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Abstract

The focus of this work is on synthesising kinematic input-output (IO) function gen-

erators, specifically in the context of single degree of freedom four-bar linkages. The

synthesis process typically involves minimising two key metrics: design error and struc-

tural error. Design error minimisation aims to reduce the arithmetic residual of the syn-

thesis equation for the four-bar linkage, while structural error minimisation focuses on

minimising the difference between prescribed and generated output parameters. The

latter is crucial for real-world performance evaluation as it directly impacts the phys-

ical performance of the linkage, albeit requiring computationally intensive non-linear

optimisation algorithms.

The objective of the research is to integrate the algebraic input-output equation

across the input angle range to avoid explicit solution of the non-linear structural error

optimisation problem. This approach, termed continuous approximate algebraic input-

output synthesis, aims to expand the dataset used for kinematic synthesis to infinity

by minimising the residual of the dot product of two arrays containing linkage geome-

try and desired input-output function information. Continuous approximate algebraic

input-output synthesis effectively and simultaneously achieves both design and struc-

tural error minimisation by extending the dataset cardinality to infinitely many points,

while still functioning as a linear least squares optimisation.

Comparisons with traditional non-linear structural error synthesis techniques demon-

strates that continuous approximate algebraic input-output synthesis generates struc-

tural error minimised linkages with reduced errors between desired and synthesised

functions. In addition to its computational efficiency, continuous approximate algebraic

input-output synthesis is capable of producing improved results compared with clas-

sical problems within function generator synthesis, while also enabling combined type

and dimensional synthesis, eliminating the need to define the linkage type beforehand.
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This thesis also explores the concepts and limitations of multi-modal continuous ap-

proximate algebraic input-output synthesis, which allows designers to synthesise link-

ages that not only fulfill the desired input-output relationships but also maintain a spe-

cific secondary relationship within intermediate joint variables’ motion.
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1 Introduction: Literature Review

and Mathematical Background

1.1 Machines and Mechanisms

Human beings have been using machines and mechanisms for millennia in order to

assist in every variety of physical operation imaginable [1, 2]. The theory of machines

and mechanisms, as a formal science, however, has its roots in more modern science as

the result of the work of Franz Reuleaux [3] in the late 1800s. While Reuleaux may be

remembered in modern times for his contributions to the science of curves of constant

width, specifically the Reuleaux Triangle, his work on the kinematics of machinery laid

the foundation for the formal analysis of machines and mechanisms. Specifically, he

developed the abstraction of machines such that they are composed of pairs of com-

ponents whose connections impose motion constraints, which when coupled with ad-

ditional components result in kinematic chains which may be analysed depending on

their constituent components. This definition was the first formal definition of a ma-

chine which allowed for their analysis to take place at a higher level than the realm of

simple mechanics and instead focus on motion constraints, which developed the science

of kinematics dramatically.

Machines and mechanisms take many forms and may involve any number of com-

ponents, have any number of degrees of freedom, and they may be planar or spatial in

nature. Typically, most machines and mechanisms will be comprised of pairs of compo-

nents including, but not necessarily limited to: gears; pulleys; cables; links; cams; rotat-

ing shafts; and sliders [4]. While the modern science of machines and mechanisms uses
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increasingly complex systems and components in order to accommodate the demands

of increasingly complex machine design, some fundamental problems with regards to

the design of simple mechanisms do remain as open problems in the science.

1.2 Planar Four-Bar Linkages

1.2.1 Thesis Problem Statement

Four-bar linkages are characterised as single degree of freedom simple closed kinematic

chains [5]. These linkages can be planar, spherical, or spatial in design. For the purposes

of the remaining discussion, attention will be limited to the state of the art of planar four-

bar linkage design problems. However, for some special cases such as those associated

with spherical four-bar linkages, identical processes may be used to elucidate the same

information as its planar counterpart, because the plane may be considered a sphere of

infinite radius.

The development of mathematical models for the design of the function generating

linkages relies on the use of vector-closure equations [6], and was pioneered in 1954

by Ferdinand Freudenstein in his Ph.D thesis [7]. Freudenstein’s work developed the

methods that are now used for the design of four-bar function generating mechanisms;

mechanisms which follow some prescribed input-output (IO) relationship. Given the

time of the publication of this work, however, Freudenstein was ultimately in a position

where his work was fundamentally limited by the computational capacities of technol-

ogy in the 1950s. Specifically, in a discussion posted in response to Freudenstein’s 1959

structural error minimisation paper, he stated that the computational cost of a single

linkage design was one hour of computation on an IBM 650, with a cost of approxi-

mately $120 USD [8]. Adjusting strictly for inflation, the cost of design associated with

this single mechanism would have been approximately $1261 USD in 2023. Clearly,

given this prohibitive cost, a mechanism designer in the 1950s would have had to rely

on designs that had already been developed and validated for their use. The validated

design was contained within a so-called atlas of acceptable designs, such as ”Analysis of
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the four-bar linkage: its application to the synthesis of mechanisms” [9], which was ini-

tially published in 1951; this atlas of designs not only took into account the IO relation-

ships of some linkages, but contained information about useful cases of coupler curves.

As computational limits and capacities have expanded exponentially since the 1950s,

this is no longer the case, and a mechanism may be readily designed by any sufficiently

skilled designer on their desktop computer using software such as Maple, Matlab, or

Geogebra. Due to these computational advancements, additional works such as [10]

have developed an atlas of coupler point curves for the spherical RRRR function gener-

ator, and works such as those present within [11] make use of computational power to

provide more readily available linkage designs.

It is towards the problem of input-output (IO) function generation that the work con-

tained within this thesis can be readily applied. Kinematic synthesis of four-bar function

generating mechanisms relies on the minimisation of certain performance indicators.

Two of these metrics, referred to as the design error and structural error, are the focus of

the work presented herein. The design error minimisation focuses on the minimisation of

the arithmetic residual of the synthesis equation for the four-bar linkage at hand, while

the structural error focuses on the minimisation of the difference between the prescribed

and generated output parameters. When focused purely on the real-world performance

of a linkage, one could argue that the structural error is the performance indicator of

primary concern due to the fact that it has an obvious correlation to the physical perfor-

mance of a linkage, although the minimisation of the structural error metric requires a

non-linear minimisation algorithm which can be quite computationally intensive.

The objective of this work is the integration of the algebraic input-output (AIO)

equation over the desired range of input angles to eliminate the need for the explicit

solution of the non-linear structural error optimisation problem in order to implicitly

drive the cardinality of the data set being used for the kinematic synthesis of the linkage

to infinity. It will be demonstrated that the so-called continuous approximate algebraic

input-output synthesis (CAAIOS) solution is accomplished solely through the minimi-

sation of the residual of a dot product of two arrays containing information regarding
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the geometry of the linkage and the desired input-output function.

1.2.2 Other Problems within Four-Bar Linkage Synthesis

Outside of IO function generation, kinematics problems in four-bar linkages tend to fo-

cus on the motion of the coupler link, labelled as link a2 in Figure 1.1. This link is of

particular interest due to its ability to guide any point attached to the link through gen-

eral curvilinear planar motion [5]. This is to say that, if a point is fixed to the coupler

link of a four-bar mechanism, that point will generate some path in the plane which

depends on the geometry of the linkage at hand, as well as the assembly mode of the

linkage [12, 13, 14]. Cognate linkages may also be useful when considering the available

space allotted to a given linkage design for a specific path generation problem; accord-

ing to the Roberts-Chebyshev Theorem [15], there exists three planar four-bar linkages

which generate an identical coupler point curve [16], which have different base-fixed

R-pair coordinates and link lengths, while maintaining the coordinates of a point in

the coupler-fixed coordinate system. Thus, cognate linkages may allow a designer to

maintain their originally intended coupler point curve in situations where the original

orientation of the linkage may not be usable. More recently, in works such as [17, 18,

19, 20, 21, 22], additional effort has been placed on developing solutions to the path

generation problem, using various types of numerical optimisation techniques along-

side algebraic geometry. Notably, in [16], the authors develop a fully analytical method

for the coupler point curve synthesis problem, alongside simultaneous identification of

all cognate linkages, though it is based on constrained coupler point curves with no

allowance for deviation as in [14].

Coupler point curves may be further extended to trajectory generation [12], the

problem of developing some coupler point curve which not only controls the location

of this point, but also the time difference between successive points. Coupler motion

may yet be further extended to contain information relevant to rigid body guidance; the

Burmester problem [23, 24, 25, 26, 27] is concerned with guiding the coupler through a

specific set of positions with coupled orientations. While many analytical and graphical
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solutions exist for the Burmester problem, the solutions rely on approximations based

on a finite set of poses. While [28] laid the foundation for work towards the continuous

approximate Burmester problem, the methods outlined rely heavily on developing a

novel technique for defining nth order surfaces in space [29], and as such the solution to

the continuous approximate Burmester problem remains an open topic.

1.3 Planar Four-Bar Function Generators

The generalised function generation problem consists of identifying a mechanism which

is able to approximate, in some sense, an IO function between a given pair of joint vari-

ables over some specified range of input variable for a given planar linkage architecture

comprised of RR-, RP-, PR-, or PP-dyads1. Figure 1.1 illustrates a function generating

four-bar RRRR linkage. If link a1 is the input link and link a3 is the output link, the IO

function is specified as θ4 = f (θ1).

x0/4

y
0/4a3

a2

a1

1

a4

x1

2
3

4

x2

x3

FIGURE 1.1: A general planar 4R function generator.

Figure 1.2 illustrates a function generating four-bar RRRP linkage, where the right-

most dyad of the RRRR linkage is replaced with an RP-dyad. If link d1 remains the input

link, and the output parameter is now d4, the IO function is specified as d4 = f (θ1).

1R and P indicate revolute and prismatic joints connecting a pair of rigid links, also known as R- and
P-pairs.
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a

a

a

d O

G

1

2

4

4

1
x

y
0/4

0/4

2

x1

x2

x3

3
z3

FIGURE 1.2: A general planar RRRP function generator.

Figure 1.3 illustrates a function generating four-bar PRRP linkage, where the left-

most dyad of the linkage is a PR-dyad, and the rightmost dyad of the linkage is an

RP-dyad. In this case, the input parameter for the function generator is a1, while the

output parameter is d4, meaning that the IO function is specified as d4 = f (d1).

The function generation problem is often focused on either the design, or structural

error minimisation, and is a dimensional synthesis problem - concerned strictly with de-

veloping the dimensions of the function generating linkage which minimises the vector

norms of either of these performance indicators. The design error indicates the residual

incurred by a specific linkage in satisfying its synthesis equations, whereas the struc-

tural error is the difference between the prescribed and generated linkage output values

for a given input value [30, 31]. The solutions to these problems were first published by

Freudenstein in [32] and [30], respectively.

The design error minimisation leads to a linear least squares problem, while the

structural error is a highly non-linear problem which requires an iterative optimisation
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x z0/40/4

x1

z2

z1

x2

z3

x3

d1

2

3

a2d4

4

FIGURE 1.3: A general planar PRRP function generator.

approach in order to compare the generated function to the prescribed function [33,

30, 7]. From a design perspective, the structural error is viewed as the most important

performance metric, since it concerns itself with the physical performance of the linkage,

whereas the design error is solely concerned with the arithmetic performance of the

linkage.

1.4 Literature Review

Considering that the problem of function generation was computationally pioneered

in [7], first published in 1954, a number of novel modern techniques have been devel-

oped for planar four-bar function generator synthesis. These methods include, but are

not limited to: multifactor optimisation of the function generator [34], function genera-

tor synthesis with consideration of the transmission angle from coupler to output link

by various metrics [35, 36, 37, 38, 39], and methods which constrain the relative link

lengths through mobility constraints [40]. Some recent works have also placed effort
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towards incorporating machining tolerances into the kinematic synthesis of function

generators [41] in order to incorporate more physically relevant metrics for the kine-

matic synthesis of linkages. Velocity and acceleration level dimensional synthesis of

mechanisms has also been realised as an additional physical metric of relevance, and

work such as that presented in [42] perform dimensional synthesis directly from these

relationships.

Within four-bar function generation, order and branch defects indicate defects within

the kinematic synthesis of mechanisms which occur when the generated linkage inverts

the order of the points within a given function or path, or renders some parts of these

functions or paths inaccessible within a given assembly mode of a linkage. Algorithms

such as [43, 44] endeavour to eliminate these defects from the generation of linkages.

Much like problems contained within the coupler pose curve world, function cognate

linkages, or linkages which bear little physical resemblance to one another yet develop

the same IO relationship [45] have also been investigated for their use in function gen-

erator and machine design.

In works such as [46, 47, 48, 49, 50, 51, 52, 53] novel computational algorithms or for-

mulations of the dimensional synthesis problem are depicted, however, none of these

methods depart, in any significant way, from the original design and structural error

metrics pioneered by Freudenstein in his 1954 thesis in order to obtain an optimal link-

age design. Typically, these problems all still rely on the same linear least-squares solu-

tions of decades past [54], though some additional recent works have endeavoured to-

wards improving the fidelity of these least-squares methods through optimal selection

of precision points [55], or through the use of more advanced mathematical techniques

such as the use of Fourier Coefficients [56]. Notably, efforts presented in [33] and [57]

have lent credence to the idea that the structural error minimisation problem may be

implicitly solved by driving the cardinality of the originating data set to infinity.
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1.4.1 The Freudenstein Equation

The design of IO function generating linkages, specifically the case of RRRR planar

function generating linkages, relies on the use of the synthesis equation which was de-

veloped by Ferdinand Freudenstein over the course of his Ph.D research in 1954 [7].

Specifically, the ith configuration of a planar four-bar RRRR function generator is gov-

erned by,

k1 + k2 cos(θ1i)− k3 cos(θ4i) = cos(θ1i − θ4i), (1.1)

where the ki are the Freudenstein Parameters which denote ratios of the link lengths, il-

lustrated in Figure 1.1, such that,

k1 ≡ (a2
1 − a2

2 + a2
3 + a2

4)

2a1a3
, (1.2)

k2 ≡ a4

a1
, (1.3)

k3 ≡ a4

a3
. (1.4)

While the link lengths may be expressed as,

a4 = 1, (1.5)

a1 =
1
k2

, (1.6)

a3 =
1
k3

, (1.7)

a2 =
√
(a2

4 + a2
1 + a2

3 − 2a1a3k1), (1.8)

where the ground-fixed link length, a4 has its length set to unity, as it serves only to

scale the overall size of the linkage, and the same function is generated regardless of

the scale of the function generator. It is relatively simple to show that for i = 3 IO

angle pairs, referred to in this case as precision points, the Freudenstein Equation may
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be solved explicitly for the parameters which precisely generates the function, but only

at the three precision points. For practical applications, it is often desired to have a

set of n points such that n > 3 [58, 59]. However it is often desired that n ≫ 3 in

order to more precisely control the shape of the generated IO curve; solutions to such

a system of overconstrained equations require numerical approximation, typically, the

Moore-Penrose Generalised Inverse is used [60]. To reduce error in approximating

the function over the prescribed range, the design and structural errors are the typical

objective functions [7, 47, 48, 53].

1.4.2 The Design Error

The most intuitive approach to use for this approximation is the design error, which is

functionally the minimisation of the residual of the Freudenstein Equation in an over-

constrained system of n equations for n ≫ 3. The first step is to develop a matrix-array

representation of this problem which splits the right hand side, Freudenstein Parame-

ters, and the trigonometric functions of the IO pair from Equation 1.1 into two arrays

and a single matrix. The resulting equation has the form,

Sk = b. (1.9)

The matrix S, referred to as the synthesis matrix, takes the form of the n × 3 matrix,

S =



1 cos(θ41) − cos(θ11)

1 cos(θ42) − cos(θ12)
...

...
...

1 cos(θ4n) − cos(θ1n)


, (1.10)

while b is the n × 1 array,
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b =



cos(θ11 − θ41)

cos(θ12 − θ42)
...

cos(θ1n − θ4n)


, (1.11)

and k is an array containing the three Freudenstein Parameters to be solved for by

this approximation. When n = 3, the solution to this set of equations simply becomes,

k = S−1b, (1.12)

but given that n ≫ 3, we know that this can not be the case, and the design error

equation actually becomes

d = b − Sk, (1.13)

where d is the design error array, or residuals corresponding to the mth element in S

and b. Accordingly, an objective function must be derived in order for this optimisation

to take place. In the case of the design error, the objective function for minimisation is,

z =
1
2
(dTWd), (1.14)

where W is a diagonal matrix of positive valued weighting factors. Typically, W is

used to define which points are more or less important to the minimisation, in order

to target certain ranges or portions of the desired IO relationship more accurately than

others. However, in practice, it is typical that W = I is used as a starting point for the

subsequent analysis, where I is the identity matrix.

Matrix Condition Number Minimisation

Now, in an ideal situation, one would employ the Moore-Penrose generalised inverse

of the synthesis matrix, S−1 in order to compute the optimal k array. Conceptually,

this is the simplest and most effective way to proceed. However, typically, matrix S is
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either poorly conditioned, or sufficiently rank deficient (either in the analytical sense,

or with singular values that are, numerically, so close to zero that they are dominated

by roundoff error) so as to render the utility of this approach problematic at best. The

invertibility of a matrix may be evaluated by examining the condition number of the

matrix, κ, which is the ratio of the largest to the smallest singular value within the ma-

trix. Thus, methods of reducing the condition number of the matrix are required. In

order to minimise the condition number of the matrix, specific constants, typically re-

ferred to as dial zeroes, may be added to the equations in order to facilitate this [61].

Furthermore, minimising the condition number of a characteristic matrix within a sys-

tem of linear equations tends towards improving the convergence of the system during

an iterative solution procedure [62], where the characteristic matrix C, of some matrix

A is defined such that, C = A − λI.

The inclusion of dial zeroes means that Equation (1.1) may be altered by including

values modifying θ1 and θ4. Typically, these values are defined as α and β, such that,

θ1i = α + ∆θ1i , (1.15)

θ4i = β + ∆θ4i , (1.16)

which, upon substitution into 1.1 yields,

k1 + k2 cos(α + ∆θ1i)− k3 cos(β + ∆θ4i) = cos(α + ∆θ1i − (β + ∆θ4i)). (1.17)

This substitution allows the designer to modify matrix S (Equation (1.10)) to the

form of,

S =



1 cos(β + ∆θ41) − cos(α + ∆θ11)

1 cos(β + ∆θ42) − cos(α + ∆θ12)
...

