
14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, 25-30 October, 2015 IMD-123

Robot Calibration Using Relative Measurements

David Chao-Chia Lu∗ M. John D. Hayes†

Carleton University Carleton University
Ottawa, Canada Ottawa, Canada

Abstract— Kinematic calibration is necessary to en-
hance the accuracy of robotic manipulators. It is typically
desired to perform this task in both a cost-effective and
time-efficient manner. Many techniques exist in the litera-
ture that achieve both goals using absolute measurements.
In this paper, a modified model-based kinematic calibration
method using optically obtained relative measurements is
developed and implemented on a 7 DOF WAM Arm. Re-
sults indicate that it is capable of achieving approximately
the same level of accuracy as some absolute measurement
methods. Moreover, the calibration method presented in
this paper leads to quantifiable improvement in both the
positioning and orienting accuracy. The implication is that
the relative measurement concept is a valid tool for model-
based kinematic calibration of serial manipulators, and the
results presented herein are it’s first empirical validation.
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I. Introduction

Robot manipulator calibration has been an active re-
search topic for many years. It is highly essential for
robot manufacturing systems, because manipulators gen-
erally have vastly superior repeatability compared to their
accuracy, which can render them unfeasible for some appli-
cations. Repeatability is the ability of the robot to return to
the same taught end-effector position and orientation (pose)
where the joint angles are taught to the robot and stored in
the controller. Conversely, accuracy is a measure of how
well the robot controller can place the end-effector in a pre-
scribed pose where the required robot joint angles must be
computed using the nominal kinematic model embedded in
the controller. The goal of robot kinematic calibration is
to identify and compensate errors in the nominal kinematic
model so that its accuracy can be improved. The bound
on accuracy improvement is the repeatability of the robot,
which is typically quantified by the manufacturer using the
standard deviation of positioning error upon returning to
taught positions over the breadth of its reachable workspace
using a statistically viable set of taught positions [1].

The manipulator pose accuracy can be affected by ge-
ometric and non-geometric errors [2]. Geometric errors
are artifacts of the joint offsets and the errors in the nom-
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inal kinematic parameters. Non-geometric errors, on the
other hand, are typically due to friction, inertia, applied
load, flexibility, and temperature induced dimensional de-
formation. Experimental results reported in [2] conclude
that about 95% of manipulator inaccuracies are due to the
geometric errors. This leads to the motivation for this paper
to be focused on the development of a method using rel-
ative measurements to identify the errors in the kinematic
geometry of serial robot manipulators to enhance position
and orientation accuracy.

II. Background

Improving the pose accuracy of a robot manipulator us-
ing kinematic calibration has been an active research topic
since the introduction of industrial robots in the early 1960s
[1]. Researchers have addressed issues regarding kinematic
calibration methods, measurement methods [3], [4], [5],
[6], [7], [8], kinematic models [9], [10], [11], and param-
eter identification methods [12], [13]. This paper focuses
mainly on the kinematic calibration methods.

A. Kinematic Calibration

A wide variety of different kinematic calibration meth-
ods have been developed over the past few decades, several
relevant approaches are described next.

A.1 Relative Measurement

The concept devised by Hayes and O’Leary [14] and re-
ported in [15] was the first work found on kinematic cali-
bration using relative position measurements. In this work,
the calibration method was applied to a KUKA KR-15/2
6R serial robot. The pose measurement was achieved by
having the robot draw lines in its base frame’s x and y di-
rections and rigidly mounting two precision-ruled straight
edges parallel to these directions, as well as a flat standard
mounted on its Bernoulli points so that it does not deform
under its own weight. A CCD camera and two MEL laser
displacement sensors were attached to a fixture mounted
to the tool flange. The relative position measurements of
the x and y components can be extracted from the CCD
camera images, while the relative change in the z compo-
nent was measured by two MEL laser displacement sen-
sors. However, at this point of the work, only simulated
measurement runs converged to solutions, while the empir-
ical results were not successful: the sets of three relative
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displacement errors applied to the identification equations
wold not converge to realistic values.

Simpson [16] continued the work proposed in [15],
which instead used only a CCD camera on the end-effector
of a Thermo CRS A465, and only relative displacement
measurements in the robots base frame x and y directions.
The robot was commanded to move the end-effector along
the length of the precision-ruled straight edge in increments
1 cm. The straight edge was placed carefully such that
the first increment was aligned with the centre of the im-
age taken by the CCD camera. For every 1 cm increment
that the end-effector moved, the corresponding observed
misalignment of ruling lines on the straight edge between
two subsequent images represents the relative position er-
ror scaled by the straight edge itself along its length. In this
work, calibration was attempted using both the simulated
data and the experimental data. Like [14], the simulations
were successful, whereas the experimental results yielded
solutions that diverged away from the nominal parameters,
presumably because of poor conditioning in the identifica-
tion equations.

