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Abstract The algebraic screw pair, or A-pair, represents a new class of kine-
matic constraint that exploits the self-motions inherent to a specific configuration
of Griffis-Duffy platform. The A-pair causes a sinusoidal coupling of rotation and
translation between adjacent links in the kinematic chain. The resulting linkage is
termed an A-chain. This paper presents a derivation of the manipulator Jacobian
of nA-chains in general, and a specific 4 degree-of-freedom hybrid serial-parallel
4A-chain.
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1 Introduction

The algebraic screw pair [4], or A-pair, is a novel kinematic pair based on a spe-
cific configuration of parallel manipulator called the Griffis-Duffy platform (GDP)
[1]. The GDP is a special configuration of the six legged, six degree-of-freedom
(DOF) Stewart-Gough platform (SGP) that, in most configurations, is subject to
self-motions regardless of the lengths of the actuated legs [2]. Kinematic chains
composed of rigid links serially connected by A-pairs are denoted A-chains. The
A-pair induces a sinusoidal coupling of rotation and translation between adjacent
links. For this paper the derivation of the manipulator Jacobian of a 4A-chain, illus-
trated in Figure 1(a), is used to demonstrate the method. While the method does not
fail for n > 4, the terms become inconveniently large to express explicitly.
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(a) (b)

Fig. 1 (a) Prototype 4A-chain. (b) Midline-to-vertex configuration GDP.

The A-pairs used in this paper are the midline-to-vertex GDP configuration, see
Figure 1(b). They are constrained by: the fixed base and moving platform anchor
point triangles are congruent equilateral triangles with each side of the triangles
being of length a and the six legs are all of a fixed length, l, equal to the height, h,
of the triangles as illustrated in Figure 2(a).

The value of l is

l = h =
a
√

3
2

. (1)

It turns out that the self-motions of this GDP couple rotation about an axis passing
through the geometric centres of both the fixed base and moving platform trian-
gles with translation along that axis. Using the coordinate systems illustrated in
Figure 2(b), it can be shown [2] that the separation of the fixed base and moving
platform, d, is a function of the rotation angle, θ , about the axis common to both
the fixed base and moving platform:

d = ρ sin
(

θ

2

)
, where ρ =

a
√

6
3

. (2)

It is expected that A-chains will exhibit increased stiffness and positioning accu-
racy relative to R-chains. While we currently lack empirical proof, it appears to be
true based on a visual comparison of the prototype manipulator with the first four
R-pair joints in a Thermo CRS A645. The proposed actuation system consists of a
central spline affixed to the moving platform that is constrained by three spur gears
affixed to the base, all possessing identical pitch diameters. One of the spur gears
is active, which rotates the spline. This arrangement allows the spline to translate
along its axis of rotation.
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(a) (b)

Fig. 2 (a) Platform shape parameters. (b) Coordinate systems and leg anchor point.

2 The Jacobian of a Single A-Pair

Fig. 3 DH-parameters of a link in an A-chain.

The Jacobian matrix of a manip-
ulator maps its joint rates to the
linear and angular velocities of its
end effector (EE). Standard meth-
ods from the literature, see [5] for
example, can be adapted to ac-
count for the coupled translation
and rotation of the A-pair. The
Jacobian matrix of a 1A-chain
can be determined by examining
the rotation and translation com-
ponents of the coupled motion
separately. The orientation of the
joint is directly expressed by the
joint variable θ1. The translation
component of the joint motion is
a function of θ1, and computed
with Equation (2).

In a 1A-chain, the linear velocity of the EE induced by θ̇1 has two components:
one due to the rotation of the joint, perpendicular to the axis of rotation as with a
revolute joint; the other is due to the translation coupled to the rotation, and is ex-
pressed by pez = d1 +ρ sin(θ1/2), where pez is the ẑ0-component of the EE position
vector, d1 is the offset of the EE from the base along ẑ0 when θ1 = 0, and ẑ0 is axis
of rotation. There is only one joint rate q̇1 = θ̇1. The influence of the rotation of the
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joint on the linear velocity is found as if it were a revolute joint:

q̇1JP1r = z0× (pe−p0)θ̇1 =

0
0
1

×
−θ̇1a1 cosθ1−0
−θ̇1a1 sinθ1−0

0

=

 θ̇1a1 sinθ1
−θ̇1a1 cosθ1

0

 , (3)

where, in general, JP1r is the is the 3×1 vector mapping the angular rate of joint i to
its contribution to the linear velocity of the EE, pe and p0 are the position vectors of
the EE coordinate origin, and position vector of the joint coordinate system origin
both expressed in the non moving frame, and a1 is the DH-parameter for the link
length of a link affixed to the moving platform of the single A-pair, illustrated in
Figure 3. The time derivative of pez yields the translation component of the Jacobian,
JP1t:

q̇1JP1t = d
dt

 0
0

d1 +ρ sin
(

θ1
2

)
=

 0
0

θ̇1
2 ρ cos

(
θ1
2

)
 , (4)

therefore JP1t =
[

0 0 ρ

2 cos
(

θ1
2

)]T
. Summing the two components yields the map-

ping from the joint rate q̇1 to the EE linear velocity:

