
CSME 2004 Forum 1

Use of the HLA in a Real-Time Multi-Vehicle Simulator

H.C. Chao1, T.W. Pearce1, M.J.D. Hayes2

1Department of Systems and Computer Engineering, Carleton University
hcchao@engsoc.org, pearce@sce.carleton.ca

2Department of Mechanical and Aerospace Engineering, Carleton University
jhayes@mae.carleton.ca

This paper outlines the use of a High Level Architecture (HLA) compliant design for the Carleton
University Simulator Project (CUSP). HLA is a modular interoperability standard (IEEE 1516) for
combining distributed, networked simulations. Interoperability is achieved through the standardization of
the communication interfaces between simulation components. Reduction of large, monolithic simulations
into smaller, component based simulation modules allows for the distribution of processor intensive
computations across multiple computers, alleviating the need for a powerful single computer. Additional
advantages also arise because of the component-based nature of the HLA including reusability, modularity
and expandability. Use of an HLA compliant design in CUSP has allowed for independent, concurrent
software development allowing for flexibility in project planning and management. Issues with undefined
and changing requirements are also now manageable allowing for future changes and expandability as
CUSP evolves.

1. INTRODUCTION
The High Level Architecture (HLA)
specifications [1] were developed to enable
modularity and interoperability to simulation
design. Simulators and simulation technologies
provide for the controlled reproduction of real
life conditions and experiences. Simulator
training for commercial and military pilots,
along with operator training for other vehicle
types is a well-known example. Perhaps less
well-known applications of simulator training
are in air traffic control, power generation, and
health care.

The capability of a simulator or simulation to
generate test conditions approximating
operational or actual conditions to a high level of
fidelity is of paramount importance as a design
objective. High fidelity in terms of the
environmental stimuli affecting the operator
ensures that training in a simulator is positive,
and is transferable to a real life situation.

This paper focuses on issues associated with
creation of an HLA compliant simulation facility
at Carleton University in particular, and design
of real-time systems in general. The control and

communication software is designed for a 6
degree-of-freedom motion platform within the
Carleton University Simulator Project
(CUSP)[2], administered within the Department
of Mechanical and Aerospace Engineering. The
motion platform is designed to be reconfigurable
and the control system fully interoperable. This
highlights an initiative to offer 4th year students
in the Faculty of Engineering and Design a
variety of large scale, multidisciplinary,
industrially relevant capstone design projects in a
virtual enterprise environment.

The results presented in this paper are largely the
contribution of the 2002-03, and 2003-04 CUSP
Systems teams, lead by faculty and students from
the Department of Systems and Computer
Engineering. The paper is organized in the
following way. Section 2 will describe the
evolution of the HLA, and define relevant
concepts and terminology. Section 3 gives an
overview of CUSP, its scope and technical
objectives. This leads to Section 4 wherein the
implementation of the HLA in CUSP is detailed.
Additionally, an important HLA learning
exercise, PoolSim is described. The paper
design is described and the two proof-of-concept
technology demonstrators from the first two
years of CUSP are discussed. Next, lessons

CSME 2004 Forum 2

learned from the implementation of the HLA are
highlighted. The final section contains
conclusions and suggestions for future work.

2. THE HLA
The HLA was developed originally by the US
Department of National Defense, with the goal
of incorporating interoperability, modularity and
reusability into ambitious long-term simulation
objectives [3]. The approach taken by the HLA
views simulations as components in larger
systems, which is a style more akin to product
development than that of traditional monolithic
simulations. The component-oriented view
encourages and focuses attention on interfacing
concerns, and how components interoperate to
accomplish an objective. Ideally, this approach
enables components to be reused more easily,
and HLA-compliant commercial-off-the-shelf
(COTS) components have been used
successfully in the construction of simulations.
The standardization of HLA components and
processes has been embraced by industry, and
the HLA is now established in the public domain
as the IEEE Standard 1516-2000. The IEEE has
mandated the Simulation Interoperability
Standards Organization (SISO) [4] to carry out
periodic public reviews and updates to the HLA
specification. The review process is currently
underway, and some incremental extensions are
expected to be approved in 2005.