...
...

1 cos(β + ∆θ4n) − cos(α + ∆θ1n)


, (1.18)
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where a method such as the Nelder-Mead downhill simplex algorithm may be used in

order to minimise the condition number of matrix S through the tuning of α and β. Con-

sidering that this is an iterative procedure, some initial guess must be provided in order

to develop dial zeroes which converge to static values; however, there exists little guid-

ance as to the selection of the initial set of dial zeroes for the Nelder-Mead minimisation,

and this decision relies on the experience of the designer. Once this operation has been

completed, the remaining portion of the design error synthesis may be completed as per

the methods previously outlined.

Singular Value Decomposition

Singular Value Decomposition (SVD) is one method which is useful for inverting over-

constrained systems of linear equations that may contain singular, or numerically close

to singular values [63, 64]. SVD not only allows a designer to invert a non-square and

poorly-conditioned matrix, S, but it also allows the designer to observe which values

of b are driving the solution away from a minimum condition number, thus allowing

for the elimination of those elements from the equation in order to increase the fidelity

of the least-squares solution-based results. In cases where the classical techniques of

Gaussian elimination [65, 66], Householder reflections [67, 68], or the Moore-Penrose

Generalised Inverse [69, 70, 71] fail to yield acceptable or useful results for the inversion

of S in order to develop the design error minimising values of ki, one may use SVD in

order to decompose the matrix S into the following three matrices:

S = Um×nΣn×nVT
n×n, (1.19)

where Um×n is a column-orthonormal matrix, Σn×n is a diagonal matrix containing the

singular values of matrix S, and VT
n×n is a square orthogonal matrix whose columns

and rows are orthonormal. The advantages of SVD begin with these matrices; given

that Um×n and VT
n×n are both orthonormal matrices, their inverses are equal to their

transpose, while matrix Σn×n may be inverted simply by taking the reciprocal of each

diagonal element. This implies that, in general,
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S−1 = Vn×nΣ−1
n×nUT

m×n, (1.20)

which holds true unless any value in Σn×n is sufficiently close to zero, thus forcing its

inverse to tend towards infinity. In such a case, one may simply remove that IO pair,

which is close to zero, from the problem by allowing the corresponding entry in Σ−1
n×n

to be identically zero. Once this step has occurred, the optimal Freudenstein parameter

set which minimises the 2-norm of Equation (1.12) is,

kopt = VΣ−1UTb. (1.21)

While the aforementioned solution is fundamentally complete, one aspect yet re-

mains to be addressed; how close to zero is "sufficiently close to zero"? Clearly, it is

desired to have some metric for the elimination of the problematic and poorly condi-

tioned values in Σn×n which would allow a designer to make a consistent decision from

one linkage design to the next. As is common in computational applications, the pri-

mary source for the metric which is used to zero these problematic values comes from

the computational accuracy of the machine, ϵ, upon which the design is being devel-

oped. Accordingly, a magnitude of σi which constitutes a poorly conditioned entry may

be taken as,

σi

σmax
< Rank(S)ϵ. (1.22)

Thus, SVD allows the designer to observe precisely which σi fail this simple inequal-

ity, and allows for their elimination from the set of points being used for the discrete

approximate synthesis problem.

1.4.3 Structural Error

If the design error computes the linkage parameters which serve to minimise the resid-

ual of the Freudenstein equation over a given IO range, the structural error serves to

compute the linkage which most effectively matches the desired and the generated IO
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pairs for a given linkage. Mathematically, the structural error problem aims to minimise

the value of the stuctural error array, s, where s is defined as,

s ≡ [θ4i ,Pres − θ4i ,Gen] , iϵ1, 2.., n, (1.23)

over n elements. Given the nature of this quantity, it stands to reason that the structural

error problem requires a designer to compute a given set of errors, s, based upon some

initial guess of Freudenstein’s ki values, at which point some change is levelled to the ki

parameters, defined as ∆ki. Subsequently, s is computed again and the problem returns

to the top of the loop. Thus, this structural error minimisation procedure is a nonlinear,

iterative, least-squares problem.

As with the design error procedure, an objective function, in this case ζ may be

defined as,

ζ =
1
2

sTWs, (1.24)

where W is, again, a matrix of weighting factors. If W is defined as I, the objective

function simplifies to,

ζ =
1
2

sTs =
1
2
∥s∥2. (1.25)

This objective function will be minimised over the Freudenstein parameters, ki, by

the normality condition, or the gradient of ζ with respect to k,

δζ

δk
=

(
δs
δk

)T δζ

δs
= 0. (1.26)

In order for the remaining operations to take place, a majority of the effort must be

placed in developing a minimisation condition which will allow the objective function

to be minimised. Typically, for an ideal function generator, the synthesis equation,

Sk − b = 0, (1.27)
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would be used. However, given the formulation of Equation (1.23), what is desired is

a minimisation routine that is in terms of the generated output angle, alongside its static

input angle partner, and the Freudenstein parameters. In essence, we require a form of

the Freudenstein equation (Equation (1.1)) f , such that,

f (θ4,Gen, ki, θ1) = 0. (1.28)

For n input angles, θ1, f will be an n × 1 array of values. Now, for any given optimal

set of ki, f may be rewritten as the sum of its partial derivatives such that,

d f
dk

= 0n×3 =

(
δ f
δk

)
n×3

+

(
δ f

δθ4,Gen

)
n×n

(
δθ4,Gen

δk

)
n×3

, (1.29)

where the final partial derivative can be show to simplify to,

δθ4,Gen

δk
= −

(
δs
δk

)
, (1.30)

due to the definition of s from Equation (1.23); θ4,Pres is invariant in ki, as it is an ideal

and prescribed value. The second partial derivative is an n× n diagonal matrix, D, such

that,

Dn×n =
δ fn

δθ4,Gen
. (1.31)

Given that it is known that f is linear in ki, and Equation (1.29) is equal to zero, it

can be rearranged such that,

δθ4,Gen

δk
= −D−1 δ f

δk
, (1.32)

and that,

δ f
δk

≡ S. (1.33)

Upon substitution of these identities into Equation (1.26) it can be shown that,
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δζ

δk
= STD−1s = 0. (1.34)

In order to minimise this condition, a ∆k must be constructed from these values,

alongside some initial guess for the structural error minimising linkage parameters, kν
i .

However, given the sensitivity of this minimisation procedure, the designer must select

an initial set of kν
i that is quite close to the structural error minimising ki. In order to

accomplish this in a fully general and universal manner, one must first optimise the

linkage for the design error minimising ki, which will then be used as the initial guess,

kν
i , for the structural error minimisation routine.

In the ideal situation, we know that,

θ4,Gen(ki) = θ4,Pres, (1.35)

but, considering that this will never be the case in an overconstrained system of equa-

tions, we endeavour to compute,

θ4,Gen(kν
i + ∆ki) = θ4,Pres, (1.36)

such that the quantity modifying ∆ki, serving to perturb the estimated optimal kν
i , de-

creases in magnitude below the computational accuracy of the computer being used,

and thus leaves the optimal ki equal to kν
i at that iteration. In order to do this, the left

hand side of the equation may be expanded in a Taylor series, such that,

θ4,Gen(kν
i + ∆ki) = θ4,Gen(kν

i ) +
δθ4,Gen

δki
|kν

i
∆k, (1.37)

and ignoring the higher-order terms. Using Equations (1.32) and (1.33), Equation (1.37)

may be rewritten as,

D−1S∆k = θ4,Gen(kν
i )− θ4,Pres = −sν, (1.38)

therefore allowing for the computation of ∆k as either the Moore-Penrose Generalised
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Inverse of this equation at the νth step, or through the use of Householder transforma-

tions. This procedure exits when,

∥∆k∥ < ϵ, (1.39)

while,

ϵ > 0, (1.40)

where ϵ is the machine precision of the computer being used to produce the minimisa-

tion, and the kν
i at this step represents the structural error minimising linkage parame-

ters for the function and four-bar linkage at hand.

1.5 Non-Planar Four-Bar Mechanisms

Planar four-bar function generating mechanisms tend to be the default mechanism con-

struction for dimensional synthesis of function generating linkages, though spatial link-

ages are an obvious extension of this concept. Spherical linkages also exist, and can be

shown to be a special case wherein the plane upon which the planar function generat-

ing linkage is constructed is a sphere with infinite radius [72]. Thus, spherical linkages

can be shown to be the most general planar four-bar RRRR function generating linkage,

where the equation for the non-spherical linkages may be extracted when the radius of

the sphere upon which the linkage is constructed is set to infinity.

While planar four-bar function-generating mechanisms may be designed through

the use of the Freudenstein equation and supporting metrics in the form of the de-

sign and structural errors, the design of non-planar four-bar function generating mech-

anisms is somewhat more complex. In the cases of the spatial function generators,

there does not exist a general form of the IO function, and thus the methods rely on

comparison to optimal solutions obtained via planar RRRR function generating mech-

anisms [73], the use of CAD packages [74, 75], or on the use of complicated numerical

minmisation schema [76] in order to accomplish this task. While [77] produces results
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which do synthesise planar, spherical, and spatial linkages for function-generator syn-

thesis, the work relies on discontinuous spline curves and multiple simultaneous objec-

tive function minimisations in order to perform the synthesis. Furthermore, this method

is only appropriate for dimensional synthesis up to ten precision points (as dictated by

the dimensional synthesis points as well as the points required for the satisfaction of the

additional objective functions), and as such is unsuitable for the extension to overcon-

strained systems of equations.

In the case of the spherical RRRR linkage, however, solutions based on vector-loop

closure methods, much the same as the derivation of the original Freudenstein equation

for planar RRRR linkages, do exist [5, 78].

1.5.1 Spherical RRRR Linkage Trigonometric IO Equation

The spherical four-bar function generator is constructed on the surface of a sphere of

finite radius, such that all revolute joint axes intersect at the center of the sphere, as

shown in Figure 1.4.

z0,4

z1
z3

z2

4

1

2

3

x0,4

1x

x2

1 x3

4

2

3

FIGURE 1.4: Kinematic geometry of the Denavit-Hartenburg parameters
associated with the spherical RRRR function generating linkage architec-

ture.
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Using vector-loop closure equations which are similar to the methods of Freuden-

stein, the IO relationship of the spherical RRRR linkage may be determined based on

the arclengths of the links which represent the distances between revolute joint centers

of the mechanisms [5]. Is is assumed that the linkage derivation is being based on a

quadrilateral projected onto the surface of a sphere such that the vertices are joined in

order of OABC and reconnecting to O, shown in Figure 1.5.

FIGURE 1.5: Demonstration figure for the labelling of the vectors required
to define the spherical RRRR linkage vector loop closure equation [79].

The following arclengths, τ may then be defined, based on Figure 1.5, as the inverse

cosines of the vectors connecting each revolute joint on the surface of the sphere upon

which the mechanism is constructed. Explicitly, these arclengths are defined as,
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τ1 = cos−1(OA), (1.41)

τ2 = cos−1(AB), (1.42)

τ3 = cos−1(BC), (1.43)

τ4 = cos−1(CO), (1.44)

where the input-output relationship may be expressed as,

A(θ1)cos(θ4) + B(θ1)sin(θ4) = C(θ1), (1.45)

while the coefficients A(θ1), B(θ1) and C(θ1) are defined as,

A(θ1) = cos(θ1)sin(τ1)cos(τ4)sin(τ3)− cos(τ1)sin(τ4)sin(τ3), (1.46)
B(θ1) = sin(θ1)sin(τ1)sin(τ3), (1.47)

C(θ1) = cos(τ2)− cos(θ1)sin(τ1)sin(τ4)cos(τ3)− cos(τ1)cos(τ4)cos(τ3). (1.48)

Equation (1.45) contains two solutions for the output angle which satisfies the equa-

tion for every single input angle parameter, indicating that for spherical RRRR function

generators, there is always an elbow-up and elbow-down configuration if the linkage

can be assembled. Considering its similarities to the Freudenstein equation, many of

the same techniques regarding design and structural error minimisation are used in or-

der to synthesise spherical RRRR function generators. However, the construction of the

objective functions required to solve for the design and structural errors will be funda-

mentally different, and bear no resemblance to the planar RRRR solutions [40].

1.6 Extension of Current Theory

Considering the nature of the design and structural error metrics, it would stand to reason

that a designer would prefer to synthesise a linkage with as many precision points as

possible in order to develop a function generating linkage which approximates the de-

sired function as closely as possible over the desired IO range of the linkage. While this

goal is reasonable, limitations exist in the form of singular values within the inversion
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of the matrices required to solve for the values of the linkage parameters, ki. Accom-

modating this desire can take several forms. For example, the design error may have

some minimum desired value set, above which point an iterative method is applied in

order to develop a linkage which most closely approximates the function over the de-

sired range by increasing the cardinality of the generating dataset incrementally until

the design error lower bound is reached. From this point, the designer may use the

typical structural error synthesis method to complete the design of the linkage.

Although it would stand to reason that if the ideal data set for the kinematic syn-

thesis of a mechanism has as many points as possible within it, that integration is an

obvious design step. Considering that on a data set of sufficiently large cardinality,

the design and structural error minimising linkages tend to converge to the same link

lengths [33], integration would also eliminate the need for the explicit computation of

the iterative non-linear structural error. A data set of infinite cardinality would also

necessarily eliminate the need for algorithms such as SVD, as in a data set of infinitely

many points the impact of any subset of points on the error is, by definition, zero. While

it was demonstrated in [57] that this is possible, it will be shown that the applicability

of this method to the Freudenstein equation is limited due to the mathematical nature

of the equation itself.

1.6.1 Limitations of the Freudenstein Equation

While the Freudenstein equation has, historically, been used to synthesise four-bar func-

tion generating linkages, there are some distinct and notable limitations within its for-

mulation. First and foremost, while the Freudenstein equation may be used for the

kinematic synthesis of linkages, due to the nature of the development of the equation,

analysis of the suitability of any linkage is necessarily a secondary step within the kine-

matic synthesis problem; the Freudenstein equation itself is only formulated to show-

case the IO relationship, and is completely insensitive to secondary characteristics of a

linkage, such as the transmission angle.
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Freudenstein’s method for the development of IO equations may be followed iden-

tically in order to develop expressions for some of the intermediate joint angle param-

eters, though the resulting equations make use of fundamentally different link length

parameters, ki, within their formulation, see [80, 72] for example. However, this is typ-

ically not performed and instead, designers tend to rely on geometric constructions of

the linkages or on secondary mathematical tools to check these secondary characteris-

tics. The lack of intermediate joint angle relationships also means that the functional

relationship between the input of the input dyad and the other output parameters is

completely unknown. This thesis will show that, through the development of AIO equa-

tions, all of these limitations may be completely circumvented in order to provide a clear

and concise method for the optimal kinematic IO design of four-bar function generators.

1.6.2 Integration of the Freudenstein Equation

Within [57], a method for the integration of the Freudenstein equation was developed

through the use of a functional metric space which depends solely on the continuity of

the functional IO relationship. The explicit definition of the procedure for accomplish-

ing this continuous approximation with the Freudenstein equation is replicated herein

for emphasis, while the theory and proofs required to generate the following relations

can be found in [57]. At its most fundamental, this method relies on the minimisation

of the residual of the integrated Freudenstein equation over the input angular range for

which the IO function is to be developed,

∥ d(α, β) ∥2= (
∫ ∆θ1, f

∆θ1,i

(k1 + k2 cos(α + ∆θ1)− k3 cos(β + ∆θ4)

− cos(α + ∆θ1 − (β + ∆θ4))
2))

1
2 , (1.49)

which simplifies, following some algebraic manipulation, to,

∥ d(α, β) ∥2
2= kTA(α, β)k − 2e(α, β)T + c(α, β). (1.50)
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Where the matrix, A(α, β) is a positive 3 × 3 semidefinite matrix with six distinct
elements, aij,

a11 =
∫ ∆θ1, f

∆θ1,0

d∆θ1 = ∆θ1, f − ∆θ1,0, (1.51)

a12 =
∫ ∆θ1, f

∆θ1,0

cos(β + ∆θ4)d∆θ1, (1.52)

a13 = −
∫ ∆θ1, f

∆θ1,0

cos(α + ∆θ1)d∆θ1, (1.53)

a22 =
∫ ∆θ1, f

∆θ1,0

cos2(β + ∆θ4)d∆θ1, (1.54)

a23 = −
∫ ∆θ1, f

∆θ1,0

cos(β + ∆θ4)cos(α + ∆θ1)d∆θ1; (1.55)

a33 =
∫ ∆θ1, f

∆θ1,0

cos(α + ∆θ1)d∆θ1. (1.56)

The vector e(α, β) is a 3-dimensional vector,

e1 =
∫ ∆θ1, f

∆θ1,0

cos(α + ∆θ1 − β − ∆θ4)d∆θ1, (1.57)

e2 =
∫ ∆θ1, f

∆θ1,0

cos(β + ∆θ4)cos(α + ∆θ1 − β − ∆θ4)d∆θ1, (1.58)

e3 =
∫ ∆θ1, f

∆θ1,0

cos(α + ∆θ1)cos(α + ∆θ1 − β − ∆θ4)d∆θ1. (1.59)

Finally, the scalar coefficient, c(α, β) is expressed as,

c(α, β) =
∫ ∆θ1, f

∆θ1,0

cos2(α + ∆θ1 − β − ∆θ4)d∆θ1, (1.60)

where all terms containing ∆θ4 are computed as the desired functional relationship be-

tween ∆θ4 and, ∆θ1, such that ∆θ4 = f (∆θ1). Each of these factors requires numer-

ical integration over the desired input-output range, and thus iteration in the event

that the input-output range is changed, provided that an undesirable result is devel-

oped from the initial attempt. If A(α, β) is positive definite, the optimal Freudenstein pa-

rameters, k∗(α, β), which minimise the design error of the function generating linkage,

∥ d(α, β) ∥2 are:
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k∗(α, β) = A−1(α, β)e(α, β), (1.61)

while the square of the design error, being minimised by the above parameter set may

be expressed as,

min ∥ d(α, β) ∥2
2= c(α, β)− e(α, β)tA−1(α, β)e(α, β). (1.62)

The positive definiteness of A(α, β) is dependent on the fact that the dial zero set,

(α, β), minimises the condition number, κ of A(α, β), and is only valid if the (α, β) set

is a unique global minimising set. The Nelder-Mead downhill simplex algorithm [81]

may be used to iteratively minimize the condition number of A(α, β) for a given IO

range. From this point, the optimal Freudenstein parameters may be computed using

these optimal dial zeroes. While this method can be shown to, in the general sense,

compute the structural error minimising linkage parameters without explicitly evaluat-

ing the structural error of the function generating linkage by continuously minimising

the design error of the linkage, it is a large computational undertaking. Using Matlab

and its adaptive Lobatto quadrature [82] minimisation schema, the algorithm requires

more than four hours to run to completion on an Intel 32-Bit Dual core CPU @ 3.10 GHz.

