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Abstract

In this thesis, a novel method is presented whereby the maximum area inscribing

ellipse, subject to a set of four linear constraints within a two variable system is au-

tomatically generated. Two methods currently exist with varying degrees of utility

which provide solutions to generate the maximum area inscribing ellipse within a

convex quadrangle: projective transformation of the unit square and unit circle to

arbitrary parallelograms and trapezoids and corresponding area maximizing inscrib-

ing ellipses; as well as a method whereby a non-metric affine coordinate system is

constructed for the identification of the area maximizing inscribing ellipse. Problem-

atically, neither of these methods contain a general metric approach for all inscribing

ellipses within any given asymmetric convex quadrangle. An algorithm is developed

herein using the projective extension of the Euclidean plane which will always gen-

erate the entire one-parameter family of inscribing ellipses, and directly identify the

area maximizing one of any given convex quadrangle, within a metric space.

Given four bounding points, no three of which are collinear, four line equations

are generated which describe the convex quadrangle. Alongside the definition of a

specific polar point, these five constraints identify a pencil of inscribing line conics,

which is then transformed into its point conic dual for visualisation and plotting. The

pencil of point conics then has its area optimised with respect to the value of its polar

point, at which juncture the maximum area inscribing ellipse may be identified from

the pencil of inscribing conics.
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Chapter 1

Introduction and Problem Statement

In this thesis, an algorithm that identifies the ellipse with the largest area from the

one parameter family of ellipses that inscribe a general convex quadrangle is presented

for the first time. This algorithm and solution methodology have several important

applications ranging from determining the maximum area covariance ellipse given a

set of variables, or design constraints, to characterising the kinematic isotropy and

velocity performance indexes of parallel mechanisms. This kinematic isotropy can

be used to determine the area of the workspace in which the parallel mechanism

possesses the largest kinematic variability, providing information about where the

mechanism is most capable of changes in direction and velocity. Specifically, this

algorithm identifies the largest ellipse lying inside of any given convex quadrangle,

with tangents on each of the four sides, seen in Figure 1.1.

Figure 1.1: The maximum area inscribing ellipse of a convex quadrangle.

1
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1.1 Covariance Ellipses

Within systems of variables, covariance is a measure of how changes within one given

variable are related to changes in a second; the covariance between two variables,

therefore, becomes a measure of to what degree each variable is dependent upon its

counterpart. Currently, covariance ellipses are generated in many fields of study in

order to analyse data sets in an effort to understand the physical processes or relations

which are present within a given system. While ellipses are typically thought of as

second order curves which bound a closed area, a more relevant representation is that

which is obtained from a matrix formulation. This matrix has dimensions n×n, such

that n is representative of the number of variables contained within the system in

question. Specifically, a covariance matrix, A, for two given variables will have the

form,

A =

a11 a12

a12 a22

 , (1.1)

where A is a symmetric, square matrix whose values are directly related to the linear

correlations measured between the two variables in question. Within statistics, the

covariance ellipse of c separate variables, given N data points can be generated as

follows:

V =



Σx21
N

Σx1x2
N

. . . Σx1xc
N

Σx2x1
N

Σx22
N

. . . Σx2xc
N

...
...

. . .
...

Σxcx1
N

Σxcx2
N

. . . Σx2c
N


. (1.2)

From this representation, it is clear to see that the diagonal of V represents the
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variance of each variable within the data set, however, each non-diagonal element

vij represents the covariance of each variable with one of its experimental counter-

parts. Within a two variable system, V simplifies to a 2×2 symmetric matrix, which

possesses a form identical to that of the quadratic form of an ellipse.

1.2 Velocity Performance Indexes for Parallel

Mechanisms

Performance indexes within machine design are often used as a tool whereby infor-

mation about a specific mechanisms architecture may be obtained, and compared to

other dissimilar designs, in order to make an effective decision which will allow for

maximum productivity given a variety of constraints. Parallel mechanisms with ac-

tuation redundancy are mechanisms whose operational force outputs are not unique;

these operational output forces do not correspond to a unique set of joint forces, which

may help in reducing the effect of over-mobility singularities [3, 4]. Analysis of the

kinematic isotropy, or the capacity of a mechanism to change position, orientation,

and velocity given its pose within the workspace, can provide important information

about their velocity performance indexes [5].

In this context, the area of the the ellipse inscribing the arbitrary polygon de-

fined by the reachable workspace of the redundantly actuated parallel mechanism is

proportional to the kinematic isotropy of the mechanism. Kinematic isotropy can be

used to provide information about the velocity performance of a mechanism during

actuation based upon its position within its workspace. In [3] the approach to identi-

fying the maximum area inscribing ellipse is a numerical problem, essentially fitting

the inscribing ellipse within the linear constraints defining the velocity profile of the

mechanism by starting with the unit circle.
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1.3 Literature Review

There are only a handful of papers that report on investigations into determining the

maximum area inscribing ellipse contained within arbitrary quadrilaterals within the

literature. Determining the maximum area inscribing polygon of a given ellipse has

been investigated in [6], but is not necessarily germane to the application of identifying

the maximum area inscribing ellipse within an arbitrary quadrangle. Investigations

in [7] show that there exists a unique solution to the identity of the maximum area

inscribing ellipse which lies tangent to four non-coincident lines, while further investi-

gation in [8] shows that all ellipses lying tangent to these four lines have centres lying

on single line contained within the quadrangle. Problematically, these investigations

are simply proofs used to showcase that the solutions exist, not explicit algorithms

which can be used in order to identify the specific equation of the maximum area

inscribing ellipse.

In [9] a projective transformation technique is used in order to map the maximum

area inscribing ellipse of a known quadrangle, in this case the unit circle, onto an

ellipse inscribing an asymmetric convex quadrangle. Problematically, this solution

will only provides the maximum area inscribing ellipse for specific quadrangles, and

fails in the event of an asymmetric convex quadrangle. In [2] a solution is identified

through the use of non-orthogonal coordinate bases generated based upon the geom-

etry of the quadrangle presented; which, while effective from a purely mathematical

standpoint, fails to yield a metric result in general, resulting in a solution that is dif-

ficult to implement directly either for the purposes of identifying a covariance ellipse,

or for characterising maximum kinematic isotropy.
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1.4 Ellipses Tangent to Four Lines

Within its most simple incarnation, the problem of describing an ellipse which ade-

quately represents the covariance between variables in a two variable system simplifies

to describing the maximum area ellipse contained within a quadrangle which gener-

ates four non-collinear lines. In a system of two linear variables, x and y, these

variables can be described as minimum, x1 and y1, as well as maximum values, x2,

y2. The minimum and maximum values of the two variables describe four bounding

points. These four bounding points, describe four bounding lines provided that no

three of the points are collinear. Given four lines that form a convex quadrilateral,

there exists a pencil of conics which lies tangent to all four of these lines [7], and

specifically, one single ellipse of maximal area exists within this pencil [8].

Provided that the point couples (x1, y1), (x2, y1), (x2, y2) and (x1, y2) generate

a convex quadrangle, it is possible to identify a unique ellipse contained entirely

within the bounds of this polygon which occupies the maximum possible area within

the shape. Given this capacity, it becomes a simple matter to generate a covariance

ellipse which covers the largest possible area contained within these linear constraints;

or an ellipse describing the kinematic isotropy of a redundantly actuated parallel

mechanism.

1.5 Objectives

While it is well accepted that a maximum area inscribing ellipse exists within a

convex quadrangle, to the best of the author’s knowledge, a stand alone solution as

to the exact equation of this ellipse, given the formulation of either a quadrilateral

or a quadrangle, is missing from the vast body of literature. Thus, the methodology

following herein has been developed in such a way so as to provide a solution for this
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problem such that the resulting equation is both metric, and fully general, given any

convex quadrangle configuration.

1.5.1 Statement of Originality

Certain aspects of maximum area ellipses inscribing asymmetric convex quadrangles

are presented herein for the first time. Of particular interest are the following contri-

butions.

• Attached, in Appendix A is an algorithm which, given four points,

will automatically identify the maximum area inscribing ellipse of

the convex quadrangle they define. This algorithm includes a full solu-

tion, carried out in Maple, which identifies the maximum area inscribing ellipse

contained within a quadrangle defined by a user as four (x, y) coordinates, input

in counter-clockwise order starting from its lowest point.

– Within this solution, a generalised determinant-based formulation used to

determine the area of a given closed central conic is published for the first

time in English; its proof can be found in Chapter 2, using a canonically

positioned conic section and showcasing that its construction leads to an

identical area formulation as the commonly accepted πab.

• Throughout the summary of previous solutions contained within

Chapter 3 several characteristics are identified with respect to the

suitability of the solutions, specifically the geometric conditions un-

der which each solution is ineffective. Specifically, information about the

mapping technique presented within [9] and [10] is uncovered and effectively

showcases the reasoning for the situational applicability of this methodology

given what should be a completely general mapping process.
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– An English translation of portions of [1] is used to develop a Euclidean

classification for conic sections given their matrix-vector formulation and

based solely upon the values of associated Euclidean invariants derived

thereof.

• The maximum area inscribing ellipse of a trapezoid possesses an area

that is, at most, π directly scaled by two numbers which are not

necessarily the length of the semi-major and semi-minor axes. In

general, the numerical value of the area for the maximum area inscribing ellipse

of a convex quadrangle, when given in rational form, is a relatively cumbersome

function comprised of all manner of mathematical operators; in the case of the

trapezoid, the maximum area inscribing ellipse possesses an area that can be

described by one rational number, the square root of a whole number, and π,

multiplying each other.

1.5.2 Thesis Outline

In order to adequately describe the generalised solution for determining the maximum

area inscribing ellipse within a convex quadrangle, its significance, and furthermore

its novel nature, a large body of mathematical background is presented in Chapter 2;

this background information includes, but is not necessarily limited to, an overview

of linear geometries, transformation groups, line and point coordinates, second order

curves, closed conic sections (both in their line and point forms), and concludes with

a description and proof of a generalized area function based upon the matrix-vector

formulation of any conic section.

Once the requisite mathematical background information has been presented,

Chapter 3 presents two previously identified, but non-general, solutions for gener-

ating the maximum area inscribing ellipse within a convex quadrangle. Chapter 4
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outlines, in full, the novel general solution to identify the maximum area ellipse in-

scribing a convex quadrangle. Several working examples are included so as to show

that the method produced herein agrees with geometrically accepted solutions, while

a general convex quadrangle has its maximum area inscribing ellipse identified to

conclude the discussion of the methodology.

Finally, Chapter 5 provides a summary, conclusions, and a comparison of each

solution methodology, as well as interesting properties of inscribing ellipses within

specific convex quadrangles, specifically the trapezoid, which were observed through-

out the course of the testing procedure.



Chapter 2

Mathematical Background

Complete comprehension of the methodologies presented herein necessarily requires a

large body of knowledge pertaining to quadrilaterals, quadrangles, and second order

curves, and in particular, geometry. Although the background presented within this

chapter is sufficient for the purposes of communicating the significance of the problem

at hand, it is to be noted that this is, by no means, a comprehensive overview of these

topics.

2.1 Geometric Definitions

Though algebraic and geometric representations of functions are invaluable within

engineering and design, most engineers are only familiar with Euclidean spatial con-

structions, as they tend to be exceedingly advantageous for describing functions and

real world problems. Euclidean spaces are an extremely useful subset of spaces for

their metric qualities, however they represent only a small subset of spaces within an

infinite number of spaces.

Within the scope of this problem, discussion will be limited to three spaces; pro-

jective, affine, and Euclidean. Although theorems will be presented upon which the

construction of any given space may be undertaken.

9
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2.1.1 Euclidean Geometry

Overwhelmingly, within engineering, Euclidean spaces are used to represent and define

functions and geometric constructions. Euclid first pioneered a formal concept for

geometry nearly 2300 years ago. Originally, five postulates, or self evident truths,

which lay the foundation for geometry are presented within Book I of The Elements

[11].

1. A straight line may be drawn between two distinct points.

2. A finite straight line may be produced to any length in a straight line.

3. A circle may be described with any centre and any distance from that centre.

4. All right angles are equal.

5. For each line L and point P not on L, there exists one and only one line passing

through P, parallel to L.

Through inspection, it is obvious that for what is now known as Euclidean geom-

etry, the above postulates hold true. Euclid did propose many additional postulates

and axioms which provide a truly complete view of Euclidean Geometry as a whole,

which are all built upon these five postulates.

Non-Euclidean Geometries

However, the most commonly debated topic within Euclidean geometry was the fifth

postulate, also known as the parallel postulate; throughout the course of this debate,

discussion lead to the discovery of additional non-Euclidean geometries [12,13], such

as hyperbolic and elliptical geometries, where this postulate is pushed to opposing

extremes. Specifically, the non-Euclidean geometries were developed in such a way
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so as to attempt find a contradiction within Euclidean geometry itself, but this de-

velopment resulted in spaces which, while neglecting the concept of parallelism, did

not contradict any of the additionally posed postulates.

Let the points of the hyperbolic plane be the points on the interior of a circle in an

ordinary Euclidean plane, while hyperbolic lines are the chords of the circle, with their

end points on the circumference of the circle excluded. Within hyperbolic geometry,

given a line L and a point P not on L, there are infinitely many distinct lines passing

through P, parallel to L. Figure 2.1 is a two dimensional depiction of what hyperbolic

spaces may look like, with infinitely many lines passing through point P parallel to

the L [14].

L

P

Figure 2.1: Illustration of the hyperbolic plane, with line L and a subset of the
infinitely many lines passing through point P which lie parallel to L.

On the opposing extreme, elliptical geometry contains no lines passing through

P which are parallel to L [14]. Figure 2.2 is a three dimensional depiction of what

elliptical spaces may look like. It is easiest to think of elliptical space, in this sense, as
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a central projection of an ordinary Euclidean plane onto the surface of a hemisphere;

a line on the surface of the sphere is a great circle of the sphere, and any great circle

intersects every other great circle. In Figure 2.2, the line on the surface of the sphere

represents the line at infinity of the projective extension of the Euclidean plane, from

which lines a and b are projected.

a

b

Figure 2.2: Illustration of the elliptical plane using a central projection of (parallel)
lines a and b onto the surface of a sphere, creating pair of intersecting great
circles.

Elliptical and hyperbolic geometries both give rise to the concept of curvature

in space. The Euclidean plane can be thought of as having no curvature, while the

hyperbolic plane is considered to have negative curvature (as though you are viewing

the projection of a horse saddle shaped space onto a flat surface), indicating that

lines grow more distant from each other as they tend towards the line at infinity,

where the elliptical plane is considered to have positive curvature, indicating that the

lines grow more close as they tend towards the line at infinity [14]. While straight
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lines are the foundations upon which these spaces are derived, Figure 2.3 shows what

triangles constructed of straight lines in Euclidean, hyperbolic, and elliptical spaces

look like [14].

(a) (b) (c)

Figure 2.3: Euclidean planar triangle (a), hyperbolic planar triangle (b), and ellip-
tical planar triangle (c).

In Euclidean geometry, the internal angles of a triangle will always sum to 180

degrees, while in hyperbolic geometry the sum of the internal angles will always be

less than 180 degrees, and this same sum will be in excess of 180 degrees within

elliptical geometry [14]. Although the subject of non-Euclidean geometries is a rich

one, the remainder of this discussion will be constrained to the hierarchy of linear

spaces. Spaces where the parallel postulate is either modified slightly, or not at all,

namely projective and affine spaces.
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2.1.2 Synthetic Projective Geometry

Although seemingly ubiquitous, Euclidean geometry is inherently limited. Specifi-

cally, Euclidean geometry fails to account for the concept of a perspective within the

viewing of geometry itself. Development of projective geometry began several hun-

dred years ago, by scientists such as Johann Kepler, Blaise Pascal, Albrecht Durer,

and Gerard Desargues. Their attempts to reconcile geometry with the world around

them lead to the production of axioms which were proven by Felix Klein [15] and

unified under the theory of transformation groups in 1872 [16].

Projective geometry lead to the development of a hierarchy within linear geome-

tries. In order to develop the governing theorems of projective geometry, five non-

metric theorems (involving no measurement of either angles or distance) can be taken

from Euclidean geometry, specifically the three dimensional Euclidean space, E3, and

modified so as to exclude the concept of parallelism. The five Euclidean theorems to

be modified are what follows.

• E1: Two distinct points determine one and only one line.

• E2: Three distinct, non-collinear points determine one and only one plane.

• E3: Two distinct coplanar lines, existing in the same plane, either intersect in

exactly one point, or are parallel.

• E4: A line not contained in a given plane either intersects the plane in exactly

one point, or is parallel to it.

• E5: Two distinct planes either intersect in one line, or are parallel to each other.

When modified to exclude the concept of parallelism, the final three theorems

define the corresponding projective theorems.

• P1: Two distinct points determine one and only one line.
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• P2: Three distinct, non-colinear points determine one and only one plane.

• P3: Two distinct lines, existing in the same plane, intersect in one point.

• P4: A line not contained in a given plane intersects the plane in one point.

• P5: Two distinct planes intersect in one line.

Comparing the two sets of theorems above yields an obvious simplification within

the projective theorems; they are devoid of either/or constructions. Most importantly,

however, is the emergence of the concept of duality. For example, P3 is obtained from

P1 through exchanging the words “point” and “line”, which are the dual elements

contained within the projective plane, P2. The dual elements of projective space, P3

are “point” and “plane”; by exchanging these two words, P5 is obtained from P1.

The important implication of these statements is that for every valid theorem

which exists in projective geometry, and equally valid dual theorem is guaranteed to

exist [17].

