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Abstract— This paper addresses the problem of generating
optimal joint trajectories for redundant manipulators when
multiple criteria are to be considered. A dynamic programming
approach is proposed to generate the Pareto optimal solutions
without having to deal with the shortcomings of the traditional
weighting method. The two approaches are implemented on
the model of a 7-DOF redundant manipulator with the end-
effector moving along a prescribed trajectory, while the joint
trajectories are required to minimize two performance criteria.
The results prove that the dynamic programming approach
provides a better approximation of the Pareto optimal set
and more flexible and predictable framework to control the
objective vectors.

I. INTRODUCTION

By definition, a manipulator is said to be redundant when
it possesses more degrees of freedom than those required
to execute a prescribed task. As a result, the number of
possible joint trajectories performing this task is in general
infinite. Redundancy resolution is the process of selecting
one of these solutions that optimize a performance criterion.
The optimization problems arising from redundancy
resolution involve functions of robot variables such as joint
variables or joint torques. Therefore, they have naturally
been formulated within the framework of optimal control
theory for continuous-time systems or calculus of variations.
Since the introduction of the optimal control theory [8] and
calculus of variations [6] for redundancy resolution, the
research has primarily focused on the inclusion of different
types of constraints and development of effective numerical
algorithms. More recently, an optimal control formulation
has been proposed, taking joint torques as the control inputs
and the joint torque limits, end-effector path, and workspace
obstacles as constraints [5]. A variational formulation
is used in [9] with kinematic compliant constraints and
a numerical algorithm involving Newton iterations on
discretized Lagrange function. These work mainly deal with
a single criterion or a linear combination of multiple criteria.

With any complex application, naturally come several
performance criteria that need to be considered concurrently
within a single optimization problem. The most widely used
method is the weighting method [6], [9], which consists of
combining linearly the criteria transforming the problem into
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a single criterion problem. Hence, the latest developments
in single criterion redundancy resolution could be utilized
for multiple criteria redundancy resolution. This approach
suffers from the fact that, in general, one cannot predict the
variation of the performance criteria for the optimal solution
as the weights vary. The shortcomings of this approach
are illustrated in this paper for the model of the 7-DOF
redundant robot which is part of the Captive Trajectory
Simulation (CTS) system, to be installed inside a supersonic
wind tunnel. Similar problems have been reported in the
multiple criteria research community [4].

In this paper, we propose a dynamic programming
approach to redundancy resolution with multiple criteria
which handles the multiple criteria problem without
transforming it into a single criterion problem. Dynamic
Programming [2] allows the implementation of Pareto
Optimality which defines the optimal solution to a multiple
criteria problem. In the process of dynamic programming,
all the Pareto Optimal solutions can be generated which
we can later choose a solution from based on a preference.
The approach has been successfully implemented on the
CTS robot model which will follow in later sections. Two
criteria have been used for this study, but the approach is
very promising for this application where there are several
critical criteria and constraints but only one degree of
redundancy available.

This paper is organized as follows. Section 2 describes
the Captive Trajectory Simulation (CTS) experiments and the
redundant robotic platform for which a task with two criteria
is derived. Section 3 reviews the variational formulation
with linearly combined criteria and highlights important
drawbacks associated with the weighting method. Section 4
starts by proposing the dynamic programming approach with
the weighting method and shows how the results compare
to those of variational formulation. Then the approach is
expanded to generate Pareto Optimal solutions and results
presented. Section 5 concludes the findings and propose
future work.

II. PROBLEM DEFINITION

The 7-DOF robot used for this study is modeled after
a Captive Trajectory Simulation (CTS) system with the
objective of emulating the store (any object released from
an aircraft) trajectory. This robot as illustrated in Figure
1, operating within a supersonic wind-tunnel, holds at the
end-effector the model of a store mounted on a sensitive



force sensor. The significance of this setup is its ability in
reproducing the scaled version of aerodynamic loads acting
on the store in the vicinity of the aircraft model, where the
aerodynamic interference is extremely complex and almost
impossible to predict. The presence of manipulator in this
area is undesirable as it disturbs the flow properties and can
also impose additional disturbing loads on the robot links.
Therefore, it is desirable to have the body of the robot as
far as possible from the interference region. This is possible
by keeping one of the aerodynamically-shaped upper links
(Gooseneck) as vertical as possible when the robot operates
underneath the wing of the airplane model. This constitutes
one of the two criteria used in this study, the other being
joint speed norm. Details about this system and CTS testing
can be found in [1].

