sinfysinagpy @iy cosfiy
iTH_l _ sin 9,'_‘_1 COS 6i+1 COS Q341 — COS 6i+1 sin Qi1 Aip1 sin 0,'4_1 , (221)
0 sin (078N | COS (Y41 di-l—l
0 0 0 1

maps points in the (i + 1) frame to those in the i frame, and is denoted “T;;.
In general, for a series of N frames, the overall transformation between the first frame,

F,, and the last, Fy, would be the matrix multiplication of all the DH transformation

matrices:
Ty =0T, 'Ty - V2T , V1T (2.22)
Thus, for a six degree-of-freedom robot, the overall robot transform would be:
OT¢ =° T, 'T, T3 Ty *Ts °Ts. (2.23)

This overall robot transformation relates points expressed in the tool flange reference
frame to those of the same points expressed in the world coordinate frame. Equation 2.22
represents the forward kinematics of an N degree-of-freedom serially-connected robot.
The DH parameterization model was not the only one pursued however, as the inverse
kinematic problem could not be easily solved using this convention. The Modified Denavit-
Hartenberg (MDH) parameterization, outlined in [32], allowed the use of Pieper’s solution

to the inverse kinematic problem and this convention will be discussed next.
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2.1.3 Modified Denavit-Hartenberg Parameters

The MDH parameterization is very similar to the DH parameterization, but, as its name
implies, there is a slight modification present. The four parameters, 6, d, a, and o are
still used and they represent the same geometric quantities. However, there are important
changes to the assignment of coordinate frames and to the order of elementary transfor-
mations accompanied by each parameter.

The assignment of coordinate frames follows the same rules as outlined in Section 2.1.2,
with two exceptions. First, the origin of the i** frame is located on the i** joint axis.
Second, the base frame, Fy, is taken into account. Fg is assigned such that it mirrors Fj
when 0; is zero. The other important modification is that the order of the elementary
transformations, corresponding to the robot parameters, is different. As was reported in
Section 2.1.1, the order of transformations, pre-multiplication or post-multiplication, is

significant. With reference to Figure 2.10, the expression for the MDH transformation is:

ZTH—l = TRotation (xh ai)TTranslation (a’ia 0, O)TRotation(zBa Hi-l—l)TTranslation(Oa Oa di+1)-

(2.24)

As seen in Equation 2.24, the indices for the a and o parameters are one increment
behind the d and 6 parameters. As stated previously, the four parameters represent the
same basic operations, however, they are associated with the mechanical design of the
robot. As the coordinate frames under the MDH parameterization are assigned under
slightly different rules, the expressions for the transformations between frames involve
different geometric quantities. In the case of the MDH parameterization, the parameters
used in one transformation can be related to the geometry of a particular link and the
interconnection between it and the previous link. In the DH model, the geometry of a

link and the interconnection between it and the next link is utilized in a transformation
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between frames. The MDH transformation matrix is:

cos ;11 — sin ;41 0 a;

sin ;.1 cosa; cosfiicosq; —sina; —dipysing;
i+1 = . (2.25)

sinf; 1sinq; cos;iisine; cosa;  dipicosa;

i

I 0 0 0 1

With reference to Figure 2.10, the procedure for transforming the coordinates in the (i+1)™"

frame to those in the " frame is as follows:

(i) o; is the angle of rotation about the x; axis. The z; axis is rotated by the angle o;
to form an intermediate coordinate frame, F4, whose x4 axis is coincident to the

x; axis and z4 axis parallel with the z;,1 axis.

(ii) a; is a translation along the x4 axis. The second intermediate coordinate frame, Fp,

Joint Joint Joint
a‘." ) i+l 2
"'r..-r_ Link
o i+2
- -
Link
i+
\
‘xz'+j'
Y

X
? 9;-+1

Figure 2.10: The Modified Denavit-Hartenberg transformation.
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is obtained by translating the origin of F4 along the x4 axis a distance of a;. The
rp axis of this coordinate frame is coincident with the z; axis while the zp axis is

now coincident with the z;,; axis.

(iii) 6;41 is the angle of rotation about the zp axis. The third intermediate coordinate
frame, F, is defined by rotating the zp axis of Fg by an angle of §;,,. The z¢ axis
of this frame is now parallel to the z; ;) axis and the z¢ axis is coincident with the

Zi+1 axis.

(iv) diy1 is a translation along the z¢ axis. The final frame is achieved by translating
a distance of d;,, along the z¢ axis. The (i + 1) frame is now fully defined with

respect to the i* frame.

The coordinate frames and robot parameters were assigned using both the DH and
MDH models for two robots: the KUKA KR 15/2 and the Thermo CRS A465. A brief
introduction will now be given regarding these two six-axis serial robots as well as the

corresponding coordinate frames and robot parameters.

2.1.4 Forward Kinematics of the Thermo CRS A465

The Thermo CRS A465 six-axis serial robot is a relatively small manipulator and is rea-
sonably precise, which is typical of small serial robots. It has a maximum reach of 711 mm
and a maximum payload of 2 kg. It also has a stated repeatability of £ 50 pgm. The ma-
nipulator has six degrees-of-freedom, which are provided by six actuated revolute joints.
The axes of the last three of these joints intersect at the wrist-centre. Such an architecture
is typically called spherical wrist, or wrist-partitioned. Figure 2.11 illustrates the A465 and
the experiment setup.

The forward kinematics will be analyzed using the DH and MDH parameterizations.

The DH frame assignments for the A465 are depicted in Figure 2.12, where the y; axes
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Figure 2.11: The Thermo CRS A465 experiment setup.

are not shown as they simply complete the right hand-rule for the z; and z; axes, and the
parameters are listed in Table 2.1.

As all the joints for this robot are revolute, the i** joint variable is the joint angle
0;+1. For the second and third joint angles of the A465, an offset of 7 exists in the values
reported by the controller and therefore 7 must be added to both of these joint angles.
This is due to differences in the zero positions for these joints of the kinematic model
resident in the controller versus those of the DH convention. Under the DH model, the

forward kinematics relates the pose of the tool flange centre-point with respect to the base

reference frame. An additional transformation, a translation, ®Tr,, can be included so

Table 2.1: The Thermo CRS A465 DH parameters.

i+ 1| 0y | digr | a1 | i
(m) | (m) | (rad)
6, | 0.330 | 0.000 T
8, | 0.000 | 0.305
65 | 0.000 | 0.000
64 | 0.330 | 0.000
g5 | 0.000 | 0.000
#s | 0.076 | 0.000
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Figure 2.12: The Denavit-Hartenberg coordinate frames for the Thermo CRS A465.

that the last frame originates at the tool tip centre-point. Thus, the forward kinematics
equation is:

OTp, =T, Ty T3 Ty *Ts °Te T, (2.26)

The MDH frame assignments are depicted in Figure 2.13 and the parameters in Ta-
ble 2.2. Note that the last three coordinate frames originate at the wrist-centre, the
intersection of the fourth, fifth and sixth axes, in this representation. Also, in this model
points described with respect to the wrist-centre are related to those in Fj, whose origin
is at the intersection of the first and second joint axes. In order to incorporate the base
reference frame and the tool flange centre-point in the model, two additional transforma-

tions can be included. These two transformations, ZT, for the base and *Tr, for the tool
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Figure 2.13: The Modified Denavit-Hartenberg coordinate frames for the Thermo
CRS A465.

flange, can be employed in conjunction with the tool tip transformation, 7F Tz, so that

points described with respect to the tool tip can be transformed. This relation is:

B, =B Ty °T, Ty 2T Ty *Ts 5T *Tr, ¥ Ty (2.27)

Table 2.2: The Thermo CRS A465 MDH parameters.

1+1 91 di+1 a; Q;
(m) | (m) | (rad)
6, | 0.000 | 0.000
62 | 0.000 | 0.000
63 | 0.000 | 0.305
64 | 0.330 | 0.000
6s | 0.000 | 0.000
f¢ | 0.000 | 0.000
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As is implied, a relation for any useful point can be created provided the geometric infor-

mation is available.

2.1.5 Forward Kinematics of the KUKA KR 15/2

The KUKA KR 15/2 is a larger industrial robot capable of carrying heavier loads. It has
a repeatability of & 0.1 mm and with a maximum payload 15 kg. The KR 15/2 was used
in a preliminary experiment at the Mining University of Leében [33] where the RMC was
conceived. As access to this robot was not possible, a new robot, the Thermo CRS A465,
was procured. However, during the initial stages of the project, the availability of a robot
for experimentation was uncertain, thus all the simulations were programmed using the
geometry of the KR 15/2. The original experimental setup is pictured in Figure 2.14.
The DH frame assignments for the KR 15/2 are depicted in Figure 2.15 and the DH
parameters are listed in Table 2.3. Each of the joint angles reported by the controller must
be multiplied by —1 and the third joint angle must have 7 subtracted from it before the
multiplication. The KR 15/2 has a noticeably larger workspace, as evidenced by the link
lengths and offsets, and a slightly more complicated geometry than the A465. As this is an
industrial robot that must accommodate relatively more massive equipment and objects,
it has a more rigid construction. As with the A465, under this representation, points

described with respect to the tool flange centre-point are related to their counterparts

Table 2.3: The KUKA KR 15/2 DH parameters.

i+ 1] 041 | ditr | @41 | in1
(m) | (m) | (rad)
6, | 0.675 | 0.300 z
6, | 0.000 | 0.650
65 | 0.000 | 0.155
84 | 0.600 | 0.000
65 | 0.000 { 0.000
6 | 0.140 | 0.000
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Figure 2.14: The KUKA KR 15/2 experimentation setup.

in the base reference frame. A tool tip transformation can be included as before with
Equation 2.26.

The MDH frame assignments for the KR 15/2 are illustrated in Figure 2.16 and the
MDH parameters are presented in Table 2.4. As with the A465, the last three coordinate
frames originate at the wrist-centre. Fy is located at the intersection of the first joint axis
with the common normal between the first and second joint axes. Again, if it is desired
to relate points with respect to the tool tip centre-point to their counterparts in the base
frame, Equation 2.27 can be employed.

The forward kinematic problem of six-axis serial robots is easily solved employing
matrix multiplication. This allows the computation of the pose of the tool flange, or

tool tip, given a set of joint angles and the appropriate robot parameters. However, for
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Figure 2.15: The Denavit-Hartenberg coordinate frames for the KUKA KR 15/2.

simulation purposes it is additionally required to generate a set of joint angles necessary

to achieve some specified pose. This requires a solution to the inverse kinematic problem.

Table 2.4: The KUKA KR 15/2 MDH parameters.

i+1)60;| dipa a; Q;
(m) | (m) | (rad)
#: | 0.000 | 0.000
6, | 0.000 | 0.300
65 | 0.000 | 0.650
64 | 0.600 | 0.155
65 | 0.000 { 0.000
fs | 0.000 { 0.000

SIET SR SIE] el SE] e

O O x| O DD




CHAPTER 2. ROBOT KINEMATICS 41

Figure 2.16: The Modified Denavit-Hartenberg coordinate frames for the KUKA KR
15/2.

Two such solutions are described in the following.

2.2 Inverse Kinematics

Inverse kinematics is the process by which a set of joint variables are computed that allow
the end-effector to attain a prescribed pose. This is required, and utilized in the simu-
lations, when the end-effector of the robot is commanded to move to a point within its
workspace while maintaining a constant orientation. Essentially, the only difference be-
tween the computed forward kinematics for these two poses would be the fourth column,

the translation vector. From the 4 x 4 matrix, given the numerical value of the elements,
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Figure 2.17: Euler angles used in the transformation from Fiy, to Fnoq.

the joint angles can be computed using the geometric constraints on the elements. Each
of the elements of this matrix correspond to a kinematic equation that depends on the
joint variables and the robot parameters. Two solutions to this problem will be presented:
Pieper’s solution [34], which utilizes the MDH parameters, and a closed-form solution in-
volving the DH parameterization. In order to develop Pieper’s solution, a brief description

of Euler angles will be presented.

2.2.1 Euler Angles

Euler angles are a means to represent orientation. There are twelve Euler angle conven-
tions and twelve fixed angle conventions ??. Euler angles are defined with respect to
the revolved intermediate frames, and therefore are post-multiplied, while the fixed angle
representations are expressed with respect to a stationary reference frame and are pre-
multiplied. In all of these conventions, three rotations are performed. As the two robots of
interest both conform to the Z-Y-Z Euler angle representation, only it will be discussed.
Consider the frame, F4, which has the same orientation and origin as the base reference
frame, Fy,,, in the leftmost image of Figure 2.17. It is now desired to achieve a new

orientation having the Euler angles ¢, 7, and 1. These angles are expressed relative to
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axes z4, Ym, and 2o, respectively, of the intermediate frames, in this specific order. The
resulting transformation matrix describing coordinate frame F,,, can be computed by

concatenating the three rotations:

wsznoa = TRotation(ZA7 ¢) TRotation (yB7 '7) TRotation(zC, ?/J) (228)

A visual representation of this series of transformations can be viewed in the three right

images of Figure 2.17. The transformation matrix for the Z-Y-Z convention is:

B -w

cos g cosycosy —singsiny —cos¢gcosysiny —singcosy cosgsiny 0

oy sin ¢ cos ycos ¢ + cos @siny —singcosysiny + cosgpcostp singsiny 0
Troa = (2.29)

—sinycos ¢ sin -y sin ¥ cosy 0

0 0 0 1

The rotation sub-matrix of this general transformation matrix has nine elements, but is
only dependent on three variables. There are six constraints on orthonormal rotation ma-
trices. Each column vector has a magnitude of one and so this provides three constraint
equations. As these vectors are mutually orthogonal, the dot products of the column vec-
tors account for the other three constraint equations. Thus, any orientation is dependent
on just three variables.

Given a transformation matrix, such as in Equation 2.8, where the elements have

numerical values, the Euler angles can be extracted according to [32]:

v = atan2(y/n? + 02, a;)

a Ay
= atan2(——, —
sin~y’ sin~y
) n
Y = atan2(——,———). (2.30)
siny’ sin7y
This solution degenerates when <y equals zero or 7. In these cases, ¢ equals zero

and 9 can be computed by atan2(—o,,n,) and atan2(o,, —n.), respectively. The atan2
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function computes the inverse tangent of £, but uses their respective signs to determine
the quadrant of the calculated angle.

Based on this approach, the joint variables that strictly affect the orientation of the end-
effector can now be identified in an inverse kinematic solution. For wrist-partitioned serial
robots, the first three controlled joint variables, 81, 65, and 83, are used to position the wrist-
centre. The last three, 8,, 05, and 8¢, comprising the spherical wrist, define the orientation
of the end-effector. An established method for the solution of the inverse kinematic problem

for wrist-partitioned robots with six revolute joints will now be described.

2.2.2 Pieper’s Method

Pieper’s solution [34] applies to manipulators which have six degrees-of-freedom where
three consecutive coordinate frames have a common origin, and thus three consecutive
axes that intersect. This class of robot, as previously stated, is known as wrist-partitioned.
As noted with the forward kinematics of the A465 and the KR 15/2, under the MDH
parameterization this stipulation is satisfied. However, under the DH model, the tool
flange dimension is included in the last transformation for both robots so that the last
three coordinate frames do not originate at a common point. This is computationally
inconvenient, hence the MDH model is used.

Pieper’s method begins by expressing the origin of the three intersecting axes, the

wrist-centre, in the base reference frame coordinates. This is accomplished by:

°ps =" Ty 'T3 °T;3 *pu. (2.31)

The position of the origin of the fourth frame with respect to the third, ®py, is simply

the fourth column of the fourth transformation matrix, 3T4. If this substitution is made,
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then:

as

—d4 sin a3
py =" T 'T, *T;3 : (2.32)

dyq cos as

1

Applying the third transformation matrix, 2T3, to the ®p4 position vector yields:

fi
fa
0 0 1
ps= T T, , (2.33)
/3
1
where the resulting expressions for fy, fo, and f; are:
fi = azcosbs+ dysinagsinfs + as,
fo = ascosaysinfz — dysin ag cosas cosfs — dy sin ag cos ag — dz sin ao,
fs = assinagsinfs — dysin o sin ag cos B3 + dy cos ag cos iz + dzcos g, (2.34)

Applying the remaining two transformations, °T} and T3, yields an expression for °p,
which involves three new terms, g¢;, g2, and g3, based on fi, fo, and f;5, and the MDH

parameters associated with the two transformations. The final expression for °py is:

cos 191 — sin 01g-

°Ps = | sinfig, + cosbigs |- (2.35)

g3
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where the expressions for g1, go and g; are:

g1 = cosbyf; —sinbyfy + ay,
g2 = sinfycosayfi + cosbycosay fo —sina; fs — dosinay,

g3 = sinfysina;fi + cosbysinay fo + cosay f3 + da cos ;. (2.36)

An expression for the squared magnitude of °p, is now required and simplifies to:

r? =g+ 95 + g3 (2.37)

This result is due to the application of the trigonometric identity:

cos®f +sin® g = 1. (2.38)

Through substitution and simplification, an expression for 72 can obtained:

= i+ i+ f32 + a2 + d5 + 2da f3 + 2a1(f1 cos Oy — fosinby). (2.39)

By introducing four new terms, k1, ko, k3, and k4, and rewriting Equation 2.39, a system
of two equations can be produced when combined with the z component of Equation 2.35.

This system is:

7'2 = (kl COSs 92 + k2 sin 02)2a1 + k‘3, (240)

z = (kysinfy; — kycosby)sinoy + kq, (2.41)

where ki, ko, k3, and k4 are defined as

kl = .fla
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k2 = —‘f27
k3 = f12+f22+f32+af+d§+2d2f3,

k)4 = f3COSOll+dQCOSO11. (242)

This system of equations is dependent on 6, and 85, but the dependence on 6, is of a
simple form.

Now, there are three possible cases for this system of equations. Two cases can be
attributed to the two possible ways the dependence on €, can be eliminated in a simple
fashion, while the third accounts for the general case where a trigonometric identity is
used to eliminate the dependence. The equation used to solve for #3 in the third case is

undefined when the stipulations of either of the first two cases are satisfied.