In the HLA, individual simulation components
are called federates, and the collection of
components that comprise a simulation is called
a federation. The HLA specification consists of
three parts: a set of ten rules that constrain
federates and federations, the Object Model
documentation Template (OMT) for federates
and federations, and the Runtime Infrastructure
(RTI) programmer’s interface (API). The rules
governing federates and federations are simple
and straightforward. For example, one of the
rules states that federates must only interact
using RTI services. The OMT documentation
standards ensure that any information exchanged
among federates is specified. This interfacing
information is essential to achieve interoperation
among federates. The documentation can be used
for a variety of purposes prior to runtime;
however, the information is also used at runtime
in support of RTI services. The RTI is a
middleware (software) layer that implements
HLA services at runtime. The HLA only

specifies the API, and therefore a variety of RTI
implementations are acceptable.

Figure 1 shows an abstract view of a federation
at runtime. The federates use RTI services to
accomplish all interactions. The RTI allows the
federates to share persistent data, instantaneous
events and simulation time. Note that the abstract
view does not imply an underlying computing
architecture. The federates might all be executing
on the same computer, they might each have
their own dedicated computer, or they may be
mapped to the computing architecture in some
other fashion. Abstracting federates away from
the underlying computing architecture simplifies
scaling the processing power to meet the needs
of a federation.

The interoperation of federates requires federates
to share information. The sharing of data and
events is accomplished using an object-oriented
publish/subscribe mechanism. The concept of a
class is used to define types, and then objects are
created as instances of the classes at runtime.
Federates make information available by
publishing, and obtain information by
subscribing. The RTI manages communications
between the publisher of specific information
and the subscribers to that information. While
the sharing of data and events is typical of
distributed application components, the sharing
of simulation time is a unique characteristic of
simulation components, and a critical aspect of
HLA interoperability.

The RTI services are organized into categories:
Federation Management: allows federates to
create, join, leave and destroy a federation.
Declaration Management: allows federates to
declare the classes of the objects that they will
publish, and the classes of the objects they will

Figure 1 Abstract view of a federation

RTI

data

federate

federate

events

time

. . .

CSME 2004 Forum 3

subscribe to. Object Management: allows
federates to create, modify and delete shared
objects (instances). Ownership Management:
only the owner of an object may modify the
object, and these services allows federates to
exchange the ownership of shared objects.
Distributed Data Management: allows
federates to define abstract, simulation-specific
regions that can help to reduce runtime
communication overheads. Time Management:
allows federates to share a global notion of time,
and to synchronize local activities in global time.
The simulators described in this paper use
services from all categories except Distributed
Data Management.

The RTI services have been designed to
accommodate many different simulation styles.
As a result, most federates will use only the
subset of services that are appropriate to the
needs of the federate. While this may seem
superficially obvious, patterns in the use of RTI
services have a significant impact in the
interoperability and reuse of components.

Individual federates communicate with one
another through ambassadors, as shown in
Figure 2. The RTI Ambassador allows the
federate to invoke RTI services, and thereby
interoperate with other federates. The Federate
Ambassador allows the RTI to callback to the
federate to inform the federate of interoperations
originated by other federates. When developing
federates, the federate-specific code must be
programmed, including the behaviour to be
performed during Federate Ambassador
callbacks. To simplify concerns over thread-safe
code, the federate must call the RTI tick service
periodically. During the tick call, the RTI will
perform any callbacks that may be pending.

3. CUSP
The Carleton University Simulator Project
(CUSP) is a 4th year capstone, multiyear design

project (in one-year phases) with a short project
cycle time (8 months per phase). The 2003/04
academic year is the second phase. The
complexities of CUSP are typical of any large
project. There are 35 participants, including
faculty and students from the Departments of
Mechanical and Aerospace Engineering, and
Systems and Computer Engineering, as well as
consultants from industry. The project requires
that current participants learn and build upon the
work from previous years. As a result,
participants are faced with a large learning curve
that needs to be overcome quickly. The project
participants are divided into teams and groups,
depending on each individual’s specific areas of
expertise and interests. This allows for
individuals to participate in a manner conducive
of their unique skills and abilities.

The long-term goal of the project is to design
and implement a full scale, six degree of freedom
motion platform with a novel architecture. The
platform will be reconfigurable to support
multiple vehicle simulations for operator
training. The simulation facility will be used to
support a variety of simulation needs of industry,
academia and government, and ideally, the
facility will be self-supporting. The facility will
meet industry standard quality, and be compliant
with all government and university safety
regulations. The project will provide a valuable
learning and training environment for
engineering students as well as providing a
marketable facility to enhance simulation needs
at Carleton University and the surrounding
region.

