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Abstract A novel approach to integrated type and approximate dimensional synthe-
sis of planar four-bar mechanisms (i.e. linkages comprised of any two of RR, PR,
RP, and PP dyads) for rigid-body guidance is proposed. The essence is to corre-
late coordinates of the coupler attachment points in two different coordinate frames,
thereby reducing the number of independent variables defining a suitable dyad for
the desired rigid-body motion from five to two. After applying these geometric con-
straints, numerical methods are used to size link lengths, locate joint axes, and de-
cide between RR, PR, RP and PP dyads that, when combined, guide a rigid body
through the best approximation, in a least-squares sense, of n specified positions
and orientations, where n≥ 5. No initial guesses of type or dimension are required.
An example is presented illustrating the effectiveness and robustness of this new
approach.

Key words: Approximate type and dimensional synthesis; planar four-bar mecha-
nisms; rigid body guidance; singular value decomposition.

1 Introduction

Planar linkages contain either revolute (R-pairs), or prismatic (P-pairs). These kine-
matic pairs permit rotations about one axis, or translations parallel to one direction,
respectively. In general, dimensional synthesis for rigid body guidance assumes a
mechanism type: i.e., planar 4R; slider-crank; crank-slider; trammel, etc.. Our aim
is to develop a completely general planar mechanism synthesis algorithm that in-
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tegrates both type and dimensional synthesis for n-position approximate synthe-
sis for rigid body guidance. The pairing of the two types leads to four possible
dyads: revolute-revolute (RR), prismatic-revolute (PR), revolute-prismatic (RP), and
prismatic-prismatic (PP).

There is an extensive body of literature reporting research on approximate di-
mensional kinematic synthesis of planar four-bar mechanisms for rigid-body guid-
ance, see for example [12, 1, 6, 5, 4, 9]. However, there are no methods reported in
the substantial body of literature that successfully integrate both type and approxi-
mate dimensional synthesis of planar four-bar mechanisms for rigid body guidance,
without a priori knowledge or initial guesses with the exception of two special cases
reported in [3, 2]. In this paper a method for doing so is presented for the first time.

The minimization criteria of the algorithm presented in this paper is purely math-
ematical: the condition number of the synthesis matrix. The algorithm will be en-
hanced when the transmission angle is incorporated as an optimization objective.
It would be additionally beneficial to examine the order and branch defect prob-
lems. It may be that advances made in [10] can be incorporated into the integrated
type-dimensional synthesis algorithm to address these issues. These issues notwith-
standing, the algorithm presented in this paper is a robust foundation upon which to
build. The algorithm is being adapted for synthesis of spatial motion platforms.

2 Kinematic Constraints: Circular and Linear

The motion of the coupler link in a four-bar planar mechanism is determined by the
relative displacements of all links in the kinematic chain. The relative displacement
of two rigid bodies in the plane can be considered as the displacement of a Cartesian
reference coordinate frame E attached to one of the bodies with respect to a Carte-
sian reference coordinate frame Σ attached to the other. Without loss of generality,
Σ may be considered fixed with E free to move, see Figure 2. The homogeneous
coordinates of points represented in E are given by the ratios (x : y : z). Those of
the same points represented in Σ are given by the ratios (X : Y : Z). The mapping
between the coordinates of points expressed in the two reference frames is given by
the homogeneous coordinate transformation

X
Y
Z

=

 cosθ −sinθ a
sinθ cosθ b

0 0 1

 x
y
z

 , (1)

where (a,b) are the ( X
Z ,

Y
Z ) Cartesian coordinates of the origin of E with respect to

Σ , and θ is the orientation of E relative to Σ . Any point (x : y : z) in E can be mapped
to (X : Y : Z) in Σ using this transformation. For rigid body guidance, each pose is
defined by the position and orientation of E with respect to Σ , which is specified
by the ordered triple (a,b,θ). Dyads are connected through the coupler link at the
coupler attachment points M1 and M2, see Figure 1.
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There is a specific type of constrained mo-
tion corresponding to each one of the four
types of planar lower-pair dyad. The un-
grounded R pair in an RR dyad is constrained
to move on a circle with a fixed centre. Be-
cause of this they are denoted circular con-
straints. Linear constraints result when PR
and RP dyads are employed because the R
pair attachment point is constrained to move
on a line defined by the P pair translation di-
rection. The PP dyad represents a planar con-
straint: the line of one P pair direction is con-
strained to translate on the direction line of the
other. Fig. 1. Planar RRRP linkage.

It can be shown [2] that the model representing both circular and linear con-
straints for n Cartesian point coordinate pairs can be expressed in matrix form as

Ck =
[

X2
j +Y 2

j 2X j 2Yj 1
]

K0
K1
K2
K3

= 0, (2)

where C is an n× 4 dimensional array with j ∈ {1,2, . . . ,n}, with X and Y being
the Cartesian coordinates of points on either a circle or line, and the Ki are constant
shape parameters determined by the constraint imposed by the dyad [2].