Case 1, a; = 0: When a; equals zero, Equation 2.40 simplifies to the solution of k3 with
r2 known. A transcendental equation, involving cosf; and sin s, results from the
expansion of this equation. Geometric identities, seen in Equation 2.44, are used to
simplify the expression in terms of a single variable. The resulting quadratic equation
can then be solved. As multiple roots exist, a decision regarding the appropriate

solution must be made.

Case 2, sina; = 0: When sin «; equals zero, the same procedure is followed except the
solution of k4 is performed with z known. For both of these cases, once a solution for
65 has been computed, 8, is solved by using the other available, either Equation 2.40
or 2.41, and 8, is obtained through the use of either the first or second element of

Equation 2.35.

Case 3, a; # 0 and sina; # 0: For the final case, sinfy and cosf, are eliminated from
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Equation 2.40 and 2.41, using the trigonometric identity of Equation 2.38 to produce:

(r—ks)* | (2= ka)?
4a3 * sin? oy = K+ K, (2.43)

which is, upon the substitution of the two geometric identities:

2

— 1=
cosSn = ir. (2.44)
sinn = 14%#

a 4" order polynomial. The roots of this polynomial are obtained and an acceptable
solution chosen. As before, the first two joint angles, #; and 6, can be attained

through the solution of one of Equations 2.40 and 2.41, and then 2.35, respectively.

The last three joint angles follow the Z-Y-Z Euler angle convention and are solved
using the method presented in Section 2.2.1. Recall that three rotations are performed
with Euler angles and that the last three coordinate frames under the MDH model intersect
at a common point. Thus, the last three transformations, which define the orientation of
the end-effector, are just rotations. As the first three joint angles are known at this point,
the orientation of the fourth frame can be computed when 64 equals zero. The difference
between this orientation and the specified orientation of the given pose is strictly due to

the three rotations, 64, 5, and 6g:

*Ts[ps=0 =° T7 ' los=0 "To- (2.45)

Pieper’s method yields 32 possible solutions. To solve for 63 one must obtain the roots
of a 4™ order polynomial and two 2™¢ order polynomials for 65 and 6;. There are also two
solution sets for the last three joint angles, 64, 65, and 6, when using Euler angles due to

the square root of Equation 2.30. Thus, there are 32 possible outcomes. However, some
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of the roots may be complex conjugate pairs which are immediately discounted.

Obviously, some comparison must be made to select one of the 32 possible solutions.
In the simulation, the end-effector is commanded to move in small increments along the
length of a straight ruler, the difference between the two joint angle sets of the adjacent
poses should be minimal. Thus, when solving for a joint angle, whichever solution is closest
to the same joint angle of the previous pose is selected.

As Pieper’s solution to the inverse kinematic problem can only be applied to robots
which have three consecutive coordinate frames, each originating at the same point, the
use of the MDH representational scheme was required. The solution, for all three cases,
can be found in Appendix A. However, a solution was required for the use of the DH
model, as it was not desired to switch between parameterizations within the simulation
and the final results of the simulation were more successful with the DH parameters. A
closed form solution, based on the systematic isolation of the joint variables will now be

developed.

2.2.3 Closed Form Solution Using DH Parameters

The general robot transformation matrix for both the A465 and the KR 15/2 under the
DH model relates the position and orientation of the tool flange centre-point to the base
reference frame. Since this point is described, as opposed to the wrist-centre point, its
position is dependent upon all six joint variables. As both robots are wrist-partitioned, it
is possible to solve for 6y, 85, and 83 by eliminating this dependency on 04, 65, and 6. By
translating back to the wrist-centre, which is easily accomplished with the inclusion of an
additional post-multiplied transformation using the tool flange geometry, the translational
component of the general matrix is then dependent upon the first three joint variables,
01, 05, and 3. The rotational component is unaffected and still represents the orientation

of the tool flange. As both ag and g are nominally zero in both cases, no influence is
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provided by these parameters. Thus, a translation of —dg relative to the final frame, Fg,
generates a new frame, Fy, that originates at the wrist-centre point.
In general, the transformation matrix that relates points defined in Fy, to the base

reference frames is:

Ng Oy Gy P

Ny Oy Oy D
Py = L (2.46)
nZ OZ aZ pZ

0 0 0 1

The general matrix is obtained by the matrix multiplication of the DH transformations

between frames plus the additional translation by:

Ty =0T, 'Ty T3 *Ty4 *T5 T *Tw. (2.47)

By pre-multiplying both sides of Equation 2.47 by the inverse of °T'; and inspecting the
elements of the resultant matrices, a suitable equation can be found that isolates the first
joint variable [35]. The resulting matrices correspond to Ty . After solving for 6;, another
pre-multiplication is performed and a solution for 6, is attempted. This matrix corresponds
to 2Ty . Once a solution for 8, is obtained, 85 is found in the same manner. The final
three joint angles, 6y, 05, and 6, can be solved for with one more inverse pre-multiplication,
using different elements for each. To solve for the joint angles, the trigonometric identity
of Equation 2.38 and the geometric identities of Equation 2.44 have to be used. Again, as
polynomial expressions result in as many as 32 roots, comparisons must be made to select
the appropriate solution set.

The complete solution for the inverse kinematics for the A465 is located in Appendix B.
The solution for KR 15/2 follows the same solution and involves the same elements. The

only difference is that it has a slightly more complicated geometry, which affects the
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complexity of the terms.
The general form of the forward kinematics is found analytically and then the pre-
multiplication steps are performed. The six joint angles for the A465 can be computed

with Equations 2.48- 2.60. The first angle is determined by:
6, = atan2(py, ps). (2.48)

To obtain the second joint angle, a quadratic equation must be solved. The roots of

this quadratic expression,

(2sin b, pyas + cos? Hlpi + df + 2cos O1p, sinb1py + a% + 2 cos bip az
+p2 + Pl — 2p.dy — pj cos® Oy — d3)uj + (—4agp, + dagdy)ug + cos® 1]
+d3 + 2 cos 61p, sin 61py + a3 — 2 cos O1pzas + P2 + P2 — 2p.ds

—p2 cos® 0y — dj — 2sin61pyas = 0, (2.49)

are substituted into:

92 = Ztan_l('uQ), (250)

to obtain 0. uy corresponds to the single variable substitution for cosf, and sin 6, with
Equation 2.44 for the second joint angle.

The third joint angle is obtained with:

0, = tan-! (cos 85 cos 01p, + cos 02 sin 01 py, + sin Oyp, — sin fad; — a2> . (2.51)

sin 6, cos 8, p, + sin B, sin 61p,, — cos Oap, + cos 0ad;y

The fourth joint angle is obtained from:

0, = atan2(ys, z4), (2.52)
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where the variables y4 and z4 are:

ys = sinbia, — cosbiay,

x4 = cosfscoslycosbia, + cosbscosbysinbia, + cosbzsinbra, —

sin 05 sin @, cos 61a, — sin 03 sin 0 sin 6,4, + sin 63 cos Oza..

The fifth angle is:

05 = atan2(ys,s),

where the terms y5 and x5 are defined as:

52

(2.53)

(2.54)

(2.55)

ys = cos0,cosb;cosbycosbia, + cosbycosbscosbssinbia, + cos Oy cos 03 sin baa, —

cos 04 sin @3 sin 05 cos f1a, — cos O sin 85 sin 0, sin 6 a,, + cos 4 sin O3 cos Hra, +

sin 0y sin 61a, — sin 84 cos 61a,,
x5 = sinfscosbycosbia, + sin bz cos by sin ba, + sin s sin bya, +

cos 03 sin 8, cos 1a; + cos 5 sin O3 sin §,a,, — cos O5 cos bza,.

Finally, the sixth joint angle is:

0 = atan2(ys, T¢) ,

for which yg and zg are given as:

Y6 = sinfzcos by cos b0, + sin 63 cos Oy sin 610, + sin O3 sin 6,0,
cos 03 sin §, cos 010, + cos 05 sin G, sin 8,0, — cos 83 cos O20;,

Z¢ = sinfscosf,cosbin, + sin b cos b, sin 1ny, + sin 03 sin Oyn,

cos 03 sin 8, cos 611, + cos O3 sin 8, sin 1, — cos O3 cos Oon,.

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)
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The first three joint angles for the KR 15/2 can be computed with Equations 2.61-
2.63. The solutions for the last three mirror those of the A465. Thus, 8,4, 05, and 65 can

be obtained with Equations 2.52-2.60. For the KUKA geometry, the first joint angle is:
6, = atan2(py, p)- (2.61)

Both the second and third joint angles require the solution of quadratic equations. In

accordance with the solution of 6, for the A465, the roots of these equations,

(—2aga1 + p? + d} + a% — a3 — d3 + 2sin6ipyas + 2 cosb1p,az + Pl + af +

2 cos 61 p sinb1p, — P2 cos® 8; — 2p.dy + cos® 012 — 2cos b1p.a; — 2sinb1p,aq)us +
(—4asp, + 4aady)us — d? — a3 + cos® Glpi — pf/ cos? f; — 2sin 61pyar — 2 cos b1par +
pj + ag + d% + a% + 2 cos 61p, sin b1py + 2a2a1 — 2p,d; — 2 cos O1pzas — 2sin b pyas +

p2=0 (2.62)
and

(cos 62 sin B p,, + cos By cos O1p, + sinbyp, — cosbza; — ag — sin ydias)us — 2daus +

cos 03 cos 01p, — ag + cos bz sin Oy p, — cos aay + sinfyp, —sinfod; —ay =0, (2.63)

are substituted into:

0y = 2tan"" (uy) (2.64)

and

03 = 2tan™" (u3), (2.65)

respectively.

With the equations provided, a direct solution for the joint variables for the A465 and
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the KR 15/2 can be computed. As long as a reference pose is specified and the difference
between sequential poses is suitably small, an inverse kinematic solution can be achieved.
The final aspect of robot kinematics to be discussed, before the development of the RMC,
is the Identification Jacobian. This form of the Jacobian relates velocities in Cartesian

space to the joint rates of a robot.

2.3 Identification Jacobian

Thus far, the computation of the position and orientation, based on the geometry of
the robot and the joint variables, has been presented along with the inverse process of
computing the joint variables necessary for a specific pose. The next tool necessary for the
calibration procedure is to be able to determine the relation between small variances in
end-effector position to the unavoidable variations in the nominal robot geometry. These
two quantities are related by the Identification Jacobian, which is the same as the robot
Jacobian, but with columns corresponding to the other robot parameters. The robot
Jacobian relates the linear and angular velocities of the end-effector to the joint rates,
while the Identification Jacobian relates variations in robot geometry to the end-effector
position under the assumption that the differences are small compared to the nominal
robot parameter values. In this section, the Identification Jacobian will be defined for the
purpose of robot calibration.

A Jacobian, in the mathematical sense, is a multi-dimensional form of the derivative
represented in a matrix. It is a time-varying linear transformation. Given a set of functions,
each dependent on a common set of independent parameters, a matrix can be constructed
where the elements are the derivatives of a specific function with respect to a specific

variable. The rows correspond to the functions while the columns are associated with the
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variables. So, considering a set of ¢ functions,

N = f($1,$2,-~~
Yo = f(fﬂl,l“za---
yq = f(.’El,.’IIQ,...

99

(2.66)

each dependent on a set of r variables, the differentials of y;, as functions of the xz;, can be

calculated with chain rule:

(Syl = 81‘1 ] + 6.’132 + -

0ys = axlém + 6x2+

0y, = 3z16x1+ 5332+

8
+ 26z,

+ %
+ 32 0T,

9,
_yq_
+ 5ot 0,

When this set of equations is converted to vector-matrix form,

) ;)
¥ ¥
5@1 dxr1 Oz
0, o,
Y2 ¥2
6y2 _ O0zr1 Oxs
1?) a
Y9 _¥g
0Yq | 331 B,

the Jacobian matrix appears. The compact form of this relation is:

oy = Jox,

where J is the Jacobian.

et 3
Oxr

Oz,

oxy

(5.’171

51’2

oz,

(2.67)

(2.68)

(2.69)

In terms of calibration, the Identification Jacobian is used to identify variations from

the nominal robot parameters. By their very nature, they are relatively small variations
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compared to the nominal parameters, thus the Jacobian can be used in this manner. There
are four types of robot parameters: 8, d, a, and a. As stated previously, they correspond
to the joint angle, link offset, link length and link twist, respectively.

Some form of measurement must be used in a calibration procedure to identify the
variations in these parameters. In the case of the RMC, only those measurements that
relate to position will be considered. The RMC is novel form because endpoint errors are
expressed relative to an arbitrary reference point, rather than the base frame origin. p,,
Py, and p,, of the general robot transform, which are functions of the joint variables and
robot parameters, are of key importance. An Identification Jacobian relates the measured
differences in end-effector position, dp,, dpy, and dp,, to errors between the nominal robot
geometry and the actual robot geometry. It is a pose-dependent linear transformation in
that the value of its elements change according to the robot’s joint angles. However, the
elements of the Jacobian also depend on the nominal values for d, a, and a. The three
kinematic equations used to calculate p,, p,, and p, are differentiated with respect to each
modelled kinematic error, n, forming a matrix of size 3 X (N x n), where N is the number
of degrees-of-freedom. The Identification Jacobian:

1= 300 Jaw Jarn Jor | (2.70)

can be partitioned into four distinct sub-Jacobians, each correlating to one type of robot
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parameter. Each of the sub-matrices are defined by:

9pz  Ops Opz Opz  Opz (/.23
061 862 80y, dd; dds dd,,
Jo=| 2Pu 00y | Opy Jo=| 9 oy . Opy
80, 06, 80, |’ ddy  dds ad, |’
9. Op: ., OB 9pz  Op: Opz
| 961 962 36n | | 3d1  3dy adn |
_ - (2.71)
Oz Opa s 9Pz Opa Ops.
fa1 Oas dan a1 Oaz Ban
Jo=| o Opy oy Jo=1| 2Pu 9pe Opy
da1 daa dan ’ a da1  Oas By,
Op:  Ops Op: Op. Op: ... Ops
i da; Oag dany ] day  Bas Sap

The elements of Jy are identical to those that appear in the robot Jacobian relating lin-
ear velocity. Thus, the equation that relates end-effector position errors to errors in the

kinematic model of the robot is:

861
80>

30,
ddy
dds

6P

6dn
opy | = J3x(Nxn) : (2.72)
50,1

op,
5(12

day,
5(11

(50[2

Say,
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Notice that if Equation 2.72 is divided by 4%, the left-hand side becomes the linear
velocities in terms of the three Cartesian directions. The Identification Jacobian remains
unchanged and the vector of small parameter displacements becomes the time rate of
change of the robot parameters. As only the joint variables typically can change state,
the rest of these terms vanish in a differential sense. Because of the assumption that the
parameter deviations are small compared to the parameters themselves, we can use this
differential relation to solve for the approximate deviations. The resulting equation relates
linear velocities of the end-effector to the joint rates and parameter deviations. Three
additional rows are required to relate the three linear and angular velocity components of

the end-effector to the joint rates.



Chapter 3

Kinematic Calibration

Despite today’s current level of technology and precision in manufacturing processes, devi-
ations between the nominal geometry of a final product and actual finished product always
exist. In the real world, small discrepancies in a robot’s geometry exist due to manufactur-
ing inaccuracies. This fact specifically constitutes the need for calibration. In the off-line
programming of robots, they are commanded to various poses to achieve different tasks
in an automated procedure. If errors exist in the geometric model of the robot stored
in the controller and the real manipulator, they will compound to negatively impact the
performance of these tasks.

The accuracy of a robot is a measure of the difference between a commanded pose and
the robot’s actual position and orientation. Accuracy governs the tasks that can be per-
formed with off-line programmed configurations. A robot’s repeatability is the performance
index that governs taught configurations. Repeatability is a measure of how well the robot
can return to a taught configuration. Taught configurations are robot poses where the
joint angles, which are as precise as the joint encoders allow, are saved in the controller’s
memory. Thus, repeatability is the limit to accuracy. A robot can only be calibrated to

such a level where the end-effector errors will not exceed the stated repeatability of the

99
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machine.

In the kinematic calibration of a serial robot [36], the objective is to identify the
deviations in the nominal kinematic parameters that result in the actual robot parameters.
These identified deviations are then used to update the stored parameters resident in
the controller to improve the accuracy of the robot, potentially up to the limit of its
repeatability, for off-line programming purposes. In this chapter, a conventional kinematic
calibration method, based on absolute measurements and utilizing the Singular Value
Decomposition (SVD), will be discussed and a definition of the RMC will be provided.
The differences between the two will be stated along with the benefits of the novel RMC

calibration method [1, 5].

3.1 Conventional Calibration Method

In the conventional calibration method, it is required that the measurements of the end-
effector be expressed in the base coordinate frame of the robot. With this method, only
the position of the end-effector is used as opposed to its orientation, or both. To satisfy
this requirement, a position measurement sensor, as seen in Figure 3.1, must be able
to recognize the location of the base of the robot and the location of the end-effector in
Cartesian coordinates. The coordinates of both of these points are expressed in the sensor’s
coordinate system, and the calculated difference between them comprises the measurement,
of the robot’s end-effector relative to the base.