In the first year of the project, platform motion
requirements to meet the long-term CUSP goals
were determined to be:

• +/- 18 " displacement for sway, surge and
heave

• +/- 30° rotation for pitch, roll and yaw
• 0.5 g maximum acceleration in all directions
• 500 lb. payload.

Initial research revealed the Stewart platform [5]
(or more properly the Stewart-Gough platform
[6]) to be a popular design, but the coupling of
the six degrees of freedom has led the project to
consider alternate kinematic configurations. One
implication of the coupling is that at the heave
limit of the Stewart-Gough platform no yaw is
possible. Additionally, since this is largely an
engineering education driven project, innovation
for innovation’s sake is feasible. The final target
platform has been named NASP (Not A Stewart

Federate
Ambassador

Figure 2 Federate ambassadors

federate-specific code

RTI
Ambassador

to other
federates
via RTI

from other
federates

via RTI

tick

CSME 2004 Forum 4

Platform), and several innovative designs have
been proposed. NASP objectives include
decoupling the orienting from the positioning
degrees of freedom. An immediate benefit is the
simplification of mathematical modeling, which
allows for incremental expansion of the control
of each degree of freedom. To explore the
feasibility of the design features and to gain the
experience necessary to better understand design
issues, a proof-of-concept technology
demonstrator platform has been developed. In
the first year, a platform with a single
translational degree of freedom, named SiDFreD
(Single Degree of Freedom Demonstrator), was
designed and built. In the second year, the
demonstrator has been extended to include two
decoupled rotational degrees of freedom, and has
been named SIDFreD (Several Integrated
Degrees of Freedom Demonstrator) to reflect the
change.

CUSP participants are organized into teams of
approximately five students, with a faculty
member serving as lead engineer. The Systems
(SYS) Team is responsible for the computing
infrastructure, and a motivating goal for the team
is the use of the HLA as the underlying
infrastructure for CUSP platforms. In the first
year, the team focused on a computing
architecture suitable for NASP and SiDFreD.
Over the past two years, the team’s scope has
expanded to include various sensors,
development environments, and development of
a business plan. SYS Team members also
participate in broader cross-team activities
associated with safety, human factors, washout
algorithms, manufacturing, procurement,
assembly, system integration and project
management.

4. THE HLA IN CUSP
The goals of CUSP impose broad and
challenging technical issues for the SYS Team.
In addition to the software engineering
implications of realizing a framework for a
reconfigurable simulation, motion simulators
also require real-time performance while
incorporating both hardware and humans in the
simulation loop. As a result, the SYS Team must
view the target platform as both a simulation and
an embedded, distributed, real-time system.

The HLA was chosen as the underlying
architecture for CUSP platforms because:

• the component-oriented approach of the
HLA lends itself to the software engineering
principles of information hiding and
encapsulation, which in turn encourages
concurrent development of components

• the abstraction provided by the RTI allows
the underlying computing architecture to be
expanded and distributed easily, without
requiring further programming

• the use of standardized, third party RTI
middleware reduces the amount of
supporting software that must be developed
and maintained in CUSP

• the reuse goals of the HLA are well-suited to
the short cycles of CUSP and the need for
cycles to reuse the work of previous cycles

• HLA compliance enables the integration of
CUSP platforms with other HLA-compliant
simulations

• the HLA represents the state of the art in
simulation interoperability standards.

The work of the SYS Team has centred on
designing an overarching NASP computing
architecture (both hardware and software) that
can evolve with future requirements, and the
implementation of the architecture for the
technology demonstrators. Using the HLA as a
guiding infrastructure has simplified and
accelerated this process.

The use of the HLA in CUSP is not entirely
without drawbacks. The HLA has a
comprehensive set of services designed to
support a wide variety of simulation styles. The
HLA learning curve, and the lack of relevant and
readily available examples, are limiting factors
for deploying the HLA in an academic project
with tight time constraints. To help offset this,
the first year SYS Team developed PoolSim, a
real-time simulation of a ball rolling on a pool
table, as a learning exercise. The PoolSim
approach to real-time was reused while
developing the SiDFreD simulator, and thereby
reduced the number of technical issues
encountered. The second year SYS Team
familiarized themselves with the HLA by
extending PoolSim with additional functionality.
Again, the learning experience greatly simplified
their subsequent step into the SiDFreD
environment.