Fig. 1. The CTS manipulator inside the wind tunnel.

The robot has a box-shaped 6-DOF task space as illus-
trated in Figure 1. An attractive characteristic of this robot
is the existence of a closed form for its inverse kinematics
which is valid within the task space. For the sake of brevity,
the details of the closed form expression are omitted, but can
be stated in a generic form for a robot with one degree of
redundancy as

q = g(p, u), (1)

where q is a 7-dimensional vector denoting the joint con-
figuration, p a 6-dimensional vector denoting the position
and orientation of the end-effector, and u is the redundancy
parameter. Differentiating (1) yields

q̇ = G(q)ṗ + N(q)u̇, (2)

where G(q) is a 7 × 6 matrix and N(q) a 7-dimensional
vector representing the null space of the manipulator
Jacobian. The existence of the closed form solution is key
for the developments in Sections 3 and 4.

The problem considered in this paper is for the end-
effector to go from a given initial pose p0 at time t0 to
a given final pose pf at time tf via a known trajectory

p(t) in Cartesian space. The initial joint configuration q0 is
supposed to be known. The two criteria considered are the
joint speed norm, f1 = 1/2‖q̇(t)‖2, and the aerodynamic
interference cost function, f2 = f2(q(t)).

III. VARIATIONAL FORMULATION USING THE
WEIGHTING METHOD

The objective is to find the optimal joint trajectory that
results in the minimum of the integral cost, Jw, of the linear
combination of the two criteria [6] or find

Jw = min
q(t)

∫ tf

t0

f1(q̇(t)) + wf2(q(t))dt, (3)

subject to
f(q(t)) = p(t), (4)

and the boundary conditions

q(t0) = q0, p(tf ) = pf , (5)

where f is the forward kinematics mapping, and w the
weighting factor.

It can be shown that the necessary Euler-Lagrange
conditions for optimality yield a system of eight ordinary
differential equations in (q, λ) [6], where λ is a scalar.
These differential equations can be written analytically
because of the existence of an analytical expression for
the null space N(q) of the manipulator Jacobian. This
improves the accuracy and speed of the computations. The
added necessary conditions for optimality arising from the
boundary conditions (5) are q(t0) = q0 and λ(tf ) = 0
[6]. At this point, it can be observed that the resulting
two point Boundary Value Problem (BVP) reduces to a
one dimensional search: find λ(t0) such that λ(tf ) = 0,
which simplifies the process of obtaining all the stationary
solutions to the variational problem.

We take advantage of the simple access to the stationary
solutions for various values of the weight, −10 ≤ w ≤ 20,
and calculate the corresponding values of the functionals
F1 =

∫ tf

t0
f1(q̇(t))dt and F2 =

∫ tf

t0
f2(q(t))dt. Figure

2 depicts the variation of F2 versus F1 as the weight
varies. The resulting curve is denoted by C and any point,
z = (F1, F2), on C is termed objective vector.

The discussion on the weighting method is primarily
based on the following important geometric observation. For
a given weight, there exists a stationary solution when the
line with the slope −1/w is tangent to C. For example, when
only F1 is considered (w = 0), the vertical line is tangent to
C at three different objective vectors z1, z2 and z3 as seen in
Figure 2. It can be noticed that z1 is the global minimum, z3

a local minimum and z2 neither a minimum nor a maximum.

