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Abstract—This paper presents a novel approach to solve multiobjective
robotic trajectory planning problems. It proposes to find the Pareto opti-
mal set, rather than a single solution usually obtained through scalarization,
e.g., weighting the objective functions. Using the trajectory planning prob-
lem for a redundant manipulator as part of a captive trajectory simulation
system, the general discrete dynamic programming (DDP) approximation
method presented in our previous work is shown to be a promising ap-
proach to obtain a close representation of the Pareto optimal set.When
compared with the set obtained by varying the weights, the results confirm
that the DDP approximation method can find approximate Pareto objec-
tive vectors, where the weighting method fails, and can generally provide a
closer representation of the actual Pareto optimal set.

Index Terms—Dynamic programming, multiobjective trajectory plan-
ning, Pareto optimality, redundant robotic manipulator.

I. INTRODUCTION

Motion planning for redundant robotic manipulators involves an op-
timization process that leads to generation of feasible joint trajectories.
The local [2] and global [3]–[6] approaches to redundancy resolution
have been extensively studied in the past. The global approaches, which
are also the focus of this paper, formulate the redundancy resolution
problem either as a constrained problem in calculus of variations [4], [5]
or as a constrained optimal control problem [3], [6]. Constraints typi-
cally include joint constraints, such as mechanical, speed, and torque
limits [3], [5], or task space constraints, such as obstacles [3], [5] and
motion constraints at the end effector [4], [6]. Constrained variational
and optimal control problems are, in general, difficult to solve numeri-
cally [7]; however, several resolution methods have been proposed for
trajectory planning problems [3], [5], [6].

In many applications, one may find it desirable to optimize two or
more objective functions (or performance criteria). Trajectory plan-
ning problems with multiple objective functions have not been studied
beyond utilizing the weighting method, which belongs to the class
of scalarization methods. The general principle for these methods is
to transform the original multiobjective optimization problem into a
parameterized single objective optimization problem and solve this
resulting problem. For the weighting method, the parameters are the
weights. As such, the majority of the previous work on redundancy
resolution, either local [8], [9] or global [3]–[5] has generated only a
single joint trajectory, to which corresponds a single Pareto optimal
element in the objective space, which is defined as a Pareto objective
vector. In this paper, it is proposed instead to provide the entire set
of Pareto objective vectors or a close representation of this set. Once
the Pareto optimal set is identified, the user can more freely choose
a Pareto objective vector and the associated joint trajectory based on
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secondary criteria or other application requirements, which may not be
easily modeled with a performance criterion.

By varying the weights, it is possible with the weighting method to
obtain several Pareto objective vectors and, therefore, a representation
of the Pareto optimal set. However, it will be illustrated in this paper,
using a specific robotic problem, how a large subset of the Pareto opti-
mal set may not be obtained in such a way. Alternatively, for the same
robotic problem, it is proposed to use the numerical approximation
method presented in [1]. This numerical approximation method, which
uses discrete dynamic programming (DDP), applies to the general class
of multiobjective deterministic finite-horizon optimal control problem
to which trajectory planning problems, such as the one presented in this
paper, can be shown to belong. The convergence results obtained in [1]
suggest that the DDP approximation method will provide a close rep-
resentation of the Pareto optimal set. Although dynamic programming
has previously been used to solve trajectory planning problems [6],
[10], [11], to our knowledge, this is the first time it is applied to de-
termine the Pareto optimal set for a trajectory planning problem for
a redundant manipulator. A preliminary and simplified implementa-
tion of this paper, without the collision constraints, was presented
in [12] before the formal formulation of the DDP approximation method
in [1].

The robotic system used in this paper is part of a captive trajectory
simulation (CTS) system [13] operating inside the trisonic blowdown
wind tunnel facilities at the National Research Council Canada. The
main objective of such a system is to predict the trajectory of a store
(an object released from a parent aircraft) to ensure its safe clearance
from the aircraft. During a wind tunnel run, an 8-degree-of-freedom
(DOF) CTS manipulator [13] moves the store through various positions
and orientations with respect to the parent aircraft model to collect the
aerodynamic loads acting on the store. The trajectory planning problem
arising from the CTS system involves two performance criteria that
includes the joint speed norm and the aerodynamic interference, which
will be discussed later. For this problem, it is important to obtain a
good representation of the Pareto optimal set as the choice of the final
joint trajectory will critically depend on the operating conditions of the
wind tunnel (Mach number) and the required measurement precision.