CSME 2004 Forum 5

4.1 PoolSim
PoolSim was developed as a learning exercise to
become familiar with HLA issues, and in
particular, to explore a technique for obtaining
real-time performance. Although sharing
simulation time among federates is a central
element of the HLA, a limitation of the HLA is
that it does not specify support for real-time
behaviour. As a result, real-time synchronization
must be introduced by simulation components.
The functional objective of PoolSim is to
simulate a ball rolling on a pool table in real-
time. This application provides a gentle
introduction to many of the aspects of a typical
simulator, including: a graphics display showing
the ball on the table, physics calculations to
update the position of the ball periodically, user
control to start, stop and monitor the simulation,
and real-time synchronization.

The PoolSim federation was designed to consist
of the Timer, User, Physics and Display
federates. The federates are shown in Figure 3,
and briefly described below.

The Timer federate introduces real-time
synchronization by injecting a time event into
the federation every 1/60 of a second (i.e. at a 60
Hz frequency), the minimum graphics refresh
rate required in training simulators. PoolSim is
implemented for a Windows platform, and the
implementation of the Timer federate required
some low-level Windows programming to
reduce jitter in the time events.

The User federate provides an operator’s
interface to control the federation. Operator input
controls the start/stop of the simulation, and
allows the size of the table to be sized
dynamically. The User federate publishes table
data and control information.

The Physics Federate calculates and publishes
the ball’s position and maintains a local value of
the ball’s velocity. To accomplish this at a
regular interval, the federate subscribes to the 60
Hz time events injected by the Timer federate
and to the table data provided by the user
federate. When a time event is received, the
federate calculates a new position and velocity
for the ball based on the current values and the
table parameters (size, rolling friction, and
bumper dynamics). The new position value is
published once it is calculated.

The Display federate displays the ball on the
table. The federate subscribes to the table size
and ball position data and refreshes the display
whenever any subscribed value changes.
Changes to the ball position occur at 60 Hz
creating the illusion that the ball is rolling on the
table.

The federation is initialized with default table
data and the Timer federate in idle mode, where
it is not generating any time events. The control
information published by the User federate is
used to put the Timer in running mode, where it
generates periodic time events. Since the
simulation calculation is time triggered, the
simulation can be paused and resumed easily by
toggling the Timer federate mode between idle
and running.

4.2 SIDFreD (Year 1)
SIDFreD, shown in Figure 4, is the translational
motion platform demonstrator designed and
manufactured in the first year of CUSP. The
purpose of the platform was to demonstrate the
feasibility of implementing and manufacturing
an HLA compliant motion. In keeping with the
vehicle simulator theme of CUSP, SiDFreD was
configured for a ground vehicle driving
simulation with the single degree of freedom
corresponding to vehicle sway.

The driver’s platform was constructed with
aluminum, and mounted on pillow blocks and
rails. A chain connected to a 2 hp vector motor
moves the platform. The motor is equipped with
a controller card that supports a serial connection
to a computer. The platform supports the driver’s
cockpit, which includes a seat with a five-point
restraining harness, a force-feedback PC gaming
steering wheel with matching pedal and brake
set, and a projector to display the simulated road
being driven.

Figure 3 PoolSim Federation

RTI

Timer

User Physics Display

table data

ball position
time
event

CSME 2004 Forum 6

A block diagram showing SiDFreD’s physical
subsystems and their interconnections is shown
in Figure 5. Two networked PC workstations
running Windows were used as computer
subsystems. The sensor subsystem consists of an
optical mouse mounted on the movable driver’s

platform. The sensor provides an accurate and
inexpensive way to track the current position of
the platform. The position is used to verify that
the platform motion is consistent with the
CarWorld output, and to support a software
controlled kill switch should the platform’s
motion encroach on safety limits. The software-
independent cut-off switches associated with the
safety subsystem provide further safety.

The software subsystems running on the
computers handle all processing requirements for
the simulator. The software is organized as a set
of HLA-compliant federates, and the RTI
middleware hides all aspects of distributing the
federates between the computers.

To simplify the software development task, an
open source car driving simulation, called
CarWorld [7] was modified to meet SiDFreD’s
requirements. CarWorld was chosen because it
provided a complete driving simulation
including a vehicle dynamics model, a graphical
display of a simple road (using OpenGL [8]),
and force-feedback steering wheel and pedal
controls (via DirectX [9]). Some modifications
were made to improve the visual image of the
road, but a more significant effort was required
to convert CarWorld from a standalone program
into an interoperable HLA compliant federate.