2.1.3 Transformation Groups

While highly general, a discussion of the properties of different spaces within

geometry is not inherently useful from the standpoint the computational application

at hand. Therefore, the concept of a generalised transformation group, the unifying

theory presented by Felix Klein in his Erlangen Programme [16], is the method

whereby geometries will be classified herein. Transformation groups are also referred

to as structure matrices [18], due to their description of the structure of the space

which they represent.

Each linear geometry has a corresponding linear transformation group associated with

it; projective geometry, in P3, may be represented by a 4×4 matrix operator called a
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collineation,

P =



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4


, (2.1)

where collinear points are transformed to collinear points. All elements of matrix P

are arbitrary real numbers. The only restriction placed on P is that its determinant

can not vanish, and due to the arbitrary nature of each individual element, relative

to the value of any one of the 16 entries, there are only 15 independent elements

contained within this matrix. Thus, the projective group represents the most general

group of linear geometries in three-dimensional space, referred to as G15 [12].

From the concept of a transformation group, affine geometry may be developed; A3,

or three dimensional affine space is represented by a 4×4 collineation,

A =



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

0 0 0 1


. (2.2)

It is clear from Equation (2.2) that the affine transformation group has four con-

strained elements; in this example the final row of the matrix. Thus, the affine

transformation group is a member of G12. Due to the unconstrained nature of the

values contained within G15, it is apparent that G12 ⊂ G15, thus affine geometry is
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a constrained subset of projective geometry, and any affine group is necessarily also

a projective group, however it is also inherently less general than G15. From this

definition, the principal Euclidean group can be developed as yet another subset of

the affine group, and logically, the projective group:

E3 =



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

0 0 0 1


. (2.3)

While Equation (2.3) and Equation (2.2) are identical in their representation, the

principal Euclidean group has its values constrained so as to produce a 3×3 proper

orthogonal submatrix, with a determinant of exactly +1 [19]. This constraint yields

the transformation group G7, representing the most general Euclidean collineations,

and it is obvious that G7 ⊂ G12 ⊂ G15. Typically, the principal Euclidean group is

further constrained in order to preserve distances, and is referred to as the Euclidean

displacement group; this transformation group is what is commonly used within geo-

metric transformations within the plane. Thus, within the linear spaces, a hierarchical

nature is uncovered; projective spaces can yield affine spaces, which can, in turn, yield

Euclidean spaces. Thus, every Euclidean space is necessarily a specific subset of affine

space, and every affine space is a specific subset of projective space [12].

2.1.4 Invariants

Within the context of spaces, and their defining transformation groups, the concept

of an invariant arises naturally [20]. While transformation groups are useful for clas-

sifying the geometry at hand, these transformation groups preserve certain properties
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of the points contained within their respective spaces [17, 21]; upon the application

of a transformation group on a set of points, certain properties of these points will

remain invariant. The number of invariants is inversely proportional to the num-

ber of independent elements of the transformation group; affine spaces possess more

invariants than projective spaces, and fewer invariants than Euclidean spaces.

The most general three dimensional linear space, P3, contains only one invariant

in the transformation group G15, namely the cross ratio of four collinear points.

Given four collinear points, A, B, C, D, at least three of which are distinct, having

homogeneous coordinates on the line; (a0 : a1), (b0 : b1), (c0 : c1), (d0 : d1), then the

real number defined by

CR(AB; CD) =

∣∣∣∣∣∣∣∣∣
a0 a1

c0 c1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
b0 b1

d0 d1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b0 b1

c0 c1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
c0 c1

d0 d1

∣∣∣∣∣∣∣∣∣

(2.4)

is referred to as the cross ratio of the four points, A, B, C, D in that order; this number

is always preserved by any transformation group that is a subset ofG15. Each subset of

G15 possesses additional invariants. Affine transformations, for example, preserve the

plane at infinity, and therefore parallelism, as well as preserving the ratios of distances

along parallel lines, and thus ratios of areas, and finally, the similarity between shapes.

Additionally, Euclidean displacement transformations possess the same invariants as

those of affine geometry, but with the addition of invariants such as distance, angle,

and congruence; two objects are congruent if they can be transformed into each other

through a combination of rotations and translations.
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2.2 Homogeneous Coordinate Triples

Given any coordinate system, (x1,x2) containing the origin, O, and a point S, it is

possible to construct a ray, OS, to describe the coordinates of point S, (x, y). Now,

given any point Q which is not incident with the origin, but lies on the ray OS, which

is represented by the point (µx, µy), such that µ is a real number, it can be seen that

ray OQ is an extension of ray OS, by a factor of µ, seen in Figure 2.4.

Figure 2.4: Ray OS, scaled by µ, yields ray OQ.

While assuming that the scaling factor µ is any real number, the extension nec-

essarily will yield the seemingly meaningless coordinate pair (∞,∞) as µ → ± ∞.

However, to make sense of this, the Euclidean plane can be extended to include

the projective line at infinity. Thus, in order to include this point at infinity, the

Euclidean space can be extended and represented by the ordered triple (x0:x1:x2).

Provided that x0 is not equal to zero:
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x =
x1

x0

;

y =
x2

x0

. (2.5)

Given Equation (2.5), any scalar multiple of the ordered triple, (µx0,µx1,µx2),

will recover the same coordinate pair as (x0,:x1:x2). That is to say,

µx1

µx0

=
x1

x0

,

µx2

µx0

=
x2

x0

. (2.6)

Therefore, for any µ, or scalar multiple of the ordered triple, the same (x,y) coor-

dinate pair will be obtained once this ratio is computed. The coordinates (x0:x1:x2)

are referred to as homogeneous coordinates. Considering the previous example of

(µx, µy):

(µx, µy) = (x0, µx1, µx2);

(x0, µx1, µx2) = (
x0

µ
, x1, x2). (2.7)

Within the context of homogeneous coordinates, as µ → ± ∞, the trivial point

of (∞,∞) is represented with the homogeneous point triplet of (0:x1:x2). Referred

to as an ideal point, this point represents the point at which the ray OS intersects

the line at infinity, x0 = 0; regardless of whether or not µ → ± ∞, the exact

same homogeneous point triple is recovered. Thus, any line can be thought of as

representing a closed curve with either end intersecting at the same point on the line
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at infinity. Any two parallel lines within the plane share a common ideal point, and

thus intersect on this point on the line at infinity.

While this construction facilitates the use of many mathematical operations, it

does not have an effect on the Cartesian point coordinate value. Provided that the

triple’s ratio is evaluated with x0 = 1, the original Cartesian coordinate (x, y) will

be recovered. Though this construction has taken place entirely within E2, or 2-D

Euclidean space, it is entirely possible to extend the generalization to E3, and use the

homogeneous quadruple of (x0:x1:x2:x3).

2.3 Four Sided Polygons

Although it is commonly understood that a four sided polygon is a figure comprised

of four sides alongside four vertices which serve to necessarily create an enclosed area,

the specificity of this problem necessitates a more precise depiction of the properties

of four sided figures, alongside how they are constructed.

2.3.1 Quadrangles and Quadrilaterals

In general conversation it is typical to refer to any four sided figure as a quadrilateral,

however, most cases of the creation of a four sided figure are actually undertaken in

such a way so as to properly define a quadrangle [17]. The differences between a quad-

rangle and its line counterpart, a quadrilateral, are as subtle as they are fundamental

to the nature of these shapes [17]. Regardless, one is the dual of the other.

Specifically, four sided figures may be broken into two categories based on their

construction; they may either be a complete quadrangle, or a complete quadrilateral.

Complete quadrangles are created through four mutually coplanar points, typically

referred to as vertices, no three of which are collinear. These four points are coupled
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together to generate four lines, where the triangle determined by the intersections of

the opposite sides of the complete quadrangle is referred to as its diagonal triangle.

This diagonal triangle has three vertices, referred to as the diagonal points of the

quadrangle [17]. Figure 2.5 shows a quadrangle comprised of points A, B, C, and D,

its vertices, while dotted lines connect the vertices of the diagonal triangle, points E,

F, and G.

E

F

G

A

B

C

D

Figure 2.5: Convex quadrangle comprised of points A, B, C, D, and its diagonal
triangle, composed of points E, F, G.

Complete quadrilaterals, however, are defined by the dual configuration consisting

of four mutually coplanar lines, no three of which are concurrent. These four lines

intersect in six points, and form one four sided closed figure; the quadrilateral. Join-

ing the opposite vertices of the quadrilateral, it is possible to construct a diagonal

trilateral, such that the sides of the diagonal triangle are the diagonal lines of the
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quadrilateral [17]. Figure 2.6 shows a complete quadrilateral generated through lines

a, b, c, and d, whose intersection points define a four sided closed figure, while lines

e, f, and g define the diagonal trilateral of the complete quadrilateral.

e

f

g

a b

c

d

Figure 2.6: Convex quadrilateral comprised of lines a, b, c, d, and its diagonal
trilateral, composed of lines e, f, and g.

In order to fully characterize the proposed solutions and their methods, it is im-

portant to describe, in detail, the differences and defining characteristics of complete

quadrangles in a general sense. Specifically, the methods proposed herein will focus

on shapes referred to as convex. Convex quadrangles differ from general quadrangles

in that all of their internal angles are less than 180 degrees, and no two opposite

sides intersect with each other. Concave quadrangles exist in the event that any one

interior angle of the quadrangle exceeds 180 degrees, while no two opposite sides in-

tersect, and crossed quadrilaterals exist in the event that two opposite sides intersect
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in a point that is not a vertex of the quadrangle. While quadrangles and quadrilat-

erals are fundamentally different, they both lead to a construction of a closed, four

sided figure, that can be classified as one of these three types; Figure 2.7 depicts the

differences between these three types of quadrangles.

(a)                                                                 (b)                                                                 (c)

Figure 2.7: Convex (a), concave (b), and crossed quadrangles (c).

While all three types of quadrangles are geometrically valid shapes, the analysis

contained henceforth will be concerned solely with the examination of the proper-

ties of convex quadrangles. While quadrangles and quadrilaterals both facilitate the

construction of a closed, four sided figure, quadrangles inherently lend themselves

to characterisation more easily than their quadrilateral counterpart. As such, they

will be used to provide more specific characterisations of four sided convex shapes.

Characterisation of quadrangles can be undertaken through the examination of the

closed four sided figure created through joining lines defined by four mutually copla-

nar points, no three of which are collinear, alongside the two external intersection
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points of these lines. Special care will be taken in order to expound upon the infor-

mation contained in the construction of the quadrangle so as to provide a location

for the locus of the centres of the pencil (one parameter family) of inscribing ellipses

bound by the quadrangle.

In the Euclidean plane, given that all of the internal angles of a quadrangle must

sum to 360 degrees, the primary variables that will define the shape, and ultimately

the properties of the quadrangle, are the relative magnitudes of the side lengths to

each other, as well as the angles separating them. Specifically, Figure 2.8 shows a

square; squares arise when all internal angles and side lengths of a quadrangle are

equal. Cutting the square into sections by using the diagonals also shows a fifth

point, directly in the centre of the quadrangle, where the midpoints of the diagonals

intersect. This point is indicated as the doubly mapped points S and R, in Figure

2.8, and represents the unique centre of all inscribing ellipses contained within the

square.

A B

CD

S R

Figure 2.8: Square ABCD with its diagonals AD and BC, alongside the centre of all
inscribing ellipses, the midpoints of the diagonals, S and R, which lie incident
with each other in this case.

Holding all angles equal, but allowing two of the side lengths to vary from each
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other yields the rectangle. Similar to the square, cutting the rectangle into sections via

its diagonals shows a single point which represents the unique centre of all inscribing

ellipses within this quadrangle. Figure 2.9 shows this critical point as the identical

points S and R. Much like the square, the centre of all inscribing ellipses contained

within the rectangle lies in the geometric centre of the quadrangle, equidistant from

each opposite set of parallel edges.

A B

DC

S R

Figure 2.9: Rectangle ABCD with its diagonals AD and BC, alongside the centre of
inscribing ellipses, the midpoints of the diagonals, S and R, which lie incident
with each other in this case.

Conversely, allowing the interior angles to vary while maintaining the equal side

lengths of the square facilitates the creation of a parallelogram; each pair of sides

remains parallel to each other, though these quadrangles do not contain a single right

angle. Figure 2.10 also shows that the locus of centres for the inscribing ellipses lies

on a single point, once again in the geometric centre of the parallelogram. While a

parallelogram with two pairs of unequal edge lengths is presented in Figure 2.10, it

should be noted that the same properties exist within any parallelogram with each pair

of opposite sides being equal in length. In the special case of the parallelogram with

equal sides but interior angles which vary from 90 degrees, the rhombus is generated;
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squares, rectangles, and rhombuses are all specific cases of parallelograms.

A B

DC

S
R

Figure 2.10: Parallelogram ABCD with its diagonals AD and BC, alongside the
centre of all inscribing ellipses, the midpoint of the diagonals, S and R, which
in this case are incident with each other.

While the Euclidean definitions of these three shapes have distinct differences in

order to separate their representations, the square, rectangle, and rhombus are simply

special cases of the parallelogram. Thus, if viewed from the perspective of construct-

ing a complete quadrangle with four coplanar points, the distinction between their

shapes is ultimately lost. Specifically, given four coplanar points, as defined previ-

ously, each of the parallelogram, rectangle, square, and rhombus shapes possess four

definite vertices, which establish the closed four sided figure represented in Euclidean

space. However, the remaining two intersection points lie as distinct, unique points on

the line at infinity, representing the intersection of the pencil of every line parallel to

the opposite sides of the parallelogram. Figure 2.11 shows three parallelogram cases,

and that their quadrangle definitions yield ideal intersection points for the vertices of

their diagonal triangles.
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Figure 2.11: Three separate, unique cases of parallelogram construction which show-
case affine similarity.

While each of the three cases presented in Figure 2.11 represent distinct quad-

rangles, they share the idea of symmetry along at least one axis [22]. In the case

of the rectangular parallelogram, the symmetry is in the form of a reflection about

either of its diagonals. Problematically, this symmetry condition necessarily restricts

the locus of the centre of ellipses to be contained in exactly one point; the geometric

centre of the quadrangle. Though this property is decidedly interesting, and can

simplify the analysis of some specific cases of quadrangles, it is necessarily not the

general case for all convex quadrangles.

In the event that two pairs of sides have equal lengths, but lie adjacent to one
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another as opposed to opposite one another, the quadrangle is referred to as a sym-

metric kite. Figure 2.12 shows kite ABCD, alongside the intersection of diagonals BC

and AD, with the locus of the centres of all inscribing ellipses, line segment SR, lying

incident with diagonal BD.

A

B

C

D

R

S

Figure 2.12: The kite quadrangle, ABCD, alongside the line segment SR connecting
the midpoint of diagonals BD and AC, which lies incident with diagonal BD.

Given a quadrangle with no two sides equal in length, as well as having no angles

equal, two cases can arise. Firstly, an asymmetric trapezoid may be constructed in

the event that any two opposite sides of the quadrangle are constrained to be parallel.

Upon connecting the midpoints of the diagonals of this trapezoid, seen in Figure 2.13,

the line segment SR arises. Line segment SR represents the locus of the centres [8]

for all inscribing ellipses contained within the trapezoid, and is constructed through

connecting the midpoints of lines AD and BC, the diagonals of the quadrangle. Note

that here, the line segment SR lies parallel to lines AB and CD, the parallel pair

of sides in the quadrangle. Moreover, the mid points of parallel edges AB, CD, and
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line segment SR are all collinear, with a finite point of intersection between the non-

parallel edges.

A B

DC

S R

Figure 2.13: Trapezoid ABCD with its diagonals BC and AD, alongside the locus
of centres of inscribing ellipse, line segment SR, connecting the midpoints of BC
and AD, respectively.

More generally still, is the case presented within Figure 2.14; no sides lie parallel

to each other, and no lengths or angles are equal. Line segment SR still represents

the locus of centres for all inscribing ellipses within the quadrangle, however it is

no longer parallel to any of the sides, nor is it oriented in any immediately evident

fashion relative to the geometry of the rest of the quadrangle.

While the various parallelogram cases represent archetypes through which the

derivation of the maximum area inscribing ellipse can be somewhat simplified, their

simplicity forces the methods used to determine their maximum area inscribing el-

lipses to be decidedly unsuitable as a general solution. Given this fact, the asymmet-

ric quadrangle will be used for the remainder of this procedure, in order to maintain

generality of the solution.
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A
B

D

C

R

S

Figure 2.14: An example of a general asymmetric quadrangle ABCD, with line
segment SR containing the locus of centres of all inscribing ellipses, connecting
the midpoints of diagonals BC and AD, respectively.

2.4 Second Order Curves

Second order curves, including ellipses, can be described through equations with no

more than a second order term contained within them. These second order variable

curves are, therefore, all a part of a family of functions known as conic sections [23].

Conic sections include ellipses, parabolas, hyperbolas, as well as degenerate conics.

Several classification techniques exist within both the algebraic formulations and the

quadratic expressions of these curves [1]. Although inherently different in their de-

piction, these classification techniques are interchangeable in their effectiveness.

Due to the usage of geometric transformations, the quadratic formulation for sec-

ond order curves will be discussed herein; this is due to their inherent capacity to

remain shape invariant under the Euclidean displacement group of geometric trans-

formations, and therefore their utility in describing conic sections throughout a wide

range of spaces. Through this generalised representation, all conic sections: hyperbo-

las; parabolas; ellipses; as well as degenerate conic sections are simply different affine
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projections of the same second order projective curve [23].

