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This paper outlines the use of a High Level Architecture (HLA) compliant design for the Carleton 
University Simulator Project (CUSP). HLA is a modular interoperability standard (IEEE 1516) for 
combining distributed, networked simulations. Interoperability is achieved through the standardization of 
the communication interfaces between simulation components.  Reduction of large, monolithic simulations 
into smaller, component based simulation modules allows for the distribution of processor intensive 
computations across multiple computers, alleviating the need for a powerful single computer. Additional 
advantages also arise because of the component-based nature of the HLA including reusability, modularity 
and expandability. Use of an HLA compliant design in CUSP has allowed for independent, concurrent 
software development allowing for flexibility in project planning and management. Issues with undefined 
and changing requirements are also now manageable allowing for future changes and expandability as 
CUSP evolves.   

1. INTRODUCTION 
The High Level Architecture (HLA) 
specifications [1] were developed to enable 
modularity and interoperability to simulation 
design. Simulators and simulation technologies 
provide for the controlled reproduction of real 
life conditions and experiences. Simulator 
training for commercial and military pilots, 
along with operator training for other vehicle 
types is a well-known example. Perhaps less 
well-known applications of simulator training 
are in air traffic control, power generation, and 
health care.  

The capability of a simulator or simulation to 
generate test conditions approximating 
operational or actual conditions to a high level of 
fidelity is of paramount importance as a design 
objective. High fidelity in terms of the 
environmental stimuli affecting the operator 
ensures that training in a simulator is positive, 
and is transferable to a real life situation.  

This paper focuses on issues associated with 
creation of an HLA compliant simulation facility 
at Carleton University in particular, and design 
of real-time systems in general. The control and 

communication software is designed for a 6 
degree-of-freedom motion platform within the 
Carleton University Simulator Project 
(CUSP)[2], administered within the Department 
of Mechanical and Aerospace Engineering. The 
motion platform is designed to be reconfigurable 
and the control system fully interoperable. This 
highlights an initiative to offer 4th year students 
in the Faculty of Engineering and Design a 
variety of large scale, multidisciplinary, 
industrially relevant capstone design projects in a 
virtual enterprise environment.  

The results presented in this paper are largely the 
contribution of the 2002-03, and 2003-04 CUSP 
Systems teams, lead by faculty and students from 
the Department of Systems and Computer 
Engineering. The paper is organized in the 
following way. Section 2 will describe the 
evolution of the HLA, and define relevant 
concepts and terminology. Section 3 gives an 
overview of CUSP, its scope and technical 
objectives. This leads to Section 4 wherein the 
implementation of the HLA in CUSP is detailed. 
Additionally, an important HLA learning 
exercise, PoolSim is described.  The paper 
design is described and the two proof-of-concept 
technology demonstrators from the first two 
years of CUSP are discussed. Next, lessons 
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learned from the implementation of the HLA are 
highlighted. The final section contains 
conclusions and suggestions for future work. 
 

2. THE HLA  
The HLA was developed originally by the US 
Department of National Defense, with the goal 
of incorporating interoperability, modularity and 
reusability into ambitious long-term simulation 
objectives [3]. The approach taken by the HLA 
views simulations as components in larger 
systems, which is a style more akin to product 
development than that of traditional monolithic 
simulations. The component-oriented view 
encourages and focuses attention on interfacing 
concerns, and how components interoperate to 
accomplish an objective. Ideally, this approach 
enables components to be reused more easily, 
and HLA-compliant commercial-off-the-shelf 
(COTS) components have been used 
successfully in the construction of simulations. 
The standardization of HLA components and 
processes has been embraced by industry, and 
the HLA is now established in the public domain 
as the IEEE Standard 1516-2000. The IEEE has 
mandated the Simulation Interoperability 
Standards Organization (SISO) [4] to carry out 
periodic public reviews and updates to the HLA 
specification. The review process is currently 
underway, and some incremental extensions are 
expected to be approved in 2005.  

