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Abstract. A new algebraic input-output relation for planar four-bar
mechanisms is a quartic curve in the input-output joint angle parameter
plane. This equation contains four terms with quadratic coefficients of
link lengths which all factor into the product of two linear terms. The
structure of these eight linear factors suggests that they are the eight
faces of an octahedron in a design parameter space of the link lengths. In
this paper we show that the design parameter octahedron space implies a
complete classification scheme for all 27 possible planar 4R mechanisms,
in addition to linkages containing one, or two prismatic joints.
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1 Introduction

In the firmament of mechanical design the four-bar linkage burns as its brightest
star. This is seen to be true when one considers the tremendous volume of litera-
ture investigating analysis and design of four-bar mechanisms, ranging from an-
tiquity to present [1]. In this paper
we investigate the geometry of the de-
sign parameter space of planar four-
bar mechanisms. Since we will be con-
cerned with the input-output (IO) re-
lation, we will use the standard de-
scription of a planar 4R function gen-
erator for reference. Such a function
generator correlates driver and fol-
lower angles such that the mechanism
generates the function ϕ = f(ψ), or
vice versa, see Fig. 1. Fig. 1. Planar 4R linkage.

Surprisingly, design methods have not focused on algebraic IO equations,
rather they generally use the transcendental Freudenstein synthesis equations
[3], or variants thereof. The Freudenstein equation relating the input to the
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output angles of a planar 4R four-bar mechanism, with link lengths as in Fig. 1,
was first put forward in [4]. In the equation the angle ψ is traditionally selected
to be the input while ϕ is the output angle:

k1 + k2 cos(ϕi)− k3 cos(ψi) = cos(ψi − ϕi). (1)

Eq. (1) is linear in the ki Freudenstein parameters, which are defined in terms
of the link length ratios as:

k1 ≡ (a2 + b2 + d2 − c2)

2ab
; k2 ≡ d

a
; k3 ≡ d

b
.

In this paper we use instead the algebraic IO relation derived in [7] and
the geometric analysis of the quartic algebraic IO curve in [8] to show that it
implies a classification scheme for all 27 possible planar 4R mechanisms [11].
The classification scheme characterises all Grashof and non-Grashof ranges of
motion of the input and output links. Moreover, the structure of the algebraic
IO equation suggests a design parameter space [8] that will be examined more
fully in this paper.

Study’s kinematic mapping image space coordinates and resultants were em-
ployed in [7] to derive the IO equation. Then Weierstraß (tangent of the half-
angle) substitutions

u = tan

(
ψ

2

)
, v = tan

(ϕ
2

)

were applied to convert the trigonometric equation to an algebraic one, which
has the following form:

Au2v2 +Bu2 + Cv2 − 8abuv +D = 0 (2)

where;

A = (a− b− c+ d)(a− b+ c+ d) = A1A2;

B = (a+ b− c+ d)(a+ b+ c+ d) = B1B2;

C = (a+ b− c− d)(a+ b+ c− d) = C1C2;

D = (a− b+ c− d)(a− b− c− d) = D1D2.

Eq. (2) is quartic in the coordinate plane of u and v. Since the distance d between
the ground fixed links can be viewed as a scaling factor for function generators,
without loss in generality we can normalise a, b, and c by d and consider the
design parameter sub-space comprised of three mutually orthogonal bases dis-
tances with d = 1. Another way of looking at the design parameter sub-space is
as the projection of the four dimensional space onto the hyperplane d = 1.

Regardless, it is shown in [8] that the quartic curve represented by Eq. (2)
has two double points, and therefore possesses genus 1. The double points are
the points at infinity of the u and v axes in the u-v plane. Each of these double
points can have real or complex tangents depending on the values of the link
lengths, which in turn determines the nature of the mobility of the linkage, as
well as the number of assembly modes (the maximum is two), and the number
of folding assemblies (the maximum is three).
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2 Design Parameter Octahedron

In the design parameter space, the eight linear factors in Eq. (2) can be inter-
preted as the eight faces of a regular octahedron determined by the six ver-
tices V = (a, b, c) : V1 = (1, 0, 0); V2 = (−1, 0, 0); V3 = (0, 1, 0); V4 =
(0,−1, 0); V5 = (0, 0, 1); V6 = (0, 0,−1), see Fig. 2.