2.4.1 Conic Section Geometric Representation

Conic sections are, by definition, the result the intersection of a complete cone con-

structed in three dimensions, with a plane. While the exact cone is variable, in general,

a cone, in its canonical form, can be described through the following equation,

z2 = x2 + y2. (2.8)

This equation specifically represents a cone whose apex is present at the origin of

the coordinate system, and is aligned in a right circular fashion, such that the axis

of the cone contains the origin and lies incident with the z axis [23]. This position

is known as the canonical position; for ellipses and conic sections, their canonical

position is the position in which the semi-major axis is aligned with the x coordinate

axis, the semi-minor axis with the y coordinate axis, and its centre at the origin of

the coordinate system [23]. Figure 2.15 shows what one such complete cone might

look like in its canonical form.

Now, from this three dimensional complete cone, two dimensional planar repre-

sentations of second order curves can be derived. Specifically, if a plane is used to cut

this complete cone, said cone will intersect with the plane in a second order curve that

is either an ellipse, a parabola, a hyperbola, or in degenerate cases, pairs of straight

lines. Figure 2.16 shows a planar intersection that results in the development of an

ellipse on the intersecting plane. This plane intersects the complete cone above (or

below) its apex, and at an angle other than 90 degrees to the central axis of the cone.

Within the context of this example, circles result as a special case of the ellipse;

namely, that the plane being used to cut the complete cone intersects the cone at a

position which is removed from its apex, but also intersects the main axis of the cone
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Figure 2.15: A graphical representation of a complete cone in three dimensions, in
its canonical position.

at a right angle. Figure 2.17 shows this intersection on a complete cone.

Now, the remaining second order curves are developed through an increasingly

extreme rotation of the cutting plane away from perpendicular to the axis of the

complete cone. First, a parabola is generated by using an angle of cutting plane

that forces the plane to lie parallel to the side of the cone. Due to the parallelism

between the cone and its intersecting plane, the resulting curve remains open, and

only generates a curve based on one side of the cone. Figure 2.18 shows how this

plane intersects the complete cone, in three dimensions.

Upon rotation beyond parallel with the side of the complete cone, a hyperbola

will be generated on the cutting plane. Figure 2.19 shows how this curve falls onto

the cutting plane from the initial complete cone.

In addition to the aforementioned curves generated through planar intersections
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Figure 2.16: A graphical depiction of the intersection of a plane, light, with a
complete cone, dark, generating a elliptical conic section.

Figure 2.17: A graphical depiction of the intersection of a plane (light) with a
complete cone (dark) generating a circular conic section.
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Figure 2.18: A graphical depiction of the intersection of a plane (light) with a
complete cone (dark) generating a parabolic conic section.

Figure 2.19: A graphical depiction of the intersection of a plane (light) with a
complete cone (dark) generating a parabolic conic section.
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with the complete two additional degenerate conic sections may be generated in spe-

cial cases of planar orientations. First, given a planar orientation which is parallel to

the edge of the cone while also lying incident with it, a doubly mapped real line is

generated. This orientation is depicted in Figure 2.20.

Figure 2.20: A graphical representation of a plane (light) with a complete cone
(dark) resulting in the generation of a doubly mapped real line.

Secondly, given a plane parallel and incident to the axis of the cone, a pair of real

lines will be mapped onto the intersecting plane, shown in Figure 2.21.

Assuming that the complete cone is being viewed in such a way so as to ensure

that the cutting planes are all running normal to the viewing plane, Figure 2.22 arises.

From this perspective, it is trivial to see how each of the three unique conic section

types can be defined from a single complete cone.
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Figure 2.21: A graphical representation of a plane (light) with a complete cone
(dark) resulting in the generation of a pair of real lines.

z

x

Circle

Parabola

Ellipse

Hyperbola

Upper 
Nappe

Lower 
Nappe

Figure 2.22: Right angled view showcasing how each planar conic section is cre-
ated through differing orientations of the plane intersecting the cone in three
dimensions.
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Figure 2.22 shows a complete cone marked by solid lines, as a projection onto the

x − z plane, shown by centre dashed lines. Each possible planar position used to

generate every type of non-degenerate conic section is shown by dotted lines. The

solid lines themselves represent the degenerate conic sections as pairs of distinct lines.

The ellipse plane intersects the axis of the cone at an angle other than 90 degrees

relative to the z axis, where the circle’s plane intersects the axis in a right angle. The

parabolic conic section is generated when the intersecting plane lies parallel to the side

of the cone, whereas the hyperbolic conic section is generated with the intersecting

plane lies parallel to, but displaced from, the axis of the cone itself.

2.4.2 Conic Section Algebraic Characterisation

While the geometric definitions of conic sections are useful for demonstrating that a

given parametric pencil of conic sections may, at any point, be an ellipse, a parabola,

or a hyperbola, an exact mathematical definition must be given in order to facilitate

their computation. Typically, second order functions are represented through defined

equations such as those of the parabola, circle, and hyperbola; unfortunately, these

representations are less efficient at a computational classification approach. Thus, in

general, conic sections will be represented in their matrix-vector form,

k := xTAx = 0, (2.9)

where x is a given homogeneous point triple, and A is the conic shape coefficient

matrix that is symmetric and positive definite given non-degenerate conics.

Line and Point Coordinates

Given the duality of lines and points within the plane, any point or line can be derived

as either a variable line passing through a fixed point, or as a variable point on a fixed
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line. Specifically, the equation used to represent any line or point coordinate,

x0X0 + x1X1 + x2X2 = 0, (2.10)

can be described either in terms of the variable lines passing through the fixed point

(x0, x1, x2), or as the variable points lying on the fixed line [X0, X1, X2]. In or-

der to provide clarity of expression, line coordinates are delimited by brackets, i.e,

[X0, X1, X2], while point coordinates are delimited by parentheses, i.e, (x0, x1, x2).

Given a point (a, b, c), any line which satisfies,

aX0 + bX1 + cX2 = 0, (2.11)

is a line that passes through the fixed point (a, b, c). Conversely, given a line [A,B,C],

any point which satisfies,

x0A+ x1B + x2C = 0, (2.12)

is a point that lies on the line (A,B,C). Given the planar duality of lines and points,

the conversion of line coordinates to point coordinates and point coordinates to their

respective line coordinates is easily undertaken. Given two coplanar and distinct

points, (x0, x1, x2) and (y0, y1, y2), the line coordinate of the line passing through

both of these points can be expressed through Grassmanian expansion of,

∣∣∣∣∣∣∣∣∣∣∣∣∣

X0 X1 X2

x0 x1 x2

y0 y1 y2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (2.13)

where the cofactor corresponding to [X0, X1, X2] is the value of Xi within the line
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equation. In other words, any additional point, (b0, b1, b2) on the line connecting

points (x0, x1, x2) and (y0, y1, y2), must satisfy the equation,

b0(x1y2 − x2y1)− b1(x0y2 − x2y0) + b2(x0y1 − x1y0) = 0. (2.14)

This exact procedure may be dualised in order to describe the unique point at

which two lines intersect, and from this equation, provide the point equation of the

family of lines passing through the fixed point defined by the initial two lines.

Line and Point Conics

Although computationally efficient, the matrix-vector formulation of conic sections,

seen in Equation (2.9), is capable of presenting the conic sections in both their line

and point conic forms. While these two forms represent the exact same curve, they

each have distinct advantages and disadvantages in terms of their computational

capacities, as well as their visual representations. In keeping with the case at hand,

the discussion of the differentiation of pole points and polar lines, the elements upon

which point and line conics themselves are constructed, respectively, will be limited to

a discussion of the pole points and polar lines lying on the curve k, in Equation (2.9).

Each of the line and point conics possess a conic shape coefficient matrix, A,

which, when using homogeneous coordinate triples in a plane, are comprised of at most

six independent variables, Aij. Equation (2.15) shows a line conic shape coefficient

matrix, AL, which is always a square symmetric matrix,

AL =


A00 A01 A02

A01 A11 A12

A02 A12 A22


, (2.15)
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where each element, Aij, is a line conic shape coefficient. Although it is typical within

engineering and design to describe functions through their point equations, Equation

(2.15) will represent the curve k in terms of the family of lines lying tangent to the

curve at any given point. Substituting values into this expression will supply you

with the equation of the line coordinates of the line that lies tangent to the curve at

the point in question, illustrated in Figure 2.23, with a small subset of the resulting

polar lines plotted along the complete curve, k.

Figure 2.23: A graphical depiction of what a line conic shape equation produces,
with a small subset of the polar lines belonging the second order curve, k.

In general, the complete curve k would only be displayed by way of its polar lines,

thus eliminating the closed curve depicted in 2.23, leaving only the polar lines in place.

Ultimately, in order to provide a high enough resolution for displaying this curve, the

line conic must be displayed along a small enough interval to provide the resolution,

resulting in a cumbersome and unclear display consisting of an infinite family of

unbounded lines enclosing the desired function. Upon pre and post multiplication

with the three element triple of the line coordinates, X, the curve k is defined as,
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k := A00X
2
0 + 2A01X0X1 + 2A02X0X2 + A11X

2
1 + 2A12X1X2 + A22X

2
2 = 0, (2.16)

where k is a second order function in terms of the line coordinates, Xi, and linearly

dependent upon the line conic shape coefficients, Aij. However, for display purposes,

it is important to obtain the point conic representation of the second order curve,

k. The point conic shape matrix, A, is the dual of the line conic shape coefficient

matrix, AL,

A =


a00 a01 a02

a01 a11 a12

a02 a12 a22


, (2.17)

whose point conic shape coefficients are represented by each of the six point conic

shape coefficients, aij. Figure 2.24 shows what curve k produces when pre and post

multiplied by the homogeneous point triple, x.

Figure 2.24: A graphical depiction of what a point conic shape coefficient matrix
produces, the second order curve, k.
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The point form of the conic as defined by the shape coefficients in A is k:

k := a00x
2
0 + 2a01x0x1 + 2a02x0x2 + a11x

2
1 + 2a12x1x2 + a22x

2
2 = 0, (2.18)

which is also linearly dependent upon the point conic shape coefficients, aij, and

homogeneously quadratic in the point coordinates, xi, in an identical manner to the

line conic shape coefficients and line coordinates in Equation (2.16).

Although line conic matrix-vector equations can be more easily defined and pa-

rameterised given a set of linear constraints, displaying a line conic equation is less

effective for describing the curve it represents than displaying its point conic coun-

terpart. Conveniently, duality within the plane supplies a method whereby the point

conic equation may be computed directly from its corresponding line conic shape

coefficient matrix.

Specifically, the point conic shape coefficient matrix is the inverse of the line conic

shape coefficient matrix. Typically, given a matrix of line conic shape coefficients,

AL, the point conic shape coefficient matrix, A is expressed as,

A = A−1
L =

adjAL

det AL

, (2.19)

where the adjoint of AL, is the matrix of cofactors, or the (ij) position sub-

determinants of AL with the i and jth column of AL excluded. While Equation (2.19)

is exact, it can be further reduced in complexity through the elimination of the de-

terminant of AL. Due to the use of the homogeneous coordinates in the expression

of both line and point conics, any scalar multiple of two points can be represented

by the same line or point coordinate ratio, x. This implies that the constant value

of the determinant of AL is a scalar that can be factored out since det AL 6= 0 for

non-degenerate conic sections, and thus the matrix of point conic shape coefficients
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can be expressed as,

A ∝ adjAL, (2.20)

proportional to the line conic shape coefficient matrix, AL. Importantly, nothing is

lost in this conversion, so the matrix of point conic shape coefficients may be obtained

from the transpose of the matrix of cofactors of AL. However, since the matrix AL

is symmetric, its matrix of cofactors is also symmetric, and is, hence, equal to its

transpose.

Point Conic Algebraic Characterisation

While line and point conic shape coefficients may be computed through the exact

same approach, line conics are not useful for visualisation, and therefore the remainder

of this characterisation will deal with point conics; the rules presented herein may

be extended to their dual line conics through the principles of duality presented in

Section 2.1.2. The symmetric point conic shape coefficient matrix, A (Equation

(2.17)), possesses a 2×2 sub determinant, the quadratic form of the conic section,

resulting from elimination of the first row and column of A, named A0,

A0 =

a11 a12

a12 a22

 , (2.21)

which is used for characterisation and evaluation of the conic section represented by

A. This equation generates a set of Euclidean invariants [1, 24] which provide the

classification. Using these Euclidean invariants allows for the development of a set

of rules which facilitates the classification of any given conic section, regardless of

whether or not there is a displacement from the canonical position.
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Specifically, the Euclidean invariants which are useful for this problem are [1],

∆ := det A; (2.22)

∆0 := det A0 = a11a22 − a2
12; (2.23)

H := a11 + a22, (2.24)

where ∆ is the determinant of the conic shape coefficient matrix, while ∆0 and H

are the discriminant of trace of the quadratic form of the conic, respectively. These

quantities will remain invariant under any Euclidean transformation applied to the

conic in question, or if the original Cartesian coordinate system is transformed. Spe-

cial care must be taken in the event that ∆ = ∆0 = 0, arising in the event of the

creation of a special subset of degenerate conic sections. This special case gives rise to

yet another Euclidean invariant which facilitates the classification of these degenerate

conic sections [1],

K := a00H − (a2
01 + a2

02). (2.25)

While the invariants themselves are not necessarily useful for determining the

physical attributes of these conic sections, the signs of the invariants are important.

Specifically, ∆ and ∆0 determine the physical shape characteristics of the conic sec-

tions, with H and, in some specific instances, K, providing additional information

about the nature of the sections. These values and their relative magnitudes are listed

in Table 2.1.

While the Euclidean invariants provide valuable information which facilitates a

complete classification of all conic sections, the sections which will be of primary

interest for the remainder of this classification are the sections where ∆ 6= 0.
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Table 2.1: Conic section classes and their corresponding Euclidean invariants [1].

∆ 6= 0: ∆ = 0:

Regular conic sections Singular conic sections

∆0 6= 0: Second
order curve with a
real center

∆0 > 0 and H×∆ > 0, sec-
tion is a nullpartite ellipse

∆0 > 0 : Section is a pair
of conjugate complex lines
with a proper intersection
point∆0 > 0 and H × ∆ < 0,

section is a unipartite ellipse

∆0 < 0: section is a hyper-
bola

∆0 < 0: Section is a pair
of real lines with a proper
intersection point

∆0 = 0: Second
order curve with
one axis of
symmetry

Section is a parabola

K > 0: Pair of conjugate
complex parallel lines

K = 0: Doubly mapped
real line

K < 0: Real parallel lines

These conic sections exist, with exception of the case of ∆0 > 0 with H × ∆ > 0,

as second order curves within the real plane. If ∆0 > 0 and H × ∆ > 0, the

conic section generated by this point conic shape coefficient matrix is a nullpartite

ellipse [1] [24]; this ellipse lies purely in the imaginary plane, possessing no real points.

Given that ∆0 6= 0 defines conic sections with a real center (i.e. central conics),

m, this case bears additional investigation. First, the homogeneous point coordinates

of the center of this conic section may be computed as the solution to the two partial

derivatives of k in x1 and x2,

∂k

∂x1

= 2a01x0 + 2a11x1 + 2a12x2 = 0, (2.26)

∂k

∂x2

= 2a02x0 + 2a12x1 + 2a22x2 = 0, (2.27)
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yielding,

m =


m0

m1

m2


=


a11a22 − a2

12

a12a02 − a22a01

a01a12 − a02a11


. (2.28)

From Equation (2.21), there exist two distinct, non-zero, real eigenvalues, λ1 and

λ2, with corresponding mutually perpendicular eigenvectors, representing the major

and minor axis directions of the conic A. Due to the symmetric nature of A, there

will always be two distinct eigenvalues and therefore eigenvectors. While solutions

for the eigenvalues of this matrix are possible through solution of the characteristic

equation [25], they may also be expressed in terms of the Euclidean invariants used

to characterize the conic section A itself,

λ2 −Hλ+ ∆0 = 0. (2.29)

Equation (2.29) shows this construction for the characteristic equation in terms of

the Euclidean invariants mentioned above. Therefore, by means of Vieta’s formulae

[26], the solutions to this characteristic equation may be described by

λ1 + λ2 = H, (2.30)

λ1λ2 = ∆0. (2.31)

From this description of the eignevalues for the aforementioned conic section, it

is possible to provide additional specificity regarding the classifications found within

Table 2.1. While each case can be expounded upon, only real conic sections and a
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special case of the singular conics, particularly relevant to the problem at hand, will

be described herein.

• Case 1, ∆ 6= 0, A describes a regular second order curve.

– Case 1.1, ∆0 < 0, from Equation 2.31, λ1 and λ2 have different signs,

indicating that A describes a hyperbola.

– Case 1.2, ∆0 > 0, from Equation 2.31, λ1 and λ2 have identical signs, and

A describes a unipartite ellipse, lying in the real plane.

• Case 2 ∆0 = 0, second order curves with exactly one line of symmetry, occurs

when one of λ1 or λ2 is exactly equal to zero.

– Case 2.1, ∆ 6= 0, occurs when ∆ and H have different signs, and A is

therefore a description of a parabola.

– Case 2.2, ∆ = 0, and K = 0, then the section defined by A describes a

pair of doubly mapped real lines.

Within Cases 1.1 and 1.2, the eigenvalues, λ1 and λ2, of the characteristic equation,

can be used to generate the semi major and semi minor axis lengths of A, α1 and

α2, [1]:

αi =

√∣∣∣∣ ∆

∆0λi

∣∣∣∣. (2.32)

These axes lie parallel to the corresponding eigenvectors of the matrix A0. In

the event that the two eigenvalues are identical in magnitude and sign, a circle is

defined by A. This special case elliptical conic section occurs not only when both

eigenvalues agree in magnitude and direction, but also in the case that a01, a02 and

a12 are all identically zero.