This paper is organized as follows. In Section II, the trajectory
planning problem arising from the CTS system is formulated. It is
first solved in Section III with the weighting method and then in
Section IV with the DDP approximation method. The results show
that a closer representation of the Pareto optimal set is obtained with
the DDP approximation method. Finally, conclusions and future work
are discussed in Section V.

II. PROBLEM FORMULATION

The main type of experiment conducted with a CTS system is a grid
survey in which the store has to follow a sequence of straight-line paths
between grid points, which are defined by positions and orientations.
During the motion, the aerodynamic loads acting on the store are mea-
sured by a high-precision force sensor and collected in a look-up table,
which later serves as input to an equation of motion solver to simulate
the store release trajectory. However, the presence of the manipulator
in the test section can degrade the accuracy of the data collected by
causing flow interference, i.e., it changes the flow angularity around
the parent aircraft. To minimize this effect, all exposed links of the
manipulator are aerodynamically shaped; the seventh link is particu-
larly made in the form of a gooseneck. Alternatively, the redundancy
of the manipulator can be exploited to reduce the flow interference;
preference can be given to joint trajectories with gooseneck configu-
rations involving less flow interference. Moreover, as grid surveys can
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Fig. 1. Joint motions for the CTS manipulator.

be performed over a large range of speeds (Mach 0.7 to 1.3), actuator
loading requirements can be very different. In general, joint trajectories
with low joint speeds are preferred; however, this preference becomes
stronger at higher wind speeds.

A complex iterative design process [13] resulted in the 8-DOF re-
dundant manipulator designed, as illustrated in Fig. 1. This manipulator
features a main translational joint, a boom with two revolute and two
prismatic joints (telescopic arrangement), a wrist with pitch and yaw
joints, and a final joint providing the roll. No singularities exist within
the operating envelope, which is a box around the airplane model. Be-
cause of the particular joint arrangement of this manipulator: First, the
two prismatic joints 3 and 4 can be treated as a single joint, and second,
the inverse kinematics can be found in a closed form, which is omitted
here for the sake of brevity. The inverse kinematics equation for the
CTS manipulator can be stated as follows:

q = g(p, v) (1)

where q ∈ R7 denotes the joint configuration, p ∈ R6 denotes the
position, Z–Y–X denotes Euler angles of the end effector, and the
scalar v = q2 + q5 is defined as the redundancy parameter. For a
given p, the set A(p) of values that v can be taken from is a func-
tion of p and is included in the bounded interval [vm in , vm ax ] =
[qm in ,2 + qm in ,5 ,qm ax ,2 + qm ax ,5 ], where qm in and qm ax are the
joint mechanical limits.

In a grid survey, the joint trajectories q(t) must satisfy several con-
straints. First, the end effector must follow the prescribed store trajec-
tory p(t):

f (q(t)) = p(t) (2)

where f (·) denotes the forward kinematics. Meanwhile, the joint con-
figuration is limited by the joint mechanical limits

qm in ≤ q(t) ≤ qm ax (3)

the self-collision between the manipulator links, and the collision be-
tween the manipulator and its environment. Collision avoidance can be

treated as the one-dimensional (1-D) constraint

dsafe − c(q(t)) ≤ 0 (4)

where c(·) is a function that returns the minimum distance between any
pair of geometries composing the manipulator and its environment [14],
and dsafe is a safety distance. The joint speeds along the joint trajectory
are also limited

−q̇m ax ≤ q̇(t) ≤ q̇m ax . (5)

Finally, the initial joint configuration q0 satisfying p(t0 ) = f (q0 ) is
supposed to be known. To obtain good tracking performance from
the manipulator, the joint trajectories must be sufficiently smooth and
are, therefore, taken in the set C1 ([t0 , tf ],R7 ). The set of feasible
joint trajectories T (q0 ) is defined as the subset of C1 ([t0 , tf ],R7 )
with initial joint configuration q0 such that the constraints (2)–(5) are
satisfied.