Fig. 2. Design parameter octahedron.

Each face of the octahedron lies en-
tirely in one of the eight quadrants in
the parameter space. Given the octa-
hedron, four questions that naturally
arise.

1. What do the six vertices imply?
2. What is the significance of points

on the octahedron edges?
3. What is the significance of points

on the octahedron faces?
4. What is the significance of the lo-

cation of a general point in the pa-
rameter space?

2.1 The Six Octahedron Vertices

With reference to Fig. 2, each of the six octahedron vertices lie at the terminal
ends of the design parameter space basis unit vectors, a, b, and c. They comprise
the six points V1,2 = (±1, 0, 0), V3,4 = (0,±1, 0), V5,6 = (0, 0,±1). Each vertex is
the point common to the planes of four faces and represents a degenerate planar
four-bar mechanism with no mobility because it contains two links of zero length
and two links of unit length.

2.2 The Twelve Octahedron Edges

Again, referring to Fig. 2, each of the twelve octahedron edges, excluding the
vertices, is the line in common with two octahedron faces. Each edge lies entirely
in one of eight design parameter sub-space coordinate planes. For example, the
edge that lies in the coordinate plane spanned by the positive basis vectors a
and b is the intersection of the face planes defined by the vertices {V1, V3, V5}
and {V1, V6, V3}. Each edge represents a degenerate four-bar mechanism with no
mobility because it contains one link of zero length.

2.3 Points on the Eight Octahedron Faces

Because of the beautiful structure of the eight linear factors in Eq. (2), it may
be shown in a straightforward way that each of the linear factors defines one
of eight planes containing one of the octahedron faces. In Euclidean space, E3,
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a necessary and sufficient condition that four points, whose homogeneous point
coordinates are (x0 : x1 : x2 : x3), (y0 : y1 : y2 : y3), (z0 : z1 : z2 : z3) and
(w0 : w1 : w2 : w3), be coplanar is that [2, 5]

∣∣∣∣∣∣∣∣

x0 x1 x2 x3

y0 y1 y2 y3
z0 z1 z2 z3
w0 w1 w2 w3

∣∣∣∣∣∣∣∣
= 0. (3)

It follows that the plane determined by three distinct points has the equation

X0x0 +X1x1 +X2x2 +X3x3 = 0, (4)

where the plane coordinates [X0 : X1 : X2 : X3] are obtained by Grassmannian
expansion [10] of the matrix in Eq. (3), giving

∣∣∣∣∣∣
y1 y2 y3
z1 z2 z3
w1 w2 w3

∣∣∣∣∣∣
x0 +

∣∣∣∣∣∣
y0 y3 y2
z0 z3 z2
w0 w3 w2

∣∣∣∣∣∣
x1 +

∣∣∣∣∣∣
y0 y1 y3
z0 z1 z3
w0 w1 w3

∣∣∣∣∣∣
x2 +

∣∣∣∣∣∣
y0 y2 y1
z0 z2 z1
w0 w2 w1

∣∣∣∣∣∣
x3 = 0. (5)

Employing the Grassmannian expansion we obtain the equation of the plane
containing the octahedron face defined by the vertices {V1, V6, V3} using their
homogeneous coordinates: V = (1 : a : b : c) ⇒ V1 = (1 : 1 : 0 : 0), V6 = (1 : 0 :
0 : −1), V3 = (1 : 0 : 1 : 0). Using the determinants in Eq. (5) and the three
vertices reveals the corresponding plane coordinates as

[X0 : X1 : X2 : X3] =

⎡
⎣
∣∣∣∣∣∣
1 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣
:

∣∣∣∣∣∣
1 0 0
1 −1 0
1 0 1

∣∣∣∣∣∣
:

∣∣∣∣∣∣
1 1 0
1 0 −1
1 0 0

∣∣∣∣∣∣
:

∣∣∣∣∣∣
1 0 1
1 0 0
1 1 0

∣∣∣∣∣∣

⎤
⎦ = [1 : −1 : −1 : 1]. (6)

Hence, the plane equation containing face {V1, V6, V3} can be expressed as

1− a− b+ c = 0. (7)

When the coordinates in Eq. (7) are homogenised, the relation can be expressed
as

a+ b− c− d = 0. (8)