While it is entirely conceivable that modern computational capacities could reduce

this time by an order of magnitude, a more expeditious method is clearly required. Fur-

ther to this desire, the derivation of the aforementioned quantities was a non-trivial

task, and is thus not applicable in general for a designer who is not extremely skilled

in algebraic manipulations. For example, see [83] for the versions of Equation (1.51)

through Equation (1.60) in their original form, before simplification. Thus, a more com-

pact representation of the IO relationship contained within the Freudenstein formula-

tion is required in order to expedite the continuous approximation methods. In order

to generalise the development of these equations, the original Denavit-Hartenberg con-

vention must be revisited.
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1.6.3 The Denavit-Hartenberg Convention and the Planar RRRR Input Out-

put Equation

Before discussing the continuous approximate synthesis approach, it will be useful to

recall the matrix method for kinematic analysis and synthesis of linkages, which we

call the Denavit-Hartenberg (DH) method, developed by Jacques Denavit and Richard

Hartenberg. The method was first published in 1955 [84], and subsequently in their

textbook on kinematic synthesis [2] in 1964. These methods will be vital in deriving the

IO equations of all four-bar function generating linkages in a form that is more read-

ily useful for optimisation techniques. The first step in the DH method applied to an

arbitrary kinematic chain requires the identification and numbering of all joint axes.

In order to align with our previous publications on the development of the AIOs re-

quired for the work presented within this thesis, the same slightly modified, DH param-

eter coordinate system and naming convention will be used herein. The slight modifica-

tion compared to the typical four-bar function generating architecture is that we have,

as the relatively stationary coordinate system at the start of a kinematic chain, x0, y0, z0.

Hence, at any joint in the kinematic chain we measure, for example, the relative angle

θi of link ai about joint axis zi−1 from xi−1 to xi, see Figure 1.6a. Whereas, in the original

paper [85] the relatively stationary coordinate system at the start of a kinematic chain is

the x1, y1, z1 coordinate system, and the relative angle θi of link ai is measured about

zi from xi to xi+1, see Figure 1.6b. Because the modification is so subtle, and because

the mechanical engineering world has moved away from the original assignment rules

found in [2, 84], we will henceforth refer to our version of the parametrisation simply as

the DH method.

The DH parametrisation involves the allocation of coordinate systems to each link

in the chain that move with the link, using a set of rules to locate the origin of the

coordinate system and the orientation of the basis vectors. The position and orientation

of consecutive links is defined by a homogeneous transformation matrix which maps

coordinates of points in the coordinate system attached to link i to those of the same

points described in a coordinate system attached to link i − 1.



1.6. Extension of Current Theory 27

x

y
0

0

1

x1

x

y
1

1

1

x2

a1

(A) Slightly modified definition of θ1.
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FIGURE 1.6: Enumeration of the DH coordinate systems and assignment
rules.
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FIGURE 1.7: DH parameters in a general serial 3R kinematic chain.

To visualise the four DH parameters, consider two sequential arbitrary neighbour-

ing links, i − 1 and i. Two such links are illustrated, together with their DH parameters,

in Figure 1.7. The DH parameters [84] are defined in the following way with our subtle

modification.

θi , joint angle: the angle from xi−1 to xi measured about zi−1.

di , link offset: the distance from xi−1 to xi measured along zi−1.

τi , link twist: the angle from zi−1 to zi measured about xi.
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ai , link length: the directed distance2 from zi−1 to zi measured along xi.

The DH coordinate transformation matrix, using the European convention for ho-

mogeneous coordinate arrays [w, x, y, z]T, where w is the homogenising coordinate,

is

i−1Ti =



1 0 0 0

ai cos θi cos θi − sin θi cos τi sin θi sin τi

ai sin θi sin θi cos θi cos τi − cos θi sin τi

di 0 sin τi cos τi


. (1.63)

We then algebraise Equation 1.63 using the tangent half-angle substitutions for the joint

and twist angles, where,

vi = tan
(

θi

2

)
, ⇒ cos θi =

1 − v2
i

1 + v2
i

, sin θi =
2vi

1 + v2
i

,

αi = tan
(τi

2

)
, ⇒ cos τi =

1 − α2
i

1 + α2
i

, sin τi =
2αi

1 + α2
i

.

The detailed computations leading to the results presented herein use the Maple

library MyKinematics [86] which requires the European homogeneous coordinate con-

vention. The forward and inverse kinematics of serial chains are the concatenations

of the individual transformation matrices in the appropriate order [13]. For example

the forward kinematics problem of determining the position and orientation of the nth

link in a serial kinematic chain described in a relatively fixed non-moving base coordi-

nate system 0, given the relevant DH parameters and values for the n joint variables,

becomes conceptually simple matrix multiplication.

2Two points define a line in the plane, and the directed distance along that line is the location of the
second point relative to the first. Within function generator synthesis, if a negative distance arises from
the computation of any ai value, the second point defining the centre of the revolute joint at the distal end
of that link is on the opposite side of the first revolute joint as would be expected from the typical joint
circulation direction.
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The DH method was largely intended for planar, spherical, and spatial four-bar sim-

ple closed kinematic chains, but has since become nearly universally applied and syn-

onymous with the kinematics of mechanical systems in general, and robot mechanical

systems in particular, see [87, 88, 89, 90] for instance, but there are many other modern

examples. The serial nR chain is conceptually closed by equating the forward kinemat-

ics transformation matrix to the identity.

0Tn = 0T1
1T2

2T3 · · ·n−2 Tn−1
n−1Tn = I. (1.64)

The resulting matrix represents a set of implicit equations in terms of the link constants

and all n joint angles. If we restrict ourselves to the planar RRRR simple closed kine-

matic chain, and the IO equation that relates θ4 to θ1, then the intermediate angles θ2 and

θ3 must be eliminated using the available equations. What remains is a single implicit

equation in θ4 and θ1, or in the cases of the algebraic equations, v1 and v4 respectively.

Coordinate System Considerations

While all of the algebraic input-output equations have been derived using the DH method

coordinate systems, in order to compare results contained within this thesis to those

which are common within the literature, it will be required to present the algebraic

equations in terms of their coordinate systems as defined by Freudenstein and the bulk

of the literature up to this date. However, due to the complexities of the generation of

the spherical RRRR function generator and moreover the spatial RSSR function gener-

ator, these equations will be presented explicitly in terms of the DH method parameter

assignments, thus indicating a counter-clockwise joint parameter circulation.

This change of convention may seem needlessly confusing at first, but there exists a

simple mathematical reason for the switch; the derivation of the Freudenstein equation

itself is reliant on the use of the absolute coordinate systems and angles. If the derivation

is attempted using counter-clockwise positive joint angle circulation, it is not possible to

close the vector loop in such a way so as to obtain these absolute joint angle parameters.

Thus, the Freudenstein equation was derived using a clockwise circulation. Of note, the
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Freudenstein equation was developed in 1954, while the DH method and convention

would not emerge for another year, until Denavit and Hartenberg first published their

works in 1955. It may be of use for the reader to consider this reference coordinate

system change to be a modernisation in the development of the Freudenstein equation

in order to ensure that it is expressed with the most mathematically consistent, and

modern, modelling standards which are available.

Fortunately, the equations displayed herein within the DH coordinate system result

in the same optimal function generator linkage dimensional synthesis results as those

developed through the classical vector loop closure methods. This similarity enables an

easy comparison between the linkages and their relevant comparatives in the literature.

1.6.4 Algebraic Input-Output Equations of the Planar RRRR Mechanism

Classically, the solution to a planar four-bar function generation problem is conducted

using the Freudenstein equation [32], and it has been demonstrated in [57] that this

form of the function generator problem can be integrated in order to synthesise the de-

sign and structural error minimising linkage for a given IO function over some desired

range. However, the expressions and functions required to perform this minimisation

are quite complicated, and a more compact form of the problem is greatly desirable. It

will herein be shown that a computational simplification of the trigonometric Freuden-

stein IO equation is achieved with the algebraic IO equation.

The algebraic IO equations were derived in [91, 92, 93] through the use of displace-

ment constraints projected into a planar subset of Study’s soma space for each of the

three planar four-bar function generator architectures. We will commence with the al-

gebraic IO equation for the planar RRRR mechanism, seen in Equation (1.65). In this

equation the IO variables v1 and v4 are the tangent of the half angle parameters of the

input and output angles θ1 and θ4, illustrated in Figure 1.1:

Av2
1v2

4 + Bv2
1 + Cv2

4 + D − 8a1a3v1v4 = 0; (1.65)

where,



1.6. Extension of Current Theory 31

A = A1A2 = (a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4), (1.66)
B = B1B2 = (a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4), (1.67)
C = C1C2 = (a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4), (1.68)
D = D1D2 = (a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4). (1.69)

Using the same derivation techniques as in [92], all vi − vj algebraic IO equations,

corresponding to the IO equation with each independent set of angular parameters for

the RRRR linkage are,

A1B2v2
1v2

2 + A2B1v2
1 + C1D2v2

2 − 8a2a4v1v2 + C2D1 = 0, (1.70)
A1B1v2

1v2
3 + A2B2v2

1 + C2D2v2
3 + C1D1 = 0, (1.71)

A1D2v2
2v2

3 + B2C1v2
2 + B1C2v2

3 − 8a1a3v2v3 + A2D1 = 0, (1.72)
A1C1v2

2v2
4 + B2D2v2

2 + A2C2v2
4 + B1D1 = 0, (1.73)

A1C2v2
3v2

4 + B1D2v2
3 + A2C1v2

4 + 8a2a4v3v4 + B2D2 = 0, (1.74)

where each vi − vj equation is named by the first vi − vj present in the equation.

Now, in contrast to the Freudenstein methods and their derivations using absolute

angular parameters, each of the six algebraic input-output equations depends on the

same set of bilinear link length coefficients. The impact of this fact is difficult to over-

state; in the original vector loop closure method, if a function generation problem is

desired in the v1 − v3 IO pair, all of the linkage parameter coefficients, ki, will have

a completely different form from those constructed for the v1 − v4 IO equation. Fur-

thermore, this fact holds true for each and every vi − vj pair comprising the linkage.

Not only does the fact that the linear link length coefficients remain the same for each

vi − vj pair make the equations themselves more easily used, but it implies something

decidedly powerful about the linkage design space itself; each set of link lengths which

satisfy any of the above equations must, by definition, satisfy all of the equations, and

thus, any single set of link lengths simultaneously defines six separate functions.

Upon investigation found in [94], it was shown that the design parameter space cor-

responding to the RRRR function generating linkage actually contains stellated octahe-

dron, shown in Figure 1.8. The space which this octahedron occupies may be considered
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a projective space, where a4, the ground fixed link length, is arbitrarily treated as the ho-

mogenising coordinate. Following this, each axis of the space corresponds to link length

a1, a2, or, a3. The eight planes containing the equilateral traingular faces of the octahe-

dron are the eight bilinear factors of the coefficients in Equations (1.66) through (1.69).

A linkage which satisfies the requirements for assembly occupies exactly one unique

point within this design parameter space, and this point is either outside, or directly on

the surface of, this stellated octahedron.

(a)

a1a2

a3

(b)

a1a2

a3

FIGURE 1.8: The stellated octahedron which occupies the centre of the
design parameter space of a planar RRRR function generator.

While the shape contained within the design parameter space is of little consequence

to the designer, as linkages which are present on the surface of the stellated octahedron

will only be conditionally assemblable, it is interesting to note that the stellated octahe-

dron is the only regular compound of two tetrahedra, while also being the simplest of

the polyhedral compounds [95].
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1.6.5 Algebraic Input-Output Equations of the Planar RRRP Mechanism

For an RRRP mechanism, the IO parameters are the input angle parameter v1 and the

output P-pair linear excursion d4, while the design parameters are link lengths a1, a2,

a4, and the slider inclination angle parameter v4, illustrated in Figure 1.2. Following an

identical derivation methodology to the 4R mechanism, the RRRP algebraic IO equation

is obtained:

Ad4
2v1

2 + Cd4v1
2 − 8a1d4v1v4 + Bd4

2 + Ev1
2 + Dd4 + F = 0, (1.75)

such that,

A = v2
4 + 1, (1.76)

B = v2
4 + 1, (1.77)

C = −2(v4 − 1)(v4 + 1)(a1 + a4), (1.78)
D = 2(v4 − 1)(v4 + 1)(a1 − a4), (1.79)

E = (v2
4 + 1)(a1 + a2 + a4)(a1 − a2 + a4), (1.80)

F = (v2
4 + 1)(a1 + a2 − a4)(a1 − a2 − a4). (1.81)

Simplifications to the RRRP Input-Output Formulation

For all other linkage architectures contained herein, only one set of algebraic IO (AIO)

equations will be presented, however, in the case of the RRRP mechanism, a single

ubiquitous simplification may be realised, which fundamentally alters the formulation

of the IO relationships. In order to compare the methods contained herein with litera-

ture, however, the formulation of the IO relationships from the previous section must

be used. Thus, for completeness, both representations of the RRRP IO equations must

be discussed.

The simplification for the AIOs for the RRRP function generating linkage takes a the

form of a single rotation, so as to ensure that the vector which contains the first revolute

joint and the normal to the output track of the mechanism is horizontal. This necessarily

sets the value of the track angle, θ4, equal to 90 degrees. Thus when algebraising this
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value, the tangent half angle parameter, v4, is set equal to 1. This single rotation changes

all of the IO equations to be far more compact, and with no loss in generality of the

solution. The RRRP (ν1 − d4) IO equation then becomes,

v2
1d2

4 + Rv2
1 + d2

4 − 4a1v1d4 + S = 0, (1.82)

where

R = R1R2 = (a1 + a2 − a4)(a1 − a2 − a4), (1.83)

S = S1S2 = (a1 + a2 + a4)(a1 − a2 + a4). (1.84)

The remaining five IO equations in terms of these bilinear link length coefficients

then become:

R2v2
1v2

2 + R1v2
1 − S2v2

2 + 4a2v1v2 − S1 = 0; (1.85)

R1v2
1v2

3 + R2v2
1 − S2v2

3 − S1 = 0; (1.86)

S2v2
2v2

3 − R2v2
2 − R1v2

3 − 4a1v2v3 = 0; (1.87)

v2
2d2

4 − R2S2v2
2 + d2

4 − R1S1 = 0; (1.88)

v2
3d2

4 + R1S2v2
3 + d2

4 + 4a2v3d4 − R2S1 = 0. (1.89)

For comparisons to literature, the equations listed in Section 1.6.5 will be used,

but for extensions to the classical theory contained herein, the formulations contained

within this subsection will be used due to their compact nature.

1.6.6 Algebraic Input-Output Equations of the Planar PRRP Mechanism

Following from these two cases, the PRRP IO equation is presented in terms of the

clockwise vector loop closure methods typical of classical methods. The algebraic IO
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equation for a PRRP mechanism, with IO variables d1 and d4 and constant design pa-

rameters v1, a2, and v4 (see Figure 1.3) can be obtained in the same way, yielding:

Ad1
2 + Bd4

2 + Cd1d4 + Dd1 + Ed4 + F = 0, (1.90)

where,

A = (v2
4 + 1)(v2

1 + 1), (1.91)

B = (v2
4 + 1)(v2

1 + 1), (1.92)
C = −2(v1v4 − v1 + v4 + 1)(v1v4 + v1 − v4 + 1), (1.93)

D = 2a4(v2
4 + 1)(v1 − 1)(v1 + 1), (1.94)

E = −2a4(v4 − 1)(v4 + 1)(v2
1 + 1), (1.95)

F = −(v2
4 + 1)(v2

1 + 1)(a2 − a4)(a2 + a4). (1.96)

In the case of the PRRP function generator, the DH parameter equations differ sig-

nificantly from those which result from the coordinate system associated with classical

vector-loop closure methods, and for comparison to literature, both must be discussed

herein.

DH Method Planar PRRP Input-Output Equations

When following the DH method for parameterising the PRRP function generator as

contained within [93], three constant factors are revealed following the Groebner basis

elimination and are defined as,

T = a2
2(α

2
4 + 1);

U = a2(α
2
4 − 1);

V = a2(α
2
4 + 1).

Using these coefficients the six algebraic IO equations are:
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(α2
4 + 1)(d2

1 + d2
4)− 2(α2

4 − 1)d1d4 − T = 0; (1.97)

2α4d1v2
2 + Uv2

2 + 2α4d1 − 4a2α4v2 − U = 0; (1.98)

2α4d1v2
3 − Vv2

3 + 2α4d1 + V = 0; (1.99)

α4v2v3 − v2 − v3 − α4 = 0; (1.100)

2α4v2
2d4 + Vv2

2 + 2α4d4 − V = 0; (1.101)

2α4v2
3d4 − Uv2

3 + 4a2α4v3 + 2α4d4 + U = 0. (1.102)

The PRRP linkage concludes the gamut of planar linkages for which AIOs have been

developed at the time of this publication, and thus the discussion moves towards the

description of the AIO functions associated with the spherical RRRR linkage.