49

Within Cases 2.1 and 2.2, however, only one non-zero eigenvalue can be obtained.

Therefore, one of λi is precisely equal to zero, and thus these two special cases possess

only one non-zero eigenvector, which in turn defines their axis of symmetry. This axis

of symmetry can be defined by its homogeneous equation, m,

m := (a12a01 + a22a02)x0 + a12(a11 + a22)x1 + (a2
12 + a2

22)x2 = 0. (2.33)

In Case 2.1, this homogeneous equation represents the axis of symmetry of the

parabola defined by A, and within Case 2.2, this equation directly represents the

equation of the doubly mapped lines. While Equation (2.33) defines the axis of sym-

metry for both line conics within Cases 2.1 and 2.2, the latter case always generates

an unbounded line, and the only line of symmetry for an infinite line is that line itself.

2.5 Area of a Conic

In order to effectively define an algorithm that is capable of providing the maximum

area inscribing ellipse within a convex quadrangle, it is necessary to develop a method

whereby the area of any given conic section may be computed. While the area of an

ellipse, particularly relevant to the problem at hand, may be calculated by,

A = πab, (2.34)

this equation requires the lengths of both the semi-major and semi-minor axes, which

for an ellipse not in canonical position, are not immediately evident. Instead, given

the conic shape coefficient matrix which describes an ellipse (or a parameterised pencil

of conics) the following equation is proposed [2] [1],
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Area(A) =

∣∣∣∣π det A

(
√

∆0)3

∣∣∣∣ , (2.35)

where,

A =


a00 a01 a02

a01 a11 a12

a02 a12 a22


and, ∆0 is the 1-1 cofactor of the quadratic form of A,

∆0 = det

a11 a12

a12 a22

.
The following two subsections of this chapter describe the derivation of a special

case pencil of conics, a central conic in its canonical position, as well as a proof for

Equation (2.35), which always computes the area of the conic section if it is a closed,

central conic.

Ellipse In Canonical Position

While the position and orientation of an ellipse is completely arbitrary, it is sometimes

valuable to express the ellipse itself in its canonical position. For ellipses, the canonical

position is that in which the centre of the ellipse is incident with the origin, while

each semi-major and semi-minor axes of the ellipse are incident with the coordinate

axes. While it is possible to transform any ellipse into canonical position, performing

such a transformation requires the directions of the semi-major and semi-minor axes

of the ellipse. These axis directions are not, however, immediately evident given the

point (or line) conic shape coefficient matrices.
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However, although the orientation of the ellipse is not immediately evident upon

inspection of the matrix-vector form, recall that matrix A is a square symmetric

matrix, such that A = AT , indicating that it is always diagonalisable [25]. This

diagonalisation of A positions the conic section, k, in its canonical position, and is

accomplished by computing the eigenvalues of A, and aligning them on the diagonal

of the matrix.

A square matrix A is said to be diagonalisable if there is a matrix P such that,

P−1AP is diagonal. Matrix P is said to diagonalise A. It can be shown [25] that the

columns of matrix P are the eigenvectors of A, and the resulting diagonal matrix D

contains the corresponding eigenvalues on its diagonal,

D = P−1AP. (2.36)

2.5.1 Derivation of an Origin Centred Pencil of Ellipses

Given the computational complexity of Equation (2.35), it is necessary to use a

special case pencil of ellipses in order to prove this area function applies to every non

degenerate ellipse. Specifically, a pencil of conics whose centre lies coincident with

the origin of the coordinate system, with semi-major and semi-minor axes incident

with the axes of the coordinate system.

Given a coordinate system defined by the axes, x and y, with homogeneous coor-

dinate components x0,x1, and x2, the general quadratic expression for a conic section

can be written as Equation (2.9), reproduced here for convenience.

k := a00x
2
0 + 2a01x0x1 + 2a02x0x2 + a11x

2
1 + 2a12x1x2 + a22x

2
2 = 0. (2.37)
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Another representation of an ellipse is often described as,

x2

a2
+
y2

b2
− 1 = 0. (2.38)

These two equations are bound to represent the same curve when the Cartesian

coordinates are recovered for a value of x0 = 1, while both have their centres incident

with the origin of the coordinate system. Given that Equation (2.37) must simplify to

agree with Equation (2.38), it can be inferred that the point conic shape coefficients

a01, a02 and a12 must all be equal to zero, while taking a projectivity of x0 = 1 to

recover the Cartesian coordinates of the function shows that the conic shape coefficient

a00 is equal to −1.

Arranging these values in a matrix provides the corresponding diagonalised matrix

vector form of an origin centred conic, A,

A =


a00 0 0

0 a11 0

0 0 a22


=


−1 0 0

0 1
a2

0

0 0 1
b2


, (2.39)

in terms of the Cartesian semi-major and semi-minor axis lengths, a and b. This

diagonalisation can also be used to represent the matrix-vector form of the conic

section in Equation (2.37) in terms of the Euclidean axis lengths, as in Equation

(2.38). Upon substitution of this matrix A into Equation (2.35) such that:

∆ =
−1

a2b2
; (2.40)

∆0 =
1

a2b2
. (2.41)
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The area of the conic section defined by the point conic shape coefficient matrix,

A can be rewritten as,

Area(A) = π

∣∣∣∣∣ −1
a2b2

1
a2b2

3
2

∣∣∣∣∣ . (2.42)

Applying the laws of exponents, it can be show that Equation (2.42) reduces to,

Area(A) = π
ab−2

ab−3
= πab. (2.43)

Considering that any conic shape coefficient matrix A corresponding to an ellipse

can be transformed into canonical position through diagonalisation, Equation (2.35)

will always provide the area of the conic section k, given its conic shape coefficient

matrix, A.



Chapter 3

Existing Solutions For Generating the

Maximum Area Inscribing Ellipse within

a Convex Quadrangle

Within this chapter, two previously existing solutions will be presented to the

problem of defining the maximum area inscribing ellipse within a convex quadrangle.

Though both solutions can, in some circumstances, produce the maximum area

inscribing ellipse, they are both inherently limited. The first, found in [10], uses a

projective collineation which maps the unit square onto the quadrangle in question;

the inverse of this collineation is then used to map the parametric unit circle equation

onto the ellipse contained within the quadrangle. The second, found in [2], utilises

the geometry of the quadrangle in order to construct a non-orthogonal coordinate

system, upon which the parametric equation for the family of ellipses inscribing the

quadrangle can be created, and maximised with respect to the area of the ellipse.

54
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3.1 Projective Transformation Method

In order to determine the maximum area inscribing ellipse contained within any given

convex quadrangle, it is beneficial to analyze the special case quadrangle of the unit

circle, i.e. with a radius of one unit, inscribing the corresponding “unit” square. In

Section 2.3 it is evident that the centre for all of the ellipses present within the square

lies at the mid point of the diagonals, where they each intersect, and thus in the

exact centre of the square. Each pole point of the conic must lie tangent to the mid

points of the parallel sides of the quadrangle; seeing as a square consists of two pairs

of perpendicular parallel lines, this means that the maximum area inscribing ellipse

must lie tangent to the midpoints of every side, and is thus the unit circle. Figure 3.1

shows the square and the inscribing unit circle.

y

x(1,0)

(0,1)

(-1,0)

(0,-1)

Figure 3.1: The square with its largest area inscribing ellipse, the unit circle, and
all four tangent points.
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3.1.1 Projective Mapping Generation

Considering that a projective collineation can be used to map points from an existing

coordinate system onto different points within the same coordinate system while

maintaining the collinear nature of the points, a square may be mapped onto any

given quadrangle, at any location within the same space, through the employment of

a collineation.

Two distinct sets of four points within the projective plane uniquely determine

a projective collineation, provided that no three of the points are collinear. Given

a distinct quadrangle, the points representing the vertices of the quadrangle can be

used to produce a projective collineation which maps the square onto any general

quadrangle.

y

x(1,0)

(0,1)

Figure 3.2: The square and the desired, mapped quadrangle.

Consider a set of four points which represent an arbitrary convex quadrangle;

W (W0 : W1 : W2), X(X0 : X1 : X2), Y (Y0 : Y1 : Y2), Z(Z0 : Z1 : Z2), represented

using their homogenous coordinate point triples. These four points will be mapped

onto a square, centred at the origin, represented by the homogeneous coordinate
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point triples; w(w0 : w1 : w2), x(x0 : x1 : x2), y(y0 : y1 : y2), z(z0 : z1 : z2).

Specifically, this collineation may be represented through the following vector-

algebraic relationship,

λ


W0

W1

W2


= µ


t11 t12 t13

t21 t22 t23

t31 t32 t33




w0

w1

w2


, (3.1)

where λ and µ represent arbitrary scaling factors; only the ratio of these factors

arising from the use of homogeneous coordinates is important. Without any loss in

generality, one may use this ratio and set ρ = λ/µ, thus:

ρW = Tw. (3.2)

The elements of matrix T, tij, are dependent solely upon the points upon

which the mapping is being performed. Due to the conditions present in order

to construct a general projective collineation, namely that no property aside

from the cross ratio between points is preserved under this type of mapping, the

matrix T has no orthogonality conditions present within any of its rows or columns;

the tij can take on any numerical value, based solely on the conditions of the mapping.

This general transformation matrix T contains nine unknowns. However, as a

result of the use of homogeneous coordinates, at most eight of these numbers are

independent. In order to completely characterise this mapping, the scaling factor

ρ must be taken into account due to the imposition of the Cartesian coordinate

system imposed onto the Euclidean plane into which the points are projected;
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because this mapping is not taking place directly within the projective plane, merely

the projective extension of the Euclidean plane, the scale cannot be neglected.

Specifically, this means that the scaling factor for each point pair represented by ρi,

i.e. 0, 1, 2, 3, must be incorporated. For example, ρ0 results from mapping W to w,

while ρ3 is obtained through mapping Z to z.

Within the specific case of the mapping required to generate the maximum area

inscribing ellipse, points W, X, Y, and Z represent the vertices of the general convex

quadrangle, where points w, x, y, and z represent the vertices of the unit square, and

are the images of the vertices of the general quadrangle. Expanding equation 3.2 and

including the terms ρi for each point and its image, the following series of equations

can be obtained:

t11w0 + t12w1 + t13w2 − ρ0W0;

t21w0 + t22w1 + t23w2 − ρ0W1;

t31w0 + t32w1 + t33w2 − ρ0W2;

t11x0 + t12x1 + t13x2 − ρ1X0;

...

t31z0 + t32w1 + t33z2 − ρ3Z2. (3.3)

Equations (3.3), when fully defined, represent 12 equations comprised of 13 un-

knowns; the elements tij, which define the transformation itself, as well as the four

scaling factors, ρi. Due to the fact that only eight of the nine elements contained

within matrix T are independent, its elements can be normalised by dividing T by

t11 provided that t11 6= 0 , thus simplifying the system of equations to twelve equations
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with an equal number of unknowns.

3.1.2 Mapping the Unit Circle

Given the matrix, T, determined above, it is possible to transform the maximum area

inscribing ellipse of what we call the unit square, the unit circle, to the maximum

area inscribing ellipse of the general quadrangle. While it is simple to think of the

problem in terms of mapping the unit circle to the maximum area inscribing ellipse

of the quadrangle, the projective collineation determined above was posed with

the idea that the unit square was the image of the vertices of the quadrangle, and

therefore the inverse transformation of T must be used in order to effectively map

the unit circle to the maximum area inscribing ellipse.

Given the parametric equation for the circle,

c =


1

cos(θ)

sin(θ)


, (3.4)

the inscribing ellipse, e, may be computed through pre-multiplication with the inverse

of the transformation matrix, T,

e =


t11 t12 t13

t21 t22 t23

t31 t32 t33



−1 
1

cos(θ)

sin(θ)


. (3.5)
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3.1.3 Applicability and Suitability of the Solution

In general, Equation (3.5) represents a projective mapping of the unit circle inscribing

the “unit” square onto the ellipse inscribing the convex quadrangle. However, this

image does not necessarily represent the largest area inscribing ellipse within the

quadrangle. Ideally, a transformation of this sort will preserve the relative size of the

objects; area ratios would remain the same, and therefore the image of the unit circle

should be the largest area inscribing ellipse within the quadrangle. However, this is

not generally the case.

During the mapping to a general convex quadrangle, it is possible for the trans-

formation to satisfy the conditions of more specific mappings on more tightly condi-

tioned spaces. Within a general projective transformation, the only geometric prop-

erty which is preserved is the cross ratio between four distinct collinear points [15],

whereas in an affine transformation, parallelism is preserved (through preservation

of the line which lies at infinity), alongside the ratios of the sizes of an object [15].

Figure 3.3 shows a quadrangle, ABCD, used to continue this discussion.

The quadrangle ABCD is, in this case, a trapezoid. The open line segment, TS,

between lines AC and DB is created by joining the midpoints of each of these line seg-

ments, and represents the locus of centres of the all inscribing ellipses contained within

the quadrangle with the diagonals bounding the pencil. However, more importantly,

the parallel edges AB and DC are also marked with points E and F, respectively.

These points represent the pole points of the maximum area inscribing ellipse within

the trapezoid, and also coincide with the midpoints of line segments AB and DC,

respectively. The line segment EF also passes through the centre of the line segment

TS.

From Figure 3.3, it is clear that three properties of what we call the unit square

have been preserved through the transformation into the trapezoid; the polar points



61

A

D
C

B
E

T
S

F

G

Figure 3.3: A trapezoid ABCD, and its relevant properties.

belonging to the parallel sides of the quadrangle are incident with the midpoints of

those lines, and the centre of the maximum area inscribing ellipse lies equidistant

from points T and S, or is directly in the centre of the line segment. Furthermore, the

parallelism between sides AB and DC is also preserved. Specifically, the projective

collineation used to map the trapezoid onto the unit square within this problem

must preserve the cross ratio between points; four points on a line under a projective

transformation have a cross ratio of exactly −1, when one of these points is taken as

an ideal point, and are referred to as a harmonic sequence of points [21]. Consider four

distinct and collinear points (A, B, C, D), the cross ratio of the points CR(AB; CD) =

−1 if D lies on the line at infinity.

Specifically, consider two adjacent vertices of a square, A and B, and the midpoint

between their vertices, C, while point D is the ideal point of the line supporting the

edge AB, located on the line at infinity with homogeneous coordinates of (0 : x1).

Suppose then that the distance on the line between points A and B is p. Table 3.1
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shows the coordinates of these four points.

Table 3.1: Coordinates used to showcase the special case cross ratio value for a
harmonic sequence of points.

Point x0 x1

A 1 0

B 1 p
2

C 1 p

D 0 x1

Given the standard definition of the cross ratio of four points, and considering that

because point D lies on the line at infinity, and its cross ratio with respect to points

B and C are therefore not computed, the following relationship may be obtained for

the harmonic sequence of points (A,B,C,D),

CR(AB; CD) =

∣∣∣∣∣∣∣∣∣
a0 a1

c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b0 b1

c0 c1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
1 0

1 p
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 p

1 p
2

∣∣∣∣∣∣∣∣∣

, (3.6)

which upon expanding the determinants yields,

CR(AB; CD) =
p
2
−p
2

= −1. (3.7)

Given that this cross ratio is preserved under any value of p, the projective map-

ping of the trapezoid onto the “unit” square, and subsequent mapping of the unit

circle onto the ellipse inscribing the trapezoid must preserve the polar points of the

maximum area inscribing ellipse at the mid points of the two parallel edges, as they
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Figure 3.4: The parallelogram, and its mapped properties; diagonals in dotted lines
with adjacent dotted lines connecting the midpoints of each opposing edge,
while the centre of the pencil of inscribing ellipses, alongside the tangent points
of the maximum area inscribing ellipse are circled.

share an ideal point on the line at infinity and form a harmonic ratio with their pole

points.

Figure 3.4 illustrates a parallelogram, as well as some key properties. While

the parallelogram differs from the mapping of the trapezoid in that the locus of

the centres for all ellipses contained within the quadrangle is a double-mapped

point, represented by the midpoints of the diagonals of the quadrangle, several other

properties are also preserved; the polar points for the area maximizing inscribing

ellipse lie incident with the midpoints of each side, and the centre for the area

maximizing inscribing ellipse lies at the intersection of the diagonals and the lines

connecting the midpoints of each set of parallel sides.

Though these two cases facilitate a projective mapping between the unit circle and

the unit circles image within the convex quadrangle, the mapping will only generate
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T

S
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D

Figure 3.5: A general convex quadrangle, with no sides parallel.

the maximum area inscribing ellipse in the event that it also satisfies the conditions of

an affine mapping for the parallelogram, and not just those of a projective transforma-

tion. For the trapezoid, the harmonic sequence of points formed by the vertices and

polar points of the parallel edges is preserved. In Section 2.1 several properties of dif-

ferent transformation types were expounded upon. Recall that a projective mapping

will only preserve the cross ratio between four points, but an affine transformation

will preserve parallelism between lines, as well as the area ratios of distinct objects.