Thus, the plane equation determined by the three vertices {V1, V6, V3} is precisely
the linear factor C1 in Eq. (2). The remaining seven linear factors in Eq. (2) are,
similarly, the plane equations for the seven other octahedron faces. If a point in
the design parameter space satisfies Eq. (8), then it lies in the plane of the face
spanned by the three vertices {V1, V6, V3}, and the corresponding mechanism has
link lengths constrained by the relation a+ b = c+ d. Depending on the lengths
of the individual links satisfying this relation the resulting mechanism can be
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a double crank, double rocker, or crank rocker, and can have as many as three
folding configurations and assembly modes [8, 11].

Similarly, points in the planes of the faces spanned by vertices {V2, V5, V3}
and by vertices {V1, V5, V4} lead to the plane equations

1 + a− b− c = 0 and 1− a+ b− c = 0,

which correspond to the linear factors A1 and D1 respectively, when the coordi-
nates are homogenised giving

a− b− c+ d = 0 and a− b+ c− d = 0.

Points laying in the planes of these two faces correspond to linkages with link
lengths constrained by the relations a+ d = b+ c and a+ c = b+ d. Again, de-
pending on the lengths, the resulting mechanisms can be a double-crank, double-
rocker, or crank-rocker, and can have as many as three folding configurations and
assembly modes. However, points in the planes spanned by the remaining five
faces, corresponding to linear factors A2, B1, B2, C2, and D2 represent linkages
with zero finite mobility because either the sum of the magnitudes of all the link
lengths is identically zero, or one link length is equal to the sum of the lengths
of the remaining three links.

2.4 A General Point in the Design Parameter Space

The location of a single point in the design parameter space is a specific planar
4R whose link lengths satisfy Eq. (2). The values of the link lengths are directed
distances, and hence can be positive or negative. Clearly, if one of the lengths
is identically zero, then the resulting 3R linkage is a structure. The absolute
values of the link lengths identified with Eq. (2) lead to an alternate form of
the classification scheme for planar 4R linkages first presented in [11] and later
refined in [9], and hence to an expression for the Grashof condition. Recall that
the Grashof condition states that a planar 4R will contain one link that can fully
rotate if

l + s < p+ q, (9)

where l and s refer to the lengths of the longest and shortest links, while p and
q are the lengths of the two intermediate links.

Input Link, a. The limits of angular displacement for the input link, a, if they
exist, can be determined using the law of cosines and the two triangles formed
by the lengths a and d when the coupler and output link align, giving lengths
c− b and c+ b, respectively, see Fig. 3. In order for ψmin and ψmax to exist, then

−1 ≤ cos(ψ) ≤ 1. (10)

It can be shown using the methods in [9, 11] that the conditions leading to
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Fig. 3. The angular limits of the output link, if they exist, are ψmin and ψmin .

−1 < cos(ψ) > 1 can be expressed as the product of two linear factors from
Eq. (2). The fist product concerns the existence of ψmin:

(a+ b− c− d)(a− b+ c− d) > 0 (i.e. C1D1 > 0). (11)

If this condition is satisfied, then both factors must be either positive or negative,
and the input link has no ψmin. This implies that the input link can rotate
through ψ = 0 reaching angles below the line joining the centres of the two
ground fixed R-pairs. If this condition is not satisfied then one of either C1 or
D1 is negative and ψmin may be computed, using the upper sign (c− b)2, as1

ψmin
max

= cos−1

(
a2 + d2 − (c∓ b)2

2ad

)
. (12)

Referring again to Fig. 3, the second product concerns the existence of ψmax,
and can be expressed as:

(a− b− c+ d)(a+ b+ c+ d) < 0 (i.e. A1B2 < 0). (13)

If this condition is satisfied then ψmax does not exist, and the input link can
rotate through π. Since B2 must always be positive, this condition simplifies to

a+ d < b+ c. (14)

If the condition in Eq. (13) is not satisfied, then it must be that a + d ≥ b + c,
and ψmax may be computed using the lower sign (c+ b)2 in Eq. (12).