1.6.7 Algebraic Input-Output Equation of the Spherical RRRR Linkage

In the case of the spherical RRRR linkage, the derivation of the AIO equations which

are used for this thesis is similar to that of the planar four-bar function generating link-

ages. Following the use of the Groebner basis elimination algorithm, the following six

algebraic equations are derived:

A1A2v2
1v2

4 + B1B2v2
1 + C1C2v2

4 + 8α1α3(α
2
4 + 1)(α2

2 + 1)v1v4 + D1D2 = 0; (1.103)

A1B2v2
1v2

2 + A2B1v2
1 + C1D2v2

2 + 8α2α4(α
2
1 + 1)(α2

3 + 1)v1v2 + C2D1 = 0; (1.104)

A1B1v2
1v2

3 + A2B2v2
1 + C2D2v2

3 + C1D1 = 0; (1.105)

A1D2v2
2v2

3 + B2C1v2
2 + B1C2v2

3 − 8α1α3(α
2
4 + 1)(α2

2 + 1)v2v3 + A2D2 = 0; (1.106)

A1C1v2
2v2

4 + B2D2v2
2 + A2C2v2

4 + B1D1 = 0; (1.107)

A1C2v2
3v2

4 + B1D2v2
3 + A2C1v2

4 + 8α2α4(α
2
1 + 1)(α2

3 + 1)v1v2 + B2D1 = 0. (1.108)

In keeping with previous linkage architectures, the linkage design parameter sets

Ai, Bi, Ci, and Di are identical from one (vi, vj) equation set to another, containing only
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the linkage arclength, αi, terms. However, these linkage parameter sets themselves are

more complicated, taking the form of functions which are cubic in, αi, such that,

A1 = α1α2α3 − α1α2α4 + α1α3α4 − α2α3α4 + α1 − α2 + α3 − α4, (1.109)
A2 = α1α2α3 − α1α2α4 − α1α3α4 − α2α3α4 − α1 − α2 − α3 + α4, (1.110)

B1 = α1α2α3 + α1α2α4 − α1α3α4 − α2α3α4 + α1 + α2 − α3 − α4, (1.111)
B2 = α1α2α3 + α1α2α4 + α1α3α4 − α2α3α4 − α1 + α2 + α3 + α4, (1.112)
C1 = α1α2α3 − α1α2α4 − α1α3α4 + α2α3α4 − α1 + α2 + α3 − α4, (1.113)
C2 = α1α2α3 − α1α2α4 + α1α3α4 + α2α3α4 + α1 + α2 − α3 + α4, (1.114)

D1 = α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4 − α1 − α2 − α3 − α4, (1.115)
D2 = α1α2α3 + α1α2α4 − α1α3α4 + α2α3α4 + α1 − α2 + α3 + α4. (1.116)

Due to the nature of these bicubic functions, it is implied that, when viewing the

design parameter space of the spherical RRRR linkage, the sides of the figure which

encapsulate the center of the design parameter space will not be planar. Indeed, this

is the case, as when the design parameter space of the spherical RRRR linkage was

examined, contains the edges of a stellated octahedron, but not the faces. This figure is

shown in Figure 1.9.

α1
α2

α3

FIGURE 1.9: The eight degenerate bi-cubic surfaces at the centre of the
spherical RRRR design parameter space, with all 12 real unique lines

highlighted to form the vertices of a stelated octahedron.
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The eight degenerate bi-cubic surfaces contain three real finite lines each, for a total

of 12 distinct lines. These lines are the intersections of different pairs of surfaces, and all

12 of them intersect to form the edges of a stellated octahedron.

1.6.8 Algebraic IO Equation of the Spatial RSSR Mechanism

The derivation of the algebraic IO equation of the spatial RSSR function generating

mechanism requires a fundamentally different set of tools than the previous planar and

spherical four-bar linkages. The geometry of this function generator is shown in Fig-

ure 1.10 in order to inform the remainder of this discussion. Some additional modelling

steps must be discussed to inform the reader of some subtle differences in what will

be presented herein. The modelling of the RSSR linkage requires the modelling of two

RS-dyads, where the spherical joint is a higher order joint with multiple degrees of free-

dom. In order to account for these additional degrees of freedom, the modelling must

examine the spherical joint by breaking it down into its constituent lower order joints:

in this case, a triplet of mutually orthogonal revolute joints whose axes intersect in the

joint centre [5].

FIGURE 1.10: The kinematic geometry of the RSSR linkage, will relevant
joint lengths and angles labelled for DH method parametrisation.

Due to the representation of the RS-pair within this modelling step, it is necessar-

ily implied that while the vi − vj input-output equations may exist, they will be largely

meaningless due to the coupled nature of each of the six modelled revolute joints within
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the pair of spherical joints attached to the coupler of this mechanism. What would in-

stead be desired is the vector corresponding to the orientation of the coupler link in

space for the analysis of linkage properties such as the transmission angle. The alge-

braic equations which would represent this property have not, as of the time of writing

this thesis, been formulated, and will not be discussed further. Nevertheless, the same

DH method based kinematic closure technique was exercised for the RSSR linkage in

order to obtain the v1 − v4 input-output equation. However, due to the complexity of

the intermediate equations, the Groebner basis algorithm was unable to eliminate the

image space coordinates and intermediate joint angle parameters in order to develop

the algebraic input-output equation, a fundamental divergence from the results of pre-

vious linkage architectures. Instead, the linear implicitisation algorithm was used to

perform the derivation for this linkage architecture [96].

Following the linear implicitisation algorithm and the application of some clever

algebraic manipulations, the algebraic input-output equation of the RSSR linkage can

be shown to be,

Av2
1v2

8 + 8d1α8a7v2
1v8 + 8d8α8a1v1v2

8 + Bv2
1 + 8a1a7(α8 − 1)(α8 + 1)v1v8

+ Cv2
8 + 8d8α8a1v1 + 8d1α8a7v8 + D = 0, (1.117)

where each of the coefficients, A, B, C, and D are comprised of a product of bilinear link

length terms, as well as a quadratic term containing the twist angle between the joint

rotation axes of each ground-fixed revolute joint of each dyad, and a term common to

all four quantities. These linkage design parameter coefficients are defined as,

A = (α2
8 + 1)A1A2 + R, (1.118)

B = (α2
8 + 1)B1B2 + R, (1.119)

C = (α2
8 + 1)C1C2 + R, (1.120)

D = (α2
8 + 1)D1D2 + R, (1.121)
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where each Ai, Bi, Ci, and Di term may be expressed as linear functions of the link length

parameters, ai,

A1 = (a1 − a4 + a7 − a8), (1.122)
A2 = (a1 + a4 + a7 − a8), (1.123)
B1 = (a1 + a4 − a7 − a8), (1.124)
B2 = (a1 − a4 − a7 + a8), (1.125)
C1 = (a1 − a4 − a7 + a8), (1.126)
C2 = (a1 + a4 − a7 + a8), (1.127)
D1 = (a1 + a4 + a7 + a8), (1.128)
D2 = (a1 − a4 + a7 + a8). (1.129)

The single common term, R, is then expressed as,

R = (d1 − d8)
2α2

8 + (d1 + d8)
2, (1.130)

which is quadratic in the revolute joint center offsets, and the twist angle between their

axes of rotation. As with the non-homogeneous planar four-bar function generators, the

design parameter space for the spatial RSSR function generator would make little sense

to the reader, and furthermore, it would only be visible in a sixth dimensional space in

its most general form.

It may also be of interest to the reader to note that the signs and link length param-

eters present within each coefficient contained in Equations (1.122) through ( 1.129) are

precisely the same as those contained within the exact same coefficients of the planar

RRRR IO equations. Indeed, when d1 = d8 = α8 = 0, the exact planar RRRR bilinear

link length coefficients are replicated in the RSSR link length coefficients.

1.7 Problem Statement and Thesis Structure

Planar four-bar function generating linkage synthesis problems are typically solved by

discrete exact or approximate synthesis methods as outlined previously in this chapter.

However, the structural error minimisation problem solution requires the designer to
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initially solve the design error problem to provide an initial guess of sufficient fidelity

to the numerical solver.

The continuous approximate function generator synthesis approach integrates the

Freudentstein synthesis equations over a range of input values [57]. The cardinality

of the IO data set becomes infinity, thereby forcing the design and structural errors of

the function generator to converge, converting a non-linear least squares optimisation

problem to one that is a linear least squares problem. However, the integration of the

trigonometric Freudenstein Equation for IO function generation is quite onerous, and

whatever gains in computational efficiency associated with no longer having to min-

imise the structural error are easily lost due to the computational cost of the integration.

In several other recent advances [91, 92, 97, 98, 99] it has been shown that there is

a consistent and general approach to deriving an algebraic form of the Freudenstein IO

equation. It stands to reason that an algebraic form of the IO function significantly sim-

plifies the integration approach, requiring the user to only minimise one single equation

with a given set of initial assumptions that may be readily computed from the AIO equa-

tion and desired IO function. Integrating the square of the AIO equation of any planar

four-bar linkage and subsequently minimising the residual of this equation provides

the structural error minimising linkage parameters. Given the set of linkage parameters

that are generated from this minimisation, the AIO function may be solved explicitly

to describe the function that is generated by the linkage, facilitating its comparison to

the desired function through use of a simple integral and a percentage error calculation.

Different planar function generating kinematic architectures may be compared to each

other by way of the same percentage error computation, leading to efficient concurrent

type and dimensional synthesis for any planar function generator problem.

It is often desired to obtain information regarding the displacement analysis between

different links in the identified kinematic chain. Additionally, the designer must typi-

cally understand the angular velocities and accelerations associated with the identified

kinematic geometry. There are six angle pairings in the quadrangle defined by a planar
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RRRR mechanism; the first two derivatives of these six AIO equations lead to signifi-

cantly simplified techniques to determine the extreme angular velocities and accelera-

tions of the four links in the mechanism [100].

It is towards the solution to the problem of CAAIOS that the remainder of this thesis

will be focused. First, an algorithm for the continuous approximate minimisation of the

residual of these function generating AIO equations will be presented alongside results

that allow for validation through the comparison of these link lengths to those result-

ing from the classical approaches to structural error minimisation. Following this, an

algorithm for the concurrent type and dimensional synthesis problem will be presented

with a demonstrative case for validation of the results which state that, not only can

continuous approximate synthesis be easily employed, but that the computational sim-

plicity of its implementation allows for the concurrent identification of the best error

minimising four-bar linkage type as well as its corresponding dimensions [101]. Fur-

thermore, given the myriad of constraints and applications that exist in the design of

planar four-bar linkages, a method for multi-modal continuous approximate algebraic

input-output synthesis (MMCAAIOS) will be developed, wherein which an extension

of the CAAIOS algorithm may be used to generate a linkage which can be made to

approximate modestly competing functions between different joint pairs [102, 103].

1.8 Statement of Originality

Certain aspects of planar, spherical, and spatial four-bar mechanism dimensional syn-

thesis for function generation are presented herein for the first time. The following

original contributions are of particular interest.

1. The continuous approximate IO dimensional synthesis technique is presented for

planar, spherical, and spatial four-bar mechanisms for the first time.

2. That the continuous approximate IO dimensional synthesis technique demon-

strates, in compact form, that the solution to the non-linear structural error min-

imisation problem is implied through the solution to the design error minimising
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linkage when the cardinality of the prescribed dataset is infinite.

3. The algebraic IO equations allow for the comparison of generated and desired

functions through the use of an integral and ratio of areas.

4. The CAAIOS algorithm performs its optimisation several orders of magnitude

faster than equivalent methods which rely on the Freudenstein equation.

5. It is demonstrated that the CAAIOS technique presented herein can be applied

to all planar, spherical, and spatial four-bar algebraic IO equations which exist

within the literature without modification.

6. Combined type and dimensional synthesis is presented for the first time, where

due to the ease of computing the design error minimising linkage via the CAAIOS

method, the designer need not explicitly specify the linkage architecture used to

generate the function.

7. Multimodal continuous approximate dimensional synthesis for competing func-

tion generation is described for the first time, and its limitations are explored.

Portions of these original results have appeared in five refereed publications: [28, 93,

101, 102, 103].
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2 Continuous Approximate

Algebraic Function Generator

Synthesis

2.1 Continuous Approximate Synthesis via the Algebraic Input-

Output Equations

The following sections will describe the novel algorithm for continuous approximate

IO dimensional synthesis which can be applied to each of the planar RRRR, RRRP, and

PRRP, as well as the spherical RRRR and spacial RSSR kinematic architectures. How-

ever, for the general case, the algorithm steps may be simply stated as:

1. Square the desired algebraic IO relationship for the planar four bar linkage archi-

tecture.

2. Express this squared function in an array containing the linkage parameters, pA,

and synthesis matrix, S, defined in Section 2.5.1.

3. Express the output parameter as the desired function of the input parameter and

substitute the results into the synthesis matrix, S.

4. Integrate the matrix obtained in step three, numerically, over the desired bounds

for the approximation, generating the integrated synthesis matrix.

5. Expand the elements within the integrated S through multiplication with pA.
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6. Generate initial guesses for the optimal linkage parameters by solving the linear

AIO equation for three precision points.

7. Minimise the residual of this expanded synthesis equation, pT
ASipA, over the field

of real numbers with the precision point method linkage parameter solutions as

an initial guess.

Ideally, the numerical integration required for step four of this process would be an

analytical integral, however, in general, analytical integrals for these functions do not

exist due to the complexity of the elements. After the minimisation procedure outlined

in the final step, the resulting linkage parameters are the ones which will minimise

the residual of the synthesis equation for the approximation over the desired range,

thereby identifying the design parameters that generate the desired function with the

smallest possible structural error. Application of this methodology to the three planar

architectures, and two non-planar architectures will be described in detail along with

examples and comparisons with results of the discrete approximation methods based

on classical structural error minimisation techniques.

2.2 Theory and Mathematical Modelling Concepts

The design and structural error minimisations, as stated in Sections 1.4.2 and 1.4.3, both

aim to serve the same purpose of developing an error minimising function generator;

the former operates through the minimisation of the residual of an equation which de-

scribes the system, while the latter minimises the difference between the desired output

and the generated output parameter. While the structural error itself is a far better

measure of the ability of a linkage in question to generate the desired input-output re-

lationship, it is significantly more complicated from a computational perspective, and

requires an initial guess which is typically developed through the minimisation of the

design error before starting the structural error minimisation problem.

One of the most fundamental conceptual links that is being drawn within this thesis

is that the minimisation of the structural error is implied by the solution which results
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from minimising the design error over an infinite closed interval, and thus eliminates

the need the solve the structural error problem. A claim such as this requires more

than simple observational evidence, and should provide a methodologically and phe-

nomenologically consistent explanation for how exactly this occurs. For the purposes

of the analysis to follow herein, the problem formation is decidedly simple; considering

the form of the AIOs as presented within Chapter 1, the design error takes a slightly

more obvious and physically meaningful form.

If a set of input-output pairs is used to develop a linkage via conventional approx-

imate dimensional synthesis techniques, in the algebraic sense, the minimisation algo-

rithm will identify the linkage parameters which reduce the length of the line at each

input-output pair to its minimum values depending on the set of points used for the

minimisation. If this is extended to infinitely many points, as in the case of the integral,

the minimisation of the resulting value is simply minimising the difference between the

areas of the desired curve and what is generated by the linkage. This concept also pro-

vides a more physically meaningful metric which will be leveraged herein to develop

comparisons between mechanisms and link length parameter sets: the difference be-

tween the areas under the curve of the desired function versus what is generated by the

algebraic input-output equation.

It will be shown that not only does the integration and minimisation of the squared

algebraic input-output equation yield exceptional results which improve upon the re-

sults developed by conventional structural error minimisation techniques found in the

literature, but that the method is ubiquitous to every algebraic IO function generation

relationship which exists, regardless of their architectural configuration.

It should also be noted that because the Freudenstein equation may be transformed

to be identical to the AIO equations through the use of the tangent-half angle substitu-

tions, that this property of the AIOs implies, by definition, that the same property is true

for the Freudenstein equation. This implies that the same property is true of the classical

design error problems, but that the nature of the proof is simply more mathematically

complicated, and is obfuscated due to the trigonometric relationships used within the
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Freudenstein derivation.

2.2.1 Mathematical Modelling Software

In order to accomplish the work involved in this thesis, Maple 2021 has been used for all

of the computations. Maple was chosen due to its combined proficiency of algebraic ma-

nipulation and its ability to leverage an in-built library of minimisation algorithms. For

the cases of the minimisation algorithms used in this thesis, Maple uses its host of Se-

quential Quadratic Programming (SQP) minimisation algorithms [104]. Constraints for

all optimisations required in order to execute the algorithms are placed in terms of a sim-

ple initial guess on a continuous function, Maple will use its SQP solver to select either

the modified Newton simplex [105] or Nelder-Mead downhill simplex algorithms [81].

While Nelder-Mead is often used for highly sensitive functions, the modified Newton

downhill simplex algorithm is easily computed for all functions within this thesis, as

their partial derivatives may be easily computed.

While it would be possible to produce a convergence time comparison between dif-

ferent optimisation algorithms, such a task lies well outside of the scope of this thesis.

Additionally, while it is possible that the computational efficiency of these algorithms

may be further enhanced through a more appropriate numerical engine, such as lever-

aging Python (and its wealth of C-suite optimisation libraries) to perform the minimi-

sations, the algebraic manipulations available in Maple coupled with its in-built opti-

misation algorithms make it the most obvious single program to perform the entirely of

the work presented herein.

2.3 Continuous Approximate Synthesis of Planar Four-Bar Func-

tion Generators

2.3.1 Continuous Approximate Synthesis for the RRRR Function Generator

For the purposes of the derivation of the CAAIOS for the planar RRRR function genera-

tor, the v1 − v4 AIO equation will be used for demonstration. First, we begin by squaring
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the algebraic IO equation in order to eliminate the residual error values that are equal

in magnitude yet opposite in sense. In order to accomplish this, the equation is parti-

tioned into a matrix and array representation, where the synthesis matrix contains all of

the IO variables, while the array which pre- and post-multiplies this matrix contains the

four bilinear factors of the link lengths along with the −8a1a4 term, which scales with

the bilinear v1v4 IO variable product in Equation (1.65). Hence, the squared v1 − v4 IO

equation for all RRRR linkages is,

pA
TS(v1, v4)pA = 0, (2.1)

where,

pA =


A
B
C
D

−8a1a4

 (2.2)

and,

S(v1, v4) =


v4

1v4
4 2v4

1v2
4 2v2

1v4
4 2v2

1v2
4 2v3

1v3
4

0 v4
1 2v2

1v2
4 2v2

1 2v3
1v4

0 0 v4
4 2v2

4 2v1v3
4

0 0 0 1 2v1v4
0 0 0 0 v2

1v2
4

 . (2.3)

Next, the desired function, specified as v4 = f (v1), is substituted into Equation (2.3)

yielding

S(v1, f (v1)) =


v4

1 f (v1)
4 2v4

1 f (v1)
2 2v2

1 f (v1)
4 2v2

1 f (v1)
2 2v3

1 f (v1)
3

0 v4
1 2v2

1 f (v1)
2 2v2

1 2v3
1 f (v1)

0 0 f (v1)
4 2 f (v1)

2 2v1 f (v1)
3

0 0 0 1 2v1 f (v1)
0 0 0 0 v2

1 f (v1)
2

 . (2.4)

Once this substitution has been made, the resulting matrix is integrated between the

specified bounds for the input parameter leading to the following expression, required

for the minimisation algorithm,
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min
(a1,a2,a3,a4)∈R

[A B C D −8a1a4
] ∫ v1max

v1min

S(v1, f (v1))


A
B
C
D

−8a1a4


 . (2.5)

In Equation (2.46), the elements A, B, C, and D correspond to the four bilinear factors

defined in Equations (1.66) through (1.69). However, these procedures are immensely

sensitive to the initial guess.