For circular constraints the Ki are defined as

K0 = 1, K1 =−Xc, K2 =−Yc, K3 = K2
1 +K2

2 − r2, (3)

where (Xc,Yc) are the Cartesian coordinates of the circle centre expressed in Σ and
r is the circle radius.

Linear constraints require K0 = 0 and the remaining Ki are proportional to line
coordinates defined by

K1 =−
1
2

FZ/Σ sinθΣ , K2 =
1
2

FZ/Σ cosθΣ , K3 = FX/Σ sinθΣ −FY/Σ cosθΣ , (4)

where (FX/Σ : FY/Σ : FZ/Σ ) are homogeneous coordinates of a fixed point, expressed
in Σ , on the line that makes an angle θΣ with the positive X-axis in Σ .

In the definitions of the Ki, the parameter K0 acts as a binary switch between
circular and linear constraints. When K0 = 1 Equation (2) represents the implicit
equation of points on a circle, and when K0 = 0 the equation becomes that of a line.
Nonetheless, K0 is still an homogenizing parameter whose value is arbitrary. The Ki
can be normalized by K0, but only when K0 is nonzero.
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3 Integrating Type and Approximate Dimensional Synthesis

Equations (2), (3), and (4) are used to integrate type and approximate dimensional
synthesis of planar for-bar mechanisms for rigid-body guidance. Constructing the
required synthesis matrix C based on the prescribed poses is done by relating the
position of the two rigid body attachment points M1 and M2 in both reference frames
E and Σ , see Figure 1. Reference frames Σ and E are correlated in two ways:

1. Points M1 and M2 move on circles or lines in Σ ;
2. Points M1 and M2 have constant coordinates in E.

Let (x,y) be the coordinates expressed in E of one of the coupler attachment
points, M, and (X ,Y ) be the coordinates of the same point expressed in Σ . Carrying
out the matrix multiplication in Equation (1) yields

X = xcosθ − ysinθ +az,
Y = xsinθ + ycosθ +bz,
Z = z.

(5)

Ignoring infinitely distant coupler attachment points, it is reasonable to set z = 1
in Equation (5) and substituting the result into Equation (2), with j ∈ {1,2, . . . ,n}
yields

Ck =


(xcosθ j− ysinθ j +a j)

2 +(xsinθ j + ycosθ j +b j)
2

2(xcosθ j− ysinθ j +a j)
2(xsinθ j + ycosθ j +b j)

1


T 

K0
K1
K2
K3

= 0. (6)

Prescribing n > 5 poses makes C an n×4 matrix. The parameters x and y possess
constant values in E. The n-dimensional vector parameters a, b, and θ in C are all
known a priori because they are the specified poses of E with respect to Σ .

The only unknown parameters in C are x and y. Determining the x and y that best
satisfy Equation (6) will solve the problem. Once values for x and y are obtained C
is fully determined, which allows the vector k to be identified. The problem is now a
two dimensional search for x and y. However, at least two dyads are required to form
a planar mechanism. This implies that there must be at least two distinct values for
x and y in order for a complete solution to exist. The x and y are found such that they
satisfy Equation (6). For equations of the form Ck = 0 the only real k that satisfies
the equation is the zero vector if C is not singular. In other words, for non-trivial k
to exist, C must be rank deficient [11]. The task becomes finding values for x and y
that make C rank deficient, or failing that, the most ill-conditioned.

The conditioning of a matrix is measured by the ratio of the largest and smallest
singular values of the matrix, which is called the condition number κ . It is compu-
tationally more convenient to use is the inverse of the condition number, γ

γ ≡ 1
κ
=

σMIN

σMAX
,0≤ γ ≤ 1, (7)
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because it is bounded both from above and below. A well conditioned matrix has
γ ≈ 1, while an ill-conditioned matrix has γ ≈ 0. Therefore, selecting x and y that
renders C the most rank deficient involves minimizing γ .

The Nelder-Mead Downhill Simplex Method in Multidimensions algorithm may
be used for this minimization [7]. This method requires only function evaluations,
not derivatives. It is not very efficient in terms of the evaluations it requires, but for
the problem at hand the computational burden is relatively small. We will not discuss
the convergence properties, because any optimization method may be employed.

Since the Nelder-Mead algorithm needs an initial guess, γ may be plotted in terms
of x and y first, in the neighborhood of (x, y) = (0, 0) up to a user-defined range of
the maximum distance that the coupler attachment points can be from the moving
frame E origin, denoted ε . As x and y represent the position of a coupler attachment
point with respect to moving refernece frame E. The x and y parameters may then
be selected approximately corresponding to the smallest value of γ . These points
represent the local minima of the entire γ plot, that is, with ε = ∞. However, for
practical reasons, with ε finite, these minima may be regarded as the global minima
of the region of interest. At least two minima are required to obtain a planar four-
bar mechanism, as each minimum corresponds to a single dyad. The Nelder-Mead
algorithm is fed these approximate values as inputs, and converges to the values of
x and y that minimize γ .