The classification, as in [11], uses the observation that if C1D1 > 0 and A1 <
0 then neither ψmin nor ψmax exist, and the input link is a fully rotatable crank
and therefore the link lengths must satisfy the Grashof condition. If C1D1 > 0
while A1 ≥ 0 then ψmax exists, but not ψmin, and the input link is a 0-rocker
because it rocks through 0 between the ±ψmax limits. If C1D1 ≤ 0 while A1 < 0

1 Note that cos(ψ) returns the same value for ±ψ. Hence, the cos−1 function leads
to two limiting values of ±ψmin and ±ψmax, one for each of the elbow up and elbow
down configurations of the linkage.
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then ψmin exists, but not ψmax, and the input link is a π-rocker because it rocks
through π between the ±ψmin limits. Alternately, if C1D1 ≤ 0 and A1 ≥ 0
then both ψmin and ψmax exist and the input link is a rocker which can pass
through neither 0 nor π and rocks in one of two sperate ranges: ψmin ≤ ψmax;
or −ψmax ≤ −ψmin.

Output Link, b. The limits of angular displacement for the output link, b,
if they exist, can be determined using the law of cosines and the two triangles
formed by the lengths b and d when the coupler and input link align, giving
lengths c + a and c − a, respectively, see Fig. 4. Note that ϕ in this case is an
exterior angle, and the corresponding angle used in the law of cosines is π − ϕ
necessitating a sign change: − cos(π − ϕ) = cos(ϕ). In order for ϕmin and ϕmax

to exist, then
−1 ≤ cos(ϕ) ≤ 1. (15)

The conditions leading to −1 > cos(ϕ) > 1 can be expressed as the products of

Y

X

a+c

Y

b
min

d

max

c-a b

X

a

d

Fig. 4. The angular limits of the output link, if they exist, are ϕmin and ϕmin .

two linear factors from Eq. (2). If ϕmin does not exist then a and c can’t align
and:

(a− b+ c− d)(a+ b+ c+ d) > 0 (i.e. D1B2 > 0). (16)

Since B2 is always positive, then in order to satisfy Eq. (16) D1 must also be
positive. This leads to the simpler expression for the condition in Eq. (16):

a+ c > b+ d. (17)

If this condition is satisfied, then ϕmin does not exist and the output link can
rotate through ϕ = 0 reaching angles below the line joining the centres of the
two ground fixed R-pairs. When this condition is not satisfied then D1 is either
identically zero or negative meaning that ϕmin exists and may be computed using
the upper sign (a+ c)2 in Eq. (18) as

ϕmin
max

= cos−1

(
(a± c)2 − (b2 + d2)

2bd

)
. (18)
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Referring again to Fig. 4, the second product concerns the existence of ϕmax,
and can be expressed as:

(a− b− c+ d)(a+ b− c− d) < 0 (i.e. A1C1 < 0). (19)

If this condition is satisfied then ϕmax does not exist, and the output link can
rotate through π. Satisfying this condition requires that one factor is positive
while the other is negative. If the condition in Eq. (19) is not satisfied, then it
must be that A1 and C1 are either both positive or negative. In this case ϕmax

may be computed using the lower sign (a− c)2 in Eq. (18).

Again, following [11], the Grashof condition for this case is A1C1 < 0 and
D1 > 0. Using these conditions as indicators, the output link can also be a crank,
a 0-rocker, a π-rocker, or a rocker restricted to one of the two separate ranges
ϕmin ≤ ϕmax; or −ϕmax ≤ −ϕmin.

Implications of Vanishing Linear Factors. The remaining conditions to
consider are if any one, or more, of the three factors are identically zero. Consider
the following zeros:

A1 = 0 ⇒ a− b− c+ d = 0 ⇒ a+ d = b+ c;

C1 = 0 ⇒ a+ b− c− d = 0 ⇒ a+ b = c+ d;

D1 = 0 ⇒ a− b+ c− d = 0 ⇒ a+ c = b+ d.

