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Abstract

Using a novel actuation concept employing omni-directional wheels (or simply omni-wheels),
the Atlas simulator motion platform provides unlimited angular displacement about any axis.
The Atlas concept completely decouples the orienting and positioning degrees-of-freedom and
further decouples each of the positioning degrees-of-freedom. It consists of an omni-wheel driven
sphere for orientation that has its geometric centre positioned by an XY Z-table. The Jacobian
of the orienting device is independent of time and dependent only on the mechanism architec-
ture, meaning that it is always invertible for any configuration provided that the initial design
parameters do not result in architecture singularities. An examination of the Atlas Jacobian
and its determinant identifies architecture singular design conditions. It is found that these are
not design limiting. Discussion highlights the uniqueness of the Atlas concept and its associated
kinematic advantages.

Cinématique de Vitesse-Niveau du Dispositif d’Orientation
Sphérique d’Atlas à l’Aide des Omni-Roues

Résumé

En utilisant un concept de mise en action de roman utilisant les roues omnidirectionnelles (ou
simplement les omni-roues), la plateforme de mouvement de simulateur d’Atlas fournit l’écart
angulaire illimité autour de n’importe quel axe. Le concept d’Atlas découple complètement la
degré-de-liberté d’orientation et de positionnement et découple plus loin chacune de la degré-de-
liberté de positionnement. Il se compose d’une sphère conduite parroue pour l’orientation qui
a son centre géométrique placé par une table de XY Z. Le Jacobian du dispositif d’orientation
dépend indépendant de temps et seulement de l’architecture de mécanisme, voulant dire qu’il
est toujours inversible pour n’importe quelle configuration à condition que les paramètres de
conception initiaux n’aient pas comme consquence des singularités d’architecture. Un examen
de l’atlas Jacobian et de sa cause déterminante identifie des états singuliers de conception
d’architecture. On le constate que ce ne sont pas limitation de conception. La discussion
accentue l’unicité du concept d’Atlas et de ses avantages cinématiques associés.



1 Introduction

The Atlas motion platform was developed within the Carleton University Simulator Project (CUSP)
as a possible means of expanding the motion envelope of simulator motion bases. It is a six degree-of-
freedom (DOF) platform possessing a kinematic architecture that effectively decouples positioning
DOF from orienting DOF and further has positioning DOF that are linearly independent from each
other, see Figure 1. This is accomplished by mounting a spherical three DOF orienting platform,
capable of unlimited angular displacement about any axis, on a three-axis gantry (XYZ-table).
Both the orienting and positioning interior workspaces are potentially nonsingular. As it is clear
that the three-axis gantry platform is configurationally singular only at its reachable workspace
boundary, attention is focused in this paper exclusively on the orienting platform.

Figure 1: The 6 DOF conceptual design.
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The orienting concept uses omni-wheels to actuate the three rotational DOF motion (roll,
pitch, and yaw). Omni-wheels were introduced in 1985 and intended for zero-turn-radius planar
automated guided vehicles (AGVs) [1]. Atlas, in turn, is a novel spherical actuation concept
(patent pending). Unlimited spherical motion is achieved by placing a sphere on three omni-
wheels strategically spaced around the sphere, illustrated in Figure 2. Omni-wheels provide grip
tangent to their circumference while allowing passive motion in the bi-normal direction on the free
spinning castors mounted on the periphery. The omni-wheel type currently employed is shown in
Figure 3. Fisette et al. [2] provide an overview and discussion of the characteristics of different
omni-directional wheel types. Different linear combinations of omni-wheel angular displacements
produce angular displacement of the sphere. Due to the absence of mechanical constraints and
link interference, the spherical motion is unlimited. The orienting workspace is configurational
singularity free.

The concept of a spherical actuator is not new. Spherical dc induction motors were introduced
in 1959 by Williams, et al. in [3]. Developments continued over the next 30 years leading to
designs presented in [4, 5], for example. However, due to physical limitations imposed by the stator
and commutator angular displacements are limited. The ability to produce continuous unlimited
angular displacements in roll, pitch and yaw puts Atlas in new territory in terms of freedom of
motion in mechanical devices. Potential applications include: land, sea, and air vehicle simulators;
testing, calibrating, and commissioning satellite attitude acquisition devices; motion platforms for
gaming applications.