In the HLA, individual simulation components 
are called federates, and the collection of 
components that comprise a simulation is called 
a federation. The HLA specification consists of 
three parts: a set of ten rules that constrain 
federates and federations, the Object Model 
documentation Template (OMT) for federates 
and federations, and the Runtime Infrastructure 
(RTI) programmer’s interface (API). The rules 
governing federates and federations are simple 
and straightforward. For example, one of the 
rules states that federates must only interact 
using RTI services. The OMT documentation 
standards ensure that any information exchanged 
among federates is specified. This interfacing 
information is essential to achieve interoperation 
among federates. The documentation can be used 
for a variety of purposes prior to runtime; 
however, the information is also used at runtime 
in support of RTI services. The RTI is a 
middleware (software) layer that implements 
HLA services at runtime. The HLA only 

specifies the API, and therefore a variety of RTI 
implementations are acceptable.  

Figure 1 shows an abstract view of a federation 
at runtime. The federates use RTI services to 
accomplish all interactions. The RTI allows the 
federates to share persistent data, instantaneous 
events and simulation time. Note that the abstract 
view does not imply an underlying computing 
architecture. The federates might all be executing 
on the same computer, they might each have 
their own dedicated computer, or they may be 
mapped to the computing architecture in some 
other fashion. Abstracting federates away from 
the underlying computing architecture simplifies 
scaling the processing power to meet the needs 
of a federation.  

The interoperation of federates requires federates 
to share information. The sharing of data and 
events is accomplished using an object-oriented 
publish/subscribe mechanism. The concept of a 
class is used to define types, and then objects are 
created as instances of the classes at runtime. 
Federates make information available by 
publishing, and obtain information by 
subscribing. The RTI manages communications 
between the publisher of specific information 
and the subscribers to that information. While 
the sharing of data and events is typical of 
distributed application components, the sharing 
of simulation time is a unique characteristic of 
simulation components, and a critical aspect of 
HLA interoperability.  

The RTI services are organized into categories: 
Federation Management: allows federates to 
create, join, leave and destroy a federation. 
Declaration Management: allows federates to 
declare the classes of the objects that they will 
publish, and the classes of the objects they will 

Figure 1 Abstract view of a federation 
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subscribe to. Object Management: allows 
federates to create, modify and delete shared 
objects (instances). Ownership  Management: 
only the owner of an object may modify the 
object, and these services allows federates to 
exchange the ownership of shared objects. 
Distributed Data Management: allows 
federates to define abstract, simulation-specific 
regions that can help to reduce runtime 
communication overheads. Time Management: 
allows federates to share a global notion of time, 
and to synchronize local activities in global time. 
The simulators described in this paper use 
services from all categories except Distributed 
Data Management.  

The RTI services have been designed to 
accommodate many different simulation styles. 
As a result, most federates will use only the 
subset of services that are appropriate to the 
needs of the federate. While this may seem 
superficially obvious, patterns in the use of RTI 
services have a significant impact in the 
interoperability and reuse of components.  

Individual federates communicate with one 
another through ambassadors, as shown in 
Figure 2. The RTI Ambassador allows the 
federate to invoke RTI services, and thereby 
interoperate with other federates. The Federate 
Ambassador allows the RTI to callback to the 
federate to inform the federate of interoperations 
originated by other federates. When developing 
federates, the federate-specific code must be 
programmed, including the behaviour to be 
performed during Federate Ambassador 
callbacks. To simplify concerns over thread-safe 
code, the federate must call the RTI tick service 
periodically. During the tick call, the RTI will 
perform any callbacks that may be pending.  