In order to determine a useful initial guess, the solver must first be given a set of

link lengths which are, in some sense, relatively close to the optimal link lengths. To

accomplish this, one may solve the exact synthesis problem for this linkage. The three

precision points are determined with the desired function v4 = f (v1), and normalising

the link lengths with a4, leading to a4 = 1. Three points may be chosen within the range

for which the four-bar linkage is being synthesised, typically at random. However,

the designer must be careful so as to not choose points which would generate a linear

dependence between the AIO equations being used for the precision point solution. For

example, if a function which is being synthesised over the range of v1 = [−3, 3] and is

symmetric, the user must not select symmetric points within this range, as the precision

point solution will be indeterminate in this case.

With the initial guess for the link lengths, as well as a set of constraints for the op-

timiser, the linkage parameters which minimise the residual of Equation (2.46) may be

computed. The constraints require the linkage to be a real linkage, a2
i ≥ 0, forcing the

link lengths to be real numbers. While zero-value link lengths do not represent a real

four-bar linkage, this inclusive inequality constraint is required as a limitation of the

solver. Negative link lengths must not be discarded as, given the range of input angle

and the desired IO function, any of the link lengths may in fact be identified as nega-

tive in value. While the concept of a negative length may appear to be fundamentally

flawed, as a length can not be negative, in the context of a function generator a link

length is a directed distance on a vector which connects two revolute joint centres A

and B. Given this fact, if the minimisation of the residual of the AIO equation requires a



2.3. Continuous Approximate Synthesis of Planar Four-Bar Function Generators 51

negative link length, the negative sign simply indicates that the directed distance along

the line which contains the revolute joint centres A and B is directed opposite to the

direction of circulation.

Given the novelty of this approach, the following examples for the three planar func-

tion generating linkage architectures, where the coupler can have general plane motion,

will be presented and compared to existing solutions within the literature. The follow-

ing demonstration for the RRRR linkage architecture will be computed with the same

function published in [91],

v4 = 2 + tan
(

v1

v2
1 + 1

)
, (2.6)

where (v1, v4) represent the tangent half angle parameters associated with the input and

output link joint angles θ1 and θ4, respectively. The function v4 = f (v1) is substituted

into Equation (2.3). Once this substitution has been made, the resulting matrix is in-

tegrated between the bounds desired for the approximation, in this case v1 = 0 . . . 2.

Upon completion of this integration, the squared IO equation can be used to identify

design parameters a1, a2, a3, and a4, which implicitly minimise the structural error.

Reported in [91] are the link lengths optimised using a discrete IO set whose cardi-

nality is 10, which are,


a1
a2
a3
a4

 =


−0.23
1.20
1.43

1

 . (2.7)

Whereas the link lengths derived from the continuous approximation method are


a1
a2
a3
a4

 =


−0.22
1.18
1.43

1

 , (2.8)

showing an extremely high degree of agreement between the two results. The preci-

sion point and optimised linkage functions are both solved directly from the algebraic

IO equation, Equation (1.65), as polynomials in the form of v4 = f (v1). The precision
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point method yields the following AIO equation with linkage parameters ai from Equa-

tion (2.7),

−1.0153 v1
2v4

2 + 2.6075 v1v4 + 3.4640 v1
2 − 1.4173 v4

2 + 5.6695, (2.9)

which may be solved for v4 to plot the generated AIO function for each assembly mode

of the linkage. The optimal AIO equation from the CAAIOS method after substitution

of the values from Equation (2.8) into Equation (1.65) is,

−0.9944 v1
2v4

2 + 2.4522 v1v4 + 3.4394 v1
2 − 1.3540 v4

2 + 5.5321, (2.10)

which may also be solved for v4 to plot each AIO function for the two assembly modes

of the optimal linkage. Both AIO functions were simplified for inclusion in this the-

sis proposal as the full algorithm uses rational representations of numbers to avoid

concatenating computational errors associated with computations using floating point

representations. Figure 2.1 shows both the precision point and CAAIOS optimised IO

relationships.

Given the proximity of these curves to one another, a simple visual inspection is in-

sufficient to determine the magnitude of the areas between the curves, thus a different

method using the integrals of the generated functions to compute the percentage dif-

ference between the discrete and continuous algebraic approximations is used. For the

RRRR function generator case, the following errors are computed relative to the desired

function,

Discrete Approximation Method = 0.421%, (2.11)

Continuous Approximate Optimised Function = 0.012%, (2.12)

indicating a significant reduction in the percentage error associated with the continuous

approximation method of an order of magnitude.
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FIGURE 2.1: Comparison of RRRR desired and generated functions.

2.3.2 Continuous Approximate Synthesis for the RRRP Linkage

Given the nature of the continuous approximate design error minimisation, the ap-

proach is easily modified for any desired planar four-bar function generator topology.

Consider the RRRP function generator illustrated in Figure 1.2. For comparisons to lit-

erature, the equations and coefficients developed in Section 1.6.5 will be used. After

the AIO equation associated with this kinematic architecture, Equation (1.75), Equa-

tion (2.13) may be pre- and post-multiplied by an array containing the linkage param-

eter coefficients from Equation (1.76) to obtain the full squared AIO equation for the

RRRP linkage architecture:

S(v1, a3) =



v4
1d4

4 2v2
1d4

4 2v4
1d3

4 2v3
1d3

4 2v2
1d3

4 2v4
1d2

4 2v2
1d2

4
0 d4

4 2v2
1d3

4 2v1d3
4 2d3

4 2v2
1d2

4 2d2
4

0 0 v4
1d2

4 2v3
1d2

4 2v2
1d2

4 2v4
1d4 2v2

1d4
0 0 0 v2

1d2
4 2v1d2

4 2v3
1d4 2v1d4

0 0 0 0 d2
4 2v2

1d4 2d4
0 0 0 0 0 v4

1 2v2
1

0 0 0 0 0 0 1


. (2.13)
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Substituting the desired IO function, d4 = f (v1), into Equation (2.13) and integrating

between the specified input range, the expression used in the minimisation algorithm

becomes,

min
(a1,a2,a4,v4)∈R


[
A B C −8a1v4 D E F

] ∫ v1max

v1min

S(v1, f (v1))



A
B
C

−8a1v4
D
E
F




. (2.14)

To compare the continuous approximation results with previously published results,

a function from [92] will be used,

d4 =
−v1

2 + 1
v1

2 + 1
, (2.15)

between the bounds of v1 = −3 · · · 3. Upon solving the precision point problem and

integrating Equation (2.13) with the desired function substituted for d4, the squared AIO

function may be minimised using the same constraints for the RRRR case, constraining

the minimisation procedure strictly to real valued link lengths. From [92], the following

linkage parameters were identified following a Newton-Gauss iterative minimisation

routine over fifty precision points within the design space,


a1
a2
a4
v4

 =


0.9426
1.1587

1
1.5 · 10−5

 , (2.16)

while the linkage parameters identified through the continuous approximate synthesis

methods are,


a1
a2
a4
v4

 =


0.9554
1.1894

1
1.17 · 10−10

 , (2.17)

again showing a strong agreement between the two methods. Figure 2.2 shows three

functions for this RRRP function generator example.
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FIGURE 2.2: Comparison of RRRP desired and generated functions.

The percentage error between the desired and generated IO curves are,

Discrete Optimisation Method = 10.504%, (2.18)

Continuous Approximate Optimised Function = 8.766%, (2.19)

showing a reduction in the error by a factor of approximately 19.8% relative to the dis-

crete structural error minimisation routine.

2.3.3 Continuous Approximate Synthesis for the PRRP Function Generator

The PRRP planar function generator illustrated in Figure 1.3 is now considered. Equa-

tion (1.90) is squared, yielding Equation (2.20) which is pre- and post-multiplied by an

array containing the linkage parameter functions contained in Equation (1.91) to obtain

the full squared AIO synthesis equation for the PRRP architecture,
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S(a1, d4) =



a4
1 2a2

1d2
4 2a3

1d4 2a3
1 2a2

1d4 2a2
1

0 d4
4 2a1d3

4 2a1d2
4 2d3

4 2d2
4

0 0 a2
1d2

4 2a2
1d4 2a1d2

4 2a1d4
0 0 0 a2

1 2a1d4 2a1
0 0 0 0 d2

4 2d4
0 0 0 0 0 1

 . (2.20)

A desired function, which is specified as d4 = f (d1) can be substituted into Equa-

tion (2.20). After integrating this expression between the desired input range of this

function generator, the expression for the minimisation then becomes,

min
(a2,a4,v1,v4)∈R


[
A B C D E F

] ∫ a1max

a1min

S(a1, f (a1))



A
B
C
D
E
F



 . (2.21)

Comparing the standard methodologies to the continuous approximate methodology

will once again be completed through the use of a test case included in [92]. The desired

d4 = f (d1) IO function in this case is,

d4 = cos (d1) , (2.22)

over the range of d1 = 0 · · · 2. The solution will proceed in identical fashion to the

previous cases, with the precision point method being used to generate initial guesses,

at which point the squared algebraic IO synthesis matrix in Equation (2.20) is inte-

grated between the bounds of this function generator problem, and subsequently min-

imised. The structural error minimising linkage parameters resulting from the non-

linear Newton-Gauss optimisation procedure from [92] are,


a2
a4
v4
v1

 =


2.0313

1
−1.1868
0.1353

 , (2.23)

while the optimal link lengths from the continuous approximate algebraic IO method

are,
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
a2
a4
v4
v1

 =


2.0364

1
−1.1986
0.1291

 , (2.24)

showing again, a large degree of agreement between the two. The results of the

CAAIOS are illustrated in Figure 2.3.

FIGURE 2.3: Comparison of PRRP desired and generated functions.

Once again, these generated functions are compared via integration over the bounds

of the approximation range in order to compare the precision point method to the con-

tinuous approximation method. The percentage errors relative to the desired IO func-

tion are,

Precision Point Method = 0.146%, (2.25)

Continuous Approximate Method = 0.054%, (2.26)
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showing a reduction in the error of approximately 168.31% relative to the precision

point solution error.

2.4 Non-Planar Function Generating Linkage Architectures

While the CAAIOS algorithm has been shown to be operational without loss in gener-

ality for all planar four-bar function-generating linkage architectures, its applicability

and any modifications to the cases of non-planar four bar function-generating linkages

will be examined in this section. For the purposes of this discussion, first, the spheri-

cal RRRR linkage architecture will be discussed, followed by the spatial RSSR linkage

architecture.

2.4.1 Spherical RRRR CAAIOS Function Generator Synthesis

The spherical RRRR function generator is now considered. Due to the projective sim-

ilarities between the geometries of the linkages, the spherical RRRR linkage CAAIOS

methods and the equations which comprise them are nearly identical to the planar

RRRR function generating linkage, with the synthesis matrix, S, being identical. The

only variation between these two formulations is found within the linear term inside of

the parameter array, and thus,

[
A B C D E

]
S(v1, v4)


A
B
C
D
E

 = 0, (2.27)

where E is a factor which is bi-quadratic in link arclengths α4 and α2, recall Equa-

tion (1.103), which is also bilinear in the remaining link arclengths, α1 and α3,

E = 8α1α3(α
2
4 + 1)(α2

2 + 1). (2.28)

The synthesis matrix, S, may then be defined as,
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S(v1, v4) =


v4

1v4
4 2v4

1v2
4 2v2

1v4
4 2v2

1v2
4 2v3

1v3
4

0 v4
1 2v2

1v2
4 2v2

1 2v3
1v4

0 0 v4
4 2v2

4 2v1v3
4

0 0 0 1 2v1v4
0 0 0 0 v2

1v2
4

 . (2.29)

The v1 − v4 synthesis matrix for the spherical RRRR function generator is identical

to the synthesis matrix for the v1 − v4 planar RRRR function generator shown in Equa-

tion (2.3). For this example, we will also be approximating the same function as in the

planar RRRR function generator example, in order to reveal some notable differences in

the way results are presented in the case of the spherical mechanism. That is to say, the

function to approximate is,

v4 = f (v1) = 2 + tan
(

v1

v2
1 + 1

)
, (2.30)

where, once again, v1 = 0 · · · 2. First, the precision point problem will be solved. Just as

with the planar RRRR function generating linkage, we will arbitrarily set α4 = 1. The

three precision points we will choose for the approximation are, v1 = 0, 1, and 2. The

resulting precision point synthesis arclengths will be used as an initial guess;


α1
α2
α3
α4

 =


−0.048
−0.498
0.788

1

 . (2.31)

Now, when the solution to the precision point problem with the spherical RRRR

function generator is computed, the designer will note that multiple sets of precision

point solutions will exist. Within this specific example, Maple identified ten sets of

solutions, eight of which produce viable linkages, two of which are the trivial solution

of α1 = α3 = 0 and α2 = ±α4. This increase in the number of solutions is due to the fact

that the mechanism itself lies on the surface of a sphere. This implies that, provided the

revolute centers are located in the same locations on the surface of the sphere, it does

not matter if the link wraps around the entire circumference of the sphere. Thus, for

the case of the spherical RRRR function generator, it is typically recommended that the

designer select the shortest set of link arclengths. The resulting IO function is shown in
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Figure 2.4.

FIGURE 2.4: The results following the three point precision point solution
for the spherical RRRR linkage architecture.

Upon selection of the initial guess for the arclengths of this spherical RRRR function

generator, one can substitute Equation (2.30) into matrix S and minimise the resulting

expression such that,

min
(α1,α2,α3,α4)∈R

[A B C D E
] ∫ v1max

v1min

S(v1, f (v1))


A
B
C
D
E


 . (2.32)

Following this minimisation, the following set of optimal linkage arclengths are de-

termined to be,
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
α1
α2
α3
α4

 =


−0.049
−0.500
0.776

1

 . (2.33)

The comparison between the functions associated with the precision point solutions

contained in Equation (2.31) and the CAAIOS solution in Equation (2.33) are plotted in

Figure 2.5.

FIGURE 2.5: The results following the CAAIOS algorithm implementa-
tion for the spherical RRRR linkage architecture.

While this function is, itself, quite well behaved with the precision point solution,

the CAAIOS solution does clearly generate a function which lies in closer proximity to

the desired function, which is particularly notable as v1 increases past 1. Upon integra-

tion of these three functions between the bounds used for the optimisation, the error

percentages may be computed,
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Precision Point Method = 0.000145%, (2.34)

Continuous Approximate Method = 0.000000789%. (2.35)

While only a modest improvement in error, as expressed as the difference in area un-

derlying the curves, is realised in the absolute sense, the relative error is several orders

of magnitude lower in the CAAIOS method.

2.4.2 Spatial RSSR Function Generating Linkage

Finally, we will conclude the demonstrations of the CAAIOS algorithm with the only

spatial mechanism for which an AIO equation has been derived: the spatial RSSR mech-

anism. For review, the algebraic input-output equation from Chapter 1 is reproduced in

Equation (2.36), while its geometry is shown again in Figure 2.6. Please note that, due to

the algebraic representation via tangent half angle parameters, the angular parameters

(θ1, θ8) represent the IO pair and are expressed in Equation (2.36) as (v1, v8), while the

parameter τ8 is represented as α8.

FIGURE 2.6: The kinematic geometry of the RSSR linkage, will relevant
joint lengths and angles labelled for DH method parametrisation.
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Av2
1v2

8 + 8d1α8a7v2
1v8 + 8d8α8a1v1v2

8 + Bv2
1 + 8a1a7(α8 − 1)(α8 + 1)v1v8

+ Cv2
8 + 8d8α8a1v1 + 8d1α8a7v8 + D = 0, (2.36)

Despite the spatial nature of the linkage in question, the set-up of the CAAIOS algo-

rithm remains identical to all previously mentioned cases. First, square the AIO, second,

separate all linkage parameters and input-output parameters into an array and matrix,

respectively. The parameter vector associated with the RSSR linkage is,

pRSSR =



A

8d1α8a7

8d8α8a1

B

8a1a7(α8 − 1)(α8 + 1)

C

8d8α8a1

8d1α8a7

D



, (2.37)

while the matrix associated with this function generating architecture is,
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S =



v4
1v4

8 2v4
1v3

8 2v3
1v4

8 2v4
1v2

8 2v2
1v4

8 2v3
1v3

8 2v3
1v2

8 2v2
1v3

8 2v2
1v2

8

0 v4
1v2

8 2v3
1v3

8 2v4
1v8 2v2

1v3
8 2v3

1v2
8 2v3

1v8 2v2
1v2

8 2v2
1v1

8

0 0 v2
1v4

8 2v3
1v2

8 2v1v4
8 2v2

1v3
8 2v2

1v2
8 2v1v3

8 2v1v2
8

0 0 0 v4
1 2v2

1v2
8 2v3

1v8 2v3
1 2v2

1v8 2v2
1

0 0 0 0 v4
1v4

8 2v4
1v4

8 2v4
1v4

8 2v4
1v4

8 2v4
1v4

8

0 0 0 0 v4
8 2v1v3

8 2v1v2
8 2v3

8 2v2
8

0 0 0 0 0 v2
1v2

8 2v2
1v8 2v1v2

8 2v1v8

0 0 0 0 0 0 0 v2
8 2v8

0 0 0 0 0 0 0 0 1



. (2.38)

For ease of implementation, we will also be generating the same function mecha-

nism as the planar and spherical RRRR function generating mechanisms, such that the

desired input-output relationship may be expressed as,

v8 = 2 + tan
(

v1

v2
1 + 1

)
. (2.39)

Due to the number of the free parameters associated with the RSSR function gener-

ating mechanism, however, we will elect to choose six precision points, while arbitrarily

setting the input-output revolute joint offset parameter, a8, equal to 1. However, unlike

with the planar and spherical RRRR the designer must exercise some caution in the se-

lection of the arbitrary scaling factor for the RSSR linkage; if a naive designer were to

select α8 as their fixed parameter, they would necessarily be fixing the geometry of the

linkage itself, not simply the scale of the linkage.