Numerical algorithms for calculus of variations and op-
timal control mostly rely on the first order necessary con-
ditions and as a result, do not guarantee a minimum. For



Fig. 2. Variation of F2 versus F1 as the weight w varies between −10
and 20.

example, for w = 0, z2 could be a solution and increasing the
weight has the opposite effect on F2 as expected. The source
of this problem is the failure of the numerical algorithm
to capture a minimum and not the weighting method itself.
However, if we assume that the numerical algorithm is able
to generate a minimum, still two major problems can be
identified:

• By changing the weights continuously, it is possible
to jump from one part of C to another. For example,
for w = 0, z1 could be the optimal solution. By
increasing the weight, the minimum (local) objective
vector moves along C downwards until z4 is reached.
At z4, although it is not quite obvious in Figure 2,
the tangent starts to be above C and as a result, the
corresponding objective vector is not a minimum. On
the other hand, a unique minimum can be found near z3.

• A uniform distribution of the weights does not neces-
sarily result in a uniform distribution of the objective
vectors. This can be seen in Figure 2 where the “o” are
not equally spaced on C. It is also possible that at some
point on C, small changes in weight result in drastic
changes in objective vector (for example, between z1

and z4). On the other hand, it might be possible that
for some points, even large changes in weight would
not result in any noticeable changes in objective vector
(for example, near z3). The geometric justification is
that the curvature of C is not constant, confirming the
non Lipschitz nature of objective vectors as a function
of weights, as stated in [7].

In light of the above discussion, we can see the difficul-
ties of controlling the objective vector using the weighting
method. The shortcomings of this method have also been
reported in [4].

IV. GENERATION OF PARETO OPTIMAL SOLUTIONS
WITH DYNAMIC PROGRAMMING

In the first part of this section, we show how the same
global minimum solution as obtained through variational
calculus to the to the problem (3)-(5) can be generated with
dynamic programming. In order to reduce the search space,
joint limits and joint speed limits are introduced:

qmin ≤ q(t) ≤ qmax, (6)

q̇min ≤ q̇(t) ≤ q̇max. (7)

However, only joint trajectories far from these limits will
be considered for comparison purposes.

Dynamic programming has already been used to generate
time optimal joint trajectories for nonredundant manipulators
[11], [3] or for known joint paths [10]. We follow here the
same approach, except that the end-effector path parameter
is replaced by the redundancy parameter u as the state of the
system. Substituting 1) and (2) in the formulation given by
Equations (3)-(5) with the constraints (6) and (7) yields the
following variational problem:

Jw = min
u(t)

∫ tf

t0

Φw(t, u(t), u̇(t))dt, (8)

subject to
u(t) ∈ A(t), (9)

u̇(t) ∈ B(t, u(t)), (10)

and the boundary conditions

u(t0) = u0, u(tf ) ∈ A(tf ), (11)

where A(t) and B(t, u(t)) represent, respectively, the ad-
missible values of the redundancy parameter and its speed
at any given time. Problem (8)-(11) might be solved by the
numerical resolution of the Hamilton-Jacobi-Bellman (HJB)
partial differential equation [3], or by stating its discretized
version as a discrete dynamic programming problem [10],
[11]. The discrete dynamic programming is preferred for its
simplicity, which yields:

JN
w (u0) = min

{ui,i=0..N}

N∑
i=1

Φw(i, ui, u̇i)τ, (12)

subject to
ui ∈ Ai, (13)

u̇i ∈ Bi(ui), (14)

using the Euler approximation

u̇i =
(ui − ui−1)

τ
, (15)

and the boundary conditions

uN ∈ AN , (16)

where τ is the discretization step time, N = [ tf−t0
τ ] is the

number of steps, ui = u(iτ), and JN
w (u0) the minimum



performance criterion at the step N for a joint trajectory
(i.e. a sequence of uk) starting from u0. It is now possible
to apply the Bellman optimality principle [2] to obtain:

Jk
w(u0) = min

uk−1∈A′
k−1

Φw(k, uk, u̇k)τ + Jk−1
w (u0) (17)

where k = 1 . . . N and A′
k−1 = Ak−1∩{uk−1 | (ui−ui−1)

τ ∈
Bk(uk), uk ∈ Ak}. The dynamic programming Equation
(17) could also be formulated through the common ap-
proach of using a return function, defined as the minimum
performance criterion reaching the final state, but the two
approaches result in the same solution. Finally, to solve
Equation (17), we propose the following algorithm:

• Stage 1: build a grid in the (t, u) space. This grid can
already embed (13) using the closed form solution to
the inverse kinematics (1) in conjunction with the joint
limits (6). Set the minimum performance criterion to
infinity for each node (k, uk,i).