Converting CarWorld into an HLA federate
involved designing how it would interoperate

Figure 4 SiDFreD driven by 4th year student
Nicholas Spooner.

Figure 5 SiDFreD physical subsystems

CSME 2004 Forum 7

with other federates, and the deciding what
information should be published and subscribed.
The team decided that all of CarWorld’s existing
capabilities would be utilized and that the lateral
acceleration, velocity and position of the vehicle
should be published. The published vehicle state
data could then be used by other federates to
drive the platform actuator to create
corresponding lateral vehicle motions. To
provide data updates, the CarWorld federate was
designed to subscribe to a periodic time event
(similar to that used in PoolSim). The arrival of
each time event triggers the generation and
publication of new vehicle state data. The
necessary vehicle state variables were already
present in the CarWorld vehicle dynamics
model, and therefore extending the code to
created the CarWorld federate involved:

• using HLA Federation Management services
to join the SiDFreD federation

• using HLA Declaration Management
services to declare the intention to publish
the vehicle state data and subscribe to time
events

• using HLA Object Management services: to
the register instances of the vehicle state
variables, to receive callback notifications
when time events occur, and to update the
vehicle state values when new values are
calculated.

The SiDFreD federation is shown in Figure 6.
For simplicity, only the federates and the shared
information are shown. The Timer federate is
similar to that described for PoolSim, and
generates time events at a 60 Hz frequency. The
CarWorld federate (described above) manages
the driver interface and the driving simulation.
The federate subscribes to time events, and

triggers subsequent federation activity by
publishing updates to the vehicle state data. The
Mouse federate also subscribes to time events
and publishes the current platform state
(position, velocity and acceleration) when each
time event occurs. The Dynamics federate
accounts for the physical limitations of the
platform’s motion envelope and actuator. The
federate converts the vehicle state data into
(published) platform dynamics to be realized by
the platform. In addition the federate monitors
the current platform state to verify that the
platform is moving as expected. If the platform
does not move as expected, it shuts down the
platform motion, thereby implementing a
software safety switch. The Actuator federate
converts the desired platform dynamics into
motor control commands and sends the
commands to the motor controller. The federate
also polls the controller and publishes the
actuator state. The Monitor federate provides the
passive logging of all shared information, and
proves a simulator operator’s interface to control
the federation.

4.3 SIDFreD (Year 2)
In the second year, SiDFreD (above) has evolved
into SIDFreD, with two additional rotational
degrees of freedom. The car vehicle simulation
theme has been retained; however, the CarWorld
application was modified to create a more open
and flexible architecture. Second year objectives
include introducing new vehicle dynamics
models, incorporating washout algorithms,
handling safety more prominently, adding
decoupled degrees of freedom incrementally, and
the reusing the previous physical and software
components. The second year SYS Team was
able to evolve the first year design to meet all of

CarWorld

Sensor

Dynamics

Timer Monitor

Actuator

platform
dynamics

vehicle
state

actuator
state

platform
position

Figure 6 SiDFreD Federation

CSME 2004 Forum 8

these objectives.

Figure 7 shows a simplified representation of the
resulting SIDFreD federation architecture. When
compared to Figure 6, an Application module
has replaced the previous CarWorld federate, the
Washout federate has replaced the previous
Dynamics federate, the Safety federate has been
introduced, and Actuator modules have been
introduced for each actuator.

The Application module has decoupled vehicle
dynamics from CarWorld and introduced a new
Vehicle Dynamics federate. The modified
CarWorld federate manages user inputs and the
display of road as the vehicle is driven. A higher
fidelity vehicle dynamics model has been
developed to interoperate with the modified
CarWorld. From the perspective of other
federates, the original CarWorld federate and the
new Application module are interchangeable,
since both publish and subscribe to the same
information.

The SIDFreD Washout federate is a modified
and enhanced version of the previous Dynamics
federate. Washout is a technique for combining
translation and rotation motions together with
visual and audio cues to trick an occupant’s
motion receptors into believing that they are
experiencing an application-specific motion (for
more details see [10]). The technique allows for
the possibility of moving the platform in a
manner different from the perceived application-
specific motion, and ideally, allows the platform
to be returned to the center of it’s motion

envelope. Returning to the center of the envelope
allows the platform to make optimal use of the
motion envelope in subsequent (washed-out)
motions. The Washout federate subscribes to the
vehicle state published by the Application
module, and filters the platform dynamics to
account for physical limitations and washout.
The platform dynamics information published by
the Washout federate must be described in terms
of motions in each of the directions supported by
attached Actuator modules.