JP1 = JP1r +JP1t =

 a1 sinθ1
−a1 cosθ1
ρ

2 cos
(

θ1
2

)
 , (5)

and ṗe = JP1(q)q̇1.
The translation that is coupled with the rotation of the A-pair does not have an

effect on the orientation of the EE, thus the contribution of the A-pair actuation rate
to the angular velocity of the EE, ωe, is the same as that of a revolute joint:

JO1 = ẑ0 =

0
0
1

 , (6)

and ωe = JO1(q)q̇1. The full Jacobian is

J =
[

JP1
JO1

]
. (7)

However, in this A-pair the EE coordinate system origin is located at the geo-
metric centre of the moving platform (the EE frame is coincident with a base frame
located at the geometric centre of the fixed base when the A-pair is in the theoretical
home position). Hence, the origin of the EE lies on the joint axis rendering a1 = 0
and the velocity relations simplify to
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JP1 =

 0
0

ρ

2 cos
(

θ1
2

)
 , JO1 =

0
0
1

 . (8)

The Jacobian matrix for the single A-pair is always rank deficient, which is ex-
pected because motion in an arbitrary direction will never be possible with just a
single A-pair. If one considers only the two achievable degrees of freedom of the
single A-pair with the EE origin on the joint axis (motion along the joint axis and
rotation about the same axis) a more useful analysis can be performed.

The mapping to EE angular velocity from the joint rate is one-to-one and inde-
pendent of the joint state. This implies that, if joint limits are ignored, the angular
velocity of the EE can always be controlled one-to-one. However, the mapping of
linear velocity is dependant on the joint state and cannot be continuously controlled.
When cos

(
θ1
2

)
goes to zero (i.e. when θ approaches 180◦) the joint approaches a

singular position. At the singularity the linear velocity of the EE is null and any
rotation away from θ1 = 180◦ in either direction will result in motion in the nega-
tive ẑ0-direction only. The singularity is also evident if the Jacobian is rearranged to
solve for the joint rate required to achieve a certain velocity, v1, along the ẑ0-axis:

θ̇1 =
2v1

ρ cos
(

θ1
2

) . (9)

As θ1 approaches 180◦, θ̇1 approaches infinity.

3 The Jacobian of a 4A-Chain

Link i ai αi di θ f i
1 0 90◦ d1 0◦

2 a2 180◦ −ρ −90◦

3 0 −90◦ −ρ 90◦

4 0 0◦ d4 0◦

Table 1 DH-Parameters.

The DH-parameters of the 4A-chain illustrated in
Figure 1(a), using the DH-parameter convention in
[5], are listed in Table 1. Figure 3 shows the assign-
ment of DH-parameters to a link in an A-chain. The
position vector of the base frame origin is p0 = 0. The
relative pose of the EE, pe, is found by transform-
ing the homogeneous coordinates of its origin to the

non moving base coordinate reference system. The homogeneous transformation,
obtained using the methods of [4], has the form:

0T4 =


1 0 0 0

pex −c1c2−3c4 + s1s4 c1c2−3s4 + s1c4 −c1s2−3
pey −s1c2−3c4− c1s4 s1c2−3s4− c1c4 −s1s2−3
pez −s2−3c4 s2−3s4 c2−3

 , (10)

where
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pe =

 pex

pey

pez

=

 s1ρ s θ2
2 + c1s2a2− s1ρ s θ3

2 − c1s2−3ρ s θ4
2 − c1s2−3d4

−c1ρ s θ2
2 + s1s2a2 + c1ρ s θ3

2 − s1s2−3ρ s θ4
2 − s1s2−3d4

ρ s θ1
2 +d1− c2a2 +ρ c2−3s θ4

2 +d4c2−3


is the position vector of the EE origin, and c1, s1, etc. are abbreviations for cosθ1,
sinθ1, etc., respectively. In addition to the EE pose the transformation matrices de-
scribing the pose of each intermediate reference frame (Σi, i = 1,2,3) are important.
The pose of Σ1 is given by

0T1 =


1 0 0 0

p1x c1 0 s1
p1y s1 0 −c1
p1z 0 1 0

 , p1 =

 p1x

p1y

p1z

=

 0
0

ρ s θ1
2 +d1

 . (11)

The pose of Σ2 is given by

0T2 =


1 0 0 0

p2x c1s2 −c1c2 −s1
p2y s1s2 −s1c2 c1
p2z −c2 −s2 0

 , p2 =

 p2x

p2y

p2z

=

 ρ s1s θ2
2 +a2 c1s2−ρ s1

−ρ c1s θ2
2 +a2 s1s2 +ρ c1

ρ s θ1
2 +d1−a2 c2

 . (12)