In general, the position error for a number of end-effector positions, as computed via
the difference in the predicted location through the forward kinematics and the provided
measurements, is used with the pseudo-inverse of the Identification Jacobian to estimate

the parameter deviations. Assuming that the robot was constructed in an ideal world, the
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position of the end-effector expressed in the base coordinate, Zp¢, would be:

Bpe = f(6,d,a,0), (3.1)

and strictly dependent on the nominal robot parameters. Equation 3.1 corresponds to
the computation of the forward kinematics with the nominal robot parameters by the
controller. The parameters, 6, d, a, and «, are the DH parameters (or MDH parameters),
as defined in Chapter 2. The stacked vector © consists of all the robot parameters in the

same order as in Equation 2.72, so Equation 3.1 can also be stated as:

Fpo = £(9). (3.2)

As deviations exist between the nominal parameters and the actual parameters, they
are represented as A, Ad, Aa, and Aa. The two parameters relating to the interconnec-

tion between links, § and d, are the controlled variables for revolute and prismatic joints,

Figure 3.1: Measurements provided by an absolute position measurement system.
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respectively. For a revolute joint, the joint angle, 6, is controlled while the link offset, d,
is a fixed quantity. The opposite situation exists for prismatic joints. The deviation in
the controlled variable can be thought of as bias error, a consistent offset from a desired
value. The deviations in the remaining three parameters are fixed displacements, linear
and angular, between the nominal and actual case. So, the position of the end-effector,
Bpa, for the actual case, is a function of the nominal robot parameters with the deviations
present,

Bps = f(0+ A8,d+ Ad,a + Aa,a + Aa). (3.3)

The difference between these two positions is the measured error:

APpr =P pa P pe. (3.4)

The vector, APpg, is invariably the same vector despite being expressed in a different
coordinate system. However, the components of the vector change when it is described
with respect to different coordinate systems. Thus, the components of ABpg are expressed
with respect to frame B. In order to identify the parameter deviations, Equation 2.72 is
used provided there are a sufficient number of m measurements. There are four types of
kinematic parameters and six degrees-of-freedom, thus 24 parameters to be identified. The

compact form is:

(ABDE)(3><m)x1 = [J](3xm)x24(A@)24x1, (3-5)

where A©O is the concatenated vector of the robot parameter deviations.
As the Jacobian is non-square, and thus non-invertible in general, the solution for
its pseudo-inverse must be approximated with an appropriate method. The SVD was

chosen as it provides additional useful information. The parameter deviations can then be
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estimated using:

A® = JTABpy, (3.6)

where J* is the pseudo-inverse of J.

This approach was used to generate data for the absolute measurement simulation.
Each measurement of the end-effector position provides three equations in the twenty-four
parameters. Thus, a suitable number of measurements had to be taken to create an over-
determined set of equations. A general rule-of-thumb in this regard is three times the
number of parameters to be identified [37].

The absolute simulation served as a means to test program elements and was used
extensively in the development of the RMC simulation. The results of the absolute simu-
lation, as well as the different programmed elements, will be discussed in the next chapter.
An essential component to the calibration procedure is the SVD. This matrix factorization

method will now be described.

3.1.1 Singular Value Decomposition

As noted in the conventional calibration scheme, the pseudo-inverse of the Identification
Jacobian is required to identify the parameter deviations. The SVD is a powerful matrix
factorization method that can be used in the solution of over-determined systems of linear
equations in a least-squares sense [37, 30]. It can be further analyzed to determine which
estimates are unreliable and thus states specifically the number of trustworthy estimates
that approximately satisfy the equations in a least-squares sense.

In the reduced form of the SVD of an m x n matrix J, as opposed to the full SVD,
three matrices are produced: U, an m x n column-orthogonal matrix; S, an n X n diagonal

matrix with entries that comprise the singular values; and the transpose of V, an n x n
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orthogonal matrix. Any matrix J can be decomposed:

J=U.s.-VT, (3.7)
where S appears as: ) 3
81 0 0
0 S9 0
0
0 0 0 s,

and the s; represent the singular values.

The pseudo-inverse of J can be obtained by rearranging Equation 3.7. As V is a
column-orthogonal square matrix, its inverse is simply its transpose. U is also column-
orthogonal, but is rectangular. For the m x n matrix U, with orthonormal columns, then
UTU = I, where I is an n X n identity matrix. The dot products of the like numbered
columns result in a 1 on the diagonal and all other entries, as the columns are mutually
orthogonal, are zero. If S is of full rank its inverse, S7!, is the diagonal matrix with
elements that are the reciprocal of those in S. So, the final version of the parameter
estimation relation can be obtained from Equation 3.5 by multiplying the left-hand side

with U7, then 87!, and finally V. The result is:

% 0 0
0 é 0 T A B
A@=V | UTA®p. (3.9)
0o o o X
L Sn |

One concern of this matrix factorization method is that it may compute a singular

value that is close to the numerical precision of the computer. In this case, allowing %,



CHAPTER 3. KINEMATIC CALIBRATION 65

where the s; is very small, to continue through the program would corrupt any results, the
matrix entry is set to zero. If this action is not taken, the inversion of a singular value of
a magnitude of 107!° would produce a solution dominated by round-off error.

When this is done, the influence of the linear combination of free parameters causing
the system to be ill-conditioned is removed. A check of the column in V corresponding to
the column in S for the zeroed singular value reveals which estimated parameters are not
to be trusted. The columns of V corresponding to 51; = 0 form an orthonormal basis for the
nullspace of J. In general, the nullspace for the matrix A is the set of all solutions where
Ax = 0. The number of zeroed singular values indicates the number of untrustworthy

parameter estimates which occupy the nullspace.

3.2 Relative Measurement Concept

The RMC is a new approach to measurement acquisition in that it uses relative measure-
ments, which are not expressed with respect to the base frame of the robot. Images of a
precision-ruled straight edge are taken by a Charge-coupled Device (CCD) camera rigidly
mounted to the end-effector of the robot. The CCD camera is focused on the graduated
edge of the ruler when acquiring images, as illustrated in Figure 3.2. Through the imple-
mentation of digital image processing algorithms, the analysis of a series of images reveals
the error in their corresponding robot poses. The images of the ruler are a measure of the
actual location of the end-effector but the error is defined relative to a reference pose and
not the base coordinate system.

With reference to Figure 3.2, consider a ruler placed at any location in the workspace of
a serial robot. The CCD camera is positioned such that the surface of the ruler is within
the focal length of the lens and the camera is perpendicular with respect to the ruled

surface. Assume that the line of sight for the camera is aligned with the z direction of the
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Figure 3.2: The RMC setup.

tool frame, or parallel to this direction. Although this is not the case due to inaccuracies
in the mounting bracket, we assume the error is negligibly small.

The edge of the ruler appears as a horizontal line in the image while the graduations
are vertical. The coordinates of the intersection of the ruler edge and the first graduation,
in the image coordinate system, is used as a reference point for all the other images. The
first graduation is situated at a fixed distance from the world coordinate system, as are
all the other graduations, but the coordinates of the vector describing this point, Zpg,,
shown in Figure 3.2, are unknown.

Once the first image has been taken with the end-effector suitably posed, the robot is
commanded to move a specified increment along the length of the ruler. The increment
is expressed in the tool frame as it is properly aligned with the ruler. With reference to
Figure 3.3, the second image is a fixed distance away from the first. In the ideal world,
both of these images would be identical. However, due to the presence of kinematic errors,
repeatability effects, and thermal expansion effects, shifts in the location of the edge of

the ruler and graduations in the image are observed. The ruler edge either shifts upwards
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Figure 3.3: Measurements obtained utilizing the RMC.

or downwards while the graduations shift left and right in the image. This means that
the end-effector is lower or higher and to the right or to the left of where it should have
gone, respectively. Pictured in Figure 3.4 are the first and second images from an actual

measurement set where these shifts can be recognized.

e
+

=

Figure 3.4: Shifts in end-effector position recognized in the comparison of sequential
images.
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Figure 3.5: Projection of the actual and controller points onto the image plane.

The computation of the forward kinematics using the nominal parameters reveals the
controller points, C = {C1,Cy, ..., Cn}, whereas the actual points, A = {A1, Ao, ..., An},
are determined with the inclusion of the parameter deviations. These two sets of points
terminate at the tool flange centre-point for the predicted and actual cases. They are pro-
jected onto to the image plane to become Cp, = {C,,, Cp,, ..., Cp,. } and A, = {A,, Ap,, . Ap )

The set of points, G = {G1, Ga, ..., G }, represent the intersections between the ruler edge
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and the graduations. The projection of A and C onto the image plane can be seen in
Figure 3.5.

Ideally, the projected controller points, Cp, should form a line parallel to the graduation
points. Hence, their image coordinates vary from image to image, but remain a fixed
distance from the ruler edge and the graduation. However, the projected actual points,
A,, should have the same image coordinates in every image. This is because the camera
is aligned with the z direction of the tool frame and the two are assumed to be parallel in
space.

Considering the first two images, the relative error, 7Fpg, is the difference between
the image coordinates of Gy, in the reference image, and the image coordinates of G5 in
the second image. As the image plane is assumed parallel to the tool flange plane, this
quantity is expressed with respect to the tool frame, as opposed to the base frame. The
relative error, ATFpp, is the difference between the displacement of the end-effector that
should of occurred, from A, to a point that is a distance of G,G, away, and where it
actually went, from A,, to A,,. This can be seen in the comparison of the first two images
and the ruled surface in Figure 3.6.

While the placement of the ruler in the workspace is arbitrary, some way in which
to transform the measurement points into the base coordinate system is necessary. This
is achieved by rotating the measurements with the Euler angles of the first pose. These
Euler angles do contain error, but the first pose is a taught pose which establishes the tool
frame necessary to perform the measurement acquisition. The only other way to obtain
this information would be to measure the orientation with an external apparatus, and
to an order of magnitude better than the installed equipment. For the purposes of the
RMC calibration system, the Euler angles of the first pose, which are accurate up to the
repeatability of the robot, must be accepted. Thus, ATFpg can be transformed into APpgr

with the transformation BTr,. As stated before, the vector itself remains invariant but
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Figure 3.6: Relative error obtained in comparison of two images.

its components change to reflect the description in another coordinate system.

To acquire a series of m measurements, a corresponding number of images would be
taken for m increments along the length of the ruler. The error is computed through the
comparison of all the images with the reference position, G, as recorded in the first image
and does not correspond to the total error of the end-effector’s position, APpg, but rather
a significant component of the error, APpg. The total error, ABpg, can be computed
with direct measurements of the end-effector position, ®p 4, and is expressed with respect
to the base coordinate system in the conventional calibration scheme. With this scheme
two sets of points are available. A stacked error vector, of size (3 x m) x 1, would be
substituted into Equation 3.6 to estimate the parameter deviations.

With the RMC, the relative error vector is substituted. Only one set of points is
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Figure 3.7: Relative error substituted as total error.

available, the controller points. The relative error is the output of the image analysis. The
locations of the actual points are measured relative to the first one but their Cartesian
coordinates, in the base frame, are unknown. Essentially, by performing the substitution
in the first iteration, it is being assumed that the relative error acts at the controller points,
and is the total error. This can be seen in Figure 3.7.

Counsider again the three sets of points, Cp, Ap, and G, of Figure 3.6, along with the
method of taking measurements along the length of the ruler. If the robot was perfectly
constructed and the ruler perfectly aligned, these three sets of points would be identical.
Introduce the parameter deviations and the situation of Figure 3.6 results. The total error
is considered to consist of two components: the relative error, APppg, which changes, and
a component due to the offset between the predicted and actual position of the tool flange
for the first pose, APpp.

Ideally, AZpp does not change from pose to pose. In reality, as the robot cannot be
commanded to move perfectly along the length of the ruler App is not a constant vector.
The lines Cp,C,,, and GG, are not parallel as assumed. The effect of this imperfect
situation can be made quite small. The length of the ruler used in the current setup is

80 cm, and its edge at the start and end locations can be placed to within a couple of pixels
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of each other when comparing their associated images. Thus, the small error generated
by this situation can be either ignored or some compensation could be performed as the

errors are linear nature in the image plane. The parameter estimation is:

A® = J"(ABpgp + APpp). (3.10)

The pseudo-inverse of the Identification Jacobian is a linear transformation. So, Equa-

tion 3.10 can be re-written as:

A® = J*APpg + ITAPpp. (3.11)

As ABpp — 0, the latter component of the equation, J*A®pp, also tends towards
zero. However, if APpp is of the same magnitude as APpg, some compensation of the
effect must be performed. So, consider another experiment in which the physical placement
of the ruler is altered by a small distance, in the range of 1-100 pm, in one coordinate
direction. It would be expected that the error vector generated in this second experiment
would be similar to that of the first, despite the complexities of a six degree-of-freedom

serial robot. With this assumption,

A® = JTAPpp, (3.12)

can be performed once to estimate the parameter deviations. However, in order to perform
further iterations to refine the estimate, some means to update the error vector must be
established.

In the conventional calibration scheme, the absolute position of the end-effector, Bp4,
for the set of m measurements, is directly measured. With these measurements, a corre-

sponding set of predicted end-effector positions is computed via the forward kinematics
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with the nominal robot parameters, ©. The error is then computed as their difference. For
the next iteration in this scheme, the estimates from the first iteration, A©, are used to
improve the accuracy of the nominal parameters, ©. The forward kinematics are then re-
computed and compared with the available measurements to generate a new error vector,
which should be smaller in magnitude than the first. This new error vector is then used
to further refine the estimates and this process continues until a convergence criterion is
satisfied.

With the RMC method, all that is available is the error vector, APpg, which cannot be
used to locate the actual points, A, relative to the base frame. However, after one iteration
of Equation 3.12, estimates for the improvement of the nominal parameters, ©, become
available. Computing the forward kinematics for the first pose with the improved nominal
parameters, © + AO, provides an estimate of the first actual point, the updated controller
point C,,, seen in Figure 3.8. As the relative measurements were defined relative to Ap,,
the procedure can then continue by mimicking the conventional calibration scheme by
expressing them relative to Cy,. The difference between the original projected controller
points, C,, and the updated controller points, C,, is close to the actual difference between

Cp and Ap, and thus C and A. Iteration would continue as before until a convergence

First Image Second
Border Image Border

Ruled
Surface

Figure 3.8: Relative error applied at estimates of the actual points.



CHAPTER 3. KINEMATIC CALIBRATION 74

criterion is satisfied, then the procedure is exited.

The benefits of the RMC method are numerous. First, the cost of such a system is
relatively inexpensive. The current system consists of a precision-ruled straight edge, a
Pulnix CCD camera, a 1x Rodenstock lens, a ring-light, a National Instruments IMAQ
PCI-1409 data acquisition card, a dedicated computer, and a custom-built measurement
head. The total cost of this system is approximately $6,000.00 CAD. This cost is at
least an order of magnitude lower than the cost of an absolute position measurement
device. This system is easily transportable and easily interfaced with serial robots. All
that is required is to attach the measurement head to the tool flange, place the ruler, and
generate a simple program to perform the measurement. The calibration procedure could

be performed on-site, with no need to remove the robot from its workeell [3].



Chapter 4

Simulation Results

Simulation of any physical process is a beneficial tool that can lead to a more in-depth
understanding and optimization of laboratory experiments. A simulation can be simple,
with only a few modelled components, or complex, where the behaviour of the system is
modelled by many parameters. Many different program components are needed, or in-
cluded to provide additional options, in the construction of a simulation of a kinematic
calibration procedure. Functions to compute robot kinematics, such as the forward and in-
verse kinematics, as well as procedural elements, such as pose generation and measurement
noise, are included in the simulations created for this project.

The objective of the simulations is to successfully identify the specified robot parameter
deviations. These deviations represent the error between the nominal and actual geome-
try of the robot. The error of a particular robot pose, for the simulations and the actual
experiment, is the difference between the measured position of the end-effector and the
predicted position. This error is related to the parameter deviations through the formula-
tion of the Identification Jacobian matrix, J. A solution for the linear system of equations,
in m parameter deviation unknowns, is obtained in a least-squares sense. The SVD is used

to approximate the pseudo-inverse of the Identification Jacobian. In using this formula-
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tion, the error in the end-effector position is assumed to be small compared to the robot

itself.

4.1 Applicability of the Jacobian Matrix

To confirm that the error in end-effector position allows the application of the Jacobian,
a program was devised to compare the prediction of the motion of the end-effector with
the Jacobian and a time-step approach. The Jacobian relates linear and angular velocities
of the end-effector to the joint rates. To move the end-effector in a straight line in the
workspace requires that the six motors provide varying angular speeds so that the links
move relative to each other at the proper rates. So, a comparison between the kinematics
approach, assuming the links to be rigid bodies, and the Jacobian approach had to be
made. The angular velocities of the first three joints, which determine the end-effector
position for wrist-partitioned serial robots, are stipulated such that the position of the
end-effector, compared to the last time step, is displaced by an amount comparable to
the error expected with the known parameter deviations. Essentially, a relative-motion
analysis [38] is performed at each time-step. Comparing the two methods in this fashion
yields an assessment of valid use of the Jacobian.

The error in end-effector positioning is expected to be, at best, within the repeatability
of the robot. The repeatability for the KUKA KR 15/2 and Thermo CRS A465 is £100 ym
and £50 pm, respectively. If the links were constructed with a CNC milling machine, with
an accuracy of £2.5 um, the expected errors in the link lengths would be in the range of
+5.0 um. To assess the application of the Jacobian, the end-effector of the KUKA KR 15/2
should be moved such that the end-effector centre-point is moved a distance of 0.2 mm
relative to its previous position. This corresponds to the positional error encountered in

the first pose with the specified parameter deviations, on the order of microns. The angular
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velocities of the joints and the time increment would simply be specified to accommodate
this relative distance.

A program was devised to compute the velocity of the end-effector through the use of
the Jacobian and through positional level kinematics. The geometry of the KUKA KR
15/2 was specified in the program. Only the first joint was given an angular velocity while
the other five joint angles remained constant at arbitrarily assigned values. A circle was
traced in a plane perpendicular to the z direction of the base frame by the end-effector
around the first joint axis with these stipulations. The linear velocity of the end-effector
was computed at each time-step with the nominal kinematic parameters in the Jacobian
method. For the second method, the forward kinematics were computed for each time-step.
The average velocity components were then calculated. For a distance of approximately
0.2 pm, the zy velocity components were accurate to within an average of 0.016 %. The
percent difference in the norms of the velocity vectors, as computed by both methods,
was negligible. In assigning an angular velocity for each of the joints, still resulting in the
desired distance, the error in the vector norms is significant, approximately 5 %. However,
deviations of up to 1 mm in magnitude were specified in the absolute simulation and they
were successfully identified.