Because of the manipulator redundancy, the number of joint trajecto-
ries in T (q0 ) is infinite in most cases. For the joint trajectory selection,
two performance criteria are considered. The first criterion selected

f1 (q(t)) =
1
2
q̇T (t)q̇(t)

aims to minimize the joint speed norm. The second criterion selected
aims to reduce the flow interference caused by the manipulator, which
can be achieved by maintaining the gooseneck as close as possible to
the vertical plane with normal X0 . The angle α between this plane and
the plane of the gooseneck, which is defined by the three origins O6 ,
O7 , and O8 obtained with the Denavit–Hartenberg convention, is as
follows:

α = arccos

(〈
X0 ,

−−−→
O7O8 ×−−−→

O7O6

‖−−−→O7O8 ×−−−→
O7O6‖

〉)
.

Therefore, the second criterion is f2 (q(t)) = α, where the coordinates
of O6 , O7 , and O8 can be obtained with the forward kinematics. Finally,
it is desirable to minimize the performance criteria f1 and f2 over the
entire motion. Therefore, the vector-valued function F(·) : q(·) ∈
C1 ([t0 , tf ],R7 ) → R2 is introduced as

F(q(·)) =

(∫ t f

t0

f1 (q(t))dt,

∫ t f

t0

f2 (q(t))dt

)
. (6)

As mentioned earlier, the trajectory generation problem in a grid survey,
which is denoted by (P), is therefore a multiobjective problem in cal-
culus of variations. The objective space for (P) is F(T (q0 )). To solve
(P), we propose to find the Pareto optimal set E(cl(F(T (q0 ))),R2

+ )
and the corresponding optimal joint trajectories q∗(·) ∈ T (q0 ), if they
exist. The closure of the objective space cl(F(T (q0 ))) is taken to guar-
antee the existence of Pareto objective vectors [15, p. 51, Th. 3.2.2].
In the context of single objective optimization, this amounts to using
the infimum instead of the minimum in the formulation of the prob-
lem, when the existence of a minimizing joint trajectory cannot be
guaranteed.

III. SOLVING (P) WITH THE WEIGHTING METHOD

The motivation for using the weighting method for obtaining a rep-
resentation of the Pareto optimal set is that the objective vector(s)
corresponding to the optimal solution(s) of the scalarized problem can
be shown to be Pareto optimal [15, p. 72, Th. 3.4.3].Hence, by vary-
ing the weights, a subset of the Pareto optimal set can be obtained.
The question is then whether all the Pareto objective vectors can be
obtained this way. Unless the objective space is convex, the answer to
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this question, in general, is no. Moreover, even in the most favorable
case of a convex objective space, it is, in general, difficult to obtain a
uniform distribution of Pareto objective vectors [16]. We illustrate in
the following these two weaknesses with (P).

For simplicity of the numerical resolution, all the constraints de-
scribed in Section II except the end-effector trajectory constraint (2)
are removed. Therefore, after normalization of the weights, the scalar-
ized problem (Ps) is to find

inf
q ( ·)∈C 1 ([t0 , t f ],R 7 )

∫ t f

t0

(f1 (q(t)) + wf2 (q(t)))dt

subject to
f (q(t)) = p(t)

with initial joint configuration q0 , and where w > 0 is the weight. The
numerical resolution of (Ps ) follows the exact same steps as in [4].

For the numerical experiments as following, two positions p0 =
[55,−6,−31, 0, 0, 0] and pf = [55,−16,−27, 0, 0, 0] in the task
space of the manipulator are considered (units are in inches). A suffi-
ciently smooth straight-line trajectory p(t) with duration 6.11 s, i.e.,
the time needed to travel from p0 to pf at the maximum allowed Carte-
sian velocity, is generated between these two positions. The scalarized
problem (Ps ) is solved for w = 0, 1, . . . , 30. For w = 0, where only
the first objective function is considered, the optimal solution is unique.
Therefore, the corresponding objective vector can be shown to be Pareto
optimal. The Pareto objective vectors obtained for each value of w are
displayed in Fig. 2(a). A closer look at the Pareto objective vectors
obtained for w > 0 is provided in Fig. 2(b).

Fig. 2(a) and (b) illustrates that a small variation in w might result in a
large variation in the Pareto objective vector and conversely that a large
variation in w might result in a small variation in the Pareto objective
vector. Indeed, let z1 = (0.0770, 0.3053) and z3 = (0.3608, 0.0044)
be the Pareto objective vectors obtained, respectively, for w = 0 and
1. It can be seen in Fig. 2(a) that there is a considerable jump between
z1 and z3 , whereas, as shown in Fig. 2(b), the change in the Pareto
objective vector is not significant between w = 1 and 30. Therefore, it
is difficult to predict a set of weights, which will result in a uniform
distribution of Pareto objective vectors.