3. CUSP 
The Carleton University Simulator Project 
(CUSP) is a 4th year capstone, multiyear design 

project  (in one-year phases) with a short project 
cycle time (8 months per phase). The 2003/04 
academic year is the second phase. The 
complexities of CUSP are typical of any large 
project. There are 35 participants, including 
faculty and students from the Departments of 
Mechanical and Aerospace Engineering, and 
Systems and Computer Engineering, as well as 
consultants from industry. The project requires 
that current participants learn and build upon the 
work from previous years. As a result, 
participants are faced with a large learning curve 
that needs to be overcome quickly. The project 
participants are divided into teams and groups, 
depending on each individual’s specific areas of 
expertise and interests. This allows for 
individuals to participate in a manner conducive 
of their unique skills and abilities.  

The long-term goal of the project is to design 
and implement a full scale, six degree of freedom 
motion platform with a novel architecture. The 
platform will be reconfigurable to support 
multiple vehicle simulations for operator 
training. The simulation facility will be used to 
support a variety of simulation needs of industry, 
academia and government, and ideally, the 
facility will be self-supporting. The facility will 
meet industry standard quality, and be compliant 
with all government and university safety 
regulations. The project will provide a valuable 
learning and training environment for 
engineering students as well as providing a 
marketable facility to enhance simulation needs 
at Carleton University and the surrounding 
region.  

In the first year of the project, platform motion 
requirements to meet the long-term CUSP goals 
were determined to be: 

• +/- 18 " displacement for sway, surge and 
heave  

• +/- 30° rotation for pitch, roll and yaw  
• 0.5 g maximum acceleration in all directions 
• 500 lb. payload. 

Initial research revealed the Stewart platform [5] 
(or more properly the Stewart-Gough platform 
[6]) to be a popular design, but the coupling of 
the six degrees of freedom has led the project to 
consider alternate kinematic configurations. One 
implication of the coupling is that at the heave 
limit of the Stewart-Gough platform no yaw is 
possible. Additionally, since this is largely an 
engineering education driven project, innovation 
for innovation’s sake is feasible. The final target 
platform has been named NASP (Not A Stewart 
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Platform), and several innovative designs have 
been proposed. NASP objectives include 
decoupling the orienting from the positioning 
degrees of freedom. An immediate benefit is the 
simplification of mathematical modeling, which 
allows for incremental expansion of the control 
of each degree of freedom. To explore the 
feasibility of the design features and to gain the 
experience necessary to better understand design 
issues, a proof-of-concept technology 
demonstrator platform has been developed. In 
the first year, a platform with a single 
translational degree of freedom, named SiDFreD 
(Single Degree of Freedom Demonstrator), was 
designed and built. In the second year, the 
demonstrator has been extended to include two 
decoupled rotational degrees of freedom, and has 
been named SIDFreD (Several Integrated 
Degrees of Freedom Demonstrator) to reflect the 
change.  

CUSP participants are organized into teams of 
approximately five students, with a faculty 
member serving as lead engineer. The Systems 
(SYS) Team is responsible for the computing 
infrastructure, and a motivating goal for the team 
is the use of the HLA as the underlying 
infrastructure for CUSP platforms. In the first 
year, the team focused on a computing 
architecture suitable for NASP and SiDFreD. 
Over the past two years, the team’s scope has 
expanded to include various sensors, 
development environments, and development of 
a business plan. SYS Team members also 
participate in broader cross-team activities 
associated with safety, human factors, washout 
algorithms, manufacturing, procurement, 
assembly, system integration and project 
management.   

4. THE HLA IN CUSP 
The goals of CUSP impose broad and 
challenging technical issues for the SYS Team. 
In addition to the software engineering 
implications of realizing a framework for a 
reconfigurable simulation, motion simulators 
also require real-time performance while 
incorporating both hardware and humans in the 
simulation loop. As a result, the SYS Team must 
view the target platform as both a simulation and 
an embedded, distributed, real-time system.  