Each Actuator module consists of an Actuator
federate and a Sensor federate. The Actuator
federate converts the appropriate dynamics
information into actuator commands and passes
these on to the actuator. When possible, the
actuator also publishes actuator status
information. The Sensor federate feeds back
independently measured platform position
information related to the actuator.

The Safety federate performs the safety
functionality implemented in the previous
Dynamics federate. The federate compares the
intended platform dynamics specified by the
Washout federate with the actual motions
observed by the Sensor federates, and monitors
the actuators’ status. If unexp ected motions or
status conditions occur, then the federate
generates an event to shut down the motions of
the actuators.

Figure 7 shows a simplified representation of the
resulting SIDFreD federation architecture. When
compared to Figure 6, an Application module

Actuator module

Figure 7 SIDFreD federation architecture

CarWorld Washout

Timer

Monitor

platform
dynamics

vehicle
state

Application module

Vehicle
Dynamics

Safety

Sensor

Actuator

actuator
state

platform
position

Actuator module

CSME 2004 Forum 9

has replaced the previous CarWorld federate, the
Washout federate has replaced the previous
Dynamics federate, the Safety federate has been
introduced, and Actuator modules have been
introduced for each actuator.

The Application module has decoupled vehicle
dynamics from CarWorld and introduced a new
Vehicle Dynamics federate. The modified
CarWorld federate manages user inputs and the
display of road as the vehicle is driven. A higher
fidelity vehicle dynamics model has been
developed to interoperate with the modified
CarWorld. From the perspective of other
federates, the original CarWorld federate and the
new Application module are interchangeable,
since both publish and subscribe to the same
information.

The SIDFreD Washout federate is a modified
and enhanced version of the previous Dynamics
federate. Washout is a technique for combining
translation and rotation motions together with
visual and audio cues to trick an occupant’s
motion receptors into believing that they are
experiencing an application-specific motion (for
more details see [10]). The technique allows for
the possibility of moving the platform in a
manner different from the perceived application-
specific motion, and ideally, allows the platform
to be returned to the center of it’s mo tion
envelope. Returning to the center of the envelope
allows the platform to make optimal use of the
motion envelope in subsequent (washed-out)
motions. The Washout federate subscribes to the
vehicle state published by the Application
module, and filters the platform dynamics to
account for physical limitations and washout.
The platform dynamics information published by
the Washout federate must be described in terms
of motions in each of the directions supported by
attached Actuator modules.

Each Actuator module consists of an Actuator
federate and a Sensor federate. The Actuator
federate converts the appropriate dynamics
information into actuator commands and passes
these on to the actuator. When possible, the
actuator also publishes actuator status
information. The Sensor federate feeds back
independently measured platform position
information related to the actuator.

The Safety federate performs the safety
functionality implemented in the previous
Dynamics federate. The federate compares the
intended platform dynamics specified by the
Washout federate with the actual motions

observed by the Sensor federates, and monitors
the actuators’ status. If unexpected motions or
status conditions occur, then the federate
generates an event to shut down the motions of
the actuators.

5. LESSONS LEARNED
The use of the HLA has been very beneficial in
the CUSP project.

The general use of standards, like the HLA, has
established an immediate connection with
industry practice. This gives the students realistic
direction and focus for their development efforts.
An early focus is essential in the limited cycle
times of the project, and encourages an attitude
of engineering products to comply with
standards as well as fulfilling the simulator-
oriented requirements.

The depth of the HLA requires each cycle to
invest a non-trivial learning effort; however, the
return on the investment is well worth it. The
PoolSim learning exercise is an excellent
stepping-stone for the students to familiarize
themselves with the HLA using a simple and
related example. The transition to SIDFreD is a
natural progression, and the PoolSim exposure to
the real-time synchronization technique used in
SIDFreD is a valuable asset.

The component-oriented nature of the HLA has
greatly simplified the mapping of design
components into implementation components,
and has forced the interfacing and interoperation
of components to be addressed before
implementation. The goals of interoperability
and reuse have been brought to the surface early
in the design, rather than allowing them to lurk
as issues to be discovered later in development,
where they would be more problematic to
address. Once the federate interfaces and
information sharing within the federation had
been designed, federates were developed
concurrently, and the subsequent integration into
a federation was not an awkward and time-
consuming process.