If only one of A1 = 0, C1 = 0, or D1 = 0, then the mechanism is a point on one
of the planes containing the faces of the octahedron spanned by either vertices
{V2, V5, V3}, {V1, V6, V3}, or {V4, V1, V5}, respectively. In each case, the linkage
has a single folding configuration. If two of the factors are identically zero, then
the mechanism is represented by a point that lies on the line of intersection of
the two corresponding faces, which is never an octahedron edge for pairs of these
three faces. In this case, the linkage has two folding configurations because of the
equality in length of two different sums of pairs of link lengths. Finally, if all three
factors are simultaneously identical to zero, the corresponding mechanism is
represented by the point common to the planes of all three associated octahedron
faces. It is a simple matter to show this leads to a third order equation with only
one solution: a = b = c = d. In the design parameter space normalised with
d = 1, this means the point (1, 1, 1), a rhombus linkage possessing three folding
configurations.

2.5 Classification

Any planar 4R linkage can be classified according to the values of the three
linear factors A1, C1, and D1 which can each either be positive, identically zero,
or negative. Using the criteria from above the linkage type can be classified
according to it’s link lengths. All 27 possible mechanisms are listed in Table 1.
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# A1 C1 D1 Input a Output b # A1 C1 D1 Input a Output b

1 + + + 0-rocker 0-rocker 15 0 0 - crank π-rocker
2 + + 0 0-rocker 0-rocker 16 0 - + π-rocker crank
3 + + - rocker rocker 17 0 - 0 crank crank
4 + 0 + 0-rocker crank 18 0 - - crank π-rocker
5 + 0 0 0-rocker crank 19 - + + crank crank
6 + 0 - 0-rocker π-rocker 20 - + 0 crank crank
7 + - + rocker crank 21 - + - π-rocker π-rocker
8 + - 0 0-rocker crank 22 - 0 + crank crank
9 + - - 0-rocker π-rocker 23 - 0 0 crank crank
10 0 + + crank crank 24 - 0 - crank π-rocker
11 0 + 0 crank crank 25 - - + π-rocker 0-rocker
12 0 + - π-rocker π-rocker 26 - - 0 crank 0-rocker
13 0 0 + crank crank 27 - - - crank rocker
14 0 0 0 crank crank

Table 1. Classification of all possible planar 4R linkages. Shaded cells satisfy the
Grashof condition.

2.6 Continuous Sets of Points in the Design Parameter Space

Planar four-bar linkages however are not exclusively jointed with R-pairs, they
often contain P -pairs. However, four-bar mechanisms containing more than two
P -pairs cannot move the coupler in general plane motion, rather they can only
generate translations and hence are not considered here. A kinematic inversion of
an RRRP linkage will possess one variable link length and one variable joint an-
gle, typically called a slider-crank. Hence the roles of fixed constant and variable
in Eq. 2 can be reassigned to generate a function of the form b = f(u), for exam-
ple. The important thing to note is that the same IO equation can be used for
kinematic synthesis! The resulting mechanism however, will not be represented
by a single point in the design parameter space. Rather, it will be represented by
a line parallel to the basis vector direction representing the variable link length.
The length of the line will be determined by the extremities of the slider trans-
lation. This will be interesting to investigate in function generation optimisation
problems, but will be left for future work.

The kinematic inversions of the elliptic-trammel PRRP linkage are theRPPR
and RRPP linkages known as Oldham’s coupling and the Scotch yoke, respec-
tively. These linkages possess two variable link lengths. It turns out that Eq. 2
can also be used for function generation synthesis. We believe this to be re-
markable! Again, the roles of fixed constant and variable are reassigned. In this
case the function generation synthesis problem can be modelled with Eq. 2 to
generate functions of the form b = f(a), while the angles represented by u and
v are now constants that are identified in the synthesis. In the design param-
eter space the resulting mechanism will be represented by a curve that is the
approximated functional relationship between lengths a and b over the desired
maximum input-output range. Again, algorithm development for approximate
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function generation problems for PRRP type linkages will be left for future
work.

3 Conclusions

In this paper we have considered the design and analysis of planar four-bar
linkages that can move the coupler in general plane motion in a fundamentally
new way. Using the algebraic IO curve from [7, 8] we have shown that the eight
linear factors of link lengths can be interpreted as the eight faces of a regular
octahedron in the function generator design parameter space of link lengths
projected into the hyperplane d = 1. We have shown that a point in the design
parameter space represents a planar 4R linkage, while it’s location implies the
IO limits of the input and output links yielding the classification from [11].
We believe that this work, together with [8], will lead to a new approach to
approximate synthesis optimisation using continuous approximate synthesis as
introduced in [6].
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