The HLA was chosen as the underlying 
architecture for CUSP platforms because: 

• the component-oriented approach of the 
HLA lends itself to the software engineering 
principles of information hiding and 
encapsulation, which in turn encourages 
concurrent development of components 

• the abstraction provided by the RTI allows 
the underlying computing architecture to be 
expanded and distributed easily, without 
requiring further programming 

• the use of standardized, third party RTI 
middleware reduces the amount of 
supporting software that must be developed 
and maintained in CUSP 

• the reuse goals of the HLA are well-suited to 
the short cycles of CUSP and the need for 
cycles to reuse the work of previous cycles 

• HLA compliance enables the integration of 
CUSP platforms with other HLA-compliant 
simulations 

• the HLA represents the state of the art in 
simulation interoperability standards. 

The work of the SYS Team has centred on 
designing an overarching NASP computing 
architecture (both hardware and software) that 
can evolve with future requirements, and the 
implementation of the architecture for the 
technology demonstrators. Using the HLA as a 
guiding infrastructure has simplified and 
accelerated this process. 

The use of the HLA in CUSP is not entirely 
without drawbacks. The HLA has a 
comprehensive set of services designed to 
support a wide variety of simulation styles. The 
HLA learning curve, and the lack of relevant and 
readily available examples, are limiting factors 
for deploying the HLA in an academic project 
with tight time constraints. To help offset this, 
the first year SYS Team developed PoolSim, a 
real-time simulation of a ball rolling on a pool 
table, as a learning exercise. The PoolSim 
approach to real-time was reused while 
developing the SiDFreD simulator, and thereby 
reduced the number of technical issues 
encountered. The second year SYS Team 
familiarized themselves with the HLA by 
extending PoolSim with additional functionality. 
Again, the learning experience greatly simplified 
their subsequent step into the SiDFreD 
environment. 
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4.1 PoolSim 
PoolSim was developed as a learning exercise to 
become familiar with HLA issues, and in 
particular, to explore a technique for obtaining 
real-time performance. Although sharing 
simulation time among federates is a central 
element of the HLA, a limitation of the HLA is 
that it does not specify support for real-time 
behaviour. As a result, real-time synchronization 
must be introduced by simulation components. 
The functional objective of PoolSim is to 
simulate a ball rolling on a pool table in real-
time. This application provides a gentle 
introduction to many of the aspects of a typical 
simulator, including: a graphics display showing 
the ball on the table, physics calculations to 
update the position of the ball periodically, user 
control to start, stop and monitor the simulation, 
and real-time synchronization.  

The PoolSim federation was designed to consist 
of the Timer, User, Physics and Display 
federates. The federates are shown in Figure 3, 
and briefly described below. 

The Timer federate introduces real-time 
synchronization by injecting a time event into 
the federation every 1/60 of a second (i.e. at a 60 
Hz frequency), the minimum graphics refresh 
rate required in training simulators. PoolSim is 
implemented for a Windows platform, and the 
implementation of the Timer federate required 
some low-level Windows programming to 
reduce jitter in the time events. 

The User federate provides an operator’s 
interface to control the federation. Operator input 
controls the start/stop of the simulation, and 
allows the size of the table to be sized 
dynamically. The User federate publishes table 
data and control information.  

The Physics Federate calculates and publishes 
the ball’s position and maintains a local value of 
the ball’s velocity. To accomplish this at a 
regular interval, the federate subscribes to the 60 
Hz time events injected by the Timer federate 
and to the table data provided by the user 
federate. When a time event is received, the 
federate calculates a new position and velocity 
for the ball based on the current values and the 
table parameters (size, rolling friction, and 
bumper dynamics). The new position value is 
published once it is calculated.  

The Display federate displays the ball on the 
table. The federate subscribes to the table size 
and ball position data and refreshes the display 
whenever any subscribed value changes. 
Changes to the ball position occur at 60 Hz 
creating the illusion that the ball is rolling on the 
table. 

The federation is initialized with default table 
data and the Timer federate in idle mode, where 
it is not generating any time events. The control 
information published by the User federate is 
used to put the Timer in running mode, where it 
generates periodic time events. Since the 
simulation calculation is time triggered, the 
simulation can be paused and resumed easily by 
toggling the Timer federate mode between idle 
and running. 