The RTI middleware creates an extra software
management load and additional runtime
processing requirements; however, the savings in
development time have been very positive. The
federation management services greatly simplify
the task of initializing and controlling a
distributed application. The publish and
subscribe mechanism allows distributed

CSME 2004 Forum 10

components to share information, without having
to develop a further sharing infrastructure.
Perhaps the only limitation in the RTI services is
the lack of a real-time synchronization
mechanism; however, this has been solved easily
using the Timer federate.

6. FUTURE WORK
As CUSP progresses into Year 3 and beyond,
NASP and SIDFred will evolve towards the goal
of implementing a simulator with 6 degrees of
freedom. The current SIDFreD design has been
developed with the explicit objective of
simplifying the addition of additional degrees of
freedom and should provide a solid basis for the
next cycle. With the architecture in a stable state
to accommodate additional actuators, attention
can be turned towards more application-oriented
areas including: display technology, washout,
fidelity, and application configuration.

The current display technology consists of a
simple projector mounted on the SIDFreD
platform. This approach will likely not be
feasible as additional degrees of freedom are
added and the platform’s motion becomes more
comprehensive. Several alternatives are being
considered, ranging from a virtual reality helmet
with head tracker and goggles, through to
projection in an enclosure around the driver. The
current NASP design is leaning towards the
enclosure approach, and SIDFreD will likely
incorporate modifications to explore this option
in the next development cycle.

An effective washout approach will combine
motion with visual and audio cues. The presence
of more than one degree of freedom in SIDFreD
will permit greater use of washout in platform
motion, and the Washout federate in the SIDFred
architecture will be a center of attention. The
coupling of the washout algorithm with visual
and audio cues has not yet been addressed, and
this is expected to require research and
development to implement corresponding
changes to the CarWorld application.

From the SYS Team’s perspective, coupling
washout with visual cues will require some
ability to modify the display to respond not only
to application purposes (e.g. the display as
determined in response to the steering and pedal
controls in CarWorld), but to respond to washout
inputs as well. This concept should not be
difficult to implement since the Washout
federate can publish visual “dynamics”

information, which can be subscribed to by
CarWorld. Incorporating this into CarWorld will
require further adaptation to subscribe to the
Washout visual dynamics and adjust the display
accordingly.

A major concern in the future will be improving
the fidelity of simulators. The HLA’s modular,
component-oriented approach should support
this by allowing federates to be replaced
seamlessly by new federates which better
simulate the environment. The ease of replacing
and modifying components promises faster
integration and testing, thus reducing the amount
of time and effort involved. The continued
benefits of the HLA will be a contributing factor
in the future success of CUSP.

7. REFERENCES
[1] “IEEE Standard for Modeling and

Simulation High Level Architecture (HLA)”,
IEEE Std 1516-2000

[2] “Carleton University Simulator Project
(CUSP) Final Report – Year 1”, Department
of Mechanical and Aerospace Engineering,
Carleton University, 2003

[3] US Department of Defense, 5000.59-P,
“Modeling and Simulation Master Plan”,
October, 1995

[4] Simulation Interoperability Standards
Organization, World Wide Web,
http://www.sisostds.org/

[5] Stewart, D., “A Platform with Six Degrees
of Freedom”, Proc. Institute of Mechanical
Engineering, Vol. 180, part 1, No. 5, pp.
371-386, 1965-1966

[6] Gough, V.E.. 1956, “Discussion in London:
Automobile Stability, Control, and Tyre
Performance”, Proc. Automobile Division,
Institution of Mech. Engrs., pp. 392-394.

[7] M. Hewat, CarWorld, v0.219, 2000, World
Wide Web, http://carworld.sourceforge.net

[8] OpenGL, version 1.5, 2003, World Wide
Web, http://www.opengl.org/

[9] Microsoft Corporation, DirectX, Version
9.0b, World Wide Web,
http://www.microsoft.com/windows/directx/

[10] J.S. Freeman, G. Watson, Y.E. Papelis, T.C.
Lin, A. Tayyab, R.A. Romano, and J.G.
Kuhl. “The Iowa Driving Simulator: an
Implementation and Application Overview”,
1995 SAE World Congress, 1995