• Stage 2: at step k, iterate over all uk,i satisfying Equa-
tion (13). For each uk,i, find all the nodes (k+1, uk+1,j)
satisfying Equation (13) such that u̇k+1,j satisfies Equa-
tion (14), with u̇k+1,j being calculated with the Euler
approximation Equation (15). Calculate the performance
criterion and compare this performance criterion with
the current minimum performance criterion. Replace the
current minimum performance criterion if it is higher.
Set the node (k, uk,i) as the predecessor.

• Stage 3: Repeat until the step N − 1 is reached.
• Stage 4: Take the minimum of the minimum perfor-

mance criterion at step N .
Euler integration does not allow the algorithm to reach the
step N . This is the reason Stage 4 has been introduced. This
could be simplified by adding an idle node at step N + 1
connected to all the nodes at step N without any constraints.
Note that this algorithm moves forward, whereas if a return
function had been used, the corresponding algorithm would
have moved backwards. The validity of the proposed
algorithm at the boundary of A(t) and B(t, u(t)) has not
been investigated. This is not a significant issue considering
that only joint trajectories far from the limits are used for
comparison purposes. For w = 0, Figure 3 illustrates the
variation of the redundancy parameter as a function of the
time for the three stationary solutions corresponding to
z1, z2 and z3 and the optimal solution obtained from the
dynamic programming approach. It can be observed that
there is a good agreement between the stationary solution
corresponding to z1, which is the global minimum, and the
solution obtained from the dynamic programming approach.
These results have been obtained with N = 10 for 8 seconds
of run for a total of 515 nodes. Finally, Figure 3 shows that
the stationary solution corresponding to z3 does not satisfy
the joint limits, because in Section 2, no constraints were
included.

At this point, it can be concluded that the same global
minimum solution to the problem given by Equations (3)-(5)
can be obtained using Dynamic Programming. It is shown

Fig. 3. u(t) for Dynamic Programming and stationary solutions of the
Euler-Lagrange equation.

now how the dynamic programming approach developed
above can be modified to generate solutions which are
optimal in a multiple criteria sense. These solutions are said
to be Pareto optimal (also termed efficient or non dominated)
with the definition given below [7].

Definition 4.1 (Pareto optimality): assume that n criteria
with scalar values are to be minimized, an objective vector
z∗ is Pareto optimal if there does not exist another objective
vector z ∈ Z such that zi ≤ z∗i for all i = 1 . . . n and
zj < z∗j for at least one index j.

Definition 4.1 introduces only the global Pareto optimality,
which can be defined in the solution space as well. Another
definition needs to be provided for local Pareto optimality.

Definition 4.2: an objective vector z∗ is locally Pareto
optimal if the corresponding solution is Pareto optimal only
in a neighborhood.

Both local and global Pareto optimal solutions can form a
set, because their number can be infinite. Figure 4 reproduces
Figure 2 when any joint trajectory violating the joint limits
or the joint speed limits is removed. The Pareto optimal and
the locally Pareto optimal sets are determined and shown on
the resulting curve.

From a mathematical point of view, every Pareto optimal
solution is an equally acceptable solution. Hence, a multiple
criteria optimization method might be evaluated by its ability
to generate a better representation of the complete Pareto
optimal set through a more uniform sampling. This was one
the major weaknesses of the weighting method as explored in
Section 3. To summarize, the weighting method lacks control
of the objective vectors through the weights and is unable
to generate solution in the nonconvex part of the Pareto
optimal set [4] (it is impossible to generate objective vectors
on the portion of the curve C between z2 and z4 in Figure
2). However, for a given set of nonnegative weights, the
weighting method [7] guarantees Pareto optimal solutions,
although these solutions are more likely to be only just local



Fig. 4. Locally Pareto optimal set and Pareto optimal set.