In addition to this fact, the number of parameters associated with the RSSR function

generator allows it to, in general, produce far more accurate representation of any given

IO relationship. For the sake of this analysis, this implies that the input angular range

over which this function must be synthesised in order to induce some relatively large

error within even the precision point solution to the problem. Thus, the range over

which this function will be synthesised is larger than within the planar or spherical
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RRRR synthesis examples, v1 = −1 . . . 3. Arbitrarily, we choose six precision points in

v1 over this range. The resulting precision point solution set is,



a1
a4
a7
a8
d1
d8
α8


=



−0.2663
−2.2645
1.3538

1
−4.2038
2.6429
0.4953


, (2.40)

where a8 = 1 was chosen as the fixed link length for this demonstration. Figure 2.7

shows the resulting synthesised function on the interval of v1 = −1 . . . 3.

FIGURE 2.7: The results following the three point precision point solution
for the spatial RSSR linkage architecture.

Now the RSSR CAAIOS algorithm may be initialised with the initial guesses pre-

sented in Equation (2.40) such that,
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min
(a1,a4,a7,d1,d8,α8)∈R

(
pT

RSSR

∫ v1max

v1min

SRSSR(v1, f (v1))∆v1pRSSR

)
. (2.41)

Following the minimisation routine, the CAAIOS optimal linkage parameters are

identified as,



a1
a4
a7
a8
d1
d8
α8


=



−0.1989
−2.2683
1.4113

1
−3.7761
2.5701
0.6534


, (2.42)

Once the optimal linkage parameters are identified, the function generated by the

CAAIOS linkage dimensions is plotted alongside the solutions from the precision point

method, and the original target function in Figure 2.8.

FIGURE 2.8: The results following the CAAIOS algorithm implementa-
tion for the spatial RSSR linkage architecture.
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Clearly, the CAAIOS derived function lies in far closer proximity to the target func-

tion than the precision point method function over the range for which the linkage was

optimised.

2.5 Computational Considerations

2.5.1 Optimisation Formulation

While the matrix-array formulation of this problem is convenient, as it offers a very con-

cise and easily understood demonstration of the form of the algorithm and the squared

IO function, the implementation of a matrix for numerical integration necessarily re-

quires a nested for loop in order to be properly implemented within Maple. However,

this matrix-array formulation is not the only representation which is useful for the func-

tion generator dimensional synthesis optimisation; a representation that does not re-

quire the user to pre-define the matrix of squared IO variables may also be realised by

simply splitting the squared algebraic IO equation into variables and coefficients in two

arrays. In the interest of brevity, only one such case will be presented, the planar RRRR

function generator. The RRRR function generator will be presented in terms of the link-

age parameter array, pA, and the linkage synthesis array, sA. In full, these vectors take

the form of,
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pA =



A2

2 AB

B2

−16 Aa1 d4

−16 Ba1 d4

2 AC

64 a1
2d4

2 + 2 AD + 2 BC

2 BD

−16 Ca1 d4

−16 Da1 d4

C2

2 CD

D2



, (2.43)

and,

sA(v1, v4) =



v1
4v4

4

v1
4v4

2

v1
4

v1
3v4

3

v1
3v4

v1
2v4

4

v1
2v4

2

v1
2

v1 v4
3

v1 v4

v4
4

v4
2

1



, (2.44)

such that,
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
A = A1A2
B = B1B2
C = C1C2
D = D1D2
−8a1d4

 =


(a1 − a2 + a3 − a4)(a1 + a2 + a3 − a4)
(a1 + a2 − a3 − a4)(a1 − a2 − a3 − a4)
(a1 − a2 − a3 + a4)(a1 + a2 − a3 + a4)
(a1 + a2 + a3 + a4)(a1 − a2 + a3 + a4)

−8a1a3

 . (2.45)

Subsequently, the integration of the array containing the linkage angular parame-

ters proceeds identically to the previous version with the matrix-array representation.

However, considering Equations (2.44) and (2.45) it simplifies to,

min
(a1,a2,a3,a4)∈R

(
pA ·

∫ v1max

v1min

sA(v1, f (v1))

)
, (2.46)

while all other planar four-bar function generators have a near identical representation,

differing only by the input-output pair contained in the minimisation of sA. This rep-

resentation, referred to as the CAAIOS equation, not only allows for the elimination of

the nested for loop that was required for integrating and writing values into an empty

synthesis matrix, but allows automation in the separation of the linkage parameter vec-

tor, pA, and the synthesis vector, sA(vi, vj). Furthermore, while the simplification of

this algorithm by hand may be decidedly time consuming, especially for the spherical

RRRR and spatial RSSR linkages, this process is expedited dramatically via software

such as Maple 2023; if one squares the AIO equation (without expanding the coeffi-

cients), Maple may be used to automatically collect the coefficients and the IO relation-

ship in separate vectors.

2.5.2 Numerical Sensitivity, Floating Point Values, and the Initial Guess

During the course of the research presented herein, it was seen that the AIO equations

are decidedly sensitive to rounding errors and numerical resolution. Results of the con-

tinuous approximate algebraic input-output synthesis and all preceding precision point

solutions are presented herein with floating point values. However, the computations

within Maple must be completed using rational representations of numbers. If this is not

explicitly the case, the simultaneous solutions required for the precision point solution
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may not be obtainable, and moreover, the CAAIOS algorithm may yield only the trivial

solutions as viable sets of link lengths.

Optimisation problems are, in general, sensitive to the solution set used as an ini-

tialisation point for the solver. While it would be convenient to be able to use a single

default solution set for the CAAIOS algorithm, attempting to do so in the general case

leads to the only solution to the optimisation algorithm being the trivial solution, or

to the minimisation algorithm being unable to converge before its maximum iterations

are reached. This fact gives rise to the methodology presented within the previous sec-

tions of this thesis, wherein which the precision point method must be used in order

to generate an initial guess which is suitably close to the guess which will result from

the CAAIOS algorithm. If the minimisation is initialised with an initial guess which

simply contains general placeholder values for a given linkage architecture, the min-

imisation algorithm will, in general, not proceed to a local minimum which is suitable for

the application at hand.

Additionally, during the testing of this algorithm it was found that the only time

where the precision point method fails to produce a solution is when the desired func-

tion to be synthesised in vj = f (vi) is symmetric about the vj axis, and the designer

chooses precision points which are symmetric about the same axis. This symmetry

causes a linear dependency between the equations, but this linear dependency evap-

orates if either condition is altered or not realised in the first place. Thus, if this ever

occurs during the solution to the precision point problem, the designer must simply

choose a slightly different precision point set that is not symmetric about the vj axis.

For example, if the RSSR function generating linkage example stated previously is

executed with a set of symmetric precision points such as v1 = ±1, the precision point

method will not be capable of identifying a valid linkage parameter set for initialising

the CAAIOS minimisation routine. The designer could use a method such as Chebyshev

point distribution algorithms [106] in order to avoid this in general, though it should

always remain a point to check in the event that the precision point method fails to

generate a real solution, or fails to resolve at all.
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3 Extensions to Continuous

Approximate Algebraic IO Synthesis

3.1 Combined Type and Dimensional Synthesis for Planar Four-

Bar Function Generators

Typically, when a function generator is to be optimised, the first step is to choose the

linkage architecture that will be used to generate it; this step can either be informed

through the subject matter expertise of the designer, or through mechanical considera-

tions associated with the application. However, it is possible that the linkage architec-

ture which was chosen is not necessarily the globally optimal planar four-bar linkage for

the generation of this function over the desired range. For academic considerations, it

will be supposed that the designer has the increasingly rare privilege of complete design

control for the purposes of this discussion. Therefore, it is proposed that the type and

dimensional synthesis for planar four-bar function generating linkages is combined so

as to remove this decision based portion of the design process. Given a desired function,

which linkage architecture best approximates it over the given range, and how does the

function that is generated by the linkage compare to the desired function? Given some

function, h = f (t), the following substitutions are proposed for each planar four-bar

linkage architecture.

For the purposes of the following concurrent type and dimensional synthesis exam-

ple, the function to be approximated will be,

h =
1 − t2

1 + t2 , (3.1)
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such that t = 0 · · · 1, with variable substitutions shown in Table 3.1.

Variable Linkage Architecture
General Case 4R RRRP PRRP

t v1 v1 d1
h v4 d4 d4

TABLE 3.1: Variable substitutions used for continuous approximate type
and dimensional planar function generator synthesis.

Following the procedure as previously described, each mechanism type may be syn-

thesised and compared to each other. For the sake of brevity, Table 3.2 lists the three

mechanisms with the optimal linkage parameters identified via the CAAIOS algorithm.

Linkage Parameter
Linkage Architecture

RRRR RRRP PRRP
v1 v1 v1 1.995
v4 v4 0.0903 0.5114

a1 or d1 2.6 × 10−5 0.7288 d1
a2 0.9999 1.247 1.707

a3 or d4 2.3 × 10−5 d4 d4
a4 1 1 1

TABLE 3.2: All identified parameters for the continuous approximate
concurrent type and dimensional synthesis of a planar function gener-

ator.

Once each set of error-minimising linkage parameters has been computed, the ex-

plicit IO functions that each of these mechanisms generate are computed. These three

functions are plotted in Figure 3.1.

At first glance, it would appear that the RRRR function generating architecture is,

by far, the best suited for this approximation. However, a1 and a3, the input and out-

put link lengths, are five orders of magnitude smaller than the computed a2 and a4, the

coupler and base link length. The parameters for the RRRP and PRRP linkages are all

reasonable values, but the RRRR linkage values are peculiar. This strange outcome is a

result of the fact that the solver is constrained so that a2
i ≥ 0, meaning that these values

can be identically equal to zero, or as close to zero as the floating point accuracy of the

computer being used for the minimisation algorithm allows. Indeed, a1 = a3 = 0 and

a2 = a4 = 1 is a consistent trivial solution to any planar function generation problem
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FIGURE 3.1: Comparison of 4R, RRRP, and PRRP desired and generated
functions.

with the RRRR kinematic architecture and must be discarded as a useful result. Given

this fact, the comparison of the RRRR function generator will be omitted in the subse-

quent analysis. Table 3.3 shows the percentage error relative to the desired function of

each of the polynomials generated by the RRRP and PRRP linkages, respectively.

Generated RRRP Generated PRRP
Percentage Difference 0.0143% 0.3685%

TABLE 3.3: Percentage error for all viable planar four-bar function gener-
ators.

From both Figure 3.1 and Table 3.3, it is clear that the RRRP function generator is,

indeed, the most well suited of the planar four-bar architectures to generate the desired

function. Now, this answer may seem relatively obvious, as the equation that was being

generated is identical to the equation presented in Equation (2.15), but that contrivance

was by design so as to ensure that the results of the algorithm could be verified; it was
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expected that the RRRP function generator would outperform its planar compatriots

given this fact.

3.2 Multi-Modal Continuous Approximate Synthesis

In the previous sections of this thesis, the algorithms for continuous approximate type

and dimensional synthesis have been presented. Now these concepts will be combined

and used to extend the theory already described to what will be referred to as multi-

modal function generator synthesis. Throughout the derivation of the various AIO equa-

tions for planar four-bar function generators, some modifications to the typical perspec-

tive on IO theory were examined in order to determine whether or not the additional

coupled IO pairs (the aforementioned vi, vj) equations have equivalent algebraic repre-

sentations to the classically examined IO function generators. Typically, within four-bar

IO function generator synthesis, the designer is most concerned with the θ1 − θ4 IO

pair relationship; however, from Figure 3.2 one may consider that the θ1 − θ3 IO pair

is of interest, or any other pair of angles. This extension and specific example results

from subsequent analyses for the kinetic and dynamic properties of a linkage once the

kinematic synthesis process has been completed, most notably the analysis of the trans-

mission angle.

x0/4

y
0/4a3

a2

a1

1

a4

x1

2
3

4

x2

x3

FIGURE 3.2: A general planar 4R function generator.



3.2. Multi-Modal Continuous Approximate Synthesis 75

Multi-modal IO synthesis is the problem of optimising a given linkage architecture

to simultaneously satisfy two functions between different IO joint pairs of the same link-

age. These IO function generators may be designed so as to approximate their functions

over different angular ranges, depending on the needs or choices of the designer. Exten-

sion of the current planar four-bar function generation algorithm to generating multiple

functions between different pairs of joint angles relies heavily on the principles outlined

in the CAAIOS algorithm. The proposed steps are as follows:

1. Identify the two pairs of joint parameter IO functions that will be the subject of

the following design loop.

2. Identify the ranges over which the desired IO functions will be approximated.

3. Use the previously defined CAAIOS algorithm to develop the IO function gener-

ator which best approximates one of the IO functions.

4. Integrate both synthesis arrays from the respective CAAIOS equations over the

prescribed ranges of the approximation for each IO function in order to define

their CAAIOS equations.

5. Sum these two CAAIOS equations.

6. Using the optimal linkage parameters identified in the third step of this algorithm

as an initial guess, minimise the sum of these IO equations over the field of real

numbers.

3.2.1 Mathematical Implementation of Multi-Modal Continuous Approxi-

mate Synthesis

This section will establish the mathematical basis for this operation, while following

sections will be used to develop examples, and establish limitations to the implementa-

tion of the multi-modal continuous approximate algebraic input-output synthesis (MM-

CAAIOS) methods. First, it is proposed that the MMCAAIOS process may be accom-

plished with the following equation:
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min
(p1···pn)∈R

(
c1·
∫ vi1max

vi1min

s1(vi1 , f1(vi1))dvi1+c2·
∫ vi2max

vi2min

s2(vi2 , f2(vi2))dvi2

)
= 0; (3.2)

where pi is used to denote the parameters of any given four-bar function generating

mechanism architecture; c1 is the array of coefficient terms associated with the primary

function being synthesised; s1 is the synthesis array associated with the primary func-

tion being synthesised; vi1min
and vi1max

represent the lower and upper bounds of the

synthesis range associated with the input angular parameter of the first function, respec-

tively; c2 is the constant terms associated with the secondary function being synthesised;

s2 is the synthesis array associated with the secondary function being synthesised; and

vi2min
and vi2max

represent the lower and upper bounds of the synthesis range associated

with the input angular parameter of the secondary function, respectively.

The application of the MMCAAIOS methodology is identical to that of the typical

CAAIOS from this point. Now that the mathematical relationship for the MMCAAIOS

algorithm has been defined, the limitations of its applicability must be elucidated.

3.2.2 Planar RRRR Multi-Modal Function Generation

The typical function generation problem concerns θ4 = f (θ1) and the corresponding

v1-v4 IO equation; however, considering Figure 3.2, one may wish to also consider the

v1-v3 pair of angles, or any other of the remaining four pairs. For this proof-of-concept

of the multi-modal continuous approximate synthesis method we shall begin with the

synthesis of two arbitrarily competing functions, v4 = f1(v1) and v3 = f2(v1). The

reason for this choice is that the v3 angle parameter is a measure of the transmission

angle, which can useful as a metric to discriminate between four bar mechanisms that

have practical use from those that do not [35, 36, 37, 38, 39].

This idea has a philosophical existential question associated with it. Namely, when a

mechanism is identified to generate, for example, v4 = f1(v1), the five other vj = f2(vi)

functions are explicitly defined. Suppose a v3 = f2(v1) function was needed that was

different from the one imposed by the initially generated v4 = f1(v1) function. The

question now becomes, “does a linkage exist that is the best compromise between the
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competing prescribed functions?” The answer is, in general, no. However, it will be

shown that polynomial interpolants [107] or heavily constrained target functions can

be used to perturb one of the functions and the multi-modal synthesis algorithm may

succeed. The design parameter space of planar RRRR function generator linkages is de-

fined [37, 108, 109] as the four-dimensional homogeneous space spanned by the mutu-

ally orthogonal basis vectors a1, a2, a3, normalised with respect to frame length a4 = 1.

Distinct points in this homogeneous space, (a1 : a2 : a3 : 1), where the delimiter : has

been used to indicate the use of homogeneous coordinate ratios, represent distinct pla-

nar RRRR linkages. Each point is a linkage that generates six distinct functions between

the six distinct angle parings between different links. The linkages identified to gener-

ate the prescribed v4 = f1(v1) and v3 = f2(v1) functions represent two distinct points,

and therefore two distinct linkages. It will be illustrated in Section 3.2.2 that, in general,

the synthesis of competing functions is not possible in any useful way. However, in Sec-

tion 3.2.5 it will be shown that it is possible to subtly perturb one of the functions used

for the mechanism synthesis, leading to useful results.

First, the CAAIOS will be completed for a function in the v1-v4 parameter set in

order to identify all generated functions from the ideal linkage as a point of comparison

for the subsequent MMCAAIOS implementation demonstration.

Now, let the prescribed v4 = f1(v1) function be,

v4 = f1(v1) = 2 + tan
(

v1

v1
2 + 1

)
, −1

2
≤ v1 ≤ 2. (3.3)

Next, identify the linkage that will approximately generate this function using con-

tinuous approximate synthesis. The first step is to square Equation (1.65), then separate

the link length coefficients into arrays c1 and s1, yielding,
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c1 =



A2

2AB
B2

−16Aa1a3
−16Ba1a3

2AC
64a2

1a2
3 + 2AD + 2BC

2BD
−16Ca1a3
−16Da1a3

C2

2CD
D2



, s1 =



v4
1v4

4
v4

1v2
4

v4
1

v3
1v3

4
v3

1v4
v2

1v4
4

v2
1v2

4
v2

1
v1v3

4
v1v4
v4

4
v2

4
1



=



v4
1 f1(v1)

4

v4
1 f1(v1)

2

v4
1

v3
1 f1(v1)

3

v3
1 f1(v1)

v2
1 f1(v1)

4

v2
1 f1(v1)

2

v2
1

v1 f1(v1)
3

v1 f1(v1)
f1(v1)

4

f1(v1)
2

1



. (3.4)

The exact synthesis problem is then solved in order to obtain an initial guess for the

optimisation, using the prescribed function pairs that satisfy Equation (3.3):

(v1, v4) =

(
−1

2
,

32287
20471

)
;
(

3
4

,
49597
20471

)
;
(

2,
48857
19383

)
.