Ha [17] on the other hand, approached relative position
measurement a little differently. Instead of relying on the
correct placement of measurement tools, Ha developed a
suitable kinematic error model for recognizing the relative
position errors. The experiment consists of a six DOF ma-
nipulator (MOTOMAN UP 20), a laser displacement sensor
(accuracy of ±0.01 mm) and a machined grid plate (accu-
racy of ±0.1 mm). In this work, it was concluded that the
relative measurement concept can be performed without the
knowledge of the position of the robot base, but the orien-
tation of the robot base is still required knowledge.

A.2 Inverse Calibration Method

Inverse calibration was developed to determine the errors
observed in the end-effector poses, and use them to estimate
the required joint angles to compensate for the errors [18],
[19], [20], [21]. With this method, no effort is invested
in correcting the manipulator model, rather approximation
functions for the end-effector errors are determined. There-
fore, this method can also be referred to as a non-parametric
accuracy compensation [22]. The approximation functions
have no direct physical meaning because they consist of
components of both the geometric and non-geometric er-
rors.

For a six DOF manipulator, the approximation functions
are defined using a multivariate polynomial with six vari-
ables, which is quite complex. Shamma and Whitney [18]
developed a method for six DOF wrist-partitioned manip-
ulators by considering two computationally independent
parts: the calibration of the shoulder and the wrist. This
simplifies the approximation functions of the multivariate
polynomial into two polynomials factors. Doria et al. [19]
defined multiple second order spline functions, piecewise
polynomials, to approximate the multivariate polynomials.

Zhong et al. [20], on the other hand, applied a feed-
forward artificial neural network to estimate the approxi-
mation functions.

Dolinsky [21] examined all the inverse calibration meth-
ods and observed that numerical estimation techniques can
be compromised by numerical instability. Dolinsky then
proposed a method for determining the approximation func-
tions with genetic programming, which uses stochastic
methods to symbolically generate the functions.

A.3 Circle Point Analysis

This method estimates the line equations of robot revo-
lute joint axes for an arbitrary robot configuration by esti-
mating the circle drawn out by each robot joint [22], [23].
Because a least-squares technique is used to estimate each
circle, more than three points are required. However, since
the trajectory of the end-effector is not, in general, a circle
if multiple joints are in motion simultaneously, the robot
must be moved one joint at a time.

The true kinematic model parameters can be extracted
from the line equations defining the joint axes. Two strate-
gies have been developed to extract the kinematic param-
eters from the identified joint axes. The first, Stone [23],
consists of deriving an analytical formula for the kinematic
parameters in terms of the link homogeneous transforma-
tion matrices. The second, Sklar [24], [25], consists of
computing common normal lengths, offset distances, and
twist angles directly from the identified line equations us-
ing standard vector algebra relationships and the existing
geometrical constraints.

Kim et al. [26] reviewed the work from Stone and Sklar
on circle point analysis, and they conducted an experiment
using a HYUNDAI robot AE 7601 and KIMI-tester (a type
of CMM). The experiment showed that the circle point
analysis technique is capable of improving the absolute po-
sitioning accuracy of the robot by an order of magnitude,
from standard deviations of 10 mm to 1 mm over the entire
manipulator workspace. However, orienting accuracy is not
included.

III. New Relative Kinematic Calibration Approach

Let the actual kinematic geometry of the robot be rep-
resented by Model A and let Model B be the nominal
kinematic geometry parameters embedded in the robot con-
troller. The pose arrays whose elements are the linearly
independent coordinates of position and orientation of the
end-effectors for the actual and nominal robots are xA and
xB , respectively. The aim of the kinematic calibration is to
minimize the errors between xA and xB .