Pareto optimal.
Let us consider again the dynamic programming approach

presented above. The idea proposed is to embed directly the
Pareto optimality or dominance concept within the algorithm
used to generate the optimal solution (as a result, the dynamic
programming equation Equation (17) is not the proper for-
mulation anymore). Stages 1, 2 and 4 of this algorithm are
modified as follows, while Stage 3 does not change.

• Stage 1
′
: build a grid in the (t, u) space. This grid can

already embed (13) using the closed form solution to
the inverse kinematics (1) in conjunction with the joint
limits (6). Set the list of optimal objective vectors to
void for each node (k, uk,i).

• Stage 2
′
: at step k, iterate over all uk,i satisfying

(13). For each ui, find all the nodes (k + 1, uk+1,j)
satisfying (13) such that u̇k+1,j satisfies (14) (u̇k+1,j

being calculated with the Euler approximation (15)).
Calculate then the objective vector z(uk,i, uk+1,j) and
apply the following dominance rules:

– if z(uk,i, uk+1,j) is dominated by any element in
the list of optimal objective vectors, discard it. Oth-
erwise, add it to the list and set the node (k, uk,i) as
the predecessor for this particular objective vector.

– if z(uk,i, uk+1,j) dominates any element in the list
of optimal objective vectors, discard this element.

– Stage 3: repeat until the step N − 1 is reached.
– Stage 4

′
: apply the dominance rule for all the

optimal solutions at step N .
We predict that this modified algorithm should be able

to generate all the Pareto optimal solutions. Although very
attractive, the algorithm might become computationally
intractable. As we show below with a simple calculation,
the number of nondominated objective vectors grows
exponentially with the dimension the grid. Assume that at
step k, each node can reach rk nodes at step k + 1. In
the worst case scenario, where no nondominated objective

vectors are discarded, the number of nondominated
objective vectors at step k + 1 is multiplied by rk, which
gives recursively a total of

∏
rk. This problem is more

pronounced when the discretization in the (t, u) space
becomes finer, and as the number of performance criteria
increases. These are manifestations of the so-called curse of
dimensionality [2].

It is possible to cope with this problem using heuristics
whose main objective is to control the number of nondom-
inated objective vectors at each step k. As an example, it
is suggested to limit the number of nondominated objective
vectors at each node using the following criterion: keep the
p, (p ≥ 1) nondominated objective vectors with the smallest
joint speed norm and discard the rest. This heuristic has
been implemented with p = 3 and the results are displayed
in Figure 5. The resulting nondominated objective vectors
agree well with the Pareto optimal set and capture perfectly
its non connectivity. This is the natural advantage of the

Fig. 5. Nondominated objective vectors generated by the modified dynamic
programming approach.

dynamic programming approach that can offer a framework
in which there is a great degree of freedom in choosing
various heuristics. However, special attention should be given
to the choice of such heuristics as they might result in losing
Pareto optimality (global).

V. CONCLUSIONS AND FUTURE WORK

A dynamic programming approach was proposed and
applied to the model of a 7-DOF redundant manipulator in
order to find the optimal joint trajectories considering joint
speed norm and the aerodynamic interference as the two
performance criteria. This approach provides better means to
identify the Pareto optimal set than the traditional weighting
method which avoids addressing multiple criteria problems
through transforming them into a single criterion. Various
simple or complex heuristics can be conveniently imple-
mented at each node of the grid to reduce the computational



load of the search and eliminate certain objective vectors
based on a preference, as confirmed by simulation. The
handling of constraints within the dynamic programming
approach still needs to be further investigated. Additional
criteria and constraints such as operational constraints of
the CTS system and collisions will be considered as the
immediate extensions of this work.
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