(a) ABS prototype. (b) 3D CAD model.

Figure 2: The Atlas table-top demonstrator highlighting the omni-wheel actuation concept.

The aim of this paper is to describe relevant aspects of the Atlas concept; develop velocity-
level kinematics; extract the system Jacobian relating actuating omni-wheel angular velocities to
the resulting angular velocity of the Atlas sphere; and demonstrate that conditions resulting in
configurational singularities, situations where rotation about an axis is not possible, are based
solely on the platform kinematic architecture and not on the configuration of the mechanism at

3



Figure 3: Detail of omni-wheel actuator.

any instant in time. It will be shown that for non-architecturally-singular design parameters the
mechanism orienting workspace is entirely free of configurational singularities. While planar AGVs
using omni-wheels have been extensively studied [6], it appears that employing omni-wheels for
spherical motion is novel.

2 Atlas Velocity-level Kinematics

Derivation of the velocity-level kinematics of the Atlas platform requires expressing the angular
velocity of the sphere in terms of the magnitude of the angular velocities of each omni-wheel. The
matrix relating these two arrays is the platform Jacobian. The variables required to define the
system geometry are the position vectors from the sphere centre to each of the omni-wheel contact
point locations, Rk, k ∈ {1, 2, 3}, expressed in a cartesian coordinate system [X, Y, Z] fixed at the
geometric centre of the sphere; and the omni-wheel radius vectors, r, defining the position vector
from the omni-wheel axis of rotation to the point of contact with the sphere expressed in a local
coordinate system [x, y, z] defined such that x points outward along the omni-wheel axis of rotation
and z is directed toward the point of contact with the sphere. Relevant coordinate systems are
shown in Figure 4 for a configuration where the omni-wheels are spaced 120◦ apart (with angles βk

defining the angle to each contact point in the XY -plane and referenced to the X-axis) and each
tilted by an angle α to the horizontal as indicated in Figures 4 and 5.

It is assumed that each of the three omni-wheels is identical, and has a circular profile. Therefore
each will have the same dimensions. The radius vector of each omni-wheel, in its local coordinate
frame, is referenced relative to its sphere contact point. Since the contact point lies along the z-axis
the omni-wheel radius, rk, is equal to [0, 0, rkz ]

T where rkz is the distance from the centre of the
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Figure 4: Sphere contact point radial vector components.

kth omni-wheel to the contact point on the castor wheel (see Figure 5). Hence

r1 = r2 = r3.

Without loss in generality, but assuming geometric symmetry, we can impose the condition that

r1z = r2z = r3z = rz.

In order to achieve unconstrained angular displacement, each of the three omni-wheels is con-
trolled independently. Therefore, the sphere can be given an angular velocity about any desired
axis. The angular velocity of each omni-wheel is denoted ωk, k ∈ {1, 2, 3}. The omni-wheel axis
of rotation is fixed relative to its reference frame where the x-axis points along this axis; therefore
the omni-wheel angular velocity vector is always in the direction of the x-axis:

ωk = [ωkx , 0, 0]T .

Using the specified variables R1, ω1, ω2, ω3, r, and the geometry of the Atlas simulator it is
possible to determine the Jacobian.

Figure 5: Omni-wheel coordinate reference frames.

5



Figure 6: Omni-wheel angular, and sphere contact point tangential linear velocities.