Note that to obtain these three precision IO pairs, the lower and upper bounding

values of the synthesis range for v1 have been selected, alongside an arbitrary value in

between, while the corresponding value of v4 satisfies the prescribed function, Equa-

tion (3.3).

In this classic RRRR exact synthesis problem a unique solution which contains the

link length a4 as a free parameter may be obtained as:

a1 = − 21111
109000

a4, a2 =
21021
18196

a4, a3 =
21518
15263

a4, a4 = a4. (3.5)

Arbitrarily, one sets a4 = 1 and evaluates the integral, then minimises the design

error residual using the normalised link lengths in Equation (3.5) as the initial guess:

min
(a1,a2,a3,a4)∈R

(
c1·
∫ v1=2

v1=− 1
2

s1(v1, f1(v1))

)
. (3.6)

The minimisation is accomplished using the Optimization solvers in Maple 2023,

as with all previously noted examples, which converges to the link lengths listed in
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Table 3.4.

TABLE 3.4: Continuous approximate synthesis results generating Equa-
tion (3.3).

Link length a1 a2 a3 a4

Rational −13077
78259

45079
42170

27203
20556

101727
110482

Floating point -0.167098992 1.068982689 1.323360576 0.920756322

Normalised -0.1814801460 1.160983273 1.437253857 1

TABLE 3.5: Structural error generating Equation (3.3).

Structural error Exact synthesis Continuous approximate synthesis

0.024159094 -0.002471306

Comparisons of the structural error, defined as the area between the prescribed and

generated functions, in the v1-v4 plane are enumerated in Table 3.5. It is observed that

the structural error for the function generated by the continuous approximate synthesis

linkage is an order of magnitude smaller than that of the function generated by the exact

synthesis linkage, as can be observed by casual visual inspection of the graphs plotted

in Figure 3.3.

This approximately generated v4 = f1(v1) function exactly generates five additional

vj = f2(vi) functions given the link lengths identified to approximately generate the pre-

scribed function. These functions are exact in the sense that they have not been explicitly

prescribed. These five functions between the angle parameters v1-v2, v1-v3, v2-v3, v2-v4,

and v3-v4 are generated by the identified link lengths, and are illustrated in Figure 3.4,

along with the prescribed and continuous approximate v4 = f1(v1) functions.

Now that it has been shown that the function in question is possible to generate,

with high fidelity, from a planar RRRR function generator, the process of MMCAAIOS

will be applied in a naïve manner so as to demonstrate one of the limitations of the

MMCAAIOS algorithm in the following section.
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FIGURE 3.3: The prescribed, exact, and continuous synthesis approxima-
tion of Equation 3.3 in the v1-v4 plane.

Naïve Multi-Modal Synthesis Attempt

Suppose, now, that it is desired to identify a linkage that can approximately generate the

v1-v4 function in Equation (3.3) and approximately generate a competing v1-v3 function

that is very different from the v1-v3 function generated by the link lengths listed in

Table 3.4, and shown in Figure 3.4. The pragmatic mechanical engineer response to such

a wish is simply that it is not possible with a planar RRRR linkage. But, should it not

be possible to identify a compromise linkage that will generate both desired functions

with tolerable structural error? The naïve answer is that it must surely be possible to

some extent.

Let us examine this problem from the pragmatic mechanical engineering perspective

and select the additional v1-v3 function to be,

v3 = f2(v1) = 2 + tan
(

v2
1

v1
2 + 1

)
, −2 ≤ v1 ≤ 2. (3.7)
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FIGURE 3.4: The prescribed, continuous synthesis approximate, and the
five functions generated by the identified link lengths in the vi-vj planes.

v3

v1

FIGURE 3.5: The desired competing v1-v3 function and the one generated
by the linkage that approximates Equation 3.3.
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v3

v1

FIGURE 3.6: The v1-v3 multi-modal results.

The v1-v3 function generated by the linkage that approximately generated the pre-

scribed v1-v4 function can be seen in Figure 3.4, and is reproduced for comparison with

the very different desired v1-v3 function in Figure 3.5. The range −2 ≤ v1 ≤ 2 is then se-

lected for the prescribed v1-v3 function, and 0 ≤ v1 ≤ 2 for the prescribed v1-v4 function.

Initial guesses for the four link lengths must now be selected in order to Equation (3.2).

Arbitrarily, and naïvely, (a1, a2, a3, a4) = (1, 1, 1, 1), is selected for link length initial

guesses, following which the minimise command is allowed to minimise the residual of

Equation (3.2). This yields in the remarkably poor results illustrated in Figures 3.6 and

3.7.

Clearly, the naïve approach to the multi-modal function generator synthesis problem

yields fundamentally unacceptable results, and more must be controlled before it is to

be of use.
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v4

v1

FIGURE 3.7: The v1-v4 multi-modal results.

3.2.3 Constrained Multi-Modal Synthesis Example

While the previous example failed to produce a linkage which was even remotely capa-

ble of producing the desired functional relationship within both the v1 − v4 and v1 − v3

angular parameters, the initial guess used for the optimisation is one which typically is

not capable of producing a suitable function generator even for the standard CAAIOS

case. Thus, an example should instead be derived through a MMCAAIOS example us-

ing a more constrained initial guess in order to ensure that the algorithm itself is not

being rendered useless by a simple numerical initialisation problem. The RRRR func-

tion generating mechanisms presented in the previous section will be expanded upon

within this section. For reference, the target function is,

v4 = 2 + tan
(

v1

v2
1 + 1

)
, (3.8)

and the resulting link lengths from the CAAIOS method are,
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FIGURE 3.8: The desired input-output relationship in v1 − v3 compared to
the same relationship which is generated by the CAAIOS optimal linkage

parameters.


a1
a2
a3
a4

 =


−0.217
1.180
1.415

1

 . (3.9)

Now, we define the desired v1 − v3 functional relationship to be identical to that

which is expressed in the v1 − v4 parameter set. First, we compare the desired function

shown to what is generated by the optimal parameters in Equation (3.9) by solving

the planar RRRR algebraic input-output relationship in v1 − v3 for v3. The comparison

between this and the desired relationship is show in Figure 3.8.

Clearly, the desired multi-modal relationship requires a fundamental alteration in

the function expressed by the function generator in v1 − v3. Now, Equation (3.2) will be

used to complete the minimisation technique. Unfortunately, in general, this procedure

fails; the solver within Maple 2023 is not able to find a point which reduces the error,
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and the minimisation algorithm fails for the above relationship. While it was possible

to compute an improved point with the previous example, it should be noted that the

function generator which results from using ai = 1 as an initial guess for the minimisa-

tion algorithm generated a large error in both functions being synthesised, while using

the initial guess which was computed from the CAAIOS through the approximation of

the v1 − v4 relationship yields a solution which is simply the lowest possible total error

solution available.

Evidently, additional techniques must be employed in order to define the limita-

tions of the MMCAAIOS algorithm, and to adjust for the numerical sensitivity of the

optimisation process.

Weighted Multi-Modal RRRR Function Generator Synthesis

The failure of the MMCAAIOS method appears to result from a lack of sensitivity within

the problem statement to the errors within the secondary v1 − v3 relationship. Consid-

ering this lack of numerical sensitivity, the following modification to Equation (3.2) is

proposed,

min
(a1,a2,a3,a4)∈R

(
W1c1·

∫ vi1max

vi1min

s1(vi1 , f1(vi1))dvi1+W2c2·
∫ vi2max

vi2min

s2(vi2 , f2(vi2))dvi2

)
, (3.10)

where the factors W1, and W2, in Equation (3.10) are some non-zero positive weight-

ing factors. These factors, within the problem which follows, are some positive value

that serve to amplify the impact of the errors within either the v1 − v4 or v1 − v3 input-

output relationship, in order to drive more sensitivity within the optimisation routine.

For brevity, several weighting factors were used for W2 in order to discover the point

at which the multi-modal equation would converge. The factor which was seen to pro-

duce a convergence within the multi modal relationship was W2 = 400, indicating that

in order for the multimodal algorithm to converge, the error induced within the orig-

inal v1 − v4 relationship is 400 times larger than the error reduced within the v1 − v3

relationship. Figure 3.9 shows the resulting v1 − v4 function.
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FIGURE 3.9: The v1 − v4 equation resulting from the weighted multi-
modal synthesis algorithm.

Clearly, the relationship in v1 − v4 is untenable if the goal was to preserve as much of

the original relationship as possible and to simply fine-tune the relationship within the

v1 − v3 input-output function. However, considering the damage wrought to the origi-

nal relationship, the v1 − v3 function must be significantly improved in order to justify

the reduction in accuracy within the v1 − v4 relationship. Figure 3.10 shows the rela-

tionship resulting from the weighted multi-modal synthesis algorithm, which clearly

has not improved sufficiently to justify the loss in accuracy within the v1 − v4 IO rela-

tionship.

It is obvious from this demonstration that, while a weighting factor can be used in

order to force convergence to the error minimising linkage within some secondary set

of IO parameters, the effect of the weighting factor destroys the relationship which was

originally derived. Thus, if the multi-modal synthesis algorithm is to be successful in

a meaningful way, additional constraints must be levelled on the secondary function to

be generated.
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FIGURE 3.10: The v1 − v4 equation resulting from the weighted multi-
modal synthesis algorithm.

3.2.4 Functionally Constrained Multi-Modal Function Generator Synthesis

Based on the above it is now evident that, in general, a single function generator can-

not be made to produce arbitrarily competing functions, and furthermore that using a

weighting strategy in order to force the linkage to generate the secondary function de-

generates the relationship for which the original linkage was intended. However, is the

MMCAAIOS algorithm even so much as tangentially useful, or does the nature of the

motion constraints levelled by four-bar function generators render this approach with-

out applicability? The following section will investigate the implications of a functional

constraint on the input-output relationship in the v1 − v3 pair and its impacts on the

applicability and limits of the MMCAAIOS algorithm.

The v1 − v4 equation to be synthesised is the same target from the previous section

of this thesis, Equation (3.8), resulting in the following set of link lengths following the

standard continuous approximate synthesis approach,
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
a1
a2
a3
a4

 =


−0.217
1.180
1.415

1

 , (3.11)

which are generated when the continuous approximate synthesis algorithm is used on

the interval of v1 = 0 . . . 2. For the purposes of this demonstration, the same inter-

val will be maintained for the v1 − v3 function generator, implying that the designer is

attempting to modify the parameter pair which would represent the transmission an-

gle of the previously obtained function generator over the same range as the function

generator was synthesised. In order to attempt to define some of the boundaries of

the MMCAAIOS method, a heavily constrained target function in v1 − v3 will be used,

which is similar to what is produced when the v1 − v3 relationship is solved from the

parameters in Equation (3.9). Upon investigation of the v1 − v3 function generated from

the original CAAIOS solution shown in Section (3.2.3), the target function,

v3 =
9
5
+ tan

(
v2

1

v2
1 + 1

)
, (3.12)

is defined as a close target function. Figure 3.11 shows the differences between the

v1 − v3 CAAIOS IO function and the desired relationship expressed by Equation (3.12).

The desired v1 − v3 function is, in this case, primarily a vertical translation, and

therefore simply a shift of the v1 − v3 input-output function generated by the previously

completed CAAIOS problem. Using a uniformly weighted multimodal function gener-

ator architecture where W1 = W2 = 1, and integrating both input-output relationships

in terms of the input parameter, v1, the following function is minimised,

min
(a1,a2,a3,a4)∈R

(
c1·
∫ v11max

v11min

s1(v11 , f1(v11))dv11+c2·
∫ v12max

v12min

s2(v12 , f2(v12))dv12

)
, (3.13)

where the initial guesses used for the link length parameters are taken from Equa-

tion (3.11), f1(v1) is defined in Equation (3.8), and f2(v2) is defined in Equation (3.12).

Following minimisation of the residual of this equation, the following optimal link

lengths are obtained,
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FIGURE 3.11: The desired multi-modal function in v1 − v3 and the re-
lationship resulting from the CAAIOS of the linkage with a defined IO

relationship in v1 − v4.


a1
a2
a3
a4

 =


−0.239
1.182
1.388

1

 , (3.14)

which deviate only slightly from the link lengths presented in Equation (3.11). However,

as seen in previous sections, a small deviation may have massive implications in the

ability of a mechanism to satisfy the desired motion constraints. However, as can be

seen in Figure 3.12, the v1 − v4 function generated following the MMCAAIOS algorithm

only deviates slightly from the previously defined optimal function generator.

While this is an encouraging result, was the original goal of synthesising Equa-

tion (3.12) realised in this iteration of the multi-modal synthesis problem? Figure 3.13

shows that, in fact, the original goal was realised; the desired relationship is far more

closely approximated.

This result would seem to indicate that the multi-modal synthesis approach is viable

for modest changes into some vi − vj input-output pair in a linkage which has already
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FIGURE 3.12: The desired function in v1 − v4 and the relationship result-
ing from the CAAIOS in v1 − v4 coupled with the desired v1 − v3 rela-

tionship.

FIGURE 3.13: The desired multi-modal function in v1 − v3 and the rela-
tionship resulting from the CAAIOS in v1 − v4.
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been designed so as to optimally generate an IO relationship in some other vi − vj pair.

While the original goal of the MMCAAIOS problem was to be able to develop a single

function generator which generates two separate competing functions, the results con-

tained within this section indicate that it may be possible to fine-tune an optimal func-

tion generator in order to either modify the transmission angle of the linkage through its

functional range, or to ensure that some motion envelope is satisfied in another angular

pair. Admittedly, this example is somewhat contrived, but it is meant to serve as a proof

of concept.

3.2.5 Multi-Modal Synthesis in Practice

As previously described, the second, third, fourth, et c., prescribed functions need to be

constrained with respect to the five functions generated by the link lengths that approx-

imately generate the first prescribed function in the absence of a useful initial guess. If

it is desired to generate a different, though heavily constrained, v3 = f2(v1) function

for example, a generatable function may be specified as an interpolant of the one deter-

mined by the specified primary v4 = f1(v1) function. To do this, Lagrange polynomial

interpolation has proven to be an acceptable method.

The first step is to solve the v1-v3 IO equation imposed by the generated v4 = f1(v1)

function. This yields the exact v3 = f2(v1) function generated by the identified ai link

lengths that approximately satisfy the specified v4 = f1(v1) function. Select n (v1, v3) IO

pairs from the exact v3 = f2(v1) function generated by the identified ai to use as inputs

for the Lagrange polynomial interpolation formula. In general, this method takes the n

points in an arbitrary x-y plane, with no two xi the same and returns a polynomial of

degree at most d ≤ n − 1.

The Lagrange polynomial interpolant is a linear combination

L(x) =
n

∑
i=1

yili(x),

of Lagrange basis polynomials,
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li(x) = ∏
1≤m≤n

m ̸=i

x − xm

xi − xm
=

(
x − x1

xi − x1

)(
x − x2

xi − x2

)
· · ·
(

x − xn

xi − xn

)
.

For the computational proof-of-concept example we will use a system of primary and

secondary prescribed functions. The primary function is arbitrary. But the secondary is

some Lagrange polynomial interpolant of the function imposed by the link lengths iden-

tified that approximately generate the primary function. The link lengths that approxi-

mately generate the primary function will be used as initial guesses for the multi-modal

synthesis with the secondary polynomial interpolant function. The primary function

we wish to generate with a planar RRRR closed kinematic chain is Equation (3.3). The

corresponding v1-v3 function exactly generated by the identified link lengths is obtained

from the v1-v3 IO equation, Equation (1.71), using the ai from the v4 = f1(v1) continuous

approximate synthesis step listed in Table 3.4 is,

v3 = ±
11268158900

√(
v2

1 +
28145
62561

) (
v2

1 +
43467
38278

)
5593605380v2

1 + 2516456313
. (3.15)

Suppose that this crank-rocker four-bar linkage was required to precisely time two

punch presses. Four holes created by the presses are required to be precisely located

on a single automotive quarter panel which is advanced in a jig under the action of the

input link of the mechanism. One quarter panel completely advances per 360◦ rotation

of the input crank link. The first punch press is actuated by a trigger that is activated

under the action of θ4, while the second is actuated by θ3. The v4 = f1(v1) trigger func-

tion is that of Equation (3.3). However, after the linkage is synthesised, the resulting

v3 = f2(v1) function, Equation (3.15), does not satisfy the angle requirement. The trig-

ger for this punch press must be actuated when the input angle locating the quarter

panel has the precise values θ1 = 0.00◦ ± 0.05◦ and θ1 = 90.00◦ ± 0.05◦. At these in-

put angles the corresponding values of θ3 must be precisely θ3 = 145.25◦ ± 0.05◦ and

θ3 = 135.25◦ ± 0.05◦. Unfortunately, while the values of θ4 generated by the linkage
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obtained by continuous approximate synthesis as listed in Table 3.4 are within toler-

ance for the required input angles those for θ3 are not. The required angle generated by

this linkage at θ1 = 0.00◦ ± 0.05◦ is θ3 = 145.50◦ ± 0.05◦ and at θ1 = 90.00◦ ± 0.05◦ is

θ3 = 135.10◦ ± 0.05◦, both out of tolerance, though only marginally, see Table 3.6. Re-

laxing the tolerances is deemed to not be an acceptable design course of action. In this

case, subtly perturbing the v3 = f2(v1) function generated by the required v4 = f1(v1)

function, Equation (3.3), may yield the required θ4 and θ3 output angles.

TABLE 3.6: Required and v4 = f1(v1) generated values of θ3 at required
θ1.

Required θ1 0.00◦ ± 0.05◦ 90.00◦ ± 0.05◦

Required θ3 145.25◦ ± 0.05◦ 135.25◦ ± 0.05◦

Generated θ3 145.50◦ 135.10◦

To achieve this, we will attempt to use Lagrange polynomial interpolation to obtain a

different, but constrained function using n = 4 points on the (upper signed) v3 = f2(v1)

curve, Equation (3.15):

(v1, v3) =

(
−1

2
,

62167
21933

)
,
(

1
4

,
80364
26089

)
,
(

3
5

,
64227
23462

)
,
(

11
10

,
39821
16629

)
.