It is by this preservation of relative size that the projective mapping generates the

maximum area inscribing ellipse when the operation is performed on a parallelogram

or a trapezoid; their parallel sides and the fact that the maximum area inscribing

ellipse must intersect the midpoints of these sides provides a set of constraints to the

mapping. This entails that, within the general case (such as that depicted within

Figure 3.5) the projective mapping will not generally produce the maximum area

inscribing ellipse.
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It is obvious that the geometric properties of the quadrangle are decidedly differ-

ent from those of a parallelogram in Figure 3.4; no two sides of the quadrangle in

Figure 3.5 lie parallel to each other, nor do the midpoints of the diagonals intersect

with each other such as in Figure 3.4. Furthermore, line ts is not parallel to any

side of the quadrangle, indicating that there are no properties of an affine transfor-

mation preserved under this most general mapping, nor is there a harmonic ratio of

parallel edges to be preserved, indicating that this transformation is purely projective

and lacking the capacity to preserve a geometric constraint required to identify the

maximum area inscribing ellipse.

As a result of the fact that the mapping between the quadrangle illustrated in

Figure 3.5 and the unit square in Figure 3.1 does not preserve the line at infinity, the

mapping will be incapable of preserving the ratios of areas required to generate the

maximum area inscribing ellipse within the general quadrangle.

3.2 Area Optimisation through the Construction

of a Non-Metric Basis Coordinate System

In Section 3.1 constructing the maximum area inscribing ellipse was attempted

through the construction of a generalised projective mapping, treating the unit square

and the unit circle as the image of the convex quadrangle and its maximum area in-

scribing ellipse. Problematically, this approach is limited to certain classes of convex

quadrangle which allow their respective image transformations to satisfy the spe-

cific subset of cross ratios required for the relative area proportions to be preserved.

However, in [2], Gfrerrer utilises non-orthogonal coordinate bases developed from the

specific geometric properties of the quadrangle at hand [2], subsequently laying the

foundation for the development of a one parameter pencil of ellipses whose area can
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then be maximised within the bounds of the quadrangle.

3.2.1 Case Declarations

Given a convex quadrangle, comprising vertices A, B, C, D, Figure 3.6 can be con-

structed. Showcased within this figure is the quadrangle ABCD, alongside its diag-

onals, AC, and BD. Line TS represents the locus of centres for all conics contained

within the quadrangle, and is constructed through the connection of the midpoints of

the diagonals, points t and s. Point O represents the intersection of the two diagonals,

while points E and F represent the intersections of the lines which serve to extend

the sides of the quadrangle ABCD. Specifically, point F represents the intersection of

the extension of sides AD and BC, while point E represents the intersection of the

extensions of lines AB and CD.

Connecting points E and F facilitates the construction of line g, and the creation

of point Q upon its intersection with line f, the extension of the diagonal BD. Point

P is the intersection of line e, the extension of diagonal AC, and line g. Line m

is the extension of line TS, the locus of centres for all inscribing conics within the

quadrangle, and intersects line g at point R.

In order to simplify the analysis presented herein, it is possible to break the

problem down into several cases, which can then be approached in increasingly specific

ways in an effort to simplify the creation of the maximum area inscribing ellipse. Each

of these cases will make reference to the variables described in Figure 3.6. Given that

the family of quadrangles expressed by ABCD are strictly convex, point O lies within

the quadrangle, while points E, F, P, Q always lie outside of the quadrangle.

• Parallelogram, all four of the points E, F, P, Q are improper points, meaning

that line g is coincident with the line at infinity.

• Convex Quadrangle, or the general case, where points E, F, P, Q are all
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Figure 3.6: A general convex quadrangle ABCD, and its diagonal trilateral efg, and
the midpoints of its diagonals; T, and S.

proper points.

• Trapezoid, points P and Q are proper points, while one of E or F is an improper

point.

• Kite, contrary to the trapezoid case, here points E and F are proper points,

while only one of P or Q is a proper point.

In general, the case of the parallelogram can be viewed as a simple affine correla-

tion, whereas the cases of the general convex quadrangle, trapezoid, and kite require

a more robust development procedure in order to fully characterise their maximum

area inscribing ellipse.
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3.2.2 General Quadrangle Squared Area Function Derivation

Characterization of the maximum area inscribing ellipse within a general quadrangle,

in this context, must first begin with the construction of a non-orthogonal coordinate

system based upon the geometry of the quadrangle at hand. While this construction

facilitates a simplified derivation for the maximum area inscribing ellipse, it should

be noted that it is unique to the quadrangle at hand; the direction of each affine basis

vector will change with a manipulation of the geometry in question.

Q

P

R

OT

S
m

b

b

2

1

Figure 3.7: Non-orthogonal basis vectors for the coordinate system [2].

Figure 3.7 showcases an appropriate choice of affine basis vectors, b1 and b2. It

should be noted that this diagram’s variables coincide exactly with those of Figure

3.6. Due to the fact that the basis vectors for this coordinate system are generated

based upon the geometry of the quadrangle at hand, they must be selected on a case

by case basis. Furthermore, there is no guarantee that this selection will generate an

orthogonal coordinate system, thus the angle between b1 and b2 can vary dramatically.
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Due to the construction of this problem, specifically within the requirements to

maintain an expression that is inclusive of improper points, all subsequent equations

and line descriptions will be carried out using homogeneous point triplets, [b0, b1, b2],

representative of the coordinate system selected from Figure 3.7. Therefore, it is

possible to determine the locations of points O, P, Q, S, and T in terms of this

homogeneous point triplet:

O = [1, 0, 0]T ; (3.8)

P = [1, p, 0]T ; (3.9)

Q = [1, 0, q]T ; (3.10)

S = [1, 0, s]T ; (3.11)

T = [1, t, 0]T . (3.12)

Furthermore, because point R lies at the intersection of lines PQ and ST, its

coordinates can be expressed as,

R = [qt− ps, pt(q− s), qs(t− p)]T. (3.13)

Within the case of a general quadrangle, point R is a proper point which describes

the midpoint of the line segment EF from Figure 3.6. From this basis vector set, the

aim of the problem is to parameterise the pencil of conics inscribing the quadrangle

ABCD in terms of a single variable. Conveniently, the locus of centres lying on line

m provides a suitable choice for the parameterisation;
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m(u) =


1

(1− u)t

us


, (3.14)

such that the parameter u ∈ <. Points T, S, and R can be obtained with this

expression through substitution of u = 0, 1, q(t−p)
qt−ps , respectively, into Equation (3.14).

Now, while keeping this parameterisation in mind, it is necessary to compute the

point equation of the conic section, in its quadratic form. Recall that it is possible to

represent this pencil of inscribing ellipses in matrix-vector form,

k := bTAb = 0, (3.15)

such that the vector b is a homogeneous point triplet, (b0, b1, b2), and using the polar

lines of the points O, P, and Q:

PQ : pqx0 − qx1 − px2 = 0; (3.16)

OQ : x1 = 0; (3.17)

OP : x2 = 0; (3.18)

Substituting Equations (3.17) through (3.18) into (3.15), the conic shape coeffi-

cient factors a00, a01, a02 and a12, can be solved in terms of a00:
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a00 = pq; (3.19)

a01 = −qa00; (3.20)

a02 = −pa00; (3.21)

a12 = 1. (3.22)

This simplifies the conic shape coefficient matrix, A, to,

A =


pqa00 −qa00 −pa00

−qa00 a11 a00

−pa00 a00 a22


. (3.23)

From Equation (3.23), and utilizing the polar point of the parameterised line

m(u) as its ideal point on the line at infinity, such that b0 = 0, and substituting the

subsequent expression into the place of the basis vectors multiplying Equation (3.15),

the following two expressions may be obtained,

(−q + s+ u)a00 + t(1− u)a11 = 0; (3.24)

(−p+ t(1− u))a00 + sua22 = 0. (3.25)

These can then be solved for the remaining point conic shape coefficient variables,

a00, a11, a22:
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a00 = stu(1− u); (3.26)

a11 = su(q − su); (3.27)

a22 = t(1− u)(p− t(1− u)). (3.28)

After substitution of Equations (3.26) through (3.28) into Equation (3.23), the

following parameterised expression for the conic shape coefficient matrix, A, is ob-

tained;

A =


pqstu(1− u) −qstu(1− u) −pstu(1− u)

−qstu(1− u) su(q − su) stu(1− u)

−pstu(1− u) stu(1− u) t(1− u)(p− t(1− u))


. (3.29)

Thus, the point conic equation of the pencil of conics inscribing the ellipse can be

described as:

k(u) : pqstu(1− u)b2
0 + su(q − us)b2

1 + t(1− u)(p− t(1− u))b2
2−

2qstu(1− u)b0b1 − 2pstu(1− u)b0b2 + 2stu(1− u)b1b2 = 0, (3.30)

Which represents the parameterised point equations of the pencil of conics in-

scribing the quadrangle ABCD. Variables b0, b1, and b2 are coordinates which lie on

the constructed basis coordinate system of the quadrangle. From this point equation

for the pencil of conics inscribing the quadrangle ABCD, the squared area function,

α, can be developed in terms of the parameterised variable, u,
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α(u) =
det2 A(u)

(∆0(u))3
. (3.31)

After substitution of Equation (3.29) into (3.31), and taking ∆(u)0 as the dis-

criminant of A(u), the following expression is obtained, representing the squared

area function of the parameterised pencil of conics inscribing the quadrangle ABCD,

α(u) = stu(u− 1)((ps− qt)u− q(p− t)). (3.32)

In order the represent the solutions to Equation 3.32, two variable substitutions,

related directly to the quadrangle cases being examined are proposed. Namely, in

order to simplify the expression, substitute,

µ = ps− qt, (3.33)

ν = q(p− t), (3.34)

in Equation (3.32), which yields the squared area function:

α(u) = stu(u− 1)(µu− ν). (3.35)

Henceforth, Equation (3.35) will be used to describe each maximum area inscribing

ellipse within a convex quadrangle, ABCD. Specifically, this equation represents the

area value of any conic section belonging to the pencil of sections inscribing the

quadrangle, parameterised in terms of the variable u, contained on line segment m;

the squared nature of the function facilitates the description of negative areas, arising

from degenerate conic sections contained within the pencil of conics.
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3.2.3 Convex Quadrangle Cases

In the previous section, the geometric constraints presented within a general convex

quadrangle were used to derive a fully general parameterisation for any given convex

quadrangle and its pencil of inscribing conics. While this function can be used to ef-

fectively describe the maximum area inscribing ellipse within any convex quadrangle,

each of the cases presented in Section 3.2.1 can be treated independently, in order

to provide simplified solutions, as well as generalisations about the behaviour of the

pencil of conics within each type of convex quadrangle.

General Convex Quadrangle

Assuming that µ = ps− qt 6= 0, which constrains the quadrangle ABCD to not be a

trapezoid, Equation 3.32 simplifies to a third order polynomial with three real zeroes;

0, 1, and ν
µ
, which represents the three singular conics within the pencil of inscribing

conics within ABCD. As limiting cases, these three conics represent lines AC, BD,

EF, seen in Figure 3.6. Due to the construction of the quadrangle ABCD, specifically

because T and S are the only points which lie inside the quadrangle, it stands to

reason that the area maximising inscribing ellipse of the quadrangle ABCD will fall

in the range,

0 <
ν

µ
< 1. (3.36)

From Equation (3.35), it is possible to compute the first and second derivatives

of the squared conic area function, while using Equation (3.36) to check the value of

u which is obtained therein:

dα

du
= 3µu2 − 2(µ+ ν)u+ ν; (3.37)
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d2α

du2
= 6µu− 2(µ+ ν). (3.38)

Upon evaluation, Equation (3.37) yields two real and distinct zeroes:

u− :=
(µ+ ν)−

√
µ2 − µν + ν2

3µ
; (3.39)

u+ :=
(µ+ ν) +

√
µ2 − µν + ν2

3µ
. (3.40)

Substituting each of these zeroes into Equation (3.38) shows that the location

of the first zero supplies a positive concavity, while the location of the second zero

generates a negative concavity; this is turns means that the first zero, u− is concave

down, and the positive zero of the squared area function. Equation (3.35) is plotted

within the convex quadrangle ABCD in Figure 3.8, alongside the maximum area

inscribing ellipse, generated by using the first zero of Equation (3.37).
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Figure 3.8: The squared area function, α(u), along line TS, for a general convex
quadrangle.

Due to the variability within the construction and geometry of a general convex

quadrangle, it is entirely possible that the value of u+ < 0, however, u− will always

generate the maximum area inscribing ellipse within a general convex quadrangle. [1,2]

Trapezoid

When ABCD is a trapezoid with sides AB and CD lying parallel to each other,

µ = ps− qt = 0, and Equation (3.32) reduces to the polynomial,

α(u) = qst(t− p)u(u− 1). (3.41)
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Equation (3.41) simplifies to a simple parabolic function with respect to the pa-

rameterised variable u. Its first derivative is therefore a linear function:

dα

du
= qst(t− p)(2u− 1). (3.42)

Therefore, the only point at which this function will return a maxima is at u = 1
2
,

the midpoint of the line TS. Figure 3.9 depicts the corresponding squared area func-

tion, which is itself a parabola in this simplified case, plotted alongside an example

trapezoid ABCD, and its maximum area inscribing ellipse, and clearly illustrates the

location for the centre of the maximum area inscribing ellipse.

Figure 3.9: The squared area function, α(u), along line TS, for a trapezoid [2].

Convex Skew Kite

Finally, the last remaining special case to be considered within this discussion is that

of a skew kite. Skew kites are a special case of kites which possess a projected line

of symmetry along a non-orthogonal vector. Specifically, a skew kite such that the

vertex P is an improper point, thus forcing point O to be incident with point T, the

midpoint of diagonal AC. Moreover, this incidence of points T and O means that the
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line m lies incident with the opposing diagonal, BD.

From the general case, presented in Equation (3.30), the skew kite case can be

obtained by setting pt = −1, and subsequently taking the limit as t tends towards

zero. After this procedure, the following expression for the pencil of inscribing conics

present within a skew kite can be expressed as:

k(u) : qsu(u− 1)b2
0 − su(su− q)b2

1 + (u− 1)b2
2 − 2su(u− 1)b0b2 = 0. (3.43)

Moreover, the squared area function Equation (3.32) becomes:

α(u) = su(u− 1)(q − su), (3.44)

for t approaching zero. This third degree monovariate polynomial in µ has zeros

present at points 0, 1, and q/s, yielding points T, S, and R, respectively. After taking

the first derivative of the squared area function, α(u), the following two local extrema

can be defined,

u− =
(s− q)−

√
s2 − sq + q2

3s
, (3.45)

u+ =
(s− q) +

√
s2 − sq + q2

3s
, (3.46)

where, analogous to the previous cases, u− lies on m between points T (in this case,

point T is also incident with point O), and S, while u+ lies outside of the bounds of

the kite, specifically between points B and R, or Q. Figure 3.10 shows this squared

area function distribution, within an example skew kite, alongside the maximum area

inscribing ellipse within the example quadrangle, generated from Equation (3.43),
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such that u = u−.

Figure 3.10: The squared area function, α(u), along line TS, for an asymmetric
kite.

3.2.4 Applicability and Suitability of the Solution

While completely general, from a mathematical standpoint, generating the maximum

area inscribing ellipse within a convex quadrangle employing non-orthogonal bases is

cumbersome and impossible to automate using computational algorithms given the

cases for which diagonals and/or quadrangle vertices are also vertices of the diagonal

triangle on the line at infinity, implying a divide by zero condition during computa-

tion. Moreover, each and every unique quadrangle will necessarily produce different
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requirements based upon its own geometry; each case and their subsequent deriva-

tions contained within Sections 3.2.3 through 3.2.3 are evidence of the computational

limitations of this solution.

Furthermore, since the basis coordinate set used for this problem is non-

orthogonal, the ellipse presented using this solution is defined in such a way so as

to have a potentially very cumbersome metric associated to it. Both the area mea-

sure and point conic shape coefficients defined and evaluated in the non orthogonal

coordinate system need to be transformed back to the original orthogonal system,

potentially adding significant computational expense and allowing for concatenating

computational errors.

What is required is a robust method to identify the maximum area inscribing

ellipse directly within the original orthogonal coordinate system used to define the

quadrangle.



Chapter 4

Generalised Solution Using Orthogonal

Bases

In this chapter a novel generalised solution using orthogonal bases whereby the max-

imum area inscribing ellipse of any given convex quadrangle can be generated is

presented. Throughout the course of the development of the generalised solution,

homogeneous coordinates will be employed in keeping with the European standard;

that is to say that the initial coordinate presented represents the homogenising coor-

dinate, x0, while x1 and x2 represent the x and y coordinates, respectively, when x1

and x2 are divided by x0.

4.1 Generation of the Pencil of Ellipses

As shown within previous sections, it is possible to generate a pencil of ellipses given

a system of five linear constraints, allowing one variable to be used in order to alter

the shape of an ellipse. Through the lens of this problem, the sides of the convex

quadrangle will be used in order to generate four of the five linear constraints required

to define this pencil. In order to begin this process, a general convex quadrangle, such

as the one in Figure 4.1 will be translated so as to force one side of the quadrangle

81
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to lie coincident to the x1 axis. After normalising the homogeneous coordinates, the

quadrangle illustrated in Figure 4.1 has vertices located at the coordinate triples listed

in Table 4.1.

Figure 4.1: The initial quadrangle.

Table 4.1: Coordinates of the vertices of the example general convex quadrangle.

Vertex x0 x1 x2

A 1 5 3

B 1 8 4

C 1 9 9

D 1 7 10

Euclidean transformation matrices in the plane take the form of,
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T =


1 0 0

a cos θ − sin θ

b sin θ cos θ


. (4.1)

Where a and b represent the x1 and x2 displacements of vertex A, respectively.