The Atlas sphere acquires angular velocity from the tangential velocities at the contact points of
the omni-wheels (see Figure 6). The tangential velocity, vk, at each contact point can be obtained
from the cross-product of the omni-wheel angular velocity vector, ωk and omni-wheel radial vector,
rk:

vk = ωk × rk. (1)

All omni-wheel tangential velocities at their respective sphere contact points will lie along the
local y-axis direction because the cross product of ωk = [ωkx , 0, 0]T and rk = [0, 0, rz]T yields only
a y component of linear tangential velocity at each omni-wheel contact point:

vk = [0, vky , 0]T = ωk × rk. (2)

Hence, the tangential velocities at the omni-wheel contact points, expressed in each omni-wheel
reference coordinate system are:

v1 = [0,−ω1xrz, 0]T

v2 = [0,−ω2xrz, 0]T (3)
v3 = [0,−ω3xrz, 0]T

The tangential velocities vk are each expressed in their respective omni-wheel reference coor-
dinate system [xk, yk, zk]. These velocity vectors can be transformed into the inertial reference
coordinate system [X, Y, Z] with the following geometric transformation: first, rotate vk about yk
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by α, which is effectively the identity transformation as vk is directed along the yk-axis; then rotate
the transformed vector about the Z-axis by βk. This geometric transformation takes the form:

Tk =

 cβk
sβk

0
−sβk

cβk
0

0 0 1

 , (4)

where cβk
, and sβk

respectively denote cos βk and sinβk, k ∈ {1, 2, 3}.

Figure 7: Omni-wheel tangential linear velocity components in the inertial [X, Y, Z] coordinate
system.

Using Tk, the tangential velocities at each contact point are transformed to the inertial frame
[X, Y, Z], with β1 = 0◦, β2 = 120◦, and β3 = 240◦, as illustrated in Figure 7:

V1 = T1v1 =

 1 0 0
0 1 0
0 0 1

 0
−ω1rz

0

 =

 0
−ω1rz

0

 , (5)

V2 = T2v2 =

 cβ2 sβ2 0
−sβ2 cβ2 0

0 0 1

 0
−ω2rz

0

 =

 −ω2rzsβ2

−ω2rzcβ2

0

 , (6)

V3 = T3v3 =

 cβ3 sβ3 0
−sβ3 cβ3 0

0 0 1

 0
−ω3rz

0

 =

 −ω3rzsβ3

−ω3rzcβ3

0

 . (7)

The components of the sphere radial vectors are similarly found to be:

Rk = TkR1 =

 cβk
sβk

0
−sβk

cβk
0

0 0 1

 R1X

0
R1Z

 =

 cβk
R1X

−sβk
R1X

R1Z

 . (8)
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While the current design parameters are β1 = 0◦, β1 = 120◦, and β3 = 240◦, we leave them general
and obtain:

R1 =

 R1X

0
R1Z

 ; R2 =

 cβ2R1X

−sβ2R1X

R1Z

 ; R3 =

 cβ3R1X

−sβ3R1X

R1Z

 . (9)

With the radial vectors, Rk, and the tangential linear velocity components, Vk, we can deter-
mine the angular velocity of the Atlas sphere. For this, we require an inverse cross-product. That
is, we know that v = ω × r. If instead we know v and r, but wish to compute ω, the following
relation can be used [7]:

ω =
r× v
‖r‖2

.

Hence, we can express three sphere angular velocities, ωk, each one due to the contribution of the
kth omni-wheel k ∈ {1, 2, 3}:

Ωk =
Rk ×Vk

‖R‖2
. (10)

Note that since the norm of each sphere radial vector is the same, the denominator in Equation 10
does not require a subscript. The three vector components are summed to give the angular velocity
of the sphere, ω given the three omni-wheel angular velocities:

Ω =
3∑

k=1

Ωk. (11)

Extracting the omni-wheel angular velocities, the Jacobian, J, is obtained as:

Ω = Jω =
rz

‖R‖2

 R1Z R1Z cβ2 R1Z cβ3

0 −R1Z sβ2 −R1Z sβ3

−R1X −R1X −R1X

 ω1

ω2

ω3

 . (12)

This Jacobian maps the omni-wheel angular velocities onto the [X, Y, Z] components of the angular
velocity of the sphere.