By illustrating that not all the Pareto objective vectors can be ob-
tained with the weighting method is more difficult as it requires the
knowledge of the Pareto optimal set, which is not available analyti-
cally. To obtain an approximation of the objective space, and hence of
the Pareto optimal set for (P), we use the joint trajectories generated
during the numerical resolution of (Ps). The objective vectors corre-
sponding to these trajectories are plotted with dots in Fig. 3. It is clear
that the objective space Z for (P) is not convex. Let z2 be the inter-
section between the vertical line passing through z3 and the boundary
of the objective space. The objective vectors along the boundary of the
objective space between z1 and z2 are Pareto optimal. However, it is
interesting to note that there is a large subset of these objective vectors
that cannot be obtained with the weighting method. To see this [16],
we can rewrite (Ps ) as follows:

inf
(F 1 ,F 2 )∈Z

F1 + wF2 .

For example, taking w = 2.5, the line with slope −1/w = −1/2.5
matches the tangent to the objective space at z4 . This line also inter-
sects the objective space at z5 and, therefore, can slide further down,
which decreases the value of F1 + wF2 . This proves that z4 cannot be
obtained with the weighting method. Note that z4 is, in fact, a Pareto
objective vector.

Fig. 2. Pareto objective vectors obtained with the weighting method (◦). (a)
w = 0, 1, . . . , 30. (b) Zoom for w > 0.

IV. SOLVING (P) WITH THE DISCRETE DYNAMIC PROGRAMING

APPROXIMATION METHOD

In previous work [1], a DDP approximation method for a gen-
eral class of multiobjective deterministic finite-horizon optimal con-
trol problem was proposed, where the objective space was assumed
to be partially ordered by a cone. Here, the same method is applied
to find an approximate Pareto optimal set for (P). The DDP approxi-
mation method proposed in [1] consists of a two-step discretization in
time and state space. Following the first-order time discretization, the
dynamic programming principle is used to find the multiobjective dy-
namic programming equation that is equivalent to the resulting discrete
problem. The multiobjective dynamic programming equation is finally
discretized in the state space.

The application of the DDP approximation first requires the re-
formulation of (P) in terms of the redundancy parameter v using
the inverse kinematics equation (1). As a result, (P) becomes the
problem to find the Pareto optimal set E(cl(F̃(T (v0 ))),R2

+ ), where

F̃(·) : v(·) ∈ C1 ([t0 , tf ],R) → R2 is defined as the vector-valued
objective function F when expressed in terms of v

F̃(v(·)) =

(∫ t f

t0

f̃1 (t, v(t), v̇(t))dt,

∫ t f

t0

f̃2 (t, v(t))dt

)
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Fig. 3. Objective space Z . The Pareto objective vector z4 cannot be obtained
with the weighting method.

and T (v0 ) is the subset of C1 ([t0 , tf ],R) such that the following
constraints are satisfied:

v(t) ∈ A(t) (7)

v̇(t) ∈ B(t, v(t)) (8)

with initial redundancy parameter v0 . The explicit dependance on the
time for the functions f̃1 and f̃2 comes from the term p(t). In the refor-
mulation in terms of the redundancy parameter v, since all the equations
are expressed in terms of v, the end-effector trajectory constraint (2)
disappears. The set A(t) introduced in Section II represents the set of
redundancy parameter values at a given time t along p(·) such that the
joint mechanical limits (3) are respected. From now on, this set also
takes into account the collision constraint (4). Finally, the set B(t, v)
represents the set of values at a given time t and redundancy parameter
v that can be taken by the derivative of the redundancy parameter such
that the maximum joint speed (5) is respected. From the definition of
the redundancy parameter, it follows that B(t, v(t)) is bounded.

A. First-Order Discretization in Time

The first step in the DDP approximation method is to proceed to a
first-order discretization in the time of (7), (8), and F̃(·). The time step
h is (tf − t0 )/NT , where NT is the number of discretization steps. Let
vi = v(ti ), i = 0, . . . , NT , and v̇i = v̇(ti ), i = 0, . . . , NT − 1. The
derivative of the redundancy parameter v̇i at time ti is approximated
using the forward Euler scheme

v̇i =
vi+1 − vi

h
.