For the experiment with the Thermo CRS A465, with the expected errors and param-
eter deviations, the application of the Identification Jacobian seems merited. However, as
was found in the first experiment, the errors encountered reached a maximum of approx-
imately 0.55 mm. In the experiment with the KUKA KR 15/2, the maximum error was

approximately 0.8 mm.
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4.2 Absolute Simulation

The conventional calibration scheme was followed in the absolute simulation. The position
of the end-effector was measured and used in the calibration procedure but not its orien-
tation. A general flow diagram for the simulation is shown in Figure 4.1 and a summary
of the program code is provided in Appendix C.

In the first stage of the simulation, the robot parameters are initialized. A selection
as to which model convention is made at the beginning of the program. The geometry
of the KUKA KR 15/2 is currently specified. If the calibration procedure was to be
simulated with other robots, all that need be done is alter the robot parameter values
such that they reflect the robot’s geometry. The simulation then attends to the following
tasks: pose generation, measurement acquisition, optional noise addition, error vector
computation, assembly of the Identification Jacobian matrix, and kinematic parameter

deviation identification.

4.2.1 Pose Generation

From each measurement of the end-effector, as only the positional data is used, three
kinematic equations are generated per robot pose, giving a calibration index of C' = 3 [27].
As there are at least 24 system parameters, a minimum of 8 poses are required to ensure a
unique solution. There are two ways in which robot poses can be supplied to the simulation.
They can either be input from a data file or generated from random increments to the joint
variables starting from a specified pose. The entire joint angle set is then stored so it can
be accessed throughout the program. A visualization of the KUKA KR 15/2 experimental
joint angle data as well as a randomly generated case are pictured in Figure 4.2.
Currently, joint angles are assumed to be ideal with no modelled error. In the experi-

mental case, the robot can only achieve discretized joint angles. The joint encoders have
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Figure 4.1: The absolute simulation flow diagram.
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Figure 4.2: Visualization of the KUKA KR 15/2 experiment (left side) and a
randomly-generated case (right side).

a finite resolution and thus each joint is commanded to the most suitable motor position
for a particular pose. The resulting error in the pose is not due to the kinematic errors
but rather the theoretically predicted joint angles and the actual ones. Compensation for

this kind of error can be implemented into the experimental calibration procedure.

4.2.2 Measurement Acquisition and Noise

Simulated measurements of the end-effector are provided by computing the forward kine-
matics of the robot, but with the parameter deviations included. The DH transformation
matrices, computed through use of a general function that accepts the four DH parame-
ters as inputs and outputs the 4 x 4 homogeneous transformation matrix, experience slight
changes in position and orientation due to these deviations. When multiplied together, the
pose of the end-effector is known, but only the positional data is required. The coordinates
of the tool flange centre-point, which are the actual points, pa, are recorded for later use.

At this point, some degree of noise can be incorporated into the measurements. This
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is achieved by adding a random value of a specified standard deviation to each of the
position components. The accuracy of the measurement device can be included through
this option. Also, multiple sets of measurements with random noise can be simulated
such that the average of the data could be used as the measurements. So, the effect of
measurement noise can be ascertained by varying its magnitude and proceeding with the
calibration. Also, compensation of the noise afflicting the measurements can be evaluated

through a statistical approach by taking sets of measurements.

4.2.3 Jacobian Elements

The Identification Jacobian matrix contains elements that are derived from the kinematic
equations describing the position of the end-effector with respect to the base frame. There
are three vector components to position, thus three equations. An analytical expression for
the derivative, with respect to each of the kinematic parameters, was obtained with Maple.
These expressions are then converted into program code that can be interpreted by Matlab.
Each element is kept as a separate function so that an arbitrary Identification Jacobian,
dependent on any number of kinematic variables associated with the parameterization and
derived with respect to one, two, or three basis directions, could be constructed.

The kinematic equations relating position of the end-effector to the base frame are de-
pendent on the parameterization employed to represent the geometry of the robot. Each
equation involves essentially all of the robot parameters. The position of the wrist-centre
is dependent on only the parameters associated with the first three joints, whereas the tool
flange centre-point is dependent on them all. With each convention, different elementary
transformations are used and in a different order. There are three different parameteriza-
tions currently incorporated into the simulation: the DH model [31], the MDH model [32],
and a DH model altered to cope with the nearly-parallel axes of the second and third

joints [39]. The Identification Jacobian constructed with a parameterization is only valid
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for that particular model.

4.2.4 Parameter Identification and Convergence

To proceed with the calibration, the stacked error vector must be assembled from the
component errors of each pose. The measurements of the end-effector, pa, have already
been computed. The forward kinematics of the robot are computed once again, but with
only the nominal geometry. This gives the computed points, pc. For each pose, the
difference in position, Apg = pa — Pc, is then calculated.

The robot parameters are estimated in a least-squares sense and then iteratively re-
fined by adding the estimated deviations, A©, to the nominal parameters, ©, until some
convergence criterion is met. The robot parameter deviations are assumed to be small
compared to the link lengths. The estimates of the deviations are stored as corrections
to be added to the nominal parameters and refined through further iteration. The correc-
tions vector was initialized as a zero vector and used in the computation of the forward
kinematics with the nominal parameters. In the first iteration, there is no effect due to
the corrections.

The residual of the linear least-squares approximation is a measure of convergence. As
the procedure passes through each iteration of estimating the parameter deviations, A©,
and then updating the correction vector, the estimates for each iteration become smaller
in magnitude. Eventually, the corrections to the parameters become so small that the
numeric precision of the computer is reached in computing the residual. At this point, the
simulation is complete, the parameter deviations are assumed to be identified, and then

the outputs of the program are displayed. The convergence criterion is given by:

|IJ*Apg — AB|| < &. (4.1)
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4.2.5 Simulation Results

With respect to the DH parameterization, as it was the most successful, the following
observations can be reported. There were difficulties in identifying ds, d3, and ag. Joints 2
and 3 are nearly-parallel and this is the cause for the difficulties with dy and d3. To explain
this result, closer inspection of the expressions for their respective Identification Jacobian
elements was required. Due to the geometry of the KUKA KR 15/2, these two elements
were practically the same. In the nominal case they are identical as the expression for ds
simplifies to the expression for dy. The expressions for the Identification Jacobian elements

for dy and d3, with respect to the z, y, and z directions are:

sin 8, sin a;
Ja, = | —cosbisina; |, (4.2)

cos ap

cos 0 sin @, sin ay + sin 8; sin a; cos ay + sin 8 cos a; cos y sin oy
Ja, = | sin 6 sin s sin as — cos 6 sin g cos ay — cos By cos oy cosfasinas | - (4.3)

— sin o cos @, sin g + cos ap €os ay

As a; is nominally 0, the elements for ds simplify to those of d;. This creates a
linear dependency in their respective columns in the Identification Jacobian. These two
parameters can only be successfully identified when there is sufficient error present to
eliminate the dependency. It was discovered through trial and error that to be suitably
identified, an error magnitude of approximately 50 urad for oy had to exist. From absolute
zero, the two tend towards their proper values as the error is increased.

The last joint offset, ag, could not be identified using any of the parameter sets. Due to
the nature of the general transformation matrices, ag did not appear in the translational

component and thus the partial derivatives were zero with respect to these entries. The
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column in the Identification Jacobian matrix is therefore a zero vector. Also, the rotation
caused by ag is the last elementary motion of the chain for the entire robot. The physical
effect of this rotation is simply not measured, as only positional data was considered, thus
it cannot be identified.

One of the objectives of the calibration system was to avoid hand-to-sensor calibration.
As the measurement head mounted on the tool flange can be considered rigid, and its
orientation is assumed constant at each pose, the measurements provided by the camera
are a direct measure of the tool-flange centre point. Again, this demonstrates that ag
cannot be identified in this calibration procedure.

For a set of parameter deviations, where they were arbitrarily chosen between 0-100 pm
and 0-100 urad, the identified parameter deviations are listed in Table 4.1. As no noise
was introduced into the system of equations, the minimum number of poses was specified.
A unique solution was then possible. Notice that ay was less than the established value,
50 pm, to identify the link offsets for joints 2 and 3.

Some of the identified parameters converged to their respective true values, however,
a small error existed for the others. The sum of the identified dy and d3 equalled the sum
of the actual parameter deviations. To eliminate the error in the estimates for ds and ds,
the error in as was increased to 50 yum and more measurements were taken to yield an
over-determined system. With these input modifications, all observable parameters were
identified. The error in ds and d; was reduced to approximately 0.6 %, whereas the others
showed negligible error.

From the S matrix of the first iteration, 5 singular values are eliminated. The columns
in V corresponding with these singular values are a solution for the null space. These
parameters are the least trustworthy. The entry in V possessing the highest magnitude
reveals the parameter having the most influence. The implicated parameters deviations

that correspond to these eliminated singular vales are: ag, d and d; (they are linked),
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Table 4.1: Results of the absolute simulation with 8 pose measurements.

Specified Identified
Parameter Deviations Deviations

(m, rad x107%) | (m, rad x107)
0, 16.0000 16.0000
65 34.0000 34.0860
A3 -56.0000 -56.0860
04 -27.0000 -27.0000
05 22.0000 21.9679
B¢ 13.0000 12.9733
dy 38.0000 38.0000
dy -14.0000 -7005.1887
ds -53.0000 6938.1886
dy 61.0000 61.0000
ds -30.0000 -29.9986
dg 24.0000 24.0000
ay -17.0000 -17.0000
a9 89.0000 89.0000
as 64.0000 64.0001
a4 -45.0000 -45.0000
as 37.0000 37.0004
ag 22.0000 22.0000
o1 -11.0000 -11.0000
0l 8.0000 8.0000
o 19.0000 19.0000
oy 21.0000 21.0000
Qs -15.0000 -14.9902
O 14.0000 0.0000

85

Os, 05, and a5. As these parameters were untrustworthy, they were removed from from

the analysis and another attempt was made. However, with them removed the simulation

performed poorly. The error residual grew in magnitude with each subsequent iteration.

So, as only ag was impossible to determine it was the only one removed permanently

from further analysis. The inclusion of this ag caused the Identification Jacobian to be

ill-conditioned. Its corresponding column was a zero vector.

Also, the singular value

corresponding to this parameter was consistently eliminated anyways. After its removal,
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Figure 4.3: Absolute simulation residual vs iteration.

the absolute simulation performed equally as well as before, but the issue with dy and d3
was less prominent. Less error in oy was required for the successful identification of these
deviations.

For the next run, the parameter deviations were increased to the 0-100 mm and 0-100
mrad. As the parameter deviations are assumed to be small, the purpose of this test was to
determine how large the errors could be and still yield successful results. At this level the
procedure still successfully identified the parameter deviations. Anything larger and the
solution would not converge. So, excluding large errors, the calibration scheme performs
well. Errors in this range are also highly unlikely due to modern construction techniques
and equipment.

In terms of convergence the absolute simulation, with the same parameter deviations
listed in Table 4.1, was able to reduce the residual to approximately 10714 in 2 iterations.
This can be seen in the logarithmic plot of Figure 4.3. This was after the removal of o

from the analysis.
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Unfortunately, the addition of noise had a profound effect. Using the parameter devi-
ations of Table 4.1 and increasing the magnitude of the error incrementally, the effect of
noise, following a normal distribution, could be determined. The magnitude of the error
was dependent on a specified standard deviation, o, with a mean, pu, of zero about each
of the true component values. Given that the Thermo CRS A465 has a repeatability of
+50 um, and it is a highly complex mechanism, a measurement device capable of cali-
brating it would need to have an accuracy of at least one order of magnitude better. So,
starting with no error and then increasing it up to this level would determine whether or
not the calibration procedure would succeed.

With errors on the order of 1 — 10 um, about half of the estimated parameter devia-
tions could be considered successful. Many of the other estimates were quite large relative
to the successful cases. Most noteworthy was that do and ds were identified at approxi-
mately + 1207 m, and their sum still equalled the sum of the actual deviations, within
10 %. When checking for convergence, the value obtained was always of the same order
as the specified noise. Thus, the convergence criterion, set at the numerical precision of
the machine, was never satisfied with the incorporation of noise and rather a limit for the
iterations in the program was reached.

Normally distributed random noise can be combatted by taking more measurements.
This tactic was implemented in the simulation. However, despite specifying many sets of
measurements, greater than 100, the accuracy of the measurement device remains quite
influential. So, for the experimental setup, a more accurate measurement is desired.

The final items to be considered were the included basis directions for the error vector
and the straight-line path of the measurements. Currently, for the A465 experimental
setup, two directions are considered. Errors in two directions relative to the tool flange
coordinate system are acquired through the digital processing of the images. The third

direction will be measured when the system is expanded to include a laser displacement
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sensor. The current simulation allows the specification of one, two, or all three, basis
directions. Without measurement noise, and with the appropriate number of poses, the
parameter deviations were still successfully identified. Thus, using only two basis directions
has no foreseeable effect on the outcome of the calibration as long as sufficient measure-
ments are taken. However, the straight-line path used for image acquisition does have an
effect related to the directions considered.

Using the joint angles from the experiment with the KUKA KR 15/2, a straight-line
path could be approximated. It is not exactly a straight-line path due to the resolution
of the joint encoders, but close enough to one. It was also aligned with the y direction
of the robot. Without measurement noise, the only difficulty was with dy and d3. One
singular value was eliminated and indicated that these two parameters were untrustworthy.
Upon the addition of noise, in the range of 1-10 ym as before, not one parameter could be
identified. All the estimates were excessively large. This has bearing on the experimental
results and will be discussed in Chapter 5. Due to this result, it might be advantageous
to orient the ruler such that is not aligned with any of the base frame directions.

As the DH parameterization produced the best results, this representational scheme
was chosen for the relative simulation. The MDH convention requires two additional
parameters to model the same kinematic structure with the DH. With the DH form altered
to compensate for the nearly-parallel axes of joints 2 and 3, the added parameter, (s,
could never be successfully identified, thus negating the model’s purpose. Other than
the selection of an appropriate parameterization, some means of computing the inverse
kinematics was required for the construction of the new simulation. Other than this
additional requirement, the same processes and functions could be incorporated into the
relative simulation. The purpose of the relative simulation was to incorporate the concept
of the RMC into a calibration procedure. Issues that would translate to and affect the

experimental calibration procedure were considered to be of key importance.
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4.3 Relative Simulation

The relative simulation was created to determine whether or not the RMC could be used
for measurement acquisition in a kinematic calibration procedure. Essentially, relative
measurements were being substituted for absolute measurements. The substantial differ-
ence between the absolute simulation is that for the RMC the measurements must take
place along a length standard. Thus, the end-effector must follow a straight-line path. In
order to achieve these poses, the inverse kinematic problem for the robot must be solved.
The remaining components of the program, attending to the forward kinematics, Identifi-
cation Jacobian assembly and kinematic parameter deviation identification, are the same
as those in the absolute simulation. A summary of the simulation code can be seen in

Appendix D.

4.3.1 Pose Generation

To simulate the RMC, it was required that the end-effector traverse the length of a
precision-ruled straight edge. In the pose generation stage, arbitrary increments could
no longer be added to an initial joint angle set as specific poses were now required. In
the RMC, the end-effector must maintain its orientation while its position is altered. In-
crements in its position are specified in the program and correspond to moving to each of
the graduations on the ruler. The 3 x 3 rotation matrix and the 3 x 1 position vector are
therefore known for each measurement pose. It is simply a matter of extracting the joint
angles that constitute the pose from the known matrix.

For the MDH parameters, Pieper’s solution [34] to the inverse kinematic solution,
presented in Chapter 2, was utilized to obtain the joint angles. This solution was initially
used until the closed-form solution for the inverse kinematics using the DH convention

was developed. With the closed-form solution, essentially six equations, corresponding



CHAPTER 4. SIMULATION RESULTS 90

to each joint angle, are amalgamated into one function call. Given the necessary inputs,
the rotation elements, the translation elements, and a reference joint angle set, the joint
angles for a pose can be computed. As the absolute distance between poses in the RMC
are small, simple comparisons between the last pose and the current pose are employed to

determine the correct joint variables. As with Pieper’s approach, multiple solutions exist.

4.3.2 Relative Measurement Acquisition

A relative measurement is simulated by computing the actual position of the end-effector
and comparing it to the expected position. With respect to Figure 3.6, consider the first
pose, where the end-effector is actually at p4,, computed via the forward kinematics with
the parameter deviations, but it is believed that it is at pg,, computed via the forward
kinematics using the nominal geometry. The set of points, G, represent the graduations
and are defined in the simulation by adding known increments to the first actual point,
A;. G, is coincident with A;. With the simulation, imagine that the ruler is placed so that
(G4 is in direct contact with the tool flange so that G; and A; are coincident. However, it
is an imaginary ruler represented only by a set of points so no collisions are possible. The
end-effector is moved a known distance along the length of the imaginary ruler. It was
expected to arrive at G, but instead it moved to A;. The difference between its expected
position and its actual position is substituted as the error. This error is not the overall
error, which is between A and C, but is a significant component of the overall error.
Increment size is an important factor in the success of the calibration. Increments that
are too small would result in a singular Identification Jacobian matrix. Linear dependen-
cies would be formed with respect to the rows as they would be too similar. Therefore,
an increment of sufficient magnitude must be chosen to avoid this situation. Now that
the means to generate the appropriate poses and measure the appropriate positions to

implement the RMC has been established, the results of the relative simulation will now
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be discussed.

4.3.3 Simulation Results

It was determined with the relative simulation that many of the parameter deviations
were observable and capable of being successfully identified. Using increments in all three
base reference frame directions, and the first joint angle set from the KUKA KR 15/2
data, one iteration of the parameter deviation identification equation yielded 15 parameter
deviations within 10-15 % of their respective true values. The SVD gave an indication of
which parameters were less trustworthy. This result alone is very encouraging. However,
to refine the estimates, further iteration was required.

In the iterative solution of identified parameters, the error vector must be updated.
Unlike the conventional calibration scheme, the error vector cannot be updated by simply
re-computing the forward kinematics of the robot using the corrected geometry and com-
paring these to the measured values. There are no values to compare to in the relative
case. The error vector implemented in the relative procedure is not the total error and
is described with respect to the first actual point. This point has been computed in the
simulation but would be unknown in the experimental case. In the first iteration, the er-
rors are applied at the first controller point instead. As many of the parameter deviations
were identified at close to their respective true values, an estimate of the first actual point
can be computed. Applying the error data again at the estimated first actual point allows
further iteration. Once it is determined that further iterations would not significantly
improve the estimated parameter deviations, their current values could then be used to
provide an even better estimate of the first actual point. This process can be repeated
until the observable parameters are appropriately identified.