We define the angle θ to be the orientation of the edge possessing vertices with the

two lowest x2 coordinates, in this case (1 : 5 : 3) and (1 : 8 : 4). The angle θ is

identified as,

θ = arctan

(
Bx2 − Ax2

Bx1 − Ax1

)
, (4.2)

while A and B represent the x1 and x2 coordinates of the vertex with the least

values for both x1 and x2, respectively. However, it is important to note that the

transformation matrix in Equation (4.1) needs to be inverted in order to transform

the quadrangle from its displaced and rotated pose to the origin. This inversion

yields:

T−1 =


1 0 0

−a cos θ − b sin θ cos θ sin θ

a sin θ − b cos θ − sin θ cos θ


. (4.3)

Now, through matrix multiplication with each of the vertices which define the

initial convex quadrangle, the translated quadrangle is generated, and illustrated in

Figure 4.2.

From this stage, the pencil of inscribing ellipses will be defined. The line coordi-

nate triples used to define the pencil of ellipses are defined by:
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Figure 4.2: Comparison between the specified and transformed quadrangle.


X0

X1

X2


. (4.4)

The line conic shape coefficient matrix is the matrix of coefficients which provide

the shape constraints for the general second order curve. It is defined below, as the

inverse of the symmetric matrix A,

AL = A−1 =


A00 A01 A02

A01 A11 A12

A02 A12 A22


. (4.5)
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The line conic implicit equation is obtained through multiplication of the trans-

posed line coordinate triple with AL, followed by multiplication by the original column

vector. Equation (2.16) is replicated below, for convenience,

k := A00X
2
0 + 2A01X0X1 + 2A02X0X2 + A11X

2
1 + 2A12X1X2 + A22X

2
2 = 0. (4.6)

Equation (4.6) is the general projective line conic. With this definition in mind, it

is important to define constraints for the pencil of second order curves represented by

this equation. Four of the five constraints for this inscribing line conic will be created

through the line coordinates of each side of the quadrangle. For example, the line

coordinate which corresponds to the line coordinate of the first side is defined as the

Grassmannian expansion of the point coordinates of points A and B, respectively,

LAB =

∣∣∣∣∣∣∣∣∣∣∣∣∣

X0 X1 X2

1 Ax1 Ax2

1 Bx1 Bx2

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.7)

Similarly, the line coordinates which correspond to the remaining edges of the

quadrangle are defined. In order to provide the final constraint which yields a para-

metric expression for the pencil of inscribing ellipses, a fifth and final constraint is

provided through the inclusion of a pole point, specifically the pole point of the ellipse

on the edge of the quadrangle transformed to the x1 axis.

Now, it is obvious that any inscribing ellipse within the quadrangle will necessarily

be tangent to all four of the sides. This is analogous to the special case of a unit

circle lying within the unit square; the unit circle lies incident and tangent to the

unit square at the midpoint of each side of the square. Given the proper definition,
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it is possible to create a fifth line which the ellipse would be tangent to, as well.

Problematically, this line would need to be parameterised in such a way so as to

ensure that it can describe a pencil of lines, separate from those already present,

which always lie tangent to this family of ellipses. However, defining such a line is an

unnecessarily difficult undertaking.

It is possible through the construction of this problem to generate a fifth linear

constraint, without specifying an additional unique line in the system. Namely, this

fifth constraint will be expressed as the location of the pole point on the x1 axis, point

ax. As ax varies from 0 to the coordinate value of the next vertex on the x1 axis, the

pole point of the inscribing ellipse on that quadrangle edge is implied. The location

of ax is used as a variable in the line coordinates of a distinct linear constraint from

the x1 axis. Subsequently, this places the shape coefficients of the general projective

line conic equation of the inscribing ellipse in terms of ax. The value of ax that

maximises the area of the inscribing ellipse can then be determined. This constraint

is made possible due to the geometric transformation which forced the quadrangle to

be located at the origin, with one side incident to the x1 axis.

The pole point, ax, lies on line g whose line coordinates are:

g :=

[
G0 : G1 : G2

]
. (4.8)

Once this vector of line coordinates is multiplied with the line conic shape coeffi-

cient matrix, it will yield the pole point coordinates of an ellipse with line g. In other

words, the tangent point of line g and the ellipse. The pole point on any line g with

any ellipse is the array in Equation (4.9):

[
A00G0 + A01G1 + A02G2 A01G0 + A11G1 + A12G2 A02G0 + A12G1 + A22G2

]
.
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Due to homogeneity, each element in this vector can be divided by the first el-

ement, thereby projecting the line coordinates into the Euclidean plane. Since the

pole point, ax, lies on the x1 axis, this implies that the x2 term is equal to zero, while

the second term, which corresponds to the x1 axis, is equal to ax,

ax =
A01G0 + A11G1 + A12G2

A00G0 + A01G1 + A02G2

. (4.9)

However, point ax lie on the x1 axis, which possesses the line coordinates,

[
G0 : G1 : G2

]
=

[
0 0 1

]
. (4.10)

Substituting these values into Equation (4.9) yields,

ax =
A12

A02

, (4.11)

or, in normal form,

A02ax − A12 = 0. (4.12)

This line conic shape coefficient form, representing ax, is a truly general form.

Provided that the quadrangle had been located so as to allow one side to lie incident

with the x1 axis, this form will be true for any given convex quadrangle. In the event

that the quadrangle has not been located in such a way, the same parameterisation

process may be undertaken in order to express this constraint in terms of the line

conic shape coefficients, however, it becomes significantly more complicated due to

the fact that the line coordinate values of G1 and G2 are not, in general, equal to

zero. While line g lies incident with the x1 axis, however, the following matrix can

be used to determine the values of Aij through Grassmannian expansion [21],
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Grassmanian(AL) =



A00 A01 A02 A11 A12 A22

0 0 ax 0 −1 0

0 0 0 0 0 R6

S1 S2 S3 S4 S5 S6

T1 T2 T3 T4 T5 T6

U1 U2 U3 U4 U5 U6



(4.13)

Such that Ri, Si, Ti, and Ui, all represent the line conic coefficients derived from

substituting each set of line coordinates which represent the sides of the quadrangle

into Equation (4.6). In this instance, Ri only contains one non-zero element, due to

its incidence with the x1 axis. Due to the size of this matrix, the general solutions

for Aij obtained through Grassmannian expansion will not be presented, though the

numerical result (corresponding to the aforementioned demonstration quadrangle)

will be presented below.

Once the line conic shape coefficient matrix has been determined in terms of the

parameter ax, it is important to convert this line coefficient matrix to its dual point

conic coefficient matrix in order to plot the conics themselves. While line coordinates

are exceedingly useful in representing linear constraints within this system, each line

coordinate triple represents a line that lies tangent to a point on the ellipse. The line

conic equation represents the family of lines tangent to the ellipse, and is therefore

not suitable for visualisation.

It can be shown [27] that the point conic shape coefficient matrix, A is proportional

to the inverse of the line conic shape coefficient matrix:
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A = A−1
L ∝ adjAL (4.14)

However, since matrix AL is never rank deficient for a proper ellipse, its determi-

nant is never identically equal to zero. We find that simpler expressions are obtained

using the Laplacian expansion theorem [28] to evaluate A−1 by evaluating the in-

dividual minor determinants but not dividing the resulting adjoint matrix by the

determinant of AL. Following this process, the initial value of the matrix A is nor-

malized by the numerical value preceding the a00 term, and the following point conic

shape coefficient matrix for the example quadrangle depicted earlier is obtained:

A =


a2
x −ax 1

133

√
10a2

x + 11
133
ax

−ax 1 − 5
133
a2
x + 20

133

√
10ax − 9

7

1
133

√
10a2

x + 11
133
ax − 5

133
a2
x + 20

133

√
10ax − 9

7
920

17689
a2
x − 200

931

√
10ax + 81

49


.

(4.15)

From this matrix, it is evident that the parameterisation was successful in defining

a pencil of conics characterized solely by the pole point, ax. Special care should be

taken in order to ensure that this equation makes use of rational numbers in order to

avoid concatenating computational errors resulting from numerical truncation. Upon

pre and post multiplication with the point (x0 : x1 : x2), the following general point

conic function is generated; its full form being too cumbersome to replicate in the

text, thus Equation (2.18) is replicated in its place,

a00x
2
0 + 2a01x0x1 + 2a02x0x2 + a11x

2
1 + 2a12x1x2 + a22x

2
2 = 0 (4.16)

Figure 4.3 shows that, within the bounds of the bottom edge of the quadrangle,
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substituting different values of ax into Equation (4.16) yields ellipses contained en-

tirely within the quadrangle. Furthermore, as ax tends from the origin towards the

bounding vertex of the quadrangle, it is clear that the ellipse generated by Equation

(4.16) starts as a degenerate ellipse at ax = 0, tends towards some maximum value,

and finally generates an additional degenerate ellipse at the opposing vertex located

on the x1 axis.

Figure 4.3: A sample of the pencil of ellipses contained within the example quad-
rangle.

4.2 Elliptical Area Maximisation

Due to the tendency of this pencil of ellipses towards a maximum at some value for

ax within the quadrangle, it is possible through the use of this parameterisation to

determine the exact solution for the area maximising inscribing ellipse. However, as

discussed in Chapter 2.5 the area of an ellipse generated in this fashion is inherently
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nontrivial. Hence, the generalised conic area equation is replicated below as Equation

(4.17), as the area function of the pencil of conics, k,

Area(k) =

∣∣∣∣π det(A)

(
√

∆0)3

∣∣∣∣ . (4.17)

In general, this equation can be used to define the area of any given ellipse which

is expressed in its point conic coefficient matrix form. Specifically, for the purposes

of the problem at hand, the point conic shape coefficient matrix A is parameterised

in terms of the pole point, ax. Combining these two facts means that equation (4.17)

yields an expression which places the area of this pencil of conics in terms of this pole

point.

Since this area function remains continuous within the bounds of the quadrangle,

the derivative of the area function can be used to define the local maximum area,

∂A/∂ax within the bounds of the quadrangle for ax, subsequently using the value of ax

which lies within the two vertices of the quadrangle on the x1 axis. Through evaluation

of multiple different pencils of conics generated through their respective quadrangle,

it was found that Equation (4.17) generates a minimum of two global zeroes. Due to

the nature of this function, it will generate multiple distinct zeroes; however, only one

of these zeroes corresponds to a physically meaningful value. Specifically, there will

be one value of ax which lies between the vertices of the quadrangle on the x1 axis,

corresponding to the maximum area inscribing ellipse. For the example quadrangle,

the first derivative of the area function evaluates to,

∂Ap

∂ax
=
P1

P2

π(T −K)

FH
, (4.18)

where,

P1 = 266;
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P2 = 5;

T = 44875
√

5a8
x + 18254440

√
5a6

x + 977614884
√

5a4
x

+ 7830778880
√

5a2
x + 4731699200

√
5;

K = 1125a9
x + 1914950

√
2a7

x + 266060640
√

2a5
x

+ 5631652320
√

2a3
x + 14903296000

√
2ax;

F = (40
√

5
√

2a2
x − 5a3

x + 608
√

5
√

2− 958ax)
3;

H =

√
ax(40

√
5
√

2a2
x − 5a3

x + 608
√

5
√

2− 958ax).

Once this function has been obtained, Maple can be used to evaluate the zeroes

and provide a value of the pole point, ax, at which the area is maximised. Figure

4.4 illustrates the maximised area inscribing ellipse contained within the example

quadrangle.
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Figure 4.4: The maximum area inscribing ellipse within the example quadrangle.

4.3 Test Cases

In order to demonstrate the efficacy of the solution, several test cases are proposed in

an effort to show compliance with solutions that are expected based upon their affine

equivalence of arbitrary convex quadrangles to the unit square. First, a non-unit

square is proposed, following which a rhombus of the same dimensions is defined.

While the maximum area inscribing ellipse within the rhombus is non-circular in

nature, it possesses the same area as the circle which inscribes the square of the same

side lengths, as well as having tangent points lying in the exact centres of each side

of the quadrangle. Secondly, an irregular trapezoid is presented, following which a

general asymmetric convex quadrangle with no parallel sides has its maximum area

inscribing ellipse computed.



94

4.3.1 Square

It is clear that the largest area inscribing ellipse within a square is a circle which

touches the square at the midpoint of each side, and whose centre lies on the in-

tersection of each corner diagonal of the square. Though trivial in nature, this so-

lution supplies a simple method whereby the optimisation of the area function may

be demonstrated for a quadrangle whose solution is known. For example, a square

ABCD, with vertices; A(5,5), B(10,5), C(10,10), D(5,10), shown in Figure 4.5.

In order to perform the parameterisation properly through the assignment of the

pole point, ax, it is necessary to relocate the square such that point A lies incident

with the coordinate origin. Figure 4.5 shows the initial square, alongside its translated

counterpart.

Figure 4.5: Translated square used in the parameterisation.

Parametrisation of the pencil of conics contained within the square is most easily

facilitated through the use of line coordinates; specifically those of the lines which gov-

ern the boundaries of the square. Equations (4.19)-(4.22) depict the line coordinates
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of each side of the square, in counter clockwise order, from the origin:

AB = X2 = 0; (4.19)

BC = 5X0 −X1 = 0; (4.20)

CD = 5X0 −X2 = 0; (4.21)

DA = X1 = 0. (4.22)

From the line coordinates of the bounding lines which define the square, substitu-

tion into the line conic parametric equation will define a series of equations that can

then be used to constrain a pencil of conics. Equations (4.23)-(4.26) result:

A22 = 0; (4.23)

25A00 − 10A01 + A11 = 0; (4.24)

25A00 − 10A02 + A22 = 0; (4.25)

A11 = 0. (4.26)

Defining the line conic shape coefficients themselves requires Grassmanian expan-

sion of equations (4.23)-(4.26) together with the parametric variable, ax, along the

x1 axis. Equation 4.27 showcases the matrix used for the Grassmanian expansion;

each columns’ values are representative of the coefficients immediately preceding the

corresponding variables within Equation (4.68).
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Grassmanian(AL) =



A00 A01 A02 A11 A12 A22

0 0 ax 0 −1 0

0 0 0 0 0 25

25 −10 0 1 0 0

25 0 −20 0 0 1

0 0 0 1 0 0



. (4.27)

Upon completion of the Grassmanian expansion of the matrix in Equation (4.27),

the line conic shape coefficient matrix in Equation (4.28) is obtained. While this ma-

trix does, in a mathematically robust fashion, represent the pencil of conics contained

within the square, it is not necessarily useful from a visualisation standpoint. Thus,

Laplacian expansion is used in order to express the dual of the line within the plane,

and develop a parametric solution based upon point coordinates.

adj(AL) =



−2
5
−1 −1

−1 0 −ax

−1 −ax 0


. (4.28)

The result is Equation (4.29), the matrix expression of the pencil of conics which

inscribe the square:
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A =


a2
x −ax −ax

−ax 1 2
5
ax − 1

−ax 2
5
ax − 1 1


. (4.29)

Pre and post multiplication of the point conic shape coefficient matrix in Equa-

tion (4.29) with the homogeneous point triple yields the general expression for the

second order projective curve which describes the pencil of point conics inscribing the

square:

k := a2
xx

2
0 − 2axx1x0 − 2axx2x0 + x2

1 + (
4

5
ax − 2)x2x1 + x2

2 = 0. (4.30)

In order to provide a Cartesian depiction of Equation (4.30) the projectivity of

x0 = 1 is taken. Furthermore, a small subset of the conics inscribing the square are

plotted, in Figure 4.6. Each conic plotted was generated through assigning a value

to the variable ax with respect to the length of the side which lies along the x1 axis;

specifically 0.1, 0.25, 0.5, 0.75, and finally 0.99 times the length of the side which lies

incident with the x1 axis.

Figure 4.6 clearly shows that for a range of values constrained to be within the

edge of the square side length along the x1 axis. Now, the area of the pencil of

conics can be computed as a function of ax. Problematically, due to the nature of the

second order projective curve definitions, it is possible that, for a given value of ax,

Equation (4.30) will define a hyperbola, or a parabola; a global optimisation of the

area values generated by this pencil of conics will necessarily always yield an infinite

area. Therefore, Equation (4.31), below, is the simplified first derivative of the area

function for the square,
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Figure 4.6: Members of the pencil of ellipses inscribing the square.

∂α

∂ax
= −5

2

(ax − 5)axπ√
−ax(ax − 5)

. (4.31)

Due to the construction of this problem, the area maximum inscribing ellipse of a

square is always going to be a circle whose tangent points lie in exactly the midpoints

of each line. In keeping with this fact, the only global zero of the area derivative

function is located at 2.5 units along the x1 axis; the exact middle of the edge of the

square which lies incident with the x1 axis. Equation (4.32) represents the result of

substituting this value for ax into Equation (4.30), alongside a Euclidean projectivity

of x0 = 1,

kmax :=
25

4
− 5x1 − 5x2 + x2

1 + x2
2 = 0. (4.32)

Equation (4.32) represents the maximum area inscribing conic section present

within the square. Note that the factor preceding x1x2 is absent, thus determining a

circle that is offset from the origin by five units in the x1 and x2 directions. Finally,



99

Figure 4.7 shows the maximum area inscribing ellipse within the square.

Figure 4.7: The maximum area inscribing ellipse within a square.

4.3.2 Parallelogram

Much like the aforementioned case of the square, it is clear that the maximum area

inscribing ellipse within a parallelogram is the ellipse whose centre lies on the intersec-

tion of the internal diagonals, and whose tangents points lie exactly at the midpoint

of each side of the parallelogram. Furthermore, due to the affine equivalence of the

square and parallelogram, given a rhombus of side lengths equal to the square pre-

sented in Section 4.3.1, the maximum area inscribing ellipse will posses the same area

as that of the circle which inscribes the square. For example, a rhombus ABCD, with

vertices; A(5,5), B(10,5), C(12.5,10), D(7.5,10), is shown in Figure 4.8.