A reasonable approach is to approximate xA using the
Taylor series expansion about the pose computed in the
controller using some form of nominal Denavit-Hartenberg
(DH) kinematic parameters [27], ζn. That pose, xn, is ap-
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proximated as

xA ≈ xB = xn + ∆x = f(ζn) +
∂f
∂ζ

∆ζ +HOT, (1)

where ∆ζ are the estimated errors in the nominal kinematic
parameters, andHOT represent all higher order terms. The
complete 6 DOF pose in Eq. (1) consists of three posi-
tion component elements contained in the array (∆p) and
three orientation component elements contained in (∆Φ).
Because all component elements are linearly independent
allows one to approach the problem by using partial pose
measurement, for example many methods in the literature
use only position measurements. Since the errors in the
kinematic model are expected to be quite small compared
to the nominal parameters, the HOT may be ignored be-
cause they are negligibly small, possibly on the same order
of magnitude of the numerical resolution of the computers
used.

A. Two Fundamentally Different Measurement Approaches

Broadly speaking, it may be said that the goal of kine-
matic calibration is to determine the ∆ζ that minimizes
∆x. Because the functional relationship between xB and ζ
is nonlinear, many measurements of xA are needed to con-
verge to a useful solution. In this section, two approaches
to acquiring measurements used for identifying the errors in
the kinematic model are presented. First, the conventional
absolute measurement approach is reviewed, then the pro-
posed relative measurement approach is presented.

A.1 Conventional Absolute Measurement Approach

Consider a manipulator that is commanded to move
through a series of configurations. At configuration i, the
poses, xA,i and xB,i, are produced. That is, the ith pose
of the actual robot represented by Model A and expressed
as xA,i is somehow measured relative to a known station-
ary coordinate system, here called the metrology frame Σm.
Whereas the corresponding ith pose of the DH based Model
B, xB,i is computed by the controller using forward kine-
matics, and is expressed with respect to the manipulator
base frame Σb.

In order to determine the pose errors between the two,
both poses must be with respect to the same reference
frame. A fixed world frame Σw is introduced as the com-
mon reference for the two poses, then the pose errors are

wei = wxA,i − wxB,i =
[
∆wpi ∆wΦi

]T
, (2)

where wei is the absolute error of the ith pose described
in Σw, which can be an array containing both position and
orientation errors, or any subset thereof. The kinematic cal-
ibration performed using the absolute error is referred to as
the absolute measurement concept or AMC. Fig. 1 uses two
chessboards as the conceptual representation of the mea-
surement system to illustrate the absolute error.

Fig. 1. Exaggerated representation of absolute pose errors.

In most of the approaches described in the literature, the
measurement system frame Σm is used as the world frame
Σw. This means that additional measurements are required
to establish the relationship between Σb and Σm.

A.2 Proposed Relative Measurement Approach

The objective set out for the work presented herein is to
develop a simple, low cost, kinematic calibration method
that does not rely on absolute measurements. The approach
proposed here builds on the work in [16], [17], which used
only x and y components of relative position measure-
ments. In this work, all six linearly independent position
and orientation components in the relative pose measure-
ments are used to enhance the precision of the identified
errors.

Fig. 2 Illustrates the setup for implementing this ap-
proach to kinematically calibrate a 7 DOF WAM Arm with
a manufacturer stated repeatability of ±0.2 mm. As shown
in the figure, a target object, or calibration board, was
placed on the end-effector of the robot, and a camera placed
outside of the robot’s workspace such that the target object
can always be viewed. Because it is simpler to manufacture
a precise 2D registration object than a 3D object, a chess-
board patterned object used for camera calibration [28] was
chosen, and used to establish the pose of the target object
relative to the camera. This pose information was then used
to estimate the end-effector pose of the Wam Arm.

Fig. 2. The relative measurement setup for the 7 DOF WAM Arm.

Now that an experimental setup can be visualized, con-
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Fig. 3. Exaggerated relative position errors.

sider the manipulator is commanded to move through the
same series of configurations as those that would be used
in the conventional approach, where the configuration j is
next from i, producing two new poses of Models A and B,
xA,j and xB,j . Fig. 3 uses two chessboards illustrating rel-
ative position measurements between i and j.

The end-effector poses, xA and xB , are expressed rela-
tive to a common reference frame, Σw. The end-effector
position j relative to i can be obtained from the vector dif-
ferences,

ipA,j = wpA,j − wpA,i, (3a)
ipB,j = wpB,j − wpB,i. (3b)

The relative position errors are the errors embedded in the
two relative positions,

∆ipj = ipA,j − ipB,j . (4)

The relative orientation errors can be derived similarly to
the relative position errors [29]. The relative orientation
errors are embedded in the two relative orientations,

∆iΦj = iΦA,j − iΦB,j . (5)

Similar to the absolute error, both pose errors for robots
A and B must also be expressed in the same reference
frame. Because both Eqs. (4) and (5) are expressed rela-
tive to i, then the errors are

iej = ixA,j − ixB,j =
[
∆ipj ∆iΦj

]T
, (6)

where iej is the relative error of Pose j relative to Pose i.
The kinematic calibration using the relative error is termed
the relative measurement concept or RMC [15], [16], [17],
[29].

