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Introduction

• It has been observed that as the cardinality of the prescribed input-

output (I/O) data set increases, the linkages that minimise the Euclidean 

norms of the design and structural errors tend to converge to the same 

linkage.

• This implies that minimising the structural error can be accomplished 

implicitly by minimising the design error.

• We propose to allow the cardinality of the data set to be infinite, thereby 

reposing the discrete approximate synthesis problem as a continuous 

one.

• This will be accomplished by integrating the synthesis equation in the 

range between minimum and maximum I/O pairs.

• In this work we prove that the lower bound on the Euclidean norm of 

the design error for a planar 4R function-generating linkage exists and is 

attained with continuous approximate synthesis.
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Function Generation

• A 4R planar function-generator 

consists of four rigid bars, or links, 

joined by four revolute joints where 

one of the bars is relatively non-

moving.

• The link lengths can be chosen such 

that the output angle of the follower 

is a function of the input angle of 

the driver.

• In general, exact algebraic dimensional synthesis for function generation 

requires three I/O pairs.

• Approximate algebraic dimensional synthesis requires m > 3 I/O pairs.

• The more I/O pairs leads to a more precise function generator.

• Hence, we propose continuous approximate synthesis by allowing m = ∞.
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Discrete Design Error Minimisation

• We consider the optimisation

problem to be the approximate 

solution to an overdetermined 

system of linear equations with the 

minimum error. 

• We use the Freudenstein synthesis 

equations. 

• The ith configuration of the 

mechanism is governed by:

𝑘1 + 𝑘2 cos 𝜑𝑖 − 𝑘3 cos 𝜓𝑖 = cos 𝜓𝑖 − 𝜑𝑖 .

• Where 𝜓𝑖 and 𝜑𝑖 are the ith I/O variables, respectively, and 𝑘1, 𝑘2, and 𝑘3
are the Freudenstein Parameters.
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Discrete Design Error Minimisation

• The k’s are the link length ratios

• Given 𝑘1, 𝑘2, and 𝑘3 the corresponding link lengths, scaled by 𝑎1, are:
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Discrete Design Error Minimisation

• The set of I/O Freudenstein equations 

can be expressed in vector-matrix 

form: 

• where S is the m x 3 synthesis matrix 

whose ith row is the 1 x 3 array 𝑠𝑖, b
is an m-dimensional vector, and k is

3-dimensional vector of the Freudenstein parameters (design variables).

• For the planar 4R function-generator we have:

,bSk 

      .;)cos(;coscos1 321

T

iiiiii kkkbs  k
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Discrete Design Error Minimisation

• The synthesised linkage will only be capable of generating the desired 

function approximately. 

• The design error is the algebraic difference of the left-hand side of the 

Freudenstein equations less the right-hand side. 

• Because we will be comparing errors associated with different cardinalities, 

we now include the cardinality m in the definition. 

• The m-dimensional design error vector 𝐝𝑚 for a set of m (m > 3) I/O pairs,      

is defined as:

• If the outputs prescribed by the functional relationship correspond precisely 

to the outputs generated by the mechanism, then 

• However, for a general prescribed function 

},1),{( miii 
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Discrete Design Error Minimisation

• We seek the Freudenstein parameter vector that minimises the norm of the 

design error vector.

• The optimal Freudenstein parameters for this norm are:

where       is the Moore-Penrose generalized inverse of the synthesis matrix.

• The corresponding minimal design error is:
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Discrete Design Error Minimisation

• For numerical stability it is desirable to have a well-conditioned synthesis 

matrix otherwise numerical values of       may be significantly distorted by 

very small singular values leading to optimised k that imply a mechanism 

that poorly approximates the desired function.

• Hence dial zeros α and β are introduced to maximise the inverse of the 

condition number, 1/κ, i.e. the ratio of the smallest to the largest singular 

values of the synthesis matrix:

.;  



mS
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Discrete Design Error Minimisation

• Including the dial zeros, the synthesis equation becomes:

• Now the I\O pairs are a set of incremental changes in angle:

• and        are now also functions of the dial zeros.    

• The design error minimisation problem can now be efficiently solved in a 

least squares sense in two steps:    

1. Find the dial zeros to maximise the inverse of the condition number 1/κm(α, β) of the 

synthesis matrix Sm;

2. Find the corresponding optimal Freudenstein parameters using 

).cos()cos()cos( 321   kkk
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Continuous Design Error Minimisation

• A major issue associated with the discrete approach to the design error 

minimisation is the appropriate choice for the cardinality of the I/O pair data 

set such that the minimisation of the structural error is implied.