While the edge lengths of the rhombus remain identical to that of the afore-

mentioned square, the angle at which the rhombus is deflected is entirely arbitrary.

However, in keeping with the procedure required to generate the parameterisation,
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the rhombus must be relocated such that one side lies incident with the x1 axis, shown

in Figure 4.8.

Figure 4.8: Translated rhombus used for parameterisation.

From here, the line coordinates which describe each side of the parallelogram must

be determined. Within the case of the rhombus, the line coordinates, specifically those

of lines BC and CD are not symmetrical. However, line AB possesses the exact same

value for the rhombus as was determined during the computation of the maximum

area inscribing ellipse within the square. The resulting line equations are:
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AB = X2; (4.33)

BC = 5X0 −X1 +
1

2
X2; (4.34)

CD = 5X0 −X2; (4.35)

DA = X1 −
1

2
X2. (4.36)

From the line coordinates of the bounding lines which define the parallelogram,

substitution into the line conic parametric equation will define a series of equations

that can then be used to constrain a pencil of conics. The inclusion of an additional

term within lines BC and DA complicates the conic boundary functions required to

define the pencil of conics present within the rhombus:

A22; (4.37)

25A00 − 10A01 + 5A02 + A11 − A12 + 1
4
A22; (4.38)

25A00 − 10A02 + A22; (4.39)

A11 − A12 + 1
4
A22. (4.40)

Defining the line conic shape coefficients themselves requires Grassmanian expan-

sion of Equation (4.41) alongside the parametric variable, ax, along the x1 axis. The

process of Grassmanian expansion in order to determine the line conic shape coeffi-

cients remains unchanged from the case of the square, while the parametric variable

ax, and subsequently its line equation, remains the exact same, despite the changes

within the boundary constraints of the parallelogram. The matrix used to articulate

this expansion is,
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Grassmanian(AL) =



A00 A01 A02 A11 A12 A22

0 0 ax 0 −1 0

0 0 0 0 0 1

25 −10 5 1 −1 1
4

25 0 −10 0 0 1

0 0 0 1 1 1
4



. (4.41)

Upon completion of the Grassmanian expansion, the line conic shape coefficient

matrix in Equation (4.41) is determined. If pre and post-multiplied by homogeneous

line triplets, this matrix would determine the family of lines which lies tangent to the

pencil of conics contained within the parallelogram:

AL =



−2
5

−3
2

−1

−3
2
−ax −ax

−1 −ax 0


(4.42)

Importantly, the coefficient A11 is no longer equal to zero; this necessarily means

that the corresponding line conic would have a non-zero factor multiplying its X1X2

term, which then forces every inscribing conic section to be non-circular in nature.

Equation (4.43) is the adjoint of matrix A yielding the point form of this pencil of

conics:
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adj(AL) =


a2
x −ax −1

2
ax

−ax 1 2
5
ax − 3

2

−ax 2
5
ax − 3

2
−2

5
ax − 9

4


. (4.43)

Equation (4.44) results from pre and post multiplication of Equation (4.43) with

a homogeneous point triplet, and describes the pencil of inscribing conic sections

contained within the rhombus:

k := a2
xx

2
0 − 2axx1x0 − axx2x0 + x2

1 + (
4

5
ax − 2)x2x1 + x2

2(−2

5
ax +

9

4
). (4.44)

From this conic pencil, several conics can be plotted alongside the parallelogram

which they inscribe. Figure 4.9 illustrates several inscribing ellipses corresponding to

the same relative ax values as for the square.

Figure 4.9: Several inscribing ellipses within the rhombus.

Given that the rhombus presented within this example can be mapped to the

aforementioned square through the use of an affine collineation, the maximum area
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inscribing ellipse contained within it will share its tangent points with those of the

square; each tangent point will lie at the exact middle point of edge, and thus the

maximum area inscribing ellipse will occur at ax = 2.5. Equation (4.45) is the area

derivative function used to find this local area maximum:

∂α

∂ax
= −5

2

(ax − 5)axπ√
−ax(ax − 5)

. (4.45)

Not only does the maximum area inscribing ellipse occur at the same ax as that of

the square, but through affine equivalence and the preservation of area ratios under

an affine transformation, the circle, mapped to its corresponding ellipse within the

rhombus, which is a skewed square, possess the exact same area. Thus, Equations

(4.45) and (4.31) are identical, even though the point conic shape coefficient matrices

and their corresponding point conic equations are not.

kmax :=
25

4
− 5x1 −

5

2
x2 + x2

1 − x1x2 +
5

4
x2

2 = 0. (4.46)

Upon substitution of ax = 2.5 into Equation (4.44), we obtain Equation (4.46)

which describes the maximum area inscribing ellipse contained within the rhombus,

and is shown in Figure 4.10. This ellipse has an area identical to that of the circle

inscribing the square shown above, 6.25 square units.

4.3.3 Trapezoid

Both cases of the square and the parallelogram can be seen as affine equivalences of

each other; their solutions will only differ by the scaling of the edge lengths between

the two shapes, due to the preservation of the line at infinity when transforming a

square into a rombus, or any arbitrary parallelogram. However, the remaining convex

quadrangles will either be a trapezoid, or some general convex quadrangle without

symmetry present; kites may be treated as a general convex quadrangle, as their
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Figure 4.10: The maximum area inscribing ellipse within the rhombus.

geometry supports no special or unique properties of the maximum area inscribing

ellipse whereby its properties may be predicted.

Figure 4.11 describes the trapezoid ABCD with vertices, A(5,5), B(9,5), C(8,7),

and D(7,7). In order to parameterise the problem in terms of ax, the trapezoid

must then be translated to lie incident with the x1 axis. Figure 4.11 also shows the

translated trapezoid such that point A lies incident with the coordinate origin, while

line AB lies incident with the x1 axis.

Equations (4.47)-(4.50) are the line equations that define each edge of the trape-

zoid for this example:

AB = X2; (4.47)

BC = 2X0 −
1

2
X1 −

1

4
X2; (4.48)

CD =
1

2
X0 −

1

4
X2; (4.49)

DA =
1

2
X1 −

1

2
X2. (4.50)

Equations (4.51) through (4.54) showcase the equations used to identify the line
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Figure 4.11: Translated trapezoid used to parametrise the pencil of inscribing el-
lipses.

conic shape coefficients, in addition to the x1 axis, parameterised with ax:

A22; (4.51)

4A00 − 2A01 − A02 + 1
4
A11 + 1

4
A12 + 1

16
A22; (4.52)

1
4
A00 − 1

4
A02 + 1

16
A22; (4.53)

1
4
A11 − 1

2
A12 + 1

4
A22. (4.54)

Grassmanian expansion is then performed on the matrix in Equation (4.55), in

order to identify the line conic shape coefficients.
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Grassmanian(AL) =



A00 A01 A02 A11 A12 A22

0 0 ax 0 −1 0

0 0 0 0 0 16

4 −2 −1 1
4

1
4

1
16

1
4

0 −1
4

0 0 1
16

0 0 0 1
4
−1

2
1
4



. (4.55)

After computing the adjoint of the line conic shape coefficient matrix, matrix A,

the point conic shape coefficient matrix, Equation (4.56), is obtained:

A =


a2
x −ax −3

8
a2
x + 1

2
ax

−ax 1 5
8
ax − 3

2

−3
8
a2
x + 1

2
ax

5
8
ax − 3

2
9
64
a2
x − 7

8
ax + 9

4


. (4.56)

Upon pre and post multiplication of the point conic shape coefficient matrix with

a homogeneous point triplet, the parameterised point conic coefficient is obtained as

Equation (4.57):

k := a2
xx

2
0 − 2axx1x0 − (−3

4
a2
x + ax)x2x0 + x2

1 + (
5

4
ax − 3)x1x2

+ x2
2(

9

64
a2
x −

7

8
ax +

9

4
) = 0. (4.57)

Figure 4.12 illustrates members of the pencil of inscribing ellipses. Although the

parallelogram and square shared a uniform affine equivalence, this is not true for the
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case of the trapezoid. However, due to the preservation of parallelism of the top

and bottom faces of the trapezoid, the maximum area inscribing ellipse within the

trapezoid will have its tangent points located at the exact center of each of these

edges, as a result of the harmonic sequence of points generated by their placement.

However, this is not the case for the two non-parallel edges.

Figure 4.12: Example functions from the pencils of ellipses inscribing the trapezoid.

In order to solve for the maximum area inscribing ellipse within the trapezoid,

the first derivative of the area function is used to identify the local maximum area

with respect to the pole point, ax. Equation (4.58) describes the first derivative area

function of the trapezoid:

∂α

∂ax
= −1

2

(ax − 4)axπ√
−ax(ax − 4)

. (4.58)

Naturally, the predicted maximum area conic section inscribing the trapezoid

occurs at a value of ax = 2, the mid point of the line lying incident with the x1 axis.

Interestingly enough, the predicted maximum area inscribing ellipse in this case, has

an area of exactly pi units squared. Upon substitution of ax = 2 into Equation (4.57),

Equation (4.59), the maximum area inscribing ellipse, is obtained:

k(max) := 4− 4x1 − x2 + x2
1 −

1

2
x1x2 +

17

16
x2

2 = 0. (4.59)
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In graphical form, the maximum area inscribing ellipse of this trapezoid is included

in Figure 4.13.

Figure 4.13: The maximum area inscribing ellipse within the example trapezoid.

4.3.4 General Convex Quadrangle

Determining the equation for the maximum area inscribing ellipse within the square,

parallelogram, and trapezoid can be viewed as simplified cases of the overall problem

of determining the equation of the maximum area inscribing ellipse within an arbitrary

asymmetric convex quadrangle. Primarily, the square and parallelogram examples are

simplified due to the affine equivalence between the unit square and parallelogram,

while the trapezoid case is simplified through preservation of the cross ratios of the

pole points of the maximum area inscribing ellipse on each parallel side. For this

example, a general asymmetric convex quadrangle possessing none of the geometric

constraints required to simplify its maximum area inscribing ellipse is presented. The

quadrangle ABCD is illustrated in Figure 4.14, is comprised of vertices A(5,5), B(9,7),

C(13,12), and D(6,8). Moreover, this convex quadrangle was selected so as to ensure

that it is asymmetric.

Due to the translated and rotated nature of this initial quadrangle, a geometric

translation is used to locate point A at the origin of the coordinate system, while the
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rotation ensures that edge AB lies incident with the x1 axis. Figure 4.14 illustrates the

prescribed and translated quadrangle, ABCD, which now lies in the correct position

and orientation for parameterisation with its pole point, ax.

Figure 4.14: Prescribed and transformed convex quadrilaterals used for the param-
eterisation.

Equations (4.60)-(4.63) are the line equations of the edges of the transformed

quadrangle:

AB = X2 = 0; (4.60)

BC =
6√
5
X0 −

3

5
X1 +

13

10
X2 = 0; (4.61)

CD =
17

2
√

5
X0 +

1

10
X1 −

15

10
X2 = 0; (4.62)

DA =
1

2
X1 −

1

2
X2 = 0. (4.63)
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Comparing Equations (4.64) through (4.67)with those of the earlier examples, it

is to be seen that the earlier line equations contained no expressions with more than

three terms. However, this is not the case for the general convex quadrangle:

20A22; (4.64)

144A00 − 144
5

√
5A01 + 312

5

√
5A02 + 36

5
A11 − 156

5
A12 + 169

5
A22; (4.65)

289A00 + 34
5

√
5A01 − 612

5

√
5A02 + 1

5
A11 − 36

5
A12 + 324

5
A22; (4.66)

5A11 − 10A12 − 5A22. (4.67)

Equation (4.68) is the matrix resulting from substituting the bounding line conics,

as well as the parameterised pole point equation, into Equation (4.13).

Grassmanian(AL) =



A00 A01 A02 A11 A12 A22

0 0 ax 0 −1 0

0 0 0 0 0 20

144 −144
5

√
5 312

5

√
5 36

5
−156

5
169
5

289 34
5

√
5 −612

5

√
5 1

5
−36

5
324
5

0 0 0 5 −10 5



. (4.68)

Upon Grassmanian expansion of the matrix in Equation (4.68), the line conic

shape coefficient matrix is obtained, see Equation (4.69). While the maximum order of

each line conic shape coefficient within Equation (4.69) is limited to 1, it is important

to note that the coefficient A00 is no longer independent of the parameterised pole
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point, ax.

AL =


−1550400− 31008

√
5ax 387600ax − 3565920

√
5 −930240

√
5

387600ax − 3565920
√

5 −1860480
√

5ax −930240
√

5ax

−930240
√

5 −930240
√

5ax 0


(4.69)

Equation (4.70) is the adjoint of the matrix in Equation (4.69). Unlike previous

cases, entries a02, a12, and a22 are dependent upon a2
x for the general convex quadran-

gle, indicating that the pencil of conics inscribing the convex quadrangle has a highly

nonlinear behaviour with respect to its pole point.

A =


a2
x −ax 1

12

√
5a2

x − 11
6
ax

−ax 1 1
30
a2
x + 5

12

√
5ax − 23

6

1
12

√
5a2

x − 11
6
ax

1
30
a2
x + 5

12

√
5ax − 23

6
− 23

720
a2
x − 47

36

√
5ax − 529

36


. (4.70)

Pre and post multiplication of Equation (4.70) with the homogeneous point triplet

yields Equation (4.71), the pencil of point conic sections which, while ax varies along

the x1 axis within the vertices of the quadrangle, will always generate a closed conic

section:

k := a2
xx

2
0 − 2axx1x0 + (

1

6

√
5a2

x −
11

3
ax)x2x0 + x2

1+

(
1

15
a2
x +

5

6
ax −

23

3
)x2x1 + x2

2(− 23

720
a2
x −

47

36

√
5ax −

529

36
) = 0. (4.71)
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Figure 4.15 shows that varying the pole point, ax along the x1 axis within the

bounds of the quadrangle forces Equation (4.71) to generate closed conic sections

within the bounds of the quadrangle.

Figure 4.15: Examples from the pencil of ellipses inscribing the convex quadrangle.

The explicit first derivative of Equation (4.71) with respect to ax is too cumber-

some to reproduce here. However, Equation (4.72) is the area function itself. Ap-

pendix A lists the Maple code used to the generate this example and the expression

for the first derivative for this example is to be found there.

α =
30πax(a

4
x + 30

√
5a3

x + 785a2
x − 5100

√
5ax + 28900)

(a3
x + 25

√
5a2

x + 580ax − 1700
√

5)
√
−ax(a3

x + 25
√

5a2
x + 580ax − 1700

√
5)
.

(4.72)

Unlike previous cases, this pole point position does not coincide with the mid point

of the line lying incident with the x1 axis, at a point of approximately 1.9933 units,

thus any projective transformation between the quadrangle and unit square would

ultimately fail in mapping the maximum area circle inscribing the square to that of

the ellipse within the convex quadrangle. Specifically, the maximum area inscribing

ellipse of this general asymmetric convex quadrangle is,
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kmax := (
368

15

√
5− 4

15

√
5
√

9739)x1 + (
42478

135

√
5− 434

135

√
5
√

9739)x2

+ (
33137

675
− 361

675

√
9739)x1x2 +x2

1 + (
87239

2025
− 1409

4050

√
9739)x2

2 +
72812

45
− 736

45

√
5 = 0.

(4.73)

Equation (4.73), obtained through maximisation of Equation (4.72) is shown in

Figure 4.16 alongside the asymmetric quadrangle used to define it.

Figure 4.16: The maximum area ellipse inscribing the example asymmetric convex
quadrangle.

4.3.5 Applicability and Suitability of the Solution

Through implementation of the projective extension of the Euclidean plane, it is

possible to generate a pencil of conics lying within any given quadrangle parameterised

by the location of a pole point, ax, on one of its edges. Through this pencil of conics,

it is possible to determine the maximum area ellipse contained within an arbitrary

convex quadrangle using the first derivative of the area function with respect to the

pole point, ax, corresponding to the point conic shape coefficient matrix A. In order

to facilitate this parameterisation, the quadrangle is first transformed so as to force

one edge to be incident with the x1 axis. While this step alters the position and
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orientation of the ellipse generated through the procedure, it does not alter its shape

in any way. The resulting ellipse is transformed back to the original quadrangle using

the inverse transformation matrix.

Aside from the transformation of the quadrangle in question, the aforementioned

procedure functions in a completely general fashion. Given any parallelogram, the

procedure presented within this chapter identifies an ellipse which possesses a pole

point at the mid point of each side, as well as preserving the ratio of areas between

these shapes; given edge lengths, it will always generate an ellipse lying inside the

parallelogram with the same area as the circle within the correspondingly dimensioned

square. Given a trapezoid, the same code will generate an ellipse which possesses a

tangent point at the mid point of each parallel edge, preserving the harmonic ratio

between four appropriate points on each parallel line, namely the first vertex coupled

with the second vertex, alongside the midpoint of the edge and the point at infinity, in

that order. Furthermore, the ellipse generated by this code remains metric, and thus

its size is immediately calculable, requiring no further metric transforms, or mappings

to orthogonal bases once it has been identified.

Most importantly, however, is the fact that this code requires no differentiation

between the possible cases; the same code will generate the maximum area inscribing

ellipse regardless of the case it is presented with. In contrast to existing solutions,

this process is streamlined, and completely general.