Once the values of x and y have been determined the matrix C in Equation (6)
can be populated. The k parameters may then be estimated. We have elected to use
singular value decomposition (SVD) because we are necessarily required to work
with either singular, or numerically very-close-to-singular sets of equations. SVD
decomposes any given m×n matrix C into the product of three matrix factors such
that

Cm×n = Um×mSm×nVT
n×n, (8)

where U and V are orthogonal, and S is a rectangular matrix whose only non-zero
elements are on the diagonal of the upper n× n sub-matrix. These diagonal ele-
ments are the singular values of C arranged in descending order, lower bounded by
zero [8]. SVD constructs orthonormal bases spanning the range of C in U and the
nullspace of C in V. If C is rank deficient, then the last n−rank(C) singular values
of C are zero. Furthermore, the corresponding columns of V are unit basis vectors
that span the nullspace of C. As such, any linear combination of these columns is a
non-trivial solution that best satisfies the system Ck = 0.

For overconstrained systems, where the m× n matrix C has m > n, in general
no non-trivial exact solution exists, because in general an overconstrained synthesis
matrix possesses full rank. In this case, the optimal approximate solution in a least-
squares sense is last column of V, corresponding to the smallest singular value of
C. Furthermore, the more ill-conditioned C is, the closer the optimal approximate
solution is to being an exact solution. Because the Ki are homogeneous, the scaling
posses no problem because k will be normalized by dividing through by K0. In
the case where K0 ≈ 0, or K0 = 0 the linear definitions for K1, K2, and K3 from
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Fig. 2 The γ plot of the poses defining a square corner.

Equation (4) are used. The switching threshold for K0 to represent either an RR or
PR (or RP) dyad must be user defined based on the geometry of the problem.

Note that PP dyads are a special case. Two serial P pairs restricts the distal link
from changing its orientation. For type synthesis, given any set of poses with non
constant orientation, the PP dyad is immediately ruled out.

3.1 Example

Consider an example that requires completely general integrated type and approxi-
mate dimensional synthesis by defining poses that are impossible to generate exactly
by any four-bar planar mechanism. The poses define a square corner. A point on a
rigid body moves linearly between the Cartesian coordinates from (0, 1) to (1, 0) via
(1,1). The orientation increases linearly from 0 to 90 degrees. The poses are listed
in Table 1.

Pose 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a 0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
b 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0.0

θ ◦ 0.0 4.5 9.0 13.5 18.0 27.0 31.5 36.0 45.0 49.5 54.0 58.5 63.0 72.0 76.5 81.0 85.5 90.0

Table 1 Specified poses defining a square corner.
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A planar four-bar mechanism cannot exactly replicate the motion defined above
because points on the coupler generate either a 6th, 4th, or 2nd order curve. The curve

xn + yn = 1 (9)

approaches a square corner as n→∞. With n≤ 6 for planar four-bar mechanisms, it
is impossible to exactly replicate the desired motion. Although a PPPP mechanism
may be able to generate the desired point translation, the change in orientation rules
out this type of mechanism.

The pose data are substituted into Equation (6) to populate C. The γ of C are then
plotted as a function of x and y and are shown in Figure 2. As can be seen in this
figure, two distinct minima occur at approximately (0.8, 0.6) and (0.8, -0.6). Using
the Nelder-Mead minimization and the pair of approximate x and y as initial guesses,
the exact values of the two minima are found, and listed in Figure 3. These values are
then substituted into Equation (6) to completely determine C. SVD is then applied
to C to find k corresponding to each minimum. The values of k thus determined are
also listed in Figure 3. The resulting synthesized mechanism, illustrated in Figure 3,
is composed of two RR dyads centred on (4.5843, -1.0539) and (-1.0539, 4.5843),
both with links having length 1.7307.

Fig. 3 Identified RRRR mechanism and corresponding dyads.

Dyad 1 Dyad 2
x 0.8413 0.8413
y 0.5706 -0.5706

K0 0.2010 0.2010
K0/K0 1 1
K1/K0 -4.5843 1.0549
K2/K0 1.0539 -4.5843
K3/K0 1.2704 1.2704

4 Conclusions

In this paper a novel method was presented that integrates type and approximate
dimensional synthesis of planar four-bar mechanisms used for rigid-body guidance.
Coupler attachment points are correlated between moving frame E and fixed frame



8 Tim J. Luu and M. John D. Hayes

Σ thereby reducing the number of independent variables defining a suitable dyad
for the desired poses from five to two. Numerical methods are then used to deter-
mine both mechanism type and approximate dimensions. A numerical example was
presented, illustrating the utility of the algorithm.
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