4.2 SIDFreD (Year 1) 
SIDFreD, shown in Figure 4, is the translational 
motion platform demonstrator designed and 
manufactured in the first year of CUSP. The 
purpose of the platform was to demonstrate the 
feasibility of implementing and manufacturing 
an HLA compliant motion. In keeping with the 
vehicle simulator theme of CUSP, SiDFreD was 
configured for a ground vehicle driving 
simulation with the single degree of freedom 
corresponding to vehicle sway. 

The driver’s platform was constructed with 
aluminum, and mounted on pillow blocks and 
rails. A chain connected to a 2 hp vector motor 
moves the platform. The motor is equipped with 
a controller card that supports a serial connection 
to a computer. The platform supports the driver’s 
cockpit, which includes a seat with a five-point 
restraining harness, a force-feedback PC gaming 
steering wheel with matching pedal and brake 
set, and a projector to display the simulated road 
being driven.  
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A block diagram showing SiDFreD’s physical 
subsystems and their interconnections is shown 
in Figure 5. Two networked PC workstations 
running Windows were used as computer 
subsystems. The sensor subsystem consists of an 
optical mouse mounted on the movable driver’s 

platform. The sensor provides an accurate and 
inexpensive way to track the current position of 
the platform. The position is used to verify that 
the platform motion is consistent with the 
CarWorld output, and to support a software 
controlled kill switch should the platform’s 
motion encroach on safety limits. The software-
independent cut-off switches associated with the 
safety subsystem provide further safety.  

The software subsystems running on the 
computers handle all processing requirements for 
the simulator. The software is organized as a set 
of HLA-compliant federates, and the RTI 
middleware hides all aspects of distributing the 
federates between the computers.  

To simplify the software development task, an 
open source car driving simulation, called 
CarWorld [7] was modified to meet SiDFreD’s 
requirements. CarWorld was chosen because it 
provided a complete driving simulation 
including a vehicle dynamics model, a graphical 
display of a simple road (using OpenGL [8]), 
and force-feedback steering wheel and pedal 
controls (via DirectX [9]). Some modifications 
were made to improve the visual image of the 
road, but a more significant effort was required 
to convert CarWorld from a standalone program 
into an interoperable HLA compliant federate. 

Converting CarWorld into an HLA federate 
involved designing how it would interoperate 

Figure 4 SiDFreD driven by 4th year student 
Nicholas Spooner. 

Figure 5 SiDFreD physical subsystems 
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with other federates, and the deciding what 
information should be published and subscribed. 
The team decided that all of CarWorld’s existing 
capabilities would be utilized and that the lateral 
acceleration, velocity and position of the vehicle 
should be published. The published vehicle state 
data could then be used by other federates to 
drive the platform actuator to create 
corresponding lateral vehicle motions. To 
provide data updates, the CarWorld federate was 
designed to subscribe to a periodic time event 
(similar to that used in PoolSim). The arrival of 
each time event triggers the generation and 
publication of new vehicle state data. The 
necessary vehicle state variables were already 
present in the CarWorld vehicle dynamics 
model, and therefore extending the code to 
created the CarWorld federate involved: 

• using HLA Federation Management services 
to join the SiDFreD federation 

• using HLA Declaration Management 
services to declare the intention to publish 
the vehicle state data and subscribe to time 
events 

• using HLA Object Management services: to 
the register instances of the vehicle state 
variables, to receive callback notifications 
when time events occur, and to update the 
vehicle state values when new values are 
calculated. 