Using the same parameter deviations as listed in Table 4.1, the results of the relative

simulation with 2 estimates of the first actual point with 3 iterations of parameter iden-
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Table 4.2: Results for relative measurement simulation after 2 estimates of the first
actual point.

Specified Identified
Parameter Deviations Deviations

(m, rad x107%) | (m, rad x107)
6, 16.0000 16.0000
0, 34.0000 34.0002
03 -56.0000 -56.0003
04 -27.0000 -27.0000
05 22.0000 22.0003
O 13.0000 39.5814
dy 38.0000 37.9829
do -14.0000 -33.4532
ds -53.0000 -33.5468
dy 61.0000 61.0000
ds -30.0000 -30.0023
dg 24.0000 23.9828
ay -17.0000 -17.0000
Qs 89.0000 89.0000
as 64.0000 64.0000
a4 -45.0000 -45.0000
as 37.0000 37.0000
ag 22.0000 21.9999
a -11.0000 -11.0000
Qg 8.0000 8.0000
Q3 19.0000 19.0000
Qg 21.0000 21.0000
Qs -15.0000 -15.0161
Qg 14.0000 0.0000

tification apiece are listed in Table 4.2. Again, ag was excluded from the analysis as it
cannot be identified. The initial robot pose was specified as the first pose of the KUKA
experimental data. 80 measurements were taken in total and increments in the base coor-
dinate system were specified for all three directions. The increments are: -10.0 mm in the
z direction, 10.0 mm in the y direction, and 5.0 mm in the z direction.

As can be seen in Table 4.2, the sum of estimates for dy and d; equaled that of their

collective actual error, and ag was not identified correctly. In the first iteration, 4 singular
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values were removed. The parameter deviations corresponding to these singular values are,
starting with the last column (associated with the first eliminated singular value): ds and
ds, 0s, a5, and 65. For dy and ds, the column had two entries of equal magnitude. In the
subsequent iterations, only one singular value was eliminated. It corresponded to ds and
d3 every time. As these parameters appeared unobservable they were then removed from
the analysis, as they are linked. However, the removal of both of these entries significantly
worsened the results. Removal of just one, ds, yielded similar results as in Table 4.2, except
that d3 was identified as 67.0000, which is again the collective sum of their actual error.
Removal of them all yielded results similar to the absolute case.

In terms of convergence the relative simulation was able to reduce the residual to
approximately 10714 in 5 iterations and 2 estimates of the first actual point. This can be
seen in the logarithmic plot of Figure 4.4. ag was not part of the analysis. As can be seen
in the plot, there are two iterations in which the residual increases. For the sixth iteration,

this increase is due to the second estimate of the first actual point. For the first set, the
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Figure 4.4: Relative simulation residual vs iteration.
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estimates were converging on solutions that fit with the included error between the first
point estimate and the actual first point. At the end of the fifth iteration, a new estimate
of the first point is generated and the process is repeated.

As the experimental case will involve measurements in just two orthogonal directions,
a check of its performance with a 2 x 24 Identification Jacobian was pursued. With
increments specified in all three directions, the same result as achieved with three directions
was produced. The unidentified parameters were the same as in the previous case as well.

Overall, the relative simulation proved to be quite successful. 20 of 24 parameters were
successfully identified. Also, the same range of deviation magnitude from the absolute case
worked for the relative case. However, the issue of noise was not tested in the simulation.
From the effects of noise on the absolute simulation, in all certainty it would have the

same detrimental effect on the relative simulation.



Chapter 5

Experimental Validation

The kinematic calibration procedure based on the RMC, through the analysis of the simu-
lation results, has the potential to successfully identify the majority of a robot’s kinematic
parameters deviations. Several issues were brought to the forefront, such as measurement
noise and the straight-line path of the end-effector, as these issues would have significant
bearing on the experimental results. To validate the kinematic calibration procedure uti-
lizing the RMC, an automated measurement acquisition procedure had to be devised. The
joint angles for the measurement positions are supplied by the robot controller and are
used as inputs in the experimental calibration program. The remainder of the program
functions are exactly the same as in the simulations. For both robots, whose links are
presumed to be constructed with numerically controlled milling machines, deviations on
the order of microns were expected.

First, a set of data acquired in the KUKA KR 15/2 experiment [33] was analyzed. As
previously mentioned, an experiment was conducted with this robot at the Mining Uni-
versity of Leoben, Austria. Its intent was also to validate the RMC, but it could not be
completed due to time constraints. So, the first step in the validation of the RMC was to

first utilize the measurements from this experiment in the calibration program. As some
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unexpected results came of this and access to this robot was no longer possible, the sim-
ulations were developed. Finally, a new experimental setup was constructed and featured
a new robot, the Thermo CRS A465. The experimental program code is summarized in

Appendix E.

5.1 KUKA KR 15/2 Experiment and Results

The setup for this experiment is similar the setup involving the Thermo CRS A465. The
main features of the system are a CCD camera with lens and a precision-ruled straight
edge, so both must have these items. A Pulnix TM6-CN CCD camera was outfitted
with a Rodenstock 2x lens and electronic shutter and mounted to the tool flange of
the KUKA KR 15/2 with a custom-built metal bracket. The PZA ruler conformed
to the Deutsches Institut fiir Normung (DIN) standard 865 and had the dimensions of
1000 mm x 20 mm x 20 mm. A National Instruments PCI-1408 monochrome framegrab-
ber and AT-GPIB General Purpose Interface Board (GPIB) were used to acquire images
from the camera. Additionally, two laser displacement devices were used: a MEL M5L/10
laser and a MEL M52L/2 stereo laser. Finally, a red LED array was attached to provide
a uniform light source.

The ruler was aligned with the y direction of the base coordinate frame of the robot
and the error vector consists of errors only in this direction. The measurements were taken
from a span of 80 cm of the 1 m precision-ruled straight edge. The graph of the errors
versus the length increment, Figure 5.1, illustrates that the inaccuracy of the KUKA KR
15/2 could be as much as +0.8 mm. Also note that there is a considerable influence due
to noise contributions.

When this data was supplied to the kinematic calibration procedure, the outputted re-

sults were rather unexpected. The estimated kinematic parameters are listed in Table 5.1.
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Figure 5.1: Graph of the y direction errors vs length increment for the KUKA KR
15/2 experiment.

Obviously, these corrections were completely unusable. They were obtained through one
iteration of the identification equation. Further iteration was not possible as these correc-
tions lead to divergence.

As no further access to the robot, equipment, or coded programs, was possible, the
simulations were developed in an effort to uncover the negative influences on the procedure.
The simulations yielded positive results in the absence of measurement noise so another

experiment, featuring the Thermo CRS A465 six-axis serial robot, was devised.

5.2 Thermo CRS A465 Experiment

The Thermo CRS A465 was mounted to an aluminum surface, 1524 mm x 1219 mm x 12.7
mm, that was rigidly fastened to a steel table structure. There are 9 10-24 holes in the mea-
surement area of the aluminum surface so that the ruler, a PZA 1000 mm X 20 mm x 20 mm

precision-ruled straight edge, conforming to DIN 865, can be placed in numerous positions
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Table 5.1: Results of the experimental calibration procedure applied to the KUKA
KR 15/2 data.

Identified
Parameter | Deviations
(m, rad)
6, -2.8452
0, -94.3760
03 -39759.3370
04 114.7173
05 20.1933
s 0.0000
d; 0.0000
dg -335.1989
ds -335.1989
dy -6192.9273
ds 137.7800
dg 8.6397
ap 5374.3238
as 104.8907
a3 23988.9568
a4 -137.1946
as 144.2363
ag -3.4559
a -0.0422
QU -21.9418
a3 -913.3603
oy 1187.1736
as 19.3085
Qg 0.0000

against 6.35 mm (%”) shoulder screws. DIN 865 specifies a 20 yum tolerance in the distance
between graduation centres. The A465 is interfaced with a C500C controller, which is
serially connected to a development computer. The controller is also serially connected to
another development computer that contains the data acquisition card and software nec-
essary for image extraction from the Pulnix TM200 CCD camera. The camera is outfitted
with a Rodenstock 1x lens and a red LED ring-light. The experimental setup is pictured

in Figure 5.2.
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The A465 was commissioned in accordance with its user guide [40] and a program,
executed through its application shell [41], was designed to accomplish the necessary robot
movements using the RAPL-III programming language [42]. This program communicated
with the other computer via the serial connection when a desired pose was reached. A
Labview Virtual Instrument (VI) program then snapped an image and signified that the
robot controller execute the next pose. This automated procedure was used to acquire
images along the length of the measurement artifact. An outline of the programs written
to automate the procedure can be found in Appendix F.

In the experiment, the ruler was placed nearly parallel to the y direction of the robot
base frame. On the table, a slight curvature could be seen underneath the ruler, indicating
that the surface was not precisely flat. The first measurement pose was taught through use
of the teach pendant. The edge of the ruler was aligned so that it would be horizontal in
the image and the graduations were therefore vertical. The ruler’s edge was approximately

1 mm (100 pixels) away from the top border of the image. As the ruler was not perfectly

Figure 5.2: Thermo CRS A465 experimentation setup with ruler placement.
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aligned with the y direction of the base frame, the end-effector had to be appropriately
rotated so that when it was commanded to move the entire 80 cm span of the ruler
considered, the first pose image appeared to be the same as the final pose image. With
respect to the first point, the final point was displaced by approximately 2 mm in the
z direction and 2 mm in the x direction.

To account for the effects of measurement noise and the repeatability of the robot,
50 sets of data were taken. The robot was first commanded to mimic the image acquisition
process for 45 minutes to warm it up. The robot was operating at 10 % of its maximum
speed. For this experiment, every pose was defined relative to the first pose. As the
first pose is a taught position, it has a tool coordinate frame that is the least affected by
potential error. So, the subsequent poses were defined as multiples of a specified increment,
1 cm, from the first pose. After reaching these poses, the robot would return to the first
pose to re-establish the proper tool coordinate frame. In this fashion, one set of data,

80 measurements, took approximately 45 minutes to complete.

5.3 Experimental Results

Once the images were acquired they were digitally processed to extract metric information.
Figure 5.3 is the reference image of the first data set. In the image processing algorithm,
the edge of the ruler and the five visible minor graduations are used as markers. The
distance between minor graduations is 0.1 mm and is certified, according to its calibration
certificate, to be accurate to = 3 um. This known distance achieves scale in the image
coordinate system as the distance between graduations can be calculated in pixels. When
a comparison is made between the reference image and a subsequent image the relative
distance between these image markers, using the scale to compute metric information, is

the error.
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Figure 5.3: Reference image of the first data set.

To confirm that the A465 did indeed have a repeatability of £50 pm, an analysis of
the reference images, the first image of each data set, was performed. The first reference
image of the first data set was used as the reference for this analysis. With respect to the

graph of Figure 5.4, certain anomalies were present.
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Figure 5.4: Repeatability analysis of the reference images.
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The first issue that should be noted is that these measurements were taken over a
five-day period. Ten data sets were collected in one day with 45 minutes allotted for
warm-up. An issue with the first pose of a set of measurements has been noticed before
with laboratory experiments investigating repeatability [43]. This issue was confirmed
when checking the recorded joint angles. The joint angles for each set are exactly the
same, except for the first recorded pose in the program. As the first pose is a taught
position, this discrepancy should not exist. However, it may be an irregularity in the
controller software and unfortunately no compensation can be performed. This does not
mean that the remaining images of those particular sets are useless. According to the
recorded joint angles, these poses were consistent with their counterparts in other data
sets, so just the reference image may be unusable.

The second issue was that three clusters of data points were observed. Each corre-
sponding to sets 2-10, sets 12-20, and finally a larger cluster representing sets 22-30, 32-40,
and 42-50. As the ruler was not moved over the course of the five days, no tangible evi-
dence can be offered to explain this result. No aspect of the physical setup was changed
during this time. It may be an artifact of the digital image processing, however, it might
also have been the ambient temperature and humidity. These were not recorded and any
difference remained unnoticed while present during the entire experiment. Despite this re-
sult a significant portion of the data seems appropriate for further use. The larger cluster
represents 27 data sets and is within the repeatability of the machine.

The relative error for the first acceptable data set, the 22", is plotted in Figure 5.5.
Also plotted are the trend-polynomials for each direction. The reference position was
taken as the averaged value of the positional coordinates for the reference images of the 27
data sets. As can be seen, there is a significant presence of measurement noise. Also, the
inaccuracy of the A465 reached approximately 0.55 mm. It is unfortunate that the data

is plagued by measurement noise, but this experiment has at least been consistent with
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the KUKA KR 15/2 experiment in this regard. Two trend-polynomials were generated,
using sixth degree polynomials, so that error data in this manner could be supplied to the
calibration procedure as well.
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Figure 5.5: Relative error of the 22 data set.

Both sets of error data were supplied to the experimental calibration program. The first
set, afflicted with measurement noise, resulted in the same kind of parameter corrections
as with the KUKA KR 15/2 data. The corrections were again quite large. With the
trend-polynomial data, the magnitude of the corrections were significantly reduced. As
opposed to a -1771 rad correction to 3, an 80.8 rad was produced. The estimates, for
both cases, can be seen in Table 5.2. Unfortunately, these corrections are again not very
helpful as they make the calibration process diverge.

As more data was available, the averages, computed for the 27 applicable measurement
sets, were substituted for the 80 data points. With respect to the plot of Figure 5.6, it
can be seen that the measured points, even when averaged, follow the same general path.

This indicates that the noise in the data may not be primarily influenced by the robot’s
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Table 5.2: Results of the experimental calibration procedure applied to the 22"¢ data
and trend-polynomial.

Noisy Data | Trend-polynomial
Identified Identified
Parameter | Deviations Deviations
(m, rad) (m, rad)

01 0.0523 -0.0143
0 -0.0886 0.0521
03 -1770.6634 -80.7586
04 -0.0089 0.1893
05 (0.0089 -0.0026
¢ 0.0000 0.0000
dy 0.0000 0.0000
da -0.0028 -0.0755
ds -0.0028 -0.0755
dy 0.0286 0.0225
ds 0.6926 0.0914
dg -0.0801 0.0231
a; 134.7948 6.1774
as -0.0181 -0.0121
as 588.0014 26.7630
a4 -0.1428 0.0476
as 0.1173 -0.0344
ag -0.0000 -0.0001
oy -0.0447 -0.0140
Qg -0.0387 -0.0004
o3 2.0006 -0.1948
Qy -1.5516 0.1988
Qs -0.0053 -0.0070
Qg 0.0000 0.0000

repeatability and may be due to other sources. A repeatability analysis was performed
for the applicable data sets for the first 20 points. Plots corresponding to these points
illustrated that they were within the repeatability of the A465. The standard deviation
of the radial distances for all 80 points did not exceed 0.046 pum. The results of the
experimental calibration program were nearly the same as with the 22" data set.

One significant observation can be made about the results of the experimental calibra-
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Figure 5.6: Relative error of the considered data sets.

tion procedure. The estimates were all large relative to the assumed deviation magnitudes
in the simulations. Recall that when a straight-line path was used in the absolute simu-
lation and measurement noise was present, the estimates also grew in size. The included
random measurement error was of the same magnitude as the specified deviations. The
results of both of these case are very similar and indicates that the issues to be resolved
with the experimental setup are: aligning the ruler with one of the base frame coordinate
directions and an accumulation of noise. One of these can be addressed rather easily by
just orienting the ruler so that it no aligned with any of the base frame directions. This
may involve the construction of a special stand to hold it in such a position. The other,
the more difficult to address, is the issue of noise. However, to eliminate noise the sources

must be identified and some of these sources are presented next.
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5.3.1 Sources of Error

The future of the project may lie in a complete error analysis of the system to compensate
for the multiple sources of noise. As noted with the absolute simulation the inclusion
of measurement noise caused the parameter estimates to become inaccurate and grow in
magnitude. However, they grew to be of the same magnitude as the specified magnitude
of the noise. The estimates for dy and ds; are excluded from this observation as they
seem to be generally sensitive to many factors. Therefore, to see two experiments result
in corrections measured in kilometers was unexpected. When trend-polynomials were
employed, the estimates became smaller, but not enough to lead to convergence. So,
a more advanced simulation, that incorporates all the potential sources of error in the
measurement acquisition process, is required.

The first source of error is the measurement artifact itself. It is a precision-ruled
straight edge, but is still subject to inaccuracies in the manufacturing process. The PZA
ruler procured for the experiment conforms to DIN 865, which stipulates that the centre-to-
centre distance between graduations is within £10 gm. This may be too great a tolerance
given the experimentally-verified repeatability of the robot.

Noise generated during the image processing is another source of error. The CCD
camera creates images that are 640 x 480 pixels in size. From the analysis of Figure 5.3
the distance between graduations is approximately 100 pixels. One pixel is therefore equal
to approximately 10 gm. Thus, the error instilled in the measurements could be as much
as this amount [5].

The next source of error originates from the limitations of the robot’s joints. When the
end-effector is commanded to a pose, from the first pose, the orientation component of the
transformation should remain constant while the translational component indicates the
desired increment. However, the theoretical joint angles, as computed by the controller

may not be reachable. The first three joint encoders of the A465 have a resolution of
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0.00712871 degrees which corresponds to approximately 50000 motor positions for 360 de-
grees of revolution. The last three have half of that with a resolution of 0.00356436 degrees.
The resolution of the joint encoders, in part, determine the repeatability of the robot. So,
when the robot is commanded to a particular set of joint angles, it moves to the motor
positions that are the closest to those values rather than the desired values.

Also associated with the joint encoders is error due to their inaccuracy. In general,
angular positions are recognized by markers on the motor shaft. However, some inaccuracy
exists when the location of the marker is sensed by the encoder. This error is potentially
of the same order of magnitude as the difference between the discrete motor positions and
the desired angular positions.