Chapter 5

Conclusions

5.1 Summary of Previous Solutions

While it is well accepted that there exists a maximum area inscribing ellipse within

a convex quadrangle [7], only two solution methodologies for determining the exact

equation of this ellipse have been presented previously; one relies upon the imple-

mentation of a projective mapping which applies onto to special quadrangles, while

the other relies on the derivation of a non-orthogonal coordinate system to generate

the equation of the maximum area inscribing ellipse within the same non-orthogonal

coordinate system.

Using a projective mapping to treat the unit square and its maximum area in-

scribing ellipse as an image of a quadrangle possessing two or four parallel edges,

and its maximum area inscribing ellipse in turn, facilitates an accurate presentation

of this maximum area inscribing ellipse, however, it relies on specific configurations

of quadrangles in order to be successful. Provided that the quadrangle is either a

parallelogram or a trapezoid, this projective mapping will successfully identify the

maximum area inscribing ellipse. However, if the quadrangle is not a parallelogram

or a trapezoid, the polar points of the ellipse are no longer preserved through the

116
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preservation of a harmonic sequence of points on the parallel edges, and this projec-

tive transformation ultimately fails to produce the maximum area inscribing ellipse

of the quadrangle.

Through the employ of a non-orthogonal coordinate system generated by the

specific geometry of any given asymmetric convex quadrangle, it is possible to com-

pute the pencil of conics contained within the quadrangle parameterised by a single

variable. This pencil of conics is then optimised through its squared area function

derivative in order to supply the maximum area inscribing ellipse of the quadrangle.

While mathematically robust, this procedure fails to supply a metric result at its

outcome, and applying a metric transformation to this solution leads to unnecessary

computational expense and inaccuracy.

5.2 Summary and Comparison of Newly Devel-

oped Solution

Upon the definition of four points, no three of which are collinear, the vertices of a

convex quadrangle ABCD may be defined, and transformed such that one vertex is

incident with the origin, while the other vertex on that same edge lies on the x1 axis.

Through use of the line coordinates that define its edges, alongside a polar point ax,

a pencil of inscribing line conics may be computed, provided that ax remains between

the quadrangle vertices which are incident with the x1 axis. From this point, the

matrix of line conic shape coefficients may be inverted through the computation of

its adjoint matrix, yielding the pencil of inscribing point conics, after which the area

derivative function is locally maximized and provides the equation for the maximum

area inscribing ellipse, in terms of the polar point variable, ax. The resulting ellipse

must then be transformed back to the original quadrangle, which will affect neither
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its area nor shape, only its position and orientation.

Within each of the previously proposed solutions, it is impossible to provide a met-

ric solution which supplies the maximum area inscribing ellipse of a general asym-

metric quadrangle. While projective transformations may be used to map ellipses

which satisfy a harmonic sequence of points, this harmonic sequence is not preserved

upon mapping a square to a general asymmetric convex quadrangle. Implementation

of a non-orthogonal basis coordinate system ultimately leads to a solution which is

not metric, and is not immediately useful for identifying maximum covariance, or

maximum isotropic workspace, for example.

5.3 Trapezoid Behaviour - A Brief Note

Throughout the course of this investigation, the aforementioned Maple code was used

in order to check that the process generated solutions which remained consistent

with proven geometric truths. Specifically: the maximum area inscribing ellipse

of a square is a circle which possesses polar points at the midpoint of each side;

and through affine equivalence that the maximum area inscribing ellipse within

a parallelogram also includes polar points at the midpoints of the sides of the

parallelogram; and furthermore, that the area of said ellipse is the same as the circle

inscribing the square of equivalent edge lengths.

While testing to ensure that the maximum area inscribing ellipse within the trape-

zoid lies tangent to the midpoints of the parallel sides, however, interesting behaviour

was observed with respect to the value of the area described by this maximum area

inscribing ellipse. Through a pure concatenation of coincidence, the test case used

to initially prove that the Maple file would generate the proper ellipse within the

trapezoid generated an ellipse with an area of exactly π units squared. Through
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investigation of this phenomenon, it was found that the maximum area inscribing

ellipse of any trapezoid in question was, at most, π scaled by a factor of one algebraic

number, and one rational number.

For example, given an increase in the height of the initial trapezoid to a total of

three units in height scales the maximum area inscribing ellipse within the trapezoid

by a factor of 3
2
, shown in Figure 5.1.

Figure 5.1: The maximum area inscribing ellipse within a trapezoid scaled by one
unit vertically, with an area of exactly 3

2
π.

Additionally, scaling the top face of the initial trapezoid by one unit in length

scales the maximum area inscribing ellipse within by a factor of
√

2, shown in Fig-

ure 5.2.

Furthermore, it was found upon iteration of test cases, that this scaling was

predictable and consistent within the scope of the values through which the testing

was conducted. Two separate test cases are examined briefly, so as to demonstrate

the scalability of this solution. First, given a scaling of 3
2

square units per unit

increase in height, one would expect a trapezoid with a height of six units to possess a

maximum area inscribing ellipse of 3π square units. Figure 5.3 shows this trapezoid,
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Figure 5.2: The maximum area inscribing ellipse within a trapezoid scaled by one
unit horizontally on its top face, with an area of exactly

√
2π.

with its maximum area inscribing ellipse of 3π square units.

Figure 5.3: The maximum area inscribing ellipse within a trapezoid scaled to a total
height of six units, with an area of exactly 3π.

Additionally, if this exact same trapezoid has its top side length increased in

length by one unit, the resulting maximum area inscribing ellipse should possess an

area scaled by
√

2. Figure 5.4 shows this trapezoid, and the scaled maximum area
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inscribing ellipse of 3
√

2π.

Figure 5.4: The maximum area inscribing ellipse within a trapezoid scaled to a total
height of six units, with one additional unit added to the length of its top side,
with an area of exactly 3

√
2π.

Not only is the scaling in either direction consistent and predictable, but each

axial scaling factor is independent of one another; scaling the the x2 direction solely

yields an increase in the fractional value present, while scaling in the x1 direction

only affects the preceding value under the square root. Specifically, an increase

in height of one unit forces a scaling of the maximum area inscribing ellipse by 3
2

square units, while an increase in the length of the top parallel side increases the

area of the maximum area inscribing ellipse by
√

2 units. Increasing the height of

the quadrangle will not affect the square root coefficient, and increasing the length

of either parallel side will not affect the rational coefficient.

Although the exact cause of this correlation is not entirely known, it is possible
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that the nature of the harmonic ratio between the parallel sides forces this alge-

braically direct scaling of solutions. Obviously, further investigation into the nature

of these maximum area inscribing ellipses is necessary to uncover the true causality

of this uncoupled correlation. Once this causality is uncovered, it is possible that an

algorithm could be developed to automatically calculate the maximum area inscribing

ellipse contained within a trapezoid while bypassing the majority of the computations

required for the general solution.
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(1)(1)

(2)(2)

Maximum Area Inscribing Ellipse within a Convex Quadrilateral that requires Transformation to
the x__1 axis

This code will automatically and without user intervention generate the maximum area inscribing ellipse
contained within any convex quadrilateral.

A user will input their quadrilateral, as point coordinates of the four vertices, in the PointN places, and 
run the code.

Once the initial user defined quadrilateral has been transformed so as to place one edge in concurrence 
with the x__1 axis, the maximum area inscribing ellipse will be created by using the line coordinates of 
each edge of the quadrilateral to define the line coordinate ellipse shape matrix, whereby a point 
coordinate ellipse may be generated through Grassmanian expansion. From this point ellipse, a variable 
a__x will be used to search for the maximum area inscribing ellipse with one tangent, or polar point, 
along the x__1 axis.

Several interstitial mathematical steps are taken in an effort to showcase the effectiveness of the 
solution, most notably a step wherein several inscribing ellipses are generated in parametric form, and 
then plotted within the transformed quadrangle. This was taken solely to demonstrate that the pencil of 
ellipses translated properly between line and point coordinates, and furthermore, that the form of all of 
those ellipses is also contained completely within the transformed quadrilateral.

First, the matrix used for the geometric translation of the quadrangle will be defined. Many forms of this 
matrix exist, but in keeping with the European standard, the first element in the matrix will be used as 
the homogenizing coordinate, and the shape of the remaining matrix will be dependent upon that 
positioning. 

Logic would follow that an individual need only transform the ellipse to the origin, as would be defined 
by the first transformation. However, in order to center the quadrangle on the origin, it is required 
instead to treat the initially defined quadrangle as the translated verson, and take the inverse 
transformation to locate it at the origin, with one side incident with the x__1 axis.



as it currently stands, the process will only function properly for a quadrilateral that is entered with the 
bottom left point first, and working around the points in a counter clockwise fashion. Additional 
programmatical steps will eventually be taken so as to eliminate this dependence upon entrance order. 
The variables a and b will be defined by the x__1 and x__2 coordinates of the initial point, P1, while 
angle theta is the inclination angle above parallel between P1 and P2.

For the purposes of this demonstration, an arbitrary convex quadrilateral was selected, which is 
presented below.



(5)(5)

(4)(4)

(3)(3)

subsequent subsitution into the inverse tranformation matrix.

5

5



(7)(7)

(6)(6)

(8)(8)

(9)(9)

(10)(10)

From this archetype, any different point addition for P1 and P2 will cascade through and fundamentally 
alter the transformation matrix presented above. Everything was output solely to ensure functionality of 
the coding process. From here, the transformed points may be computed. 

Importantly, one should be able to look at the coordinates post transformation and know that the ellipse 
was translated properly by consideration of the following; the first point is exactly equal to one, as it is 
the homogenizing coordinate, while all other points will be strictly positive in nature. This ensures that 
the ellipse is contained solely within the first quadrant, subsequently removing difficulties within the 
area calculations that follow.

However, it is also possible to simply plot the quadrangle and view the fact that it is contained solely 
within the first quadrant, which is done below. Mainly because visual representations of mathematical 
concepts are easier to understand, and it shows that the transformation did, in fact, work as intended.



(6)(6)

(11)(11)

(12)(12)

From here, the process of defining the pencil of line conics contained within the quadrangle is intiated.

First, we define XT, and XX such that X__0 is used to define the homogenizing coordinate, 

Now, the line conic shape coefficient matrix will be defined below. Upon characterization of every 
bounding line segment, as well as the polar point, this matrix will be used in conjunction with the above 
defined vectors to solve for the line conic shape coefficients. Once this solution has been obtained, it will
be used to define the area function of the ellipse, whereby a maximum inscribing ellipse may be found 



(17)(17)

(15)(15)

(13)(13)

(14)(14)

(6)(6)

(16)(16)

from the pencil of conics defined in the previous step.

Now, define the line conic function that will be used to characterize each of the above variables,

Equation 15 represents the general expression for any ellipse, including the pencil of ellipses defined via 
utilization of line coordinates, namely the vectors XX and XT defined above it. From here, as we are 
looking for the pencil of conics defined by the previously stated ellipse, we will use the line coordinates 
that depict each side of the quadrangle to define this equation, and subsequently, the variables contained 
within the Line Conic Shape Coefficient Matrix.

This will be done via substitution of the points that define each of the coordinates after their 
transformation into the line coordinate definition matrix shown below.

Now, each line will be defined as a triple of homogeneous coordinates, with P1TO being the first point, 
and P2T0 being the second. Using the determinant of the above matrix, with those points, it will define 
each of the bounding line coordinates.



(23)(23)

(21)(21)

(19)(19)

(22)(22)

(24)(24)

(6)(6)

(20)(20)

(18)(18)

The above coordinates are the line coordinates that define each of the bounding edges of the 
quadrilateral. While the coefficients are represented via placing the square roots second in order, the 
coefficient operation still extracts the full coefficient term, including the square roots. Seems to simply 
be a representational quirk from Maple.

From here, it is important to define an additional line that will contain the polar pointmof the pencil of 
conics, a__x, namely the x__1 axis. 

In order to define the equation that will inevitably lead to the definition of the polar point in terms of the 
line conic shape variables, the vector G must be concatenated with the line conic shape coefficient 
matrix,

Because the only term that has an effect on the definition of the line coordinate which includes the 
solution point a__x is contained on the x__1 axis, Polar Point Shape Coefficient Vector which defines 
this point can be simplified to contain solely the second component, and due to homogeneity, this 
component will be divided by the first term in the initial polar point shape coefficient vector. From here, 
it is required to define the polar point, a__x, in terms of its line coordinates. 



(29)(29)

(30)(30)

(27)(27)

(25)(25)

(28)(28)

(26)(26)

(6)(6)

(18)(18)

From the polar line coordinate defined above, the normal depiction of the equation is required, which 
then places the polar point in terms of the line coordinate shape coefficients, all while equating the 
entirety of the expression to zero.

Now, in order to solve for the shape coefficients and thus define the pencil of ellipses that inscribe the 
quadrilateral, Grassmanian expansion utilizing the solved line conic shape coefficient ellipse definitions 
will be performed. In order to facillitate this expansion, each of the line conic definition functions must 
be determined,

Substituting the line coordinates for each side of the bounding quadrilateral into the previously defined 
line conic conic shape coefficient equation, it is possible to create a matrix of equations which can be 
used to solve for the line conic shape coefficients,

Now that the bounding lines have been expressed in terms of functions that involve the line conic shape 
coefficients, and alongside the previously shown polar point conic shape variable equation, there are five
separate equations. A unique conic can be defined once five points on that conic are known, so these five
equations will be used in order to completely characterize the conic shape coefficients, Aij. 

From here, it is possible to create a matrix such that the equations can be solved for the conic shape 
variables through Grassmanian expansion. Each column of the matrix will contain one of the line conic 
shape coefficient variables, Aij, while each row will contain one of the previously defined equations.



(31)(31)

(37)(37)

(25)(25)

(35)(35)

(36)(36)

(32)(32)

(33)(33)

(6)(6)

(18)(18)

(34)(34)

Now, from here, each first row minor of the matrix will determine the value corresponding to the 
variable in the eliminated column of the matrix. In order to increase the brevity of the equations, it is 
advantageous to collect the resultant equations in terms of the desired variable, which is in this case, 
a__x. 

Also, to avoid overwriting each of the variable values, we will use the matrix Bij as a place holder while 
conducting the Grassmanian expansion. 

0

Now that the Grassmanian expansion has been performed, all of the line conic shape coefficients have 
been determined, and are collected below,



(38)(38)

(31)(31)

(25)(25)

(39)(39)

(40)(40)

(41)(41)

(6)(6)

(18)(18)

Problematically, the line conic shape matrix does not behave in such a way so as to have any meaningful
capacity with respect to determining the area of the conic section itself. This, in turn, means that the line 
conic must be transformed into a point conic shape function in order to extract this data. 

For computational efficiency and ease of expression, it is advantageous to represent the above matrix so 
that the initial coefficient on the a__x^2 term in the [1,1] position is equal to one. This is possible due to 
the fact that that any scalar multiple of a given function is always exactly equal to that function.

Now, the above matrix is substantially easier to deal with in terms of computations. From here, it will be
expanded and placed in terms of the homogenous point coordinates, [x__0,x__1,x__2], defined below,



(38)(38)

(31)(31)

(44)(44)

(47)(47)

(45)(45)

(25)(25)

(43)(43)

(46)(46)

(6)(6)

(48)(48)

(18)(18)

(42)(42)

Now that the defining point coordinate vectors have been established, the expansion of the point conic 
coefficient matrix yields the following expression,

The above equation represents the general equation for the pencil of ellipses contained within the 
previously defined quadrilateral. Now, we will define values of a__x and subsequently, members of the 
pencil, and their equations, based upon the side of the quadrilateral which lies coincident with the x__1 
axis. 

Once the ellipses have been described via the point conic ellipse equations, they can be plotted alongside
the initial quadrilateral, as defined by the user. They must first be evaluated, between the bounds of the 
quadrilateral in question, and then plotted on the same chart.



(38)(38)

(31)(31)

(25)(25)

(49)(49)

(6)(6)

(18)(18)

From this plot, it is quite clear that the pencil of ellipses defined by way of the line coordinate shape 
coefficient matrix translated equally well into the point conic shape coefficient matrix. It is easy to see 
that, as the polar point a__x moves along the x__1 axis, the area tends to increase towards a maximum 
and then decrease from that maximum, in either the positive or the negative x__1 direction, to become a 
degenerate ellipse.

In order to define the maximum area inscribing ellipse, one must place the ellipse into a parametric form 
whereby the area may then be computed. Furthermore, in order for this operation to contain a 
meaningful answer, the polar point will be used as the parameter which this equation is placed in terms 
of. Gfrerer proposed an equation that was presented in his paper The Area Maximizing Inellipse of a 
Convex Quadrangle, which is presented below, and used for exactly this purpose.



(38)(38)

(31)(31)

(25)(25)

(50)(50)

(6)(6)

(51)(51)

(18)(18)

In order to verify the assertion that the area function does indeed contain a maximum, and to better 
visualize the areas of the ellipses being plotted, it is useful to display the function along the bounded 
interval which defines the base of the quadrilateral, and is incident with the x__1 axis.

 
Due to the nature of the function and the fact that it contains complex values for the ellipses lying on 
either side of the degenerate ellipse states, there is no easy way to solve for the maximum of this 
function directly from the area function. Instead, it will be treated much like a general quadratic 



(38)(38)

(31)(31)

(54)(54)

(6)(6)

(56)(56)

(55)(55)

(52)(52)

(25)(25)

(53)(53)

(50)(50)

(18)(18)

function, wherein the derivate is taken, and the zero point will define the maximum of the function.
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As can be seen from equation 55, there is far more than one zero point contained within the equation. 
However, anything that lies outside the bounds of the quadrilateral results in physically meaningless 
values; either errors resulting from a zero division