The SiDFreD federation is shown in Figure 6. 
For simplicity, only the federates and the shared 
information are shown. The Timer federate is 
similar to that described for PoolSim, and 
generates time events at a 60 Hz frequency. The 
CarWorld federate (described above) manages 
the driver interface and the driving simulation. 
The federate subscribes to time events, and 

triggers subsequent federation activity by 
publishing updates to the vehicle state data.  The 
Mouse federate also subscribes to time events 
and publishes the current platform state 
(position, velocity and acceleration) when each 
time event occurs. The Dynamics federate 
accounts for the physical limitations of the 
platform’s motion envelope and actuator. The 
federate converts the vehicle state data into 
(published) platform dynamics to be realized by 
the platform. In addition the federate monitors 
the current platform state to verify that the 
platform is moving as expected. If the platform 
does not move as expected, it shuts down the 
platform motion, thereby implementing a 
software safety switch. The Actuator federate 
converts the desired platform dynamics into 
motor control commands and sends the 
commands to the motor controller. The federate 
also polls the controller and publishes the 
actuator state. The Monitor federate provides the 
passive logging of all shared information, and 
proves a simulator operator’s interface to control 
the federation. 

4.3 SIDFreD (Year 2) 
In the second year, SiDFreD (above) has evolved 
into SIDFreD, with two additional rotational 
degrees of freedom. The car vehicle simulation 
theme has been retained; however, the CarWorld 
application was modified to create a more open 
and flexible architecture. Second year objectives 
include introducing new vehicle dynamics 
models, incorporating washout algorithms, 
handling safety more prominently, adding 
decoupled degrees of freedom incrementally, and 
the reusing the previous physical and software 
components. The second year SYS Team was 
able to evolve the first year design to meet all of 
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these objectives.  

Figure 7 shows a simplified representation of the 
resulting SIDFreD federation architecture. When 
compared to Figure 6, an Application module 
has replaced the previous CarWorld federate, the 
Washout federate has replaced the previous 
Dynamics federate, the Safety federate has been 
introduced, and Actuator modules have been 
introduced for each actuator.  

The Application module has decoupled vehicle 
dynamics from CarWorld and introduced a new 
Vehicle Dynamics federate. The modified 
CarWorld federate manages user inputs and the 
display of road as the vehicle is driven. A higher 
fidelity vehicle dynamics model has been 
developed to interoperate with the modified 
CarWorld. From the perspective of other 
federates, the original CarWorld federate and the 
new Application module are interchangeable, 
since both publish and subscribe to the same 
information.  

The SIDFreD Washout federate is a modified 
and enhanced version of the previous Dynamics 
federate. Washout is a technique for combining 
translation and rotation motions together with 
visual and audio cues to trick an occupant’s 
motion receptors into believing that they are 
experiencing an application-specific motion (for 
more details see [10]). The technique allows for 
the possibility of moving the platform in a 
manner different from the perceived application-
specific motion, and ideally, allows the platform 
to be returned to the center of it’s motion 

envelope. Returning to the center of the envelope 
allows the platform to make optimal use of the 
motion envelope in subsequent (washed-out) 
motions. The Washout federate subscribes to the 
vehicle state published by the Application 
module, and filters the platform dynamics to 
account for physical limitations and washout. 
The platform dynamics information published by 
the Washout federate must be described in terms 
of motions in each of the directions supported by 
attached Actuator modules.  

Each Actuator module consists of an Actuator 
federate and a Sensor federate. The Actuator 
federate converts the appropriate dynamics 
information into actuator commands and passes 
these on to the actuator. When possible, the 
actuator also publishes actuator status 
information. The Sensor federate feeds back 
independently measured platform position 
information related to the actuator. 

The Safety federate performs the safety 
functionality implemented in the previous 
Dynamics federate. The federate compares the 
intended platform dynamics specified by the 
Washout federate with the actual motions 
observed by the Sensor federates, and monitors 
the actuators’ status. If unexp ected motions or 
status conditions occur, then the federate 
generates an event to shut down the motions of 
the actuators.  

Figure 7 shows a simplified representation of the 
resulting SIDFreD federation architecture. When 
compared to Figure 6, an Application module 
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has replaced the previous CarWorld federate, the 
Washout federate has replaced the previous 
Dynamics federate, the Safety federate has been 
introduced, and Actuator modules have been 
introduced for each actuator.  