B. Kinematic Calibration Algorithm

Kinematic calibration algorithms are typically designed
for estimating the errors in the kinematic parameters, ∆ζB ,

such that the differences between xA and xB are minimized,
ideally to the limit of the robot’s repeatability. The most
common techniques used to approach this problem are typ-
ically some form of nonlinear optimization, such as a non-
linear least-squares methods, genetic algorithm, or singular
value decomposition (SVD). Every computation involving
the identification of kinematic parameters in this paper are
performed using only SVD, which is also a form of least-
squares estimation [30].

Given the approximated model as described in Eq. (1),
the deviation ∆x can be linearized by ignoring the higher
order terms and collecting all of the partial derivatives into
the Jacobian matrix J, giving

∆x = J∆ζ. (7)

As mentioned previously, a large number of xA must be
measured in order to converge to a useful solution, causing
the linearized system above to be overdetermined. The so-
lution of ∆ζ can then usually be obtained by applying the
Moore-Penrose pseudoinverse of J [30],

∆ζ = J+∆x. (8)

If the rows and columns of J are linearly independent,
then JTJ is invertible. In this case, Eq. (8) becomes

∆ζ = (JTJ)−1JT∆x. (9)

However, in many practical overdetermined cases, some
columns of J can be linear dependent, or nearly, result-
ing in JTJ being ill-conditioned or singular where the con-
dition number of the Jacobian can approach infinity, i.e.,
κ(J) → ∞. However, every matrix can be inverted with
SVD regardless of condition number [30]. SVD enables a
technique for always being able to solve for ∆ζ exactly, or
estimate it with the minimum least-squares error. The ma-
trix J can be decomposed into three matrix factors,

J = UΣVT, (10)

where J is an M × N Jacobian matrix, Σ is an M × N
rectangular diagonal matrix with positive real singular val-
ues (σi) on the diagonal of the uppermost N × N part of
the matrix, arranged in descending order, U is an M ×M
orthogonal matrix whose orthonormal set of basis vectors
corresponding to σi 6= 0 span the range of J, and V is an
N ×N orthogonal matrix whose orthonormal columns cor-
respond to the same numbered σi = 0 are a set of basis
vectors spanning the nullspace of J.

Because the matrices U and V are both proper orthog-
onal, then their inverses are equal to their transposes. The
matrix Σ is diagonal, so its inverse is simply

Σ−1 =


σ−11 0 · · · 0

0 σ−12 · · · 0
...

. . .
...

0 0 σ−1n

0 0 · · · 0

 . (11)
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Then, the Moore-Penrose pseudoinverse of J, can be ex-
pressed as [30]

J+ = VΣ−1UT. (12)

The only time there are computational issues is when one
or more of the σi are either identically zero, or numerically
close to zero, meaning that σ−1i → ∞. In this case, sim-
ply set σ−1i = 0. This is not the desperation mathematics
it appears to be, and may seem like making a bad situation
worse. But, by setting σ−1i = 0 below a threshold for σi
actually eliminates the linear combination of equations that
is so corrupted by error that is, at best, useless, because it
pushes the solution vector towards infinity in the direction
parallel to a nullspace vector. The last column in V corre-
sponding to the eliminated σi gives the elements of ∆ζ that
are ill-determined even if the system of equations is overde-
termined. These elements of ∆ζ are insensitive to the data
and should be removed [15], [22], [30].

A reasonable threshold stated in [30] is to set σ−1i = 0 if

σi
σmax

< rank(V)ε, (13)

where ε is the machine precision, typically ε = 2.2204 ×
10−16.

C. Numerical Conditioning using SVD

Other than the pseudoinverse, singular value decomposi-
tion can also be used as the tool for computing the condition
number κ(J). The diagonal matrix factor Σ which consists
of the singular values of J has the form

Σ =


σ1 0 0 . . . 0
0 σ2 0 . . . 0
...

...
. . . . . .