Conversely, provided the Jacobian is non-singular, it may be inverted yielding

ω = J−1Ω, (13)

which is an expression for the angular speeds of each of the three omni-wheels, ω, required to provide
a desired angular velocity of the sphere Ω such that no tangential slip exists at the interface between
the sphere and the omni-wheels. Practically, it must be recognized that some tangential slip occurs
at this interface. A related paper by Holland et al [8] explores the issue of tangential and transverse
slip in detail.
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3 Investigation of the Atlas Jacobian

Inspection of the system Jacobian (Equation 12) reveals that unlike typical manipulator Jacobians,
J is time invariant and depends only on design constants. Hence, these constants can be chosen such
that the Jacobian has full rank so that the orienting workspace of the sphere is configurationally
singularity free.

Therefore, only singularities arising from the initial design parameters (architecture singularities
[9]) will result in a rank deficient Jacobian. The determinant of the Jacobian will be used to identify
architecture singular configurations so that they can be avoided in practice.

Computationally, a Jacobian singularity means that J−1 is undefined and Equation 13 cannot be
used to solve for the omni-wheel speed vector ω [10]. Conceptually, a singular Jacobian means that
it is not possible to actuate the sphere under the conditions for which the Jacobian was evaluated
thereby implying a less than full three DOF motion envelope [9].

Singularities occur when detJ = 0:

detJ = 0 = −

(
r3
zR

2
1Z

R1X

‖R‖6

)
(− sin β2 + sinβ3 − cos β2 sinβ3 + cos β3 sinβ2). (14)

Concerning the design parameters, the determinant will vanish if any, or all of rz, R1Z , and R1X

are identically zero, or if R ∼ ∞. Alternately, the determinant will vanish if the design parameter
β3 = 0, or if β2 = β3.

Physical interpretations of the conditions that cause architectural singularities reveal that these
conditions are legitimate but do not limit the practicality of the Atlas concept. The case where
rz = 0 corresponds to omni-wheels having zero radius. This situation would lack a moment arm
enabling rotation about the omni-wheel shaft to produce linear velocity along the surface of the
Atlas sphere. The condition where R1Z = 0 would result in omni-wheels being placed along the
equator of the sphere. This geometry would preclude the possibility of generating roll- or pitch-
inducing velocity components (or moments) thereby limiting the motion envelope. The condition
where R1X = 0 corresponds to the impractical case where the radius of the Atlas sphere is zero.
The case where R ∼ ∞ corresponds to the Atlas sphere becoming a plane. The conditions where
β3 = 0 and β2 = β3 correspond to coincident location of two or more omni-wheels which limits the
ability to independently prescribe three tangential velocities along the surface of the sphere: this
condition leads to an under-actuated motion platform.

4 Discussion and Conclusion

With the incorporation of actuation to include the three linear DOF (surge, sway, and heave)
in the motion of Atlas, it is possible to move the axis of rotation of the sphere away from the
origin of the global frame, allowing any arbitrary axis of rotation to be achieved. If each DOF
is actuated independently of the others it is conceivable that singularity analysis will show that
only boundary singularities will exist and the mechanism should not exhibit internal singularities.
Boundary singularities exist at the limits of the reachable workspace while internal workspace
singularities can be encountered within the work space and are associated with undesirable joint
configurations [11]. Boundary singularities can be avoided by not pushing the mechanism to the
limits of actuation. Note that there are no theoretical boundaries for the three rotational DOF,
and the linear boundaries correspond to the length limits of the linear actuators.
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This paper has shown that the novel spherical actuation concept for the Atlas sphere results in a
Jacobian that is independent of time and sphere orientation. Using the determinant of the Jacobian
matrix, design conditions resulting in singularities were determined. It was found that in all cases,
conditions causing singularities are of no practical consequence and therefore do not limit the Atlas
design. The important result is that once design parameters have been selected that avoid these
architectural singularities, the mechanism can be actuated without restriction in all three rotational
DOF without the possibility of encountering any configurational singularities. By incorporating
actuation of the three translational DOF it becomes possible to actuate the mechanism to produce
rotation about any axis provided the translational travel limits of the platform are not reached.
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