Finally, another source of error arises in traversing the length of the ruler. The only
way to determine whether the end-effector has gone in a straight line along the length of
the ruler is to compare the first and last images. As these images are subjected to various
errors, including the repeatability of the robot and the pixilation of the image, the edge
of the ruler may not be precisely followed. Compensation of this type of error is possible
by removing the difference between the desired path, where the first and last images are
almost identical, and the actual path, where the difference between the first and last image
is greater than the repeatability of the robot. As this error is linear in nature it can be
easily computed. However, the accuracy of the image processing would be important as
the metric information used to determine this path error would be subject to the error

generated in the image processing.



Chapter 6

Summary & Conclusions and

Recommendations

6.1 Summary & Conclusions

This thesis provides a foundation for the development of a kinematic calibration procedure
for six-axis serial robots and is based on the RMC. The use of relative measurements, as
opposed to absolute measurements, were substituted to determine the deviations between
the nominal robot parameters, derived from the ideal robot geometry, and the actual
parameters, which are unknown and dependent on the accuracy of the manufacturing
methods employed during the robot’s construction. Simulations were created to evaluate
the use of relative measurements and, based on their findings, proved to be quite promising.
The simulation and preliminary experimentation results serve as a basis for future efforts
directed towards an automated camera-based kinematic calibration system. Two key items

were addressed:

(i) The developmentof a simulation of the kinematic calibration of six-axis serial robots

using relative measurements, and the analytical expressions for its fundamental com-
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ponents.

(i) The identification of the sources of error in the experimental calibration procedure
through the development of an automated camera-based measurement acquisition

system.

In order to perform the kinematic calibration of serial robots several analytic tools
were required. The capability to compute the forward kinematics, inverse kinematics,
and Identification Jacobian elements were necessary for any simulation or experimental
program created as a part of this project. Inherent to their use was the selection of an
appropriate parameterization method. The DH and MDH conventions were utilized to
model two six-axis serial robots: the KUKA KR 15/2 and the Thermo CRS A465. The
fundamental principles associated with robot kinematics were discussed in Chapter 2 and
applied in the calibration procedure.

A kinematic calibration procedure was developed to first use absolute measurements,
those described with respect to the base coordinate frame of the robot, and then adapted
to use relative measurements, which are described with respect to an arbitrary position.
An estimate for the robot parameter deviations can be computed as they are related to
the errors in the position of the end-effector by the Identification Jacobian. The RMC was
introduced to provide an alternate means by which to measure these errors. The RMC
is a novel means of acquiring error data in that all of the images corresponding to the
measurement poses are compared to the reference image of the first pose. Along with the

development of the conventional calibration scheme and a description of SVD, the RMC

was developed in Chapter 3.
The structure of the simulations and their results were presented in Chapter 4. For the
absolute simulation a means to generate poses, acquire measurements, incorporate noise

and establish convergence were discussed. The absolute simulation proved to be quite
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successful in identifying the specified parameters. The incorporation of measurement noise
was found to be detrimental to the successful identification of the parameter deviations.

Finally, the experimental results for a KR 15/2 and an A465 six-axis serial robots were
presented in Chapter 5. It was observed that the experimental data suffered from a great
deal of measurement noise. The primary source of this noise was not the repeatability of
the robot but, other sources influenced by the capabilities of the robot. It was also noted
that the maximum measured error was an order of magnitude larger than that of the
repeatability. This stands to reason as robot accuracy is typically an order of magnitude
worse than repeatability.

The following major conclusions have been drawn from the work presented herein.

e In its current state of development, the kinematic calibration simulation, based on
the Relative Measurement Concept, can successfully identify 20 of 24 robot parameter

deviations.

e The joint twist of the sixth joint, ag, is unobservable. ag is a rotation about an
axis through the point that is measured. The effect of this rotation does not affect

subsequent links and is thus unobservable.

e To identify the link offsets of the second and third joints, dy and ds, sufficient error

in the joint twist for the second joint, as, must be present.

e The error observed in the experimental data is due to multiple sources: the re-
peatability of the robot; the measurement artifact; the digital image processing; the
resolution and inaccuracy of the joint encoders; and the straight-line path of the

ruler.
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6.2 Recommendations

Attempt a non-linear solution for the kinematic parameter deviations in the simula-

tions.

Modify the absolute simulation to include the discrete motor angular positions, noise
in motor angular position, measurement artifact inaccuracy, and noise in the mea-

surements. This would serve to confirm the magnitude of errors experienced in the

KR 15/2 and A465 experiments (0.55-0.80 mm).

Implement the Hayati parameters or the General DH parameterization to cope with

the nearly-parallel axes of the second and third joints.

Acquire another set of measurements but place the ruler such that it is no longer
aligned with a base coordinate direction. Construct a set of discs that would be
mounted to the table surface via the existing 10-24 holes. A great number of ruler
orientations could be achieved in the measurement area of the table with these discs.
Also, attempt to place the ruler not only at an angle in the xy plane of the base

coordinate system, but raise one of the ends.

As a CMM is now locally available, calibrate the A465 using absolute measurements.
This could be accomplished with a tooling ball and a suitable plate attachment.
Some of the error sources mentioned in Chapter 5 would then no longer apply, but
be replaced by the inaccuracy of the CMM. However, the only sources of error would
be due to the CMM’s inaccuracy, the parameter deviations and the repeatability of
the A465. A comparison to an absolute calibration method in terms of time, setup,

and parameter estimates, would be beneficial.

Investigate the possibility of adapting the procedure to cope with different tasks,

applied loads, working speed, and temperature. As accuracy and repeatability vary
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over the workspace and change according to these influences, the calibration results

also depend on these factors.
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Appendix A

Pieper’s Inverse Kinematic Solution

Method

Pieper’s solution to the inverse kinematic problem is presented here for all cases. The

simplifying functions are as follows:

f1 = ascosfs+ dysinagsinbs + ag, (A.1)

fo = agcosaysinfs — dgsinazcosascosfz — dysinascosaz — dzsinaz, (A.2)

fs = agsinagsinfs — dysin azsin ay cos s + dgcos az cos az + dzcosaz,  (A.3)
g1 = azcosfycosfz + dycosbysinagsin s + ascos by

—ag sin 6 cos o sin By + d4 sin B, sin a3 cos g cos O3
+dy sin 0, sin a5 cos az + ds sin By sin ay + aq, (A.4)
g2 = agzsinfycosay cos bz + dysin by cos o sin g sin O3

~+aq sin 85 cos a; + asz cos By cos oy cos arg sin B3

119
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g3 =

ky =

ks =

ky =

PIEPER’S INVERSE KINEMATIC SOLUTION METHOD 120

—dy cos 0y cos a; sin aig cos arg cos B3 — dy cos B cos arp sin ap cos ag

—d3 cos By cos o sin ag — az sin oy sin oo sin O3

~+dy4 sin o sin a3 sin oy cos O3 — dy sin g cos ag cos as

—d3 sin o cos g — dy sin ay, (A.5)
a3 sin 05 sin o cos 03 + d4 sin 6, sin o sin a3 sin 3

+-a4 sin By sin av; + as cos Oy sin a1 cos o sin 3

—dy cos B, sin o sin a3 oS g cos O3

—d4 cos 0 sin g sin ap cos oz — d3 cos By sin v sin o

+a3 cos g Sin ag sin @3 — d4 cos o sin aig sin i cos O3

~+dy cos (1 COS ag oS a3 + d3 cos ay cos Qg + dg oS g, (A.6)
a3 cos B3 + dy sin a3 sin 03 + aq, (A.T)
—a3 oS (g sin 03 + dy sin g cos g cos B3 + dy sin g cos az, (A.8)

+d3 sin ag — 2dady sin a3 sin ap cos 03 + a% + d2 + 2dad3 cos a

+2a9a3 cos 03 + a% + 2a9d, sin a3 sin 03 + 2a3dg sin ap sin 03

+2dydy cos o cos ag + da + a3 + di + 2d3dy cos as, (A.9)
a3 cos o sin i sin B3 — dy sin oz sin ag cos 05

+d4 cos ag cOs a3 + dsz cos ay + ds. (A.10)

The first angle that is identified is 65. For Case 1, a; = 0, and therefore Equation 2.40

reduces to:

7'2 = k3. (All)

Through substitution of a single variable, us, using the identities of Equation 2.44,
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Equation A.11 can be re-written as a quadratic equation,

(—2azay + 2dady cos oy cos ag + 2dady sin ag sin g + ag +a2+d3
+d2 + a2 + d + 2d3dy cos a3 + 2dad; cos g — rH)ul

+(4asd, sin oz + 4dsag sin o )us

+2dads cos o + 2apa3 — 12 — 2dgdy sin oz sin oy + da

+2dsd, cOs o cos a3 4+ 2dsdy cos az + a2 + a2 + da + ak + di = 0. (A.12)

The coefficients of the powers of uz are converted into Matlab code in order to calculate
the roots. After a comparison is made, the proper 63 can be identified.

Once the proper root is obtained, 63 can be computed with:

0; = 2tan"*(u;). (A.13)

The solution for 85 and then ¢; will be discussed shortly.

For Case 2, sina; = 0, and therefore Equation 2.41 reduces:

The resulting transcendental equation is reduced to a quadratic equation via the geo-

metric substitutions:

d4 cos o sin as sin ag + dg cos iy CoS g cos g + d3 COs vy COS &
2 4 2 3 3 2
+dy cos ag — 2)u? + (2a3 cos ay sin az)u — dy cos oy sin o sin ay

+d4 cos ay cos iy coS a3 + d3 cos iy cos g + dycosay — z = 0. (A.15)
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For Case 3, Equation 2.43 applies:

(7‘ - k3)2 + (z - ]€4)2

4a? sin? o

= ki +k;. (A.16)

As before, the geometric identities are applied to obtain a polynomial expression. As

this is the general case, the polynomial is 4** and quite complex.

—8a22 cos aydy coS g €08 g + 8d2d; cos aZdy cos as
1 2 2
—8d2d2 cos o2 cos a2 cos a? + 4d5 cos azds + 4ajdy cos azds
+4a322 + 4a? d3 cos on 4a§d2d4 sin a3 sin o, cos ozf — 8asaodady sin a3 sin aup
—4d3dy sin o sin o cos o + 4r2dydy sin a3 sin g cos o + r* + 4dj cos a3d;
+4a2dydy cos as cos az + dazded, sin az sin ag — at cosa? — 2d2r? — d} cos o?
1 3 3 1 1 2 4 1

—2a§r2 + 12d2d§ COs Qiady cos a3 + Safd4 cos a3d3 cos a% + 4d§d4 COoS (i3

4 2 4 8d2d dysi i 8azaydad ds 2
—r* cos af + 8d5d3 cos aady sin a3 sin oy — 8azagdads cos ag — dy cos oy

4 2 2 12 2 37 o . 2 12 2
—d3 cos af + 4d5d; cos o, + 4d;ydy sin o sin oy — 4d5d) cos

. 2 + 8dyd> 2ds — 4d3d d 2
—a3 COS (] + 3asdy COS (g COS (¥3d3 — 4d5034 COS (303 COS Oy
—4dydy cOS aig COS a3a§ cos a% + 4d2d§ cos ag + 4a§d4 cos a3ds cos af
—4dyds cos apas cos & + 8asandy cos azds cos ai — 4dsdady sin az sin o cos o
—4r%dydy sin ag sin ag + 4a3d2d4 COS (rg coOs 3 + 4dody cOS g COS agag
—8asagdady cos ag cos iz — 8azasdy cos azds + Sa%di sin a3 cos (g sin iy COS arg
—4d4 cos azdsr? — 12d2d§ cOos agdy COS iz COs a% — a‘é cos a%
—4dqyds cos Otgdi cos af + 4dydy cos g cos azr? cos aF + 4a3a2af — 4azayds
—dazad? — dasasd? + 6a2a2 — 4azad — daday + 2a3d5 — 2d3a3 + 2aid; — 2alal

—2a2d2 + 2d2a2 + 6d3d2 + 2d3a3 + 2d3d; + 2a3d; + 2a2d: + 2d5a3 + 2d3d; + 2a3d;
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—2a2r% — 2d%r? — 2a3r% — 2d3r? + af + dj + a5 + dj + a3 + d5 + dazaor?

+20d2 cos o2 — 8a2zd, cos o) + 4a? cos aldy sin a3 sin aads + 4a? cos ajds cos aads
—8a%z cos o1 ds cos ap + 4af cos a%d4 COS (v COS (xady

—8afz Cos (v1dy4 sin oz Sin g — 4a§d2d4 COS (¥g COS (¥3 COS ozf

+4afd2d4 sin ag sin ag — 4d‘3d3 COS (xg COS af — 4di cos azds Cos a%
+4a%d2d3 COS (rg — 4a%d4 cos azds + 4dgd4 COS (vg COS (r3 + 4d§d4 cos azds
+4daods3 cos agag + 4dqd3 cos agdﬁ ~+ 4d,ds cos a2a§ + 4a§d4 cos a3ds
+8d2d2 cos o2 cos a2 + 4dyd3 cos oy cos ag — 4dgds cos agr?

—|—4did2 sin a3 sin g — 4d§d§ cos a3 4a1d2 cos a2 6a3a2 cos al

+4d§d3 cos Qg + 4a§d2d4 sin aus sin oy — 4dsdy cos ag cos agr?

+8d§di COS (xg COS (x3 Sin (g sin ap + 4d§d2d4 sin a3 sin ap

+8d2 cos azdsdy sin o sin ap + 8a3d3 cos a3 cos a;

—4dyd3 cos ag cos a? — 4dj cos azds cos o? — 4asayr? cos o?

—dazasa’ cos a? + dazaqd? cos a? + dazayds cos o + dazand; cos o
—4d2d2 cos o2 cos o2 — 4d3dy cos az cos af + 4d3d; cos af cos o

+4d2d2 cos o? cos a2 + 4dy cos azdar? cos o — 8dad cos ay cos aiads cos o
—4d3d4 cos ag cos a3 cos a2 — 2a2d3 cos of — 6d5d; cos o
—2d2d2 cos o2 + 2a%d3 cos of — 2a%d3 cos af + 2dar® cos af
+2a2a3 cos? + 2a2d; cos af — 2a3d; cos i + 2d3r? cos a2
+2d2r? cos o + 2a2r? cos a — 2daa; cos o? + 2a3r? cos ol
—2d2a2 cos of — 2d3a3 cos o + 4azal cos o? + 2a2r® cos a3

—2d2d2 cos o? + 2a2a2 cos o? + 4ajay cosaf — 4ald] cosaj

—4a§d2d4 sin a3 sin o cos o + 4dad3 cos agr? cos af — 4aidy cos azds cos ol
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—8d2d; cos a2dy cos a3 cos a? — 4dad, sin a3 sin @, cos af
dad, 2 2 dod 2 2d d 2
—4d,ds cos azaz cos af + 8agaqdads cos ag cos o — 4azdy cos azdz cos o
+8asasdyds sin oz sin avg coS a% — 4d2d2 COS vy COS (i3 COS a%
—8d§d3 COS (vady Sin a3 sin aup CO8 ozf + 8aszagdydy COS (vg COS (v3 COS ozf
8d2d? i i 2
—8d5d; cos ay cos a3 sin iz sin ap cos o

—8d3 cos azdady sin a3 sin o cos o2 + 8a2dy sin a3 cos apds sin ag)u§ + (A.17)

(16d§a3 sin arady COS (rg cos ag + 16dads cos aady sin azag
—16d3 sin azag cos azds cos o + 16a3az cos aady sin oy cos a3
2 . 2 2 2 . 2 2

+16djasds sin oy cos af cos a3 + 16d5a3ds sin oz cos aj cos oy
—16d%d3 COS (pa3 SN Qig COS af + 16d421 sin azaqgdy COS iy COS (¢
+8d,az sin ozzd?1 + 16d,a3 sin aydy cos azd; + 16afa3d4 sin arz
—16a3a§d4 sin aig — 16a§a2d2 sin aip + 8dqag sin asa,
—8dy si 5 2 —8aldysi 8a3d,as si

4 sin aza; cos af — 8ajdy sin azas + 8ajdeas sin o
~8daa3 sin agr? — 8dyas si ? + 16d5a3d, i

2a3 Sin aor 205 sin g cos a + 16d3asds sin as
+8d, sin agagag + 8dy sin a3a2d§ — 8d, sin azagr?

—16d5a3 sin aady cos azds cos a% — 16d§a3 sin aredy COS (rg COS (X3 COS a%

—16d4d3 cos aady sin aizag cos a% — 16d§ sin ai3aody COS (rg COS (k3 COS af
8d : 2 2 d : 2 2 d : 2 2
+8dsa3 sin apr” cos af — 8dgas sin axa; cos af + 8dy sin azasr” cos aj
16 2 d : : 2 2 d : 2 2
+16ajag cos aads sin aip — 8dy sin aigasa; cos oy — 8dy sin aizasds cos o)
+16d3 si ds — 8d2d, si 2 _ 16d2aqd, si 2
1 sin aza cos azds — 8d5dy sin aizag cos oy — 102d9 sin ay cos ag

+8a% cos a%ag sin aady — 16afz COS (¥10a3 Sin ay + 16d§d3 COS (a3 Sin Qrg

- 16d?1a2d2 sin o cos a% — 8dyas sin agdi coS ozf — 16d§a3d4 sin a3 cos a%
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—16d§a3d4 sin o3 cos a% — 8dsasz sin a2d§ cos ozf + 16a§a2d2 sin ap cos af
+8a2dy si 2 4 16a3a2d, si 2
1d4 sin azag cos o + 16azasd, sin ag cos af
—16a%as cos a2dy sin as + 16d2asds sin s — 843 sin azas cos o
143 244 3 44202 2 4 342 1
+8dsyas3 sin a2d§ + 8d§d4 sin azag + 8d2a§ sin ag + 8d, sin agag

+8d3 sin azag + 8daas sin ap — 8d3as sin g cos o )ud + (A.18)

(—16a§z cos (1 dy COS (v COS (v + 16d§d3 cos a§d4 Cos O3

+8d3 cos azds + 8azdy cos azds + 8aiz? + 8alds cos ol

+48asasdad, sin as sin as + 2r + 8d?1 cos agdg + 8afd2d4 COS (rg COS (¥3
—2a% cos a? — 4d2r? — 2dj cos o2 — 4a2r? + 24d,d? cos apdy cos ag
+16a%d4 cos azdz cos a3 + 8dady cos az — 2r* cos af — 2d; cos o

—2d3 cos o + 8d3d3 cos as + 8dad3 cos o — 2a3 cos ol

+16d2d§ COS (vg COS oz%dg, — 8d§d4 cos tvzds3 COS af — 8dady cos ap cos agag cos af

+8d,d3 cos iy + 8a2d, cos azds cos o — 8dyds cos aal cos o

+8a§d2d4 COS (vg €OS vz + 8dady COS (rg COS a3a§ — 8dy cos azdsr?