...
0 0 . . . σn
0 0 0 . . . 0

 . (14)

The condition number of J is the ratio of the maximum
and minimum singular values, and because the singular val-
ues are arranged in a descending order, then

κ(J) =
σ1
σn
. (15)

Note that the number of σi 6= 0 in Σ is the rank(J).
From Eq. (15), as σn−i → 0 then κ(J) → ∞, indicat-

ing that the corresponding estimated parameters have been
poorly identified. Therefore, replace every σi ≤ ε by 0 in-
creases numerical robustness by removing the influence of
near linearly dependent equations.

IV. Experiment and Results

An experiment was set up with a calibration board at-
tached to the end-effector and a camera mounded on a tri-
pod facing the board, similar to that illustrated in Fig. 2.
The transformation from the end-effector to the calibration

board in the kinematic model using the camera calibration
yields the relative measurements that are used to estimate
the errors in the controller model of the kinematic geome-
try of the robot. Table I lists the DH parameters of the 7
DOF WAM Arm using the DH parameters and coordinate
reference frames illustrated in Fig. 4. The nominal values
of the kinematic parameters are extracted from the WAM
arm user manual [31].

Fig. 4. The DH coordinate frame and parameter assignments of the WAM
Arm shown in its zero (home) pose.

Link Number θo,i ai di αi

[deg.] [mm] [mm] [deg.]
Base 0 0 0 0

1 0 0 346 −90
2 0 0 0 90
3 0 45 550 −90
4 0 −45 0 90
5 0 0 300 −90
6 0 0 0 90
7 0 0 60 0

End Link 0 0 0 0

TABLE I. The DH parameters for the 7 DOF WAM Arm.

Before calibrating the robot, a set of robot poses are
needed. Since the WAM Arm consists of 7 serially con-
nected revolute joints, then each pose is defined by 7 joint
angles. The next section describes how the joint angles are
generated to define a useful set of robot poses.
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Fig. 5. The number of poses verses the condition number of the Jacobian.

A. Generating Poses for Kinematic Calibration

The number of measurement poses required for the kine-
matic calibration depends on the number of parameters be-
ing identified and the existing measurement error in the
system. The analysis for determining the number of re-
quired measurement poses is rigourously described in [32]
and briefly summarized in what follows. The identied kine-
matic parameters are generally affected by the presence of
measurement noise, but the precision of the identied er-
rors can generally be improved by increasing the number
of poses that are measured. Fig. 5 is intended to illustrate
the effect of increasing the number of measurements on the
goodness of identication implied by the condition number
of the corresponding identification Jacobian, J. Note that
the kinematic geometry driving this examination was that
of a Thermo CRS A465, but the trend revealed applies to
all serial arms. In a simulation, 100 poses were generated
by randomly choosing the joint angles within the manip-
ulators joint limits. These joint angles and ζA are speci-
fied at the start of the simulation program, and they do not
change throughout the analysis. The number of poses, N ,
in Fig. 5 are extracted from the 100 randomly generated
poses, where N poses refers to the first N poses out of all
100. The simulation analysis strictly involves varying the
number of poses only.

Using standard DH parameters to describe the kinematic
geometry of the six-axis Thermo CRS A465 means that
there are 28 parameter errors to be identified. Each pose
measurement yields six equations. This means that at least
five poses, yielding 30 equations are required, giving an
over-determined set of equations to solve for the 28 pa-
rameter errors. Examining Fig. 5, the first point represents
those five measurement poses and the corresponding Jaco-
bian condition number. The figure illustrates that there is a
diminishing return in this relationship, as the κ(J) appears
to converge to a relatively stable number after 40 pose mea-

surements.
The trajectory of the poses in the workspace can also con-

tribute to the success in identifying kinematic parameters,
because some of the parameters are unobservable in cer-
tain configurations. Again, analyses made in [32] was used
for determining a suitable set of configurations for success-
ful kinematic calibration, but the results are too lengthy to
summarize here. Regardless, the results showed that the
best sequence of poses is one that spans the width of the
robot’s 3D reachable workspace.

Respecting the considerations above, a simulation was
made to generate suitable joint angles for an experiment.
Fig. 6 illustrates the first 15 out of 100 simulated configu-
rations of the WAM Arm. In this simulation, the manipu-
lator base was placed at the Cartesian coordinates (0, 0, 0),
and the coordinates of origin of the camera coordinate ref-
erence frame was placed at (−1.5, 0.5, 0.3) relative to the
base, where units are meters.