The integrals in F̃(·) are approximated with the rectangle formula.
Defining Ah

i = A(ti ) and Bh
i (vi ) = B(ti , vi ), the constraints (7) and

(8) become

vi ∈ Ah
i (9)

v̇i ∈ Bh
i (vi ). (10)

At step k, ifT h
k (vk ) denotes the set of discrete trajectories {vi , i = k +

1, . . . , NT }with initial condition vk such that (9) and (10) are satisfied,
then the discrete problem (Ph ) is defined as the problem of finding the
Pareto optimal set E(cl(F̃h (T h

0 (v0 ))),R2
+ ), where F̃h (·) : {vi} =

{vi , i = 1, . . . , NT } ∈ T h
0 (v0 ) → R2 is the vector-valued objective

function defined by

F̃h ({vi}) =

(
h

N T −1∑
i=0

f̃1 (i, vi , v̇i ), h
N T −1∑
i=0

f̃2 (i, vi )

)
with initial redundancy parameter v0 .

B. Multiobjective Dynamic Programming Equation

Let Jh
k (·) be the set-valued return function that associates, with each

vk ∈ Ah
k , the Pareto optimal set E(cl(F̃h (T h

k (vk ))),R2
+ )

Jh
k (vk ) = E(cl(F̃h (T h

k (vk ))),R2
+ ). (11)

Note that setting k = 0 in (11) yields exactly (Ph ). The set-valued re-
turn function Jh

k (·) can be shown to satisfy the multiobjective dynamic
programming equation

Jh
k (vk ) = E(cl({h(f̃1 (k, vk , v̇k ), f̃2 (k, vk ))

+Jh
k+1 (vk + hv̇k ), v̇k ∈ Bh

k (vk )}),R2
+ ) (12)

with terminal data condition

Jh
N T

(vN T
) = {(0, 0)}. (13)

C. Discretization in the Redundancy Parameter

In the second approximation step, the set-valued return function
Jh

0 (·) is approximated by performing a discretization in the redundancy
parameter. Let NX be the number of discretization steps, d = (vm ax −
vm in )/NX be the discretization step, andAh ,d

k be the set resulting from
the discretization of Ah

k in the redundancy parameter. The approximate
set-valued return function Jh ,d

k (·) is defined as the solution to the
multiobjective dynamic programming equation (12) with terminal data
condition (13), where the redundancy parameter is restricted to take on
values only from Ah ,d

k , i.e., ∀vk ∈ Ah ,d
k

Jh ,d
k (vk ) = E({h(f̃1 (k, vk , v̇k ), f̃2 (k, vk ))

+Jh ,d
k+1 (vk + hv̇k ), v̇k ∈ Bh ,d

k (vk )},R2
+ ) (14)

with terminal data condition

∀vN T
∈ Ah ,d

N T
, Jh ,d

N T
(vN T

) = {(0, 0)}. (15)

The set Bh ,d
k (vk ) ⊂ Bh

k (vk ) is finite. The values that can be taken by
v̇k ∈ Bh ,d

k (vk ) are such that v̇k = (vk+1 − vk )/h, where vk ∈ Ah ,d
k

and vk+1 ∈ Ah ,d
k+1 . Note that the closure is no longer in the approximate

multiobjective dynamic programming equation (14), as all the sets
involved are finite.

Solving the approximate multiobjective dynamic programming
equation (14) with terminal data condition (15) is straightforward.
Indeed, let vk ∈ Ah ,d

k , and assume that the approximate set-valued re-
turn function Jh ,d

k+1 (·) is known. Knowing v̇k ∈ Bh ,d
k (vk ), the term

h(f̃1 (k, vk , v̇k ), f̃2 (k, vk )) can be calculated, from which the set
{h(f̃1 (k, vk , v̇k ), f̃2 (k, vk )) + Jh ,d

k+1 (vk + hv̇k )} can be determined.