The Application module has decoupled vehicle 
dynamics from CarWorld and introduced a new 
Vehicle Dynamics federate. The modified 
CarWorld federate manages user inputs and the 
display of road as the vehicle is driven. A higher 
fidelity vehicle dynamics model has been 
developed to interoperate with the modified 
CarWorld. From the perspective of other 
federates, the original CarWorld federate and the 
new Application module are interchangeable, 
since both publish and subscribe to the same 
information.  

The SIDFreD Washout federate is a modified 
and enhanced version of the previous Dynamics 
federate. Washout is a technique for combining 
translation and rotation motions together with 
visual and audio cues to trick an occupant’s 
motion receptors into believing that they are 
experiencing an application-specific motion (for 
more details see [10]). The technique allows for 
the possibility of moving the platform in a 
manner different from the perceived application-
specific motion, and ideally, allows the platform 
to be returned to the center of it’s mo tion 
envelope. Returning to the center of the envelope 
allows the platform to make optimal use of the 
motion envelope in subsequent (washed-out) 
motions. The Washout federate subscribes to the 
vehicle state published by the Application 
module, and filters the platform dynamics to 
account for physical limitations and washout. 
The platform dynamics information published by 
the Washout federate must be described in terms 
of motions in each of the directions supported by 
attached Actuator modules.  

Each Actuator module consists of an Actuator 
federate and a Sensor federate. The Actuator 
federate converts the appropriate dynamics 
information into actuator commands and passes 
these on to the actuator. When possible, the 
actuator also publishes actuator status 
information. The Sensor federate feeds back 
independently measured platform position 
information related to the actuator. 

The Safety federate performs the safety 
functionality implemented in the previous 
Dynamics federate. The federate compares the 
intended platform dynamics specified by the 
Washout federate with the actual motions 

observed by the Sensor federates, and monitors 
the actuators’ status. If unexpected motions or 
status conditions occur, then the federate 
generates an event to shut down the motions of 
the actuators.  

5. LESSONS LEARNED 
The use of the HLA has been very beneficial in 
the CUSP project.  

The general use of standards, like the HLA, has 
established an immediate connection with 
industry practice. This gives the students realistic 
direction and focus for their development efforts. 
An early focus is essential in the limited cycle 
times of the project, and encourages an attitude 
of engineering products to comply with 
standards as well as fulfilling the simulator-
oriented requirements.  

The depth of the HLA requires each cycle to 
invest a non-trivial learning effort; however, the 
return on the investment is well worth it. The 
PoolSim learning exercise is an excellent 
stepping-stone for the students to familiarize 
themselves with the HLA using a simple and 
related example. The transition to SIDFreD is a 
natural progression, and the PoolSim exposure to 
the real-time synchronization technique used in 
SIDFreD is a valuable asset.  

The component-oriented nature of the HLA has 
greatly simplified the mapping of design 
components into implementation components, 
and has forced the interfacing and interoperation 
of components to be addressed before 
implementation. The goals of interoperability 
and reuse have been brought to the surface early 
in the design, rather than allowing them to lurk 
as issues to be discovered later in development, 
where they would be more problematic to 
address. Once the federate interfaces and 
information sharing within the federation had 
been designed, federates were developed 
concurrently, and the subsequent integration into 
a federation was not an awkward and time-
consuming process. 

The RTI middleware creates an extra software 
management load and additional runtime 
processing requirements; however, the savings in 
development time have been very positive. The 
federation management services greatly simplify 
the task of initializing and controlling a 
distributed application. The publish and 
subscribe mechanism allows distributed 
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components to share information, without having 
to develop a further sharing infrastructure. 
Perhaps the only limitation in the RTI services is 
the lack of a real-time synchronization 
mechanism; however, this has been solved easily 
using the Timer federate.  