−1.5−1−0.50

−0.5
0

0.5

0

0.2

0.4

0.6

0.8

1

x (m)
y (m)

z 
(m

) Camera

Fig. 6. The kinematic model of the WAM in simulation.
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Joint Errors [deg] Link Errors [mm]
∆θid ∆αid ∆aid ∆did

b 0.3125 −2.1665 N.A. N.A.
1 −0.7545 −0.6120 3.5969 N.A.
2 0.1178 0.0489 −0.4241 0.2090

3 2.7705 −0.4397 −3.7679 −17.6295

4 0.5644 −0.2677 −1.3260 −10.1315

5 −1.4946 0.8305 5.4388 −24.2630

6 −3.5829 −0.3029 −4.2547 −7.6065

7 61.8989 4.2142 2.7863 45.8806

n N.A. 0.5255 −82.9751 N.A.

TABLE II. Experimental results for the calibration using relative mea-
surements.

B. Kinematic Calibration Results For the WAM Arm

Using the generated set of 40 joint angles and the cor-
responding pose relative measurements obtained using the
adapted camera calibration algorithm from [32], the exper-
imental data was acquired and processed yielding the re-
sults listed in Table II. There are 36 kinematic parame-
ter errors to identify, meaning that the rank of J should be
36. However, rank(J) turned out to be 31, implying that
the five smallest singular values in Σ are either identically
zero, or perilously close to the numerical resolution of the
computer. The parameters in V with corresponding indices
are the unobserved parameters. The equations containing
these five parameters are therefore linearly dependent and
should be eliminated from the system of equations. Hence,
after removing the five columns of J associated with the
parameters ∆ab, ∆db, ∆d1, ∆θn, and ∆dn, the recalcu-
lated rank remained rank(J) = 31 and the recalculated
condition number was κ(J) = 208.88, which means that
the remaining 31 parameter erors are reasonably well iden-
tified in the context of the kinematic model. Note that some
of the the unexpectedly large errors in Table II are partly
an artifact of the WAM Arm joint angles having not been
mastered1. The unobserved parameter errors in Table II are
listed as N.A., for not available. As expected, the positional
components of the manipulator base (∆ab, ∆db, and ∆d1)
were not identified because these parameters are unobserv-
able using relative measurements [32].

Fig. 7 illustrates the first 15 end-effector positions be-
fore robot calibration, and Fig. 8 illustrates the first 15 end-
effector positions after correcting the kinematic model for
the errors listed in Table II. The overall improvement in
robot positioning and orienting accuracy was estimated us-
ing the root-mean square error in each pose, comparing the
prescribed and attained positions and orientations. By us-
ing the RMC calibration, those accuracies improved from

1A mastering procedure identifies the relationship between the position
sensor attached to each motor and each axis angle defined for the robot [1].
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Fig. 7. Measured and nominal relative positions before calibration.
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Fig. 8. Measured and nominal relative positions after calibrtion.

±3.150 mm and ±0.329◦ to ±1.055 mm and ±0.200◦, re-
spectively, averaged over the 40 prescribed poses. Recall
that the repeatability for the WAM Arm is ±0.2 mm, im-
plying the precision of these results need improvement. Re-
gardless, the accuracy has been enhanced in this case.

V. Conclusions

In this paper a kinematic calibration method for serial
manipulators using the relative measurement concept was
developed and implemented. Relative measurements were
used in the kinematic calibration algorithm instead of ab-
solute measurements. The results presented herein are the
first empirical validation in the published literature, to the
best of the authors knowledge, that relative measurements
are capable of enhancing the positioning and orienting ac-
curacy of a serial robot manipulator.

Arguably, relative measurements are easier and less ex-
pensive to make compared to absolute measurements. Fur-
thermore, the RMC presented here is straightforward to im-
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plement on a production line or manufacturing floor and can
easily be applied to any serially connected robotic manip-
ulator. The system is also task-specific, meaning a robot
can be calibrated with the appropriate tool and over the
task-space being used, as opposed to the entire workspace,
thereby correcting geometric errors and improving posi-
tion and orientation accuracy without the need to absolutely
measure arbitrary poses covering the reachable workspace
of the robot.

An open question is “how well does the RMC preform
compared to the AMC over a prescribed set of poses?”.
This is the subject of our future work. Comparable calibra-
tion methods that employ absolute measurement systems
will be investigated. Experimental test plans will then be
developed to attempt to reproduce the published results us-
ing the relative measurement procedure adapted to obtain
comparable results. If the RMC yields comparable calibra-
tion results as the AMC, this will be an important result be-
cause of its flexibility, ease of implementation, and relative
expense.
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