The set Bh ,d
k (vk ) being finite, the set {h(f̃1 (k, vk , v̇k ), f̃2 (k, vk )) +

Jh ,d
k+1 (vk + hv̇k ), v̇k ∈ Bh ,d

k (vk )} is also finite. Therefore, to de-

termine the Pareto optimal set of {h(f̃1 (k, vk , v̇k ), f̃2 (k, vk )) +
Jh ,d

k+1 (vk + hv̇k ), v̇k ∈ Bh ,d
k (vk )}, which is precisely Jh ,d

k (vk ), a fi-
nite number of comparisons are needed. The repetition of this procedure
for every vk ∈ Ah ,d

k yields the approximate set-valued return function
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Fig. 4. Pareto objective vectors (◦) obtained with weighting method, and
Jh ,d

0 (v0 ) (×). Jh ,d
0 (v0 ) is the union of the sets A1 and A2 .

Jh ,d
k (·). Therefore, starting from the terminal data condition (15), the

approximate set-valued return function Jh ,d
0 (·) can be recursively ob-

tained. Finally, Jh ,d
0 (v0 ) is the proposed approximation to the Pareto

optimal set E(cl(F(T (q0 ))),R2
+ ) of (P). Note that the corresponding

optimal discrete joint trajectories {vi , i = 0, . . . , NT } are generated
during this resolution process.

D. Results

First, consider how the approximate Pareto optimal set Jh ,d
0 (v0 )

can be practically obtained. Let the end-effector trajectory p(·), and
h and d be given. The discretization in time and in the redundancy
parameter yields a grid {(k, vk ,i ), k = 0, . . . , NT , i = 0, . . . , NX }.
At each point (k, vk ,i ) of this grid, the joint position q is calculated
using the inverse kinematics equation (1) with vk ,i and p(tk ). If q does
not satisfy the joint mechanical limits (3) or the collision constraint
(4), then the point is removed from the grid. The repeatition of this
procedure yields the sets Ah ,d

k . For each remaining node (k, vk ,i )
of the grid, the sets Bh ,d

k (vk ) are determined by differentiating the
inverse kinematics equation (1) and using the joint speed limits (5).
The values of the function f̃1 and f̃2 are then calculated. From the
earlier discussion, observe that it would be straightforward to include
more constraints on (P). Including more constraints would have the
effect of reducing the cardinality of the sets Ah ,d

k and Bh ,d
k (vk ), which

would improve the computational efficiency of the resolution of the
approximate multiobjective dynamic programming equation (14), as
discussed in Section IV-C.

For the numerical experiments in the following, we use the same
positions p0 and pf and, accordingly, the same store trajectory as in
Section III. A good compromise between accuracy and computational
efficiency was found to be obtained with h = 0.5 s and d = 1◦, yield-
ing a grid size of (NT , NX ) = (13, 290). The computation time was
24 628 s. As briefly discussed in Section V, for application purposes,
this computation time can be greatly reduced.

In Fig. 4, the Pareto objective vectors obtained with the weighting
method in Section III are plotted together with the approximate Pareto
optimal set Jh ,d

0 (v0 ), whose cardinality is 138. In the following discus-
sion, it is important to keep in mind that first, the elements of Jh ,d

0 (v0 )
are only approximate Pareto objective vectors, whereas the Pareto ob-
jective vectors obtained with the weighting method are “exact,” and
second, when solving (P) with the weighting method, the constraints
(3)–(5) were not included.

Fig. 5. Approximate Pareto objective vectors (◦) obtained with the weighting
method and Jh ,d

0 (v0 ) (×).

From Fig. 4, two important observations can be made.
1) The set Jh ,d

0 (v0 ) is composed of two subsets A1 and A2 . The
first subset A1 can be seen to approximate the entire subset
of the Pareto optimal set between z1 and z2 , where, as shown
in Section III, the weighting method failed to generate Pareto
objective vectors. The second subset A2 is approximating the
subset of the Pareto optimal set, as displayed in Fig. 2(b).

2) The approximate Pareto objective vectors are evenly distributed.
Note that the quality of the approximation degrades for A2 . This can

be explained by the fact that first, as the joint speed norm is higher, the
approximation of the redundancy parameter derivative with the forward
Euler scheme is less accurate, and second, not all the minimizing
joint trajectories obtained with the weighting method satisfy the joint
mechanical limits (3) and the collision constraint (4) (whereas this is
the case for A1 ).