—24d2d3 COS (rady COS (¥3 COS al 2a2 cos al 8dsds cos agdz cos af

+8dyd4 cos ag cos asr® cos f — 4alal + 4ald2 — 4a2al — 12a3d2 + 12a%a2
—4a2d3 + 4d3a3 — 4d2d4 + 20d3a3 + 4d3d3 + 20a3ds + 4a3ds + 4d3a) + 4did>
+4a3ds — 4air® — Adar — 4d5r? + 2a% + 2d5 + 2a5 + 2d; + 2a; + 2d;
+16d3a2 cos a3 cos a2 + 4afd2 cosa? — 16a22d, cos oy

+8af cos afdg cos aiady — 16afz cos o d3 cos ap + Sa% cos a%d4 COS (vg COS (xz3dy

—8a3dady cos a cos a3 cos af — 16a3ds cos a2 — 16a2a2 cos a2

—16d3a3 cos a3 — 8d5ds cos oy cos af — 8d3 cos azds cos o
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+8a2dyds cos iy — 8a?dy cos azds + 8dady cos o cos a3 + 8d5dy cos azds
+8dyds cos agag + 8d,d3 cos agdi + 8dyds cos a2a§ + 8a§d4 cos a3ds
+8d2d2 COS Qo €OS (13 — 8dads cos apr? + 8d§d?1 cos ag + Safdi cos ag
—{—4a3a2 cos ozl + 8dgd3 o8 (g — 8dady COS g COS 372 — 8d2d§ COS (ig COS ozf
—8d2 cos 02d2 cos o — 8d2d2 cos a2 cos o — 8dady cos a3 cos o
—8d2d2 cos o2 cos ol — 8dada cos o cos a3 + 8dy cos azdsr? cos a?
—16dad2 cos arg cos azds cos af — 8didy cos a cos a3 cos
—402d2 cos o2 + 4d%d? cos o? — 4d3d3 cos of + 4a?d; cos of
—4a2d? cos o? 4 4d%r® cos o + 4alal cos of + 4aid] cos o}

—20a2d? cos o + 4dar? cos o + 4d3r? cos o + 4air® cos of
—20d2a2 cos &2 + 4a3r?® cos o? — 4dsa cos ol — 4dja3 cos af
+4a2r? cos a? — 4d2d3 cos o + 4ala3 cos af + 8ajd] cos o

+8dsds cos agr? cos al 8a2d4 cos arzds cos ozl — 16d2d3 cos a2d4 COS (v COS af

—8dyds cos agag cos ozl 8a3d4 cos a3ds oS ozl — 48asaqdady sin ag sin ag cos a%

—8dad? cos iy cos az cos af + 16a3d3 cos o cos a3)uj + (A.19)

(16d3a3 sin aidy cos ag cos g + 16dad; cos aady sin azaz

—16d?1 sin aizaq cos aizds cos a? + 16afa3 COS (iady Sin g COS Qi3

- 16d2a2d2 sin oy cos a% cos a§ - 16d§a3d4 sin a3 cos ozf cos ozg

—16d§d3 COS (¥oQ3 SN (g COS a? + lﬁdi sin azaeds COS g COS (3

+8dya3 sin agdi + 16doa3 sin aiady cos aizds — 16a%a3d4 sin a3

+16a3a3d4 sin as + 16a§a2d2 sin aig + 8daaz sin agag — 8dy sin agag cos af

—8a%d4 sin asag + 8aldyas sin oy — 8dyaz sin asr? — 8d2a§ sin o cos a?
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—16d2a3dy sin a3 + 8dy sin a3a2a3 + 8dy sin azasds — 8dy sin azasr?
—16dsas3 sin aipdy cos aizdsz cos a% - 16d§a3 sin arady COS (rp COS (x3 COS a%
—16d,d3 cos apdy sin azay cos af — 16d3 sin aizaady cos Qg COS (v3 COS o3
+8dyaj si 2 2 _ 8dyassi 3 2 4 8dysi 2 2
203 sin a1 cos of 203 Sin aoa5 COS O 4 8in aizasr” cos o
16a? ds si 8d, si 2 2 _ 8dysi d2 2
+16a7as cos aads sin ap — 8dy sin azagas; cos af — 8dy sin azasds cos aj
+16d? sin ai3ay cos asds — 8d2d, sin azas cos a? + 16d2asds sin oy cos o2
4 2 1 4 3
+8a? cos ozfag sin apdy — 16a?z cos a1 a3 sin o + 16d§d3 COS Qo3 Sin vy
+16d3a,d, si 2 _ 8dyas sin ayd; 2+ 16d3a3d, si 2
109d 8in ap cos ] — 8daas sin aipdy cos ay + 16d3a3dys sin ag cos af
+16d3a3d, i 2 — 8daaz sin ayd; 2 16a2aydsy si 2
503d4 Sin a3 cos 203 sin aad; cos o a3a2ds sin ag Cos ]
27 o 2 27 2 2 27 o
+8ajdy sin azag cos af — 16azazdy sin oz cos af + 16ajas cos azdy sin oz
—16d3a9d; sin o — 8d3 sin aizag cos af + 8dqas sin a2d§ + 8d§d4 sin aizas
+8d,a3 sin oy + 8dy sin azad + 843 sin azay + 8d3asz sin o

—8d3a3 sin ap cos a3 )u; (A.20)

—Safz cos a1 d4 cOS g COS (g + 8d§d3 cos a§d4 COS (3
—8d2d? cos a2 cos a2 cos o + 4d5 cos azds + 4a3ds cos asds
+4a22% 4 4ad? cos o2 + 4a3dyd, sin az sin g cos o
—8azaqdady sin az sin ag + 4did2 sin a3 sin g cos oz%
—4r%dyd, sin as sin o cos a% +rt + 4d?1 cos a%dg

4aldyd 4aidydy si i : 2
+4aidady cos ag cos ag — 4azdady sin g sinay — aj cos aj
—2d2r® — dj cos of — 2a37* + 12dad3 cos aady cos a3

+8a2d, cos azds cos a2 + 4d3dy cos az — r* cos o

—8d§d3 COS (ady Sin a3 sin vy + 8asaqgdads cos g — d‘é cos a%
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—dj cos o + 4d3d2 cos o2 — 4dady sin o sin o — 4d5d; cos o
—ag cos a% + 8d2df1 COS (¥g COS a§d3 - 4d§d4 cos aizdz cos af
—4dsdy cos ag cos a3a§ cos a% + 4d2d§ cos arg + 4a%d4 cos azds COS af
—4dyds cos apal cos a? — 8azaydy cos azds cos o
+4d§d2d4 sin aeg sin g CoS a% + 4r%dydy sin as sin o
+4a§d2d4 COS (g COS ar3 + 4dady COs Qg COS agag + 8azasdady cOs g COS a3
+8asaqds cos cizdz — 8a1d4 sin a3 cos (g Sin g COS arg
—4d, cos azdsr? — 12d2d§ COs (ady COS (3 COS a% — aé Cos a%
—4dyds cos agdi cos a% + 4dody cos as cos azT? cos a%
—4a3a2a1 + dasayds + 4azayds + 4a3a2d2 + 6a3a2 + 4a3a2 + 4a3a2 + 2a2d3
—2a2a2 + 2ad? — 20%a} — 2a3d2 + 2d2a} + 6d3d5 + 2d3a3 + 2d5d;
+202d2 + 2a2d? + 2d3a2 + 2d3d5 + 2a3d3 — 2a5r® — 2d3r® — 2a37?
—2d2r* + at +d; + a3 +di +as + di — 4agayr® + 2a3d3 cos o — 8alzds cos ay
—4a% cos afd4 sin arg sin aads + 4af CoS a%dg cos aiads
—8a§z cos a1 dz cos aig + 4a1 cos a1d4 COS (rg COS (rzdy
+8afz COS o dy Sin aiz sin g — 4a§d2d4 COS (ry COS (x3 COS ocf
—4a2dydy sin o sinag — 4d3d; cos ag cos ol — 4d4 cos agds cos a2
+4a%d2d3 cos Qg — 4a§d4 cos azds + 4dsdy cos ay cos az + 4d3d, cos azds
+4dsds3 cos agag + 4dads cos Ozzd?l + 4d,d3 cos a2a§ + 4a§d4 cos azds
+8d2d cos a2 cos a3 + 4d2d4 COS Qg COS (3 — 4dads cos aor?
—4d3dy sin ag sin op — 4d3d3 cos ol — 402d5 cos o3
—6a3a2 coS al + 4d3d3 COS (vg — 4a2d2d4 sin g sin o

—4dyd, cos g cos asT? — 8d§di COS (xg COS (3 8in vz Sin Ay

128
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—4d2dydy sin oz sin ap — 8d2 cos aizdsda sin az sin ag

+8a2d2 cos a? cos ai — 4dyd; cos ap cos af

—4d2 cos a2d? cos o? + 4azayr? cos & + 4azasal cos o

—4aga9d: cos o — 4azayd? cos af — 4dazaqds cos o

—4d2d? cos o cos a? — 4d3dy cos az cos o

+-4d2d2 cos a3 cos aj + 4dads cos o} cos o

+4d, cos azdsr? cos o — 8dyd; cos oy cos azds cos ai
—4d3d, cos arp cos avs cos af — 2a2da cos af — 6d3d; cos af
—~2d2d? cos o + 2a%d? cos oF — 2a2dZ cos o + 2d5r® cos o
+2a%a2 cos o? + 2a2d? cos o — 2a2d3 cos af + 2dsr? cos o
+2d2r% cos o2 + 2a21? cos a? — 2d5a3 cos o? + 2a3r? cosa?
—2d2a2 cos o — 2d%a2 cos a? — dazal cos o + 2a3r? cosa?
—2d2d2 cos o? + 2a2a’ cos @? — 4aday cosaf — 4aid] cos o
+4a§d2d4 sin a3 sin iy COS a% + 4dyd; cos apr? cos af
—402d, cos azds cos a} — 8d3ds cos aady cos a3 cos af
+4d‘3d4 sin a3 Sin Gy COS a? — 4dsds cos a2a§ cos a%

—Razasdsds cOS Qg COS ozl - 4a3d4 €os (u3ds COS al

+8a3aodod4 sin a3 Sin ap cOS al 4d2d COS (rg COS (¥3 COS ozl

—|—8d§d3 COS (uody sin a3 sin g COS a% — 8azasdady COS g COS (x3 COS ozf

—|—8dgdi COS (xg COS (x3 Sin 3 sin &g cOs oz%

+8d? cos aizdsdy sin g sin ap cos o — 8a2dy sin as cos apds sin o = 0. A21
4 1 1 3 3

In the solution of 6,, either Equation 2.40 or Equation 2.41 is used. For Case 1,

Equation 2.41 is used to solve for 6, and for Case 2, Equation 2.40. For Case 3, either
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can be used. So, the solution of Equation 2.40 corresponds to the quadratic,

(—7“2 + a§ + a2 + d% +d2 + ag + dg — 2a,a3 cos 03 + 2asa3 cos O3 + 2dad3 cos as
+2d3d4 cos ag — 2a1a9 + 2a9d4 sin a3 sin 03 + 2dsag sin ag sin O3

+2dody cos ag cos a3 — 2a1dy sin as sin 03 — 2dsd, sin a3 sin ag €Os 673)u2
+(4a1d3 sin ag — 4aa3 cos ag sin 03 + 4a;1dy sin a3 cos o cos b3

+4a1dy sin ag cos az)u + 2dads cos o + 2d3dy cos o

+2asa3 cos B3 — 12 + 2aqa3 cos B3 + 2a1ay + 2a1dy sin a3 sin 63 + ag

+a? +di+ di + 2aydy4 sin oz sin 03 + 2dsa3 sin o sin 03

+2dydy cos ag cos ag + ag — 2dyd4 sin oz sin oy cos B3 + d§ =0, (A.22)
and the solution of Equation 2.41 corresponds to the quadratic,

(= +a2+al+di+d2+a)+ d2 — 2a1a3 cos 03 + 2a3 cos B3a; + 2dads cos as
+2d4 cos azds — 2a1a9 + 2d4 sin iz sin B3as + 2dgas sin ag sin 6y

+2dyd, cos ag cos ag — 2a1dy sin oz sin 03 — 2dady sin oz sin ag cos 93)u2
+(4a1ds sin ag — 4aya; cos o sin 3 + 4a1dy sin oz cos arg cos 03

+4a1dy sin ag cos az)u + 2dads cos ag + 2d4 cos aizds + 2a3 cos O3a;

—r? + 2a1a3 cos 03 + 2a1ay + 2a1dy sin oz sin O3 + a3 + a3 + d3 + d,

+2d, sin a3 sin O3a4 + 2dsas sin o sin 03 + 2dsdy cos ag cos a3

+a3 — 2d,d,y sin ag sin ap cos 03 + d3 = 0. (A.23)
In the solution of 6;, one equation is used for all three cases:

— (sin fady sin a3 cos iy €08 03 — cos Baag + sin Bzas cos o sin O3 — sin Oad; sin g
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— cos Bsa3 cos B3 — cos Bad, sin a3 sin 03 — a; — & — sin Oady sin aip cos cv?,)u2
+(2 cos 65 cos a1 ds sin ag — 2 sin 6 cos a1 dy sin ag sin 0

—2 08 05 COS a1 a3 COS (g Sin B3 + 2 cos By cos ady sin ag cos ag cos O3

+2sin a1ds cos as + 2sin a;da cos ag cos ag + 2 cos 0y cos aydy sin ag cos o3
+2sin ojaz sin ag sin 3 — 2 sin 05 cos aijag cos O3 + 2ds sin

—2sin oy dy sin oz sin ay cos 03 — 2 sin 03 cos ajaz)u — = + sin fadz sin oy

+ cos Bga3 cos O3 + ay + cos Oaa; + sin Oady sin a3 cos ag cos 5

— sin Gya3 cos oy sin B3 + sin Bydy sin g cos aig + cos Gady sin aug sin fs. (A.24)

As noted in Chapter 2, the last three joint angles are obtained by computing the Z-Y-Z
Euler angles. When 6, is set to zero in Equation 2.45, and the first three joint angles now
known, the orientation of the robot, up to its wrist, can be computed. By employing Euler
angles, the difference between this matrix and the known orientation matrix of the desired
pose can be used to solve for the last three joint angles.

Please refer to the Maple worksheets: Pieper Case I, Pieper Case II and Pieper Case
IIT for the steps involved in obtaining these general polynomials. Currently, the m-file

RMCPieper performs the inverse kinematics when the MDH parameters are used.



Appendix B

DH Inverse Kinematic Solution

The following inverse kinematic solution method [35] is based on successively pre-multiplying
the inverses of the *T;,; with the °T matrix. 9T has numerical entries, based on a desired
pose, and corresponds to the forward kinematic equations. The joint angles are isolated
by selecting suitable elements, where the left-hand side of the equation comprises of the
numerical entries and known geometry, and the right-hand side is dependent on only one
joint angle. To begin, the analytical kinematic equations,of the °Tg matrix are determined.
The solution presented here is for the A465, but the same approach is taken for the KR
15/2. The only difference is that the KR 15/2 has a slightly more complicated geometry.
The transformation matrices, based on the DH parameters of the A465, listed in Ta-

ble 2.1, are as follows:

o

cos sinf;, O
sinf, 0 —cosf; O
0 1 0 di

0 0 0 1
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cosfy, —sinfy 0 agcosh,
sinf, cosf, 0 aosinb,
0 0 1 0
0 0 0 1

cosf3 0 sinbs

0
sinfs 0 —cosfz 0
0

cosfy 0 —sinfy O

sin @ 0 cosf 0
3T, — ! ! , (B.4)

cosfls 0 sinds O
sinfs 0 —cosfs 0
4Ty = ’ R (B.5)
0 1 0 0
0 0 0 1
cosfg —sinfg 0 O
sin 6 coslg 0 O
5T = ‘ ° (B.6)
0 0 10
0 0 01

The tool flange dimension, dg, has been purposely removed so that the last frame
originates at the wrist centre-point. The position of the wrist-centre is then dependent on
only 6, 63, and 65. The orientation of the robot’s hand would then be strictly dependent

on the last three joint angles, 63, 85, and 5. The forward kinematics of the A465 can be
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computed with:

Ny Oz Gr Pz

Ny Oy Qy P
Op, T, 2T, 3T, *Ts "Te=| ° = = ° (B.7)

Ny 0z Gp P

The elements of °Tg are known. Each of these elements can also be analytically ob-
tained through the kinematic equations resulting from the matrix multiplication of the
‘individual transformation matrices. It is a matter of isolating the joint variables, 6;, by
pre-multiplying the transformation inverses, and performing a comparison.