The resulting degree 3 Lagrange polynomial function v3 = f2(v1) is

v3 =
140152452564627675650
146115499161206849967

v3
1 −

148500638129317309265
97410332774137899978

v2
1

−136182081139230857387
584461996644827399868

v1 +
57010242995943671417
17710969595297799996

, (3.16)

for − 1
10

≤ v1 ≤ 5
4

.

Let this be the specified secondary function. Both the interpolant, Equation (3.17), and

the precise v1-v3 function, Equation (3.15), generated by the link lengths that were iden-

tified to approximately generate Equation (3.3) are illustrated in Figure 3.14.

Careful examination of Figure 3.14 reveals that both Equation (3.15) and (3.17) are
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v3

v1

FIGURE 3.14: The polynomial interpolant, Equation (3.17), and the v1-
v3 function, Equation (3.15), generated by the linkage that approximates

Equation (3.3).

very close to each other in the range − 1
10 ≤ v1 ≤ 5

4 . To demonstrate that our kine-

matic model of the geometry of multi-modal synthesis will lead to a computationally

useful result, we will use these as the integration limits for the v1-v3 secondary func-

tion. Hence, the primary v4 = f1(v1), Equation (3.3), and secondary v3 = f2(v1), Equa-

tion (3.17), are used to generate the respective synthesis equations with variable angle

parameters expressed as v1 and f1(v1) in the primary, and v1 and f2(v1) in the sec-

ondary. The two synthesis equations are squared, then the coefficients and variables are

separated into the arrays c1, s1(v1, f1(v1)), c2, and s2(v1, f2(v1)), from which the target

function is constructed,

min
(a1,a2,a3,a4)∈R

(
c1·
∫ v1=2

v1=− 1
2

s1(v1, f1(v1))dv1 + c2·
∫ v1=

5
4

v1=− 1
10

s2(v1, f2(v1))dv1

)
. (3.17)

The multi-modal computations for Equation (3.17) converge to the link lengths listed

in Table 3.7. The results are graphically illustrated in Figure 3.16 and the structural
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errors, defined as the areas between the prescribed and generated functions are listed in

Table 3.8.

TABLE 3.7: The v4 = f1(v1) and v3 = f2(v1) planar 4R multi-modal
synthesis results.

Link length a1 a2 a3 a4

Floating point -0.1478064777 0.9299394483 1.148016662 0.8023065449

Normalised -0.1842269375 1.159082466 1.430895297 1

TABLE 3.8: The v4 = f1(v1) and v3 = f2(v1) planar 4R multi-modal
synthesis structural errors.

Structural error

v4 = f1(v1) only -0.002471306

v4 = f1(v1) multi-modal 0.009542948

v3 = f2(v1) only 0.005358289

v3 = f2(v1) multi-modal 0.004161159

It is to be seen that the structural error for the v4 = f1(v1) results increases by a factor

of nearly four, but is still tolerably small. While the structural error for the v3 = f2(v1)

multi-modal results decreases modestly. However, the important outcome in this case is

that at the required input angles the corresponding required values of θ4 are still within

tolerance, and those of θ3 are as well. When θ1 = 0.00◦ ± 0.05◦ the multi-modal linkage

generates θ3 = 145.25◦± 0.05◦ and at θ1 = 90.00◦± 0.05◦ we obtain θ3 = 135.28◦± 0.05◦,

both within tolerance. The relevant values of this outcome are listed in Table 3.9.

TABLE 3.9: Required and multi-modal generated values of θ3 at required
θ1.

Required θ1 0.00◦ ± 0.05◦ 90.00◦ ± 0.05◦

Required θ3 145.25◦ ± 0.05◦ 135.25◦ ± 0.05◦

Generated θ3 145.25◦ 135.28◦
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v3

v1

FIGURE 3.15: The v1-v3 multi-modal results.

v4

v1

FIGURE 3.16: The v1-v4 multi-modal results.
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While it can be seen from Table 3.7 that the structural error associated with the

v1 − v4 IO equation increased in magnitude following the MMCAAIOS algorithm, the

structural error associated with the v1 − v3 IO pair decreased, and the physical con-

straints (shown in Table 3.9) associated with the required operational characteristics of

the linkage were realised.

3.2.6 RRRP Multi-Modal Function Generator Synthesis

Considering the results from the previous sections of this thesis, what remains to be seen

is whether or not the MMCAAIOS is an abberation of the planar RRRR linkage geome-

try, or if this technique is equally as applicable to other function generator architectures.

As with all fundamentally novel design techniques, difficulties emerge in identifying

methods whereby the new technique may be validated against previous accepted tech-

niques within the literature. Problematically, multi-modal synthesis has never, to the

best of the author’s knowledge, been attempted before, and thus comparisons are not

possible for these examples. In the interest of developing a more unified theorem, the

DH parameter equations, as shown in Section 1.6.5 will be used for the MMCAAIOS

example to follow. For ease of reference, the RRRP IO corresponding to the v1 − d4 IO

pairing is replicated here as,

v2
1d2

4 + Rv2
1 + d2

4 − 4a1v1d4 + S = 0, (3.18)

where

R = R1R2 = (a1 + a2 − a4)(a1 − a2 − a4),

S = S1S2 = (a1 + a2 + a4)(a1 − a2 + a4),

v1 = tan
θ1

2
.

The remaining joint variable parameter pairings lead to the following five RRRP

algebraic IO equations, and are replicated here for ease of reference:
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R2v2
1v2

2 + R1v2
1 − S2v2

2 + 4a2v1v2 − S1 = 0; (3.19)

R1v2
1v2

3 + R2v2
1 − S2v2

3 − S1 = 0; (3.20)

S2v2
2v2

3 − R2v2
2 − R1v2

3 − 4a1v2v3 + S1 = 0; (3.21)

v2
2d2

4 − R2S2v2
2 + d2

4 − R1S1 = 0; (3.22)

v2
3d2

4 + R1S2v2
3 + d2

4 + 4a2v3d4 − R2S1 = 0. (3.23)

The primary d4 = f1(v1) function is arbitrarily chosen to be

d4 = 2 − ln
(

v2
1

v2
1 + 1

)
,

1
10

≤ v1 ≤ 6. (3.24)

To generate an initial guess for the multi-modal synthesis, the CAAIOS process is

completed, identifying the following link lengths:

a1 = −21527
19453

, a2 =
62456
9833

, a4 =
66527
13759

. (3.25)

After following similar computation steps as for the planar RRRR multi-modal syn-

thesis example in Section 3.2.5, we determine the secondary v3 = f2(v1) function again

as a degree 3 Lagrange interpolant:

v3 =
8575459781525718313

2128203922635547524924
v3

1 −
926446934929263804951
7094013075451825083080

v2
1

+
145850030457909132287
123732786199741135170

v1 +
3255237430904027623667
1773503268862956270770

. (3.26)

Then arbitrarily, but without loss of generality, assign the integration limits for this

perturbed secondary function to be the same as those of the primary function. The

multi-modal synthesis is then performed by evaluating



3.2. Multi-Modal Continuous Approximate Synthesis 99

min
(a1,a2,a4)∈R

(
c1·
∫ v1=6

v1=
1
10

s1(v1, f1(v1))dv1 + c2·
∫ v1=6

v1=
1
10

s2(v1, f2(v1))dv1

)
. (3.27)

The numerical optimiser in Maple 2023 converges to the link lengths listed in Ta-

ble 3.10, while the structural errors for each of the two generated functions are listed in

Table 3.11. To help visualise the areas between the prescribed and generated functions

the results are illustrated in Figures 3.17 and 3.18. It can be seen that the structural error

in v1 − v3 decreases for the multi-modal synthesis results.

TABLE 3.10: The d4 = f1(v1) and v3 = f2(v1) planar RRRP multi-modal
synthesis results.

Link length a1 a2 a4

Rational -
26513
23888

85324
13461

127711
26510

Floating point -1.10988780904891 6.33860782950366 4.81746510770270

TABLE 3.11: The d4 = f1(v1) and v3 = f2(v1) planar RRRP multi-modal
synthesis structural errors.

Structural error

d4 = f1(v1) only -0.23104280

d4 = f1(v1) multi-modal -0.24046271

v3 = f2(v1) only 0.23488469

v3 = f2(v1) multi-modal 0.15360825

These examples are intended to serve as a conceptual demonstration of the MM-

CAAIOS procedure, however, it is not intended as a prediction of how multi-modal

function generator synthesis will behave in the general case. While the limitations of

the MMCAAIOS are still somewhat unclear from these contrived examples, they in-

clude, but are not necessarily limited to: which types of functions may be generated by

each angle parameter pair for a given planar function generator architecture; how these

possibilities change based on the initial linkage parameters used for the optimisation;

the effective limits on precisely how much the error associated with the designers ini-

tial function generator will increase given how far the secondary function is made to
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v3

v1

FIGURE 3.17: The v1-v3 RRRP multi-modal results.

d4

v1

FIGURE 3.18: The v1-d4 RRRP multi-modal results.
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deviate from its initial form.

3.3 Discussion

The main goal of this chapter was to describe the limitations, and to explore possible

applications of, the novel four-bar planar mechanism algorithm that implicitly drives

the cardinality of the IO data set used to generate the over constrained set of synthesis

equations to infinity. The computational efficiency of the algorithm itself allows it to be

used in ways that classical approaches may not have been used in the past. These exten-

sions include the ability to simultaneously identify the type and dimensions associated

with some optimal function generator through a simple comparison of the integrals of

the functions generated by each linkage architecture following optimal synthesis. Ad-

ditionally, the MMCAAIOS problem was attempted; the act of using the same function

generating linkage to approximate two separate functions in different IO pairs, simulta-

neously. While the original intent of the multi-modal function appears to be impossible,

to generate two arbitrarily competing functions with the same linkage in two different

IO pairs, the use of the MMCAAIOS algorithm was demonstrated through two con-

strained examples.

The algorithm was demonstrated with these multi-modal synthesis examples, in a

proof-of-concept fashion, to simultaneously generate primary and perturbed secondary

functions in each of an RRRR and an RRRP planar linkage, and to demonstrate that

generation of competing functions with a planar four-bar linkage is, in general, not pos-

sible. Further, the use of a weighting function on the secondary relationship within the

MMCAAIOS algorithm does precisely nothing to improve the results and is, in fact,

more deleterious to the maintenance of the original optimally generated function than

it improves the performance within the synthesis of the secondary function. When the

MMCAAIOS is used to approximate only modestly competing functions, however, the

results lead to reductions in the structural errors within the secondary function to a large

degree, and a modest increase to the structural errors associated with the primary func-

tion. Certainly, any planar four-bar mechanism generates an output joint parameter that
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is a distinct function of the input joint variable parameter. The linkage that generates

this distinct function also exactly determines five additional functions between the re-

maining pairs of variable joint parameters. The synthesis examples in this chapter have

demonstrated that it is possible to approximately generate two distinct, though heav-

ily constrained, IO functions between different variable joint pairs that have not been

already determined by the linkage geometry. This simple result illustrates the tremen-

dous value represented by the algebraic input-output equations as design and analysis

tools.

The algebraic IO equations described herein, together with the MMCAAIOS algo-

rithm, stand to enable designers of industrial automated production and assembly sys-

tems to approach optimisation in a new way: different linkages in the mechanical sys-

tem that are capable of generating multiple different prescribed functions so that each

link in the chain can simultaneously perform different tasks, or perhaps to assist in

preparing linkages which are suitable for optimal force transfer through the linkage

while simultaneously maintaining some desired input-output relationship. While the

practicality of this is, of course, conjecture, it does suggest the continued generalisation

and development of MMCAAIOS is justified and worth the investigative effort.
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4 Conclusions

The practice of the kinematic synthesis of linkages has evolved over the centuries, from

strictly graphical techniques to those which evolved from the Freudenstein equation

first published in 1954. Classical techniques use a discrete synthesis method which re-

lies on the minimisation of either the design or the structural error associated with the

function being generated by the linkage. While the design error is a linear least squares

minimisation, it is a technique which relies solely on the minimisation of the residual

of the Freudenstein equation, which bears no resemblance to a physical property of the

linkage. In contrast to this, the structural error minimises the difference between the

prescribed and generated function at each precision point, and works towards directly

minimising the IO error of the resulting linkage. However useful the structural error

minimisation technique may be, it is often difficult to implement due to its highly non-

linear nature. In addition to these difficulties, the formulation for the design and struc-

tural errors relies on the use of absolute angular measurements, meaning the that exam-

ination of the intermediate joint angles, and any input-output equations associated with

these intermediate joint angles, relies on fundamentally different factors in terms of joint

length or angle parameters. Further to these concerns, it has been noted in the literature

that as the cardinality of the data set used to develop the minimisation algorithm for

a four-bar linkage becomes large, the design error minimising linkage approaches the

structural error minimising linkage, implying that the design error minimisation may

be used in place of the structural error minimising linkage given a sufficient number of

precision points.

The Freudenstein equation was successfully integrated and used to develop a con-

tinuous approximation algorithm in previous works [57, 83] in order to conceptually
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drive the cardinality of the target data set to infinity. However, given the complexity

of the integration procedure and the numerical sensitivity of the problem, the method

was often less practical than a classical structural error minimisation algorithm. Further

to these computational difficulties, the formulation of intermediate joint angle input-

output equations was still difficult, and the form of their coefficients was still impossible

to generalise. Thus, a more elegant representation of the planar four-bar function gen-

erating mechanism input-output equation was sought. Upon the development of the

algebraic input-output equations, however, these concerns evaporated. This technique

allowed for every single combination of input-output equations to be generated, with

uniform and consistent coefficients, for all of the planar (RRRR, RRRP, PRRP) linkages,

in addition to the spherical RRRR and the spatial RSSR linkages.

Given the advancements of the algebraic input-output equations, and all of the ad-

vantages they convey in addition to their ease of use, the problem of the continuous

approximate dimensional synthesis of four-bar function generating linkages was revis-

ited. This thesis contains an exhaustive list of the work required in order to completely

generalise the minimisation of the design error, over a continuous set of infinitely many

points, for every single linkage architecture for which the algebraic form of the input-

output equation exists. The methods presented herein are fundamentally general, sim-

plifying the minimisation of the design and subsequently the structural errors of the

linkage to a single equation,

min
(p1,p2,...,pn)∈R

(
pA

∫ v1max

v1min

sA(v1, f (v1))

)
, (4.1)

where the parameter array, pA, containing linkage geometric properties, pi, is con-

catenated against the integrated synthesis array, sA, which contains the desired input-

output function, and subsequently minimised over the field of real numbers, using the

simple solution to the three point precision problem as an initial guess. The application

of this method requires precisely no exceptions for all linkage architectures examined

within this thesis, and is thus completely generalised. Given the form of the algebraic

input-output equations, the design error can be considered to be the distance between
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the curve generated by the linkage and the desired curve, while the structural error is

the area between those two curves. This metric allows for an efficient comparison of

the performance of linkages in generating the desired curve. This continuous approx-

imate input-output synthesis method was validated against examples found in litera-

ture, and shown to produce results of higher fidelity and lower structural error than

that which was produced through a discrete structural error minimisation algorithm.

Furthermore, the continuous approximate algebraic input-output synthesis algorithm

is able to achieve these results orders of magnitude faster than conventional methods.

The continuous approximate synthesis method was then used to synthesise a linkage

for all five linkage architectures in order to demonstrate the ubiquitous nature of its

formulation and computational efficiency.

Given the computational efficiency presented by the continuous approximate syn-

thesis method, its application was extended to questions that are not typically easily

answered by conventional methods. Two additional design considerations are levelled

within this thesis. Firstly, the problem of combined type and dimensional synthesis; for

a given function, what is the best possible linkage architecture to use to synthesise it

over a given range. Secondly, multi-modal function generator synthesis, or the practice

of synthesising two distinctly different functions within different input-output pairs of

a single linkage. Combined type and dimensional synthesis was demonstrated to be

easily accessible and simply implemented with the continuous approximate synthesis

method. Multi-modal function generator synthesis was determined to have a funda-

mentally limited and constrained application space. The original goal of developing the

multi-modal synthesis algorithm was to develop a single function generating linkage

which could replicate two or more competing functions to some suitable level of fi-

delity within different input-output pairs of the linkage. The goal of this technique was

primarily to develop a linkage which could be optimised for a trade off of transmission

angle and input-output function generation to reduce the analysis required after a func-

tion generating linkage is created, in order to ascertain how useful the linkage may be

in practice. Unfortunately, through analysis, it was found that the only cases in which
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this is possible involved a simple translation of the input-output curve of the linkage

within one of the input-output pairs of the multi-modal function generation problem.

The problem was further investigated in order to ascertain if the multi-modal algorithm

could function effectively through the use of scaling factors in order to increase the sen-

sitivity of the overall system to the perturbing function, but ultimately the limitations

stand. Finally, multi-modal function generator synthesis was demonstrated within an

example which may occur in the development of a machine in order to show its narrow,

but effective, use case.

While additional research questions are levelled by the work presented herein, such

as the kinetic and dynamic dimensional synthesis of a four-bar linkage, this thesis de-

scribes a completely unified and generalised method for the dimensional synthesis of

four-bar function generating linkages.

4.1 Recommendations for Future Work

The work presented herein is applicable to the kinematic synthesis of linkages for func-

tion generating synthesis, though the methods presented herein are not necessarily use-

ful exclusively for this problem. It may also be possible to develop more complete con-

straints for the minimisation alogrithm, in order to target linkages which have special

properties, such as Grashof linkages, or in the case of the planar RRRR linkages, crank-

rocker, or double-crank mechanisms. It is likely that the initial guess passed into the

minimisation algorithm would be required to satisfy these constraints in order to allow

for convergence, although this is a supposition which is presented without substantia-

tion and one which will require additional investigation.

Future work expanding upon the methods previously discussed should also inves-

tigate the applicability for the CAAIOS methods to the kinetic and dynamic synthesis of

linkages. Further to this, it remains to be seen whether or not the MMCAAIOS would be

useful for the concurrent kinematic and kinetic (or dynamic) synthesis of function gen-

erating mechanisms. While the thesis focused entirely on the minimisation of kinematic

error in the development of function generators, the kinetic and dynamic properties are
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often points of concern for designers; using the MMCAAIOS algorithm, a designer may

be able to target subtle modifications to the kinetic and dynamic profiles of a linkage in

order to allow the linkage to satisfy design requirements which are driven by the avail-

ability of components, or the tolerances of the remainder of the machine in which the

linkage is being placed.
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