Another interesting experiment that can be made to compare the
weighting method to the DDP approximation method is to solve (Ps )
using the grid obtained from the DDP approximation method. The ap-
proximate Pareto objective vectors obtained for the same set of weights,
as in Section III, i.e, w = 0, 1, . . . , 30, are plotted in Fig. 5, together
with Jh ,d

0 (v0 ). Only four different approximate Pareto objective vectors
result, which belong to Jh ,d

0 (v0 ). For the same reasons, as discussed
in Section III, there is large subset of A1 that the weighting method
cannot generate.

Once (P) is solved and Jh ,d
0 (v0 ) is obtained, the final joint trajectory

to be executed by the manipulator is chosen based on the operating
conditions, which, as mentioned earlier, can be significantly different.
At larger Mach numbers, having low joint speeds is more critical to
make more joint torques available to sustain higher aerodynamic loads
and allow for a shorter stopping time in case of emergencies. Therefore,
an approximate Pareto objective vector with a lower value for F1

will be chosen. At lower Mach numbers, having low joint speeds is
less critical; therefore, it is possible to choose an approximate Pareto
objective vector with a lower value for F2 to increase the accuracy of
the data collected. To limit the number of choices, only a subset of
Jh ,d

0 (v0 ), obtained with clustering, can be considered [17].

V. CONCLUSION

For the resolution of trajectory planning problems with multiple
criteria, it has been proposed to find the Pareto optimal set. It has
also been shown that the DDP approximation method presented in [1]



IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 6, DECEMBER 2010 1099

was applicable to the trajectory planning problem arising from a CTS
system. It has finally been illustrated qualitatively that this method
provided a closer representation of the Pareto optimal set than the one
obtained with the weighting method. Quantitative comparison using
the Hausdorff distance could also be performed [17] but was beyond
the scope of this paper.

In general, the main challenge faced for the practical applicability
of the DDP approximation method is to address the curse of dimen-
sionality. For (P), a study is under way to use clustering [18] of the
sets Jh ,d

k (vk ) in the approximate dynamic programming equation (14).
With clustering, the complexity of the resolution of (14) can be shown
to reduce to polynomial in the grid size without an excessive degra-
dation of the quality of the approximation of the Pareto optimal set.
The computation time for the experiment presented in Section IV-D
could be reduced from 24 628 to 159 s [17]. Finally, terminal costs
can simply be accommodated within the DDP approximation method
[17].
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Decentralized Navigation of Groups of Wheeled Mobile
Robots With Limited Communication

Andrey V. Savkin
and Hamid Teimoori

Abstract—In this paper, we consider a group of wheeled mobile robots,
where each robot has very limited information on other robots in the group.
We propose a simple bio-inspired decentralized navigation law, which guar-
antees that all robots will eventually move in the same direction and with
the same speed.

Index Terms—Bio-inspired robot control, decentralized control, flocking
motion, multiagent coordination, multirobot networks, robot navigation,
wheeled robots.

I. INTRODUCTION

The study of decentralized control laws for groups of mobile au-
tonomous robots has emerged as a challenging new research area in
recent years (see, e.g., [2], [4]–[7], [11], [16], [22], and references
therein). Broadly speaking, this problem falls within the domain of
decentralized control, but the unique aspect of it is that groups of mo-
bile robots are dynamically decoupled, meaning that the motion of one
robot does not directly affect that of the others. Researchers in this new
emerging area are finding much inspiration from biology, where the
problem of animal aggregation is central in both ecological and evo-
lutionary theory. Animal aggregations, such as schools of fish, flocks
of birds, groups of bees, or swarms of social bacteria, are believed to
use simple, local motion coordination rules at the individual level that
result in remarkable and complex intelligent behavior at the group level
(see, e.g., [3], [12], [18]). Such intelligent behavior is expected from
very large scale robotic systems. The “very large scale robotic system”
was introduced in [14] for a system consisting of autonomous robots
numbering from hundreds to tens of thousands or even more. Because
of decreasing costs of robots, interest in very-large-scale robotic sys-
tems is growing rapidly. The possible applications include underwater
exploration, military surveillance, and many others. In such systems,
robots should exhibit some forms of cooperative behavior.

In 1995, Vicsek et al. proposed a simple, but interesting discrete-
time model of a system consisting of several autonomous agents, e.g.,
particles, moving in the plane [21]. Each agent’s motion is updated
using a local rule based on its own state and the state of its “neighbors.”
This model can be viewed as a special case of a computer model
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