The inverse of the first transformation matrix is:

r N
cos@y sin6; 0 O

0 0 1 —d

o . (B.8)
sinf; —cosf; 0 O
0 0 0 1

When matrix multiplied with °Ts, two matrices are obtained from the left and right

sides of the equation. One corresponding to the !Tg,

OTT! OTg =0 T7' Ty 'T, *Ts °Ty *Ts °Ts, (B.9)

which contains known quantities, and the other from analytical expressions dependent on
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one variable:

cosO1ng +sinbiny cosbroy +sinfioy cosfiay +sinbray cos 01pg + sinO1py

ny Oz a; Dz — dy
g = . (B.10)
sinf1n, — cosbyn, sinbio, —cosfio, sinbia, — cosbia, sinfip, — cos 61py

0 0 0 1

Due to the size of the kinematic equations corresponding to each element, they will

not be reported here. However, by finding a suitable element to exploit, a joint angle can

be identified. For ;, element (3,4) of 'Tg is used. Thus,

sin 6,p, — cosb1p, = 0, (B.11)

which can be re-written to obtain an expression for 6;. So,

6, = atan2(py, ps), (B.12)

which is exactly as it appears as in Equation 2.48. Through successive matrix multiplica-
tions, the remainder of the joint angles can be computed.

For f,, the roots of a polynomial expression must be determined. After the matrix
multiplication of the second inverse, elements (1,4) and (2,4) of 2T and the trigonometric
identity of Equation 2.38 are used to form a transcendental equation dependent on 6.
Once the geometric substitutions of Equation 2.44 are applied, a polynomial expression in

uy is generated. The elements of T are as follows:

2T6(1,4) = pgcosbycosb + p,cosbysinb; + p,sinby — dysinfy — ay
= d4 sin 93, (B13)

2T6(2,4) = —pysinbycos; — p,sinbysinby + p, cosby — dy cos by
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= —dycosbs. (B.14)

By first squaring the two equations, and then adding them together, 63 is eliminated

from the right-hand side. Therefore, the transcendental equation is as follows:

(pi cos 62 + 2pgpy cos 01 sin 61 — 2p,ag cos by cos By + pﬁ + pf/ — 2p,dy, — pz cos 0?

—2pyas sin 6, cos 6 — 2p,assin Oy + 2asd; sin 6 + d? + a2 — d3)/d3 = 0. (B.15)

The solution of 8, is then carried out with Equation 2.50, where us is one of the roots

of Equation 2.49. For 63, the (1,4) element of is used:

3T6(1,4) = p,cosBscosbycosfy + p, cos bz cos by sin by + p, cos O3 sin Oy
—d; cos 05 sin 6y — ay cos 03 — p,, sin 63 sin 6, cos 6,
—py sin @3 sin 0 sin 61 + p, sin O3 cos §; — dy sin 83 cos O,

= 0. (B.16)

When rearranged, Equation 2.51 is obtained. Two of the last three joint angles, 0,
and 6, can be obtained from the rotation matrix of *Tg. 65 is obtained from 4Ts. From

elements (1,3) and (2,3) of T,

3Tﬁ(l, 3) = aycosB3cosbycosb + a,cosbscosfysind; + a, cosbszsin by
—a, sin 03 sin 65 cos 61 — ay sin O3 sin 0y sin ) + a sin 63 cos 6
= cosfysin b, (B.17)
3T6(2,3) = a,sinf; — a,cosb;

= sinfssinfy, (B.18)
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respectively, 84 can be determined.

By eliminating sin s, Equation 2.52 can be solved with y4 and x4 given in Equa-

tions 2.54 and 2.54. From (1,3) and (2,3) of T,

4T6(1a 3)

a; cos 84 cos 03 cos 02 cos 01 + a, cos B4 cos 83 cos 6, sin 6,

+a, cos 84 cos B3 sin 8, — a, cos 8,4 sin B3 sin O cos 64

—a, cos 04 sin @3 sin B sin 0, + a, cos 0 sin 63 cos b

+a, sin 84 sin ¢, — a,, sin 64 cos 6;

sin 65, (B.19)
—a, sin 03 cos 6, cos 0 — ay sin 03 cos O sin 6, — a, sin O3 sin O,

—ay, cos 03 sin 65 cos 01 — ay cos O3 sin f, sin 6, + a; cos 65 cos 0

— cos 05, (B.20)

respectively, 05 can be identified.

Upon rearrangement, 85 can be solved with Equation 2.55, where ys and x5 are given

in Equations 2.57 and 2.57. The final angle, 6, is obtained from elements (3,1) and (3,2)

of 3TGI

3T6(3a 1)

3T6(37 2)

Ny sin 03 cos O cos 6y + ny, sin 03 cos By sin ) + 1, sin 63 sin G,

+n, cos B sin O3 cos 1 + n,, cos b3 sin f, sin 61 — n; cos G cos 0

— cos 06 sin 65, (B.21)
0 sin 3 cos 6, cos 01 + o, sin B3 cos Oy sin B1 + 0, sin O3 sin b,

+0, cos 03 sin 05 cos 01 + 0, cos f3 sin B sin 6, — 0, cos 03 cos 0

sin 06 sin 05, (B.22)
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respectively.

By eliminating 65, the final angle can be computed via Equation 2.58, where yg and ¢
are given in Equations 2.60 and 2.60.

As with the inverse kinematic solution for the KR 15/2, this solution is only valid
when using the nominal geometry of the A465. The numeric values for the link lengths
and offsets can change, but not if they were initially zero.

Please refer to the Maple worksheets Thermo CRS A465 Inverse Kinematics and
Thermo CRS A465 Forward Kinematics and Pre-Multiplication for the analytical solu-
tion and Matlab code generation for the inverse kinematics of the A465. KUKA KR 15-2
Inverse Kinematics and KUKA KR 15-2 Forward Kinematics and Pre - Multiplication
contains the analytical solution and Matlab code generation for the inverse kinematics of
the KR 15/2. In the relative simulation, the m-files ThermoCRSA/65InverseKinematics
and KUKAKR152InverseKinematics, provided the necessary inputs, compute the six joint

angles.



Appendix C

Absolute Simulation Code

This section outlines the Matlab version 6.5 code that was developed to kinematically
calibrate six degree-of-freedom serial manipulators, following the convention established
in Section 3.1. Figure C.1 illustrates a map of all inputs, outputs, and subsidiary programs

required by the shell program.

RMCAbsoluteSimulationxx.m

o Shell program that attends to: initialization of robot geometry, specification of pa-
rameter deviations, pose generation, measurement acquisition, measurement noise,

Jacobian matrix assembly, SVD, parameter identification, and the output of results.

e The program has gone through several iterations that accommodate various improve-

ments. RMCAbsoluteSimulation06.m is the latest version.
e Optional input of joint angles from RMCDataAcquisition.m

e On-screen output of identified parameter deviations, optional figure generation illus-

trating measurement poses.
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g FMCDataAcquisitionm B Result.dat
e — DHTransformation.m MDMHTransformationm  peed  GOMTransformation.m
CHIPIXO .m DHTPMWI .m DHTPJz01.m
DHTPIx02.m DHTPJOZ.m DHTPJz02.m
DHTPIx24.m DHTPJY24.m DHTPJz24.m
MDHJx01.m MOHIy .m MOHJZO1m
MEHI02.m MOH 02 m MOHJ02.m
MOHJx24.m MDHJy24.m MOHJz24.m
R lutaSimutation
MCAbssolute! rm
MDHBT.Jx01.m MDHETJy01.m MOHBTJz01.m
MEOHBTJx02.m MDHBTJy02.m MDHBTJz02.m
MDHBT 24.m MDHBTJy24.m MDHBTJz24.m
GEHTRx01 GOHTPIOL.m GOHTPR01.m
GPHTPIx02.m GDHTPN02.m GOHTPJz02.m
GOHTPS24.m GOMTPJy24.m GOHTPJ224.m
Su— AbsHesulis.m
I DataTable
Figure

Figure C.1: Program map for the absolute simulation.

RMCDataAcquisition.m

e Provides joint angles to RMCAbsoluteSimulations*.m in a single m x 6 matrix.
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e Requires input file Result.dat

DHTransformation.m

e Accepts inputs 6,41, di;1, a;41, and ;11 and computes the transformation matrix.

e Outputs “T;y1, a 4 X 4 homogeneous transformation matrix.

MDHTransformation.m

e Accepts inputs 60,41, d;j11, a;, and o; and computes the transformation matrix.

e Outputs *T;1, a 4 X 4 homogeneous transformation matrix.

GDHTransformation.m

e Accepts inputs 6;41, diy1, @i11, @ip1, and Gi; and computes the transformation

matrix.

e Outputs “Ty41, a 4 X 4 homogeneous transformation matrix.

DHTPJx* % x.m

e Accepts all nominal robot parameters, tool tip transformation components, and and
a set of joint angles and computes the appropriate z, y, or z direction Jacobian

element.

e Parameters 6; to ¢ correspond to 01-06, a; to ag with 07-12, d; to dg with 13-18,

and o to ag with 19-24.

e Outputs the numeric value of the Jacobian element.
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MDHJx* * x.m

e Accepts all nominal robot parameters and a set of joint angles and computes the

appropriate x, y, or z direction Jacobian element.

e Parameters 6; to 8¢ correspond to 01-06, a; to ag with 07-12, dy to ds with 13-18,

and ag to ag with 19-24.

e Outputs the numeric value of the Jacobian element.

MDHBTJx* % x.m

e Accepts all nominal robot parameters, the base and tool flange dimensions, and a set

of joint angles and computes the appropriate z, y, or z direction Jacobian element.

e Parameters 6, to 0 correspond to 01-06, a; to ag with 07-12, dy to ds with 13-18, aq

to ag with 19-24, dp with 25, and dr, with 26.

e QOutputs the numeric value of the Jacobian element.

GDHJx x x.m

e Accepts all nominal robot parameters and a set of joint angles and computes the

appropriate x, y, or z direction Jacobian element.

e Parameters 0, to ¢ correspond to 01-06, a; to ag with 07-12, dy to ds with 13-18, g
to ag with 19-24, and (3 with 25.

e Outputs the numeric value of the Jacobian element.

AbsResults.m

e QOutput file that contains the absolute error data.



Appendix D

Relative Simulation Code

This section outlines the Matlab version 6.5 code that was developed to kinematically
calibrate six degree-of-freedom serial manipulators, using the RMC defined in Section 3.2.
Figure E.1 illustrates a map of all inputs, outputs, and subsidiary programs required by
the shell program.

RMCSimulation**.m

e Shell program that attends to: initialization of robot geometry, specification of pa-
rameter deviations, pose generation, measurement acquisition, Jacobian matrix as-

sembly, SVD, parameter identification, and the output of results.

e The program has gone through several iterations that accommodate various improve-

ments. RMCAbsoluteSimulationl13.m is the latest version.

e On-screen output of identified parameter deviations.

DHTransformation.m

e Accepts inputs 0,41, di11, a;y1, and a;41 and computes the transformation matrix.
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* . DMTransformation.m
ThermoCRSA465 Inverseiinematics.m o KUKAKR15-2Inversekinematics.m
% ¥ MDHTransformation.m
4 ¥
PieperPolytConstantm § PieperPoly2Constant.m | PieperPoly3Constart.m
A PieparPolyUTerm1.m PlaparPolyUTerm5.m PisperPolylTerm7.m
o RMCPieper.m PlaperPolyUTerm2.m PleperPolytiTermB.m PlapesPolylUTerm8.m
RMCSinulation™.m
PieparPolyUTerm3.m
PiaparPalyUTermd.m
DHTP01.m DHTP.y01.m DHTPJ20%.t1
DHTPI02. 11 DHTPIyR.m DHTP.J202.m
DHTE 24 m DHTPJy24.m DHTPJ224.m
4 RelResults.m
DataTable

Figure D.1: Program map for the relative simulation.

e Outputs ‘Ty;1, a 4 X 4 homogeneous transformation matrix.

ThermoCRSA465InverseKinematics.m

e Accepts all nominal robot parameters, a joint angle set, and the pertinent entries of

the transformation matrix for the desired pose.
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e Outputs joint angle set necessary for the desired pose.

KUKAKRI15-2InverseKinematics.m

e Accepts all nominal robot parameters, a joint angle set, and the pertinent entries of

the transformation matrix for the desired pose.

e Outputs joint angle set necessary for the desired pose.

MDHTransformation.m

e Accepts inputs 6;,1, d;i11, a;, and a; and computes the transformation matrix.

e Outputs *T;,1, a 4 x 4 homogeneous transformation matrix.

RMCPieper.m

e With earlier versions of the simulation, was used to compute the inverse kinematics

for any general serial robot meeting the requirements of Pieper’s method.

e Accepts specific nominal robot parameters, a joint angle set, and the pertinent entries

of the transformation matrix for the desired pose.

e Qutputs joint angle set necessary for the desired pose.

PieperPolyxConstant.m

o Evaluates the value of the constant term in the polynomial expression.

e PieperPoly1Constant.m corresponds to the solution of 65, PieperPoly2Constant.m

to 62, and PieperPoly3Constant.m to 6.
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PieperPolyUTerm+.m

e Evaluates the value of the coefficients for the powers of u in the polynomial expres-

sion.

o PieperPolyUTerml.m to PieperPolyUTerm4.m corresponds to the solution of 0,
PieperPolyUTerm5.m and PieperPolyUTerm6.m to 6, and PieperPolyUTerm7.m

and PieperPolyUTerm8.m to 6;.

DHTPJx* * x.m

o Accepts all nominal robot parameters, tool tip transformation components, and and
a set of joint angles and computes the appropriate z, y, or z direction Jacobian

element.

e Parameters 6; to 8¢ correspond to 01-06, a; to ag with 07-12, d; to dg with 13-18,

and o to ag with 19-24.

e Outputs the numeric value of the Jacobian element.

RelResults.m

e Output file that contains the relative error data.



Appendix E

Experimental Calibration Code

This section outlines the Matlab version 6.5 code that was developed to kinematically
calibrate the six degree-of-freedom Thermo CRS A465 serial manipulator, using the RMC
defined in Section 3.2. Figure E.1 illustrates a map of all inputs, outputs, and subsidiary
programs required by the shell program.

RMCExperiment0l.m

e Shell program that attends to: initialization of robot geometry, forward kinematics
of poses, Jacobian matrix assembly, SVD, parameter identification, and the output

of results.
e Requires input of the joint angles and associated pose errors.

e On-screen output of identified parameter deviations, optional figure of relative error

data.

RMCExperimentJoint Angles.m

e Provides joint angles to RMCExperimentOl.m in a single m x 6 matrix.

147



APPENDIX E. EXPERIMENTAL CALIBRATION CODE

RMCExperiment0t.m

148

idantified Parameters

*t RMCExparimentJointAngles.m A465JointAngles.m
ErrorVectorl.m
ErrarVactor2.m
et RMCExparimaniBrrorVecior.m e
ErrorVactord.m
ErrorVectord.m
" DHTransformation.m
DHTPIx01.m BHTPIWH .m DHTPJ01.m
DHTPI02.m DHTPJy02.m DHTPJz02.m
o . . . | .
DHTPJIx24.m DHTPJy24.m DHTPJ224.m
Enor Data Figure

Figure E.1: Program map for experimental calibration program.

e Requires input file A465JointAngles.m

A465Joint Angles.m

e Sample of output text file from the autocal.r program.
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e Contains 80 joint angle sets corresponding to the poses of the first experiment.

RMCExperimentErrorVector.m

e Provides a stacked column-vector, of error data relative to the end-effector, to RM-

CExperiment01.m.

e Requires input file ErrorVectorsx.m.

ErrorVectorx+*.m

e Contains two columns of positional error data obtained through digital image pro-

cessing.
e Several files exist due to the need for the analysis of different parts of the entire data
set.
DHTransformation.m
e Accepts inputs 0;41, di+1, ai+1, and a;1; and computes the transformation matrix.

e Outputs *T;41, a 4 X 4 homogeneous transformation matrix.

DHTPJx* % x.m

e Accepts all nominal robot parameters, tool tip transformation components, and and
a set of joint angles and computes the appropriate z, y, or z direction Jacobian

element.

e Parameters 8, to 8¢ correspond to 01-06, a; to ae¢ with 07-12, d; to dg with 13-18,

and o to ag with 19-24.

e Qutputs the numeric value of the Jacobian element.



Appendix F

Automated Image Acquisition

This section outlines the the Labview Virtual Instrument and RAPL-IIT program that was
developed to automatically acquire measurement images with a Thermo CRS A465 serial
manipulator. Figure F.1 illustrates a flow diagram for the linked process. Serial com-
munication has been established between the C500C controller and the image acquisition
development computer. A message-based approach was implemented where text messages,
signifying different actions, are sent through the data line. Thus far, only two codes are
needed, one to signify continuance and the other to signify program completion.

As seen in Figure F.2, only a minimal amount of information is required by the virtual
instrument. Essentially, which communication port to access and the location of the
images. By default, the images are bitmap files named Image* * *x.bmp, where a four-
digit number is assigned. Both the image name and the number of digits can be altered
within the program. Also, the starting place can be altered so that a measurement set can
be continued.

To automatically acquire images, the virtual instrument would be activated first. The
number of serial access attempts will incrementally increase over time. Next the RAPL-III

program autocal.r would be started. The two will communicate via the serial connection
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AutomatedimageAoguisifion.vi autocal.r3
Program Program
Start Start
y
initialize Initlalize
Wait for Message Move 1o First Pose
4 . Y
Complate? Firgt Poiint?
M N
Acquire Image Move 1o Desired Pose
r
Resize Bitmap Record Joint Angles &
Genarate Imags - .
Identifier Signify Pose Altained
Signify Completion ) M Wait for Message
Signify Process
mpm All Poses N
Attaired?
Y
Cznml m Final Cammunication
Program
Completion

Figure F.1: Flow diagram for the automated image acquisition process.

to signify that their respective processes are complete. Once the program is complete a
different code is sent through and both programs signify completion. If the process has to

be stopped for any reason, the virtual instrument can just be stopped via a button in the



APPENDIX F. AUTOMATED IMAGE ACQUISITION 152

AutomatedimageAcquisition.vi

File Edit Operate Tools Browse Window Help

L__i I 13pt Application Font Ivg I{Qvé '”:vé

Figure F.2: Front panel for the AutomatedImageAcquisition.vi virtual instrument.

window. Unfortunately, the capability to signify a desired exit has not been implemented
yet. Thus, an emergency stop must be triggered with the robotic system.

The image files are currently stored in a folder of choice within an already specified
parent directory. For the joint angles, the file transfer utility of Robcomm3 must be used

to removed it from the controller’s memory.