• Indeed, the choice of m depends on the prescribed function and m is 

generally fixed when some level of convergence is observed.

• For the example used in an earlier paper, m = 40 was observed to be a good 

choice.

• We now propose to evaluate the design error over the continuous range  

of the prescribed function.

• This requires the function to be continuous over the range of the function.

• It also requires a different vector space, denoted                                 , where 

upon the following 2-norm has been imposed: 
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Continuous Design Error Minimisation

• Assuming that the prescribed function belongs to                                 , the 

design error is: 

• After some algebraic manipulation it can be shown that the above equation 

is a quadratic function in terms of the Freudenstein parameters:

• A(α, β) is a 3 x 3 symmetric matrix whose six distinct elements aij are:
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Continuous Design Error Minimisation
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Continuous Design Error Minimisation

• e(α, β) is a 3-dimensional vector whose three elements are:

• And finally c(α, β) is a scalar having the form:
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Continuous Design Error Minimisation

• If A(α, β) is positive definite, the optimal Freudenstein parameters k*(α, β) 

which minimise                 are:

• The minimal design error is:

• As for the discrete approach, the design error minimisation problem can be 

solved in two steps:

1. Find the dial zeros to maximise the inverse of the condition number 1/κm(α, β) of the 

synthesis matrix A(α, β);

2. Find the corresponding optimal Freudenstein parameters using the first equation above.
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Continuous Design Error Minimisation

• Perhaps the main result of this paper is to be found in Proposition 5, which 

is proved in the paper, but is to complicated to summarize here, is the 

following:
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Example

• The preceding results for continuous approximate synthesis that minimises 

the design error are now illustrated with an example. 

• Let the prescribed function be the Ackerman steering condition for 

terrestrial vehicles. 

• The steering condition can be expressed as a trigonometric function whose 

variables are illustrated in the figure.

.0)sin()sin()/()sin(  prespres ab 
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Example

• With the dial zeros, the expression for the steering condition becomes:

• For our example b/a=0.5 and                                                       where 

angles are specified in degrees.

• With these values, the prescribed function, i.e. the steering condition, is 

continuously differentiable. Hence, Proposition 5 must apply.

• The multi-dimensional Nelder-Mead downhill simplex algorithm is 

employed to find the optimal values for the dial zeros.

• In Matlab, fminsearch finds the minimum of a scalar function of several 

variables, starting at an initial estimate. This is generally referred to as 

unconstrained nonlinear optimization.

.0)sin()sin()/()sin(  prespres ab 

],00.30 ,00.40[],[ maxmin  
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Example

• The initial estimate is determined by plotting 1/κ over a range of values for 

α and β, illustrated in the figure:
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Example

• The table below lists                 for different values of m, as well as),( **

mm  ),( ** 
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Example

• From the optimal dial zeros, it is now possible to compute the optimal 

Freudenstein parameters.

• The design error norms have been normalized by dividing by 𝑚 for 

comparison for different values of m as well as the values using the 

continuous approach.



Conclusions

• The example presented employed the Matlab function quadl, which employs 

recursive adaptive Lobatto quadrature.

• Continuous approximate synthesis eliminates the problem of determining an 

appropriate cardinality for the data-set. 

• Evaluating the design error over the whole range of the function requires the 

use of a functional normed space, thereby changing the discrete approximate 

synthesis problem to a continuous approximate synthesis problem. 

• Assuming that the prescribed function is continuously differentiable, it was 

shown that the dial zeros, the optimal Freudenstein parameters, and the 

minimal design error for discrete approximate synthesis converge towards the 

dial zeros, the optimal Freudenstein parameters and the minimal design error 

for continuous approximate synthesis. 

• In other words, the continuous approach corresponds to the discrete approach 

after setting the cardinality of the I/O set to m = ∞.
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Conclusions

• The extension of this work is to investigate how the structural error bounds 

the design error.

• First, it should be determined if the structural error minimisation problem can 

be formulated and, more importantly solved, using the continuous approach. 

• Second, it should be investigated whether in this case too, the continuous 

approach corresponds to the discrete approach with m = ∞. 

• This is certainly much more challenging due to increased complexity of the 

continuous structural error minimisation problem, which is a non-linear 

problem with equality constraints, compared to the continuous design error 

minimisation problem, which is a quadratic problem without any constraints. 

• Finally, one might ask whether our developments could be applied to other 

mechanism topologies, such as planar mechanisms possessing prismatic 

joints, as well as spherical, or spatial linkages.
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Engineering Humor

• Why do engineers confuse Halloween with Christmas Day?

• Because oct 31 = dec 25!
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