6. FUTURE WORK 
As CUSP progresses into Year 3 and beyond, 
NASP and SIDFred will evolve towards the goal 
of implementing a simulator with 6 degrees of 
freedom. The current SIDFreD design has been 
developed with the explicit objective of 
simplifying the addition of additional degrees of 
freedom and should provide a solid basis for the 
next cycle. With the architecture in a stable state 
to accommodate additional actuators, attention 
can be turned towards more application-oriented 
areas including: display technology, washout, 
fidelity, and application configuration. 

The current display technology consists of a 
simple projector mounted on the SIDFreD 
platform. This approach will likely not be 
feasible as additional degrees of freedom are 
added and the platform’s motion becomes more 
comprehensive. Several alternatives are being 
considered, ranging from a virtual reality helmet 
with head tracker and goggles, through to 
projection in an enclosure around the driver. The 
current NASP design is leaning towards the 
enclosure approach, and SIDFreD will likely 
incorporate modifications to explore this option 
in the next development cycle.  

An effective washout approach will combine 
motion with visual and audio cues. The presence 
of more than one degree of freedom in SIDFreD 
will permit greater use of washout in platform 
motion, and the Washout federate in the SIDFred 
architecture will be a center of attention. The 
coupling of the washout algorithm with visual 
and audio cues has not yet been addressed, and 
this is expected to require research and 
development to implement corresponding 
changes to the CarWorld application.  

From the SYS Team’s perspective, coupling 
washout with visual cues will require some 
ability to modify the display to respond not only 
to application purposes (e.g. the display as 
determined in response to the steering and pedal 
controls in CarWorld), but to respond to washout 
inputs as well. This concept should not be 
difficult to implement since the Washout 
federate can publish visual “dynamics” 

information, which can be subscribed to by 
CarWorld. Incorporating this into CarWorld will 
require further adaptation to subscribe to the 
Washout visual dynamics and adjust the display 
accordingly. 

A major concern in the future will be improving 
the fidelity of simulators. The HLA’s modular, 
component-oriented approach should support 
this by allowing federates to be replaced 
seamlessly by new federates which better 
simulate the environment. The ease of replacing 
and modifying components promises faster 
integration and testing, thus reducing the amount 
of time and effort involved. The continued 
benefits of the HLA will be a contributing factor 
in the future success of CUSP. 

7. REFERENCES 
[1] “IEEE Standard for Modeling and 

Simulation High Level Architecture (HLA)”, 
IEEE Std 1516-2000 

[2]  “Carleton University Simulator Project 
(CUSP) Final Report – Year 1”, Department 
of Mechanical and Aerospace Engineering, 
Carleton University, 2003 

[3] US Department of Defense, 5000.59-P, 
“Modeling and Simulation Master Plan”, 
October, 1995 

[4] Simulation Interoperability Standards 
Organization, World Wide Web, 
http://www.sisostds.org/ 

[5] Stewart, D., “A Platform with Six Degrees 
of Freedom”, Proc. Institute of Mechanical 
Engineering, Vol. 180, part 1, No. 5, pp. 
371-386, 1965-1966 

[6] Gough, V.E.. 1956, “Discussion in London: 
Automobile Stability, Control, and Tyre 
Performance”, Proc. Automobile Division, 
Institution of Mech. Engrs., pp. 392-394. 

[7] M. Hewat, CarWorld, v0.219, 2000, World 
Wide Web, http://carworld.sourceforge.net  

[8] OpenGL, version 1.5, 2003, World Wide 
Web, http://www.opengl.org/ 

[9] Microsoft Corporation, DirectX, Version 
9.0b, World Wide Web, 
http://www.microsoft.com/windows/directx/ 

[10] J.S. Freeman, G. Watson, Y.E. Papelis, T.C. 
Lin, A. Tayyab, R.A. Romano, and J.G. 
Kuhl. “The Iowa Driving Simulator: an 
Implementation and Application Overview”, 
1995 SAE World Congress, 1995 