Finally the pose of Σ3 is

0T3 =


1 0 0 0

p3x −c1c2−3 s1 −c1s2−3
p3y −s1c2−3 −c1 −s1s2−3
p3z −s2−3 0 c2−3

 , (13)

p3 =

 p3x

p3y

p3z

=

 ρ s1s θ2
2 +a2 c1s2−ρ s1s θ3

2
−ρ c1s θ2

2 +a2 s1s2 +ρ c1s θ3
2

ρ s θ1
2 +d1−a2 c2

 . (14)

The position vectors p1, p2 and p3 that describe the position of the origin of the
corresponding intermediate reference frames are given in Equations (11), (12) and
(14), respectively. The joint axes, taken from the respective transformation matrices,
are

ẑ0 =

0
0
1

 , ẑ1 =

 s1
−c1

0

 , ẑ2 =

−s1
c1
0

 , ẑ3 =

−c1s2−3
−s1s2−3

c2−3

 . (15)

The vector mapping the rate of actuation of Joint 1 to the linear velocity of the
EE due to the rotation of Joint 1 is

JP1,r = z0× (pe−p0)

=

 ρ c1s θ2
2 −a2 s1s2−ρ c1s θ3

2 +ρ s1s2−3s θ4
2 +d4 s1s2−3

ρ s1s θ2
2 +a2 c1s2−ρ s1s θ3

2 −ρ c1s2−3s θ4
2 −d4 c1s2−3

0

 ,
(16)
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and the vector mapping the rate of actuation of Joint 1 to the linear velocity of the
EE due to the translation of Joint 1 is

JP1,t =

 0
0

ρ

2 c θ1
2

 . (17)

The total linear velocity Jacobian component for Joint 1 comes from the summa-
tion of Equations (16) and (17) for i = 1, giving

JP1 =

 ρ c1s θ2
2 −a2 s1s2−ρ c1s θ3

2 +ρ s1s2−3s θ4
2 +d4 s1s2−3

ρ s1s θ2
2 +a2 c1s2−ρ s1s θ3

2 −ρ c1s2−3s θ4
2 −d4 c1s2−3

ρ

2 c θ1
2

 , (18)

and because only the rotational component of the joint motion impacts the orienta-
tion of the EE, the angular velocity component of the Jacobian is

JO1 =

0
0
1

 . (19)

Similarly for Joints 2, 3, and 4:

JP2 =

a2 s1c2−ρ s1c2−3s θ4
2 −d4 s1c2−3− ρ

2 c1c θ2
2

a2 s1c2−ρ s1c2−3s θ4
2 −d4 s1c2−3− ρ

2 c1c θ2
2

a2s2−ρs2−3s θ4
2 −d4s2−3

 , and JO2 =

 s1
−c1

0

 .

JP3 =

ρ c1c2−3s θ4
2 +d4 c1c2−3− ρ

2 c θ3
2 s1

ρ s1c2−3s θ4
2 +d4 s1c2−3 + ρ

2 c θ3
2 c1

ρs2−3s θ4
2 +d4s2−3

 , and JO3 =

−s1
c1
0

 .

JP4 =

−ρ

2 c θ4
2 c1s2−3

−ρ

2 c θ4
2 s1s2−3

ρ

2 c θ4
2 c2−3

 , and JO4 =

−c1s2−3
−s1s2−3

c2−3

 .

The full 6×4 Jacobian is assembled as

J =
[

JP1 JP2 JP3 JP4
JO1 JO2 JO3 JO4

]
. (20)

A full examination of the singularities has yet to be conducted but a simple ex-
ample of a singular configuration is easily found. With only four joint variables it is
no surprise that there will be certain directions in which the EE cannot be moved at
a given time, but in certain situations the capabilities are further diminished. When
θv1 = θv2 = θv3 = θv4 = 180◦ the Jacobian matrix becomes
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J =


0 (a2 +ρ +d4) −(ρ +d4) 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 −1 0
1 0 0 1

 . (21)

In this configuration instantaneous linear velocities along the y0- and z0-axes and
angular velocity about the x0-axis are not achievable.

4 Conclusions

In this paper the Jacobian for nA-chains in general, and in particular, a novel 4
DOF 4A-chain was derived. These chains are joined by A-pairs, which take advan-
tage of the single DOF self motion of the architecturally singular midline-to-vertex
configuration of the Griffis-Duffy platform. The self motion is a sinusoidally cou-
pled rotation and translation. The coupling means that existing techniques for estab-
lishing the relationship between the joint rates and the resulting linear and angular
velocity of the distal link in the chain have to be adapted. Linear and angular veloc-
ity relationships between links were considered distinctly and the results combined
to reveal the manipulator Jacobian. With the Jacobian established, the manipulator
singular configurations can now be investigated with the starting point based on the
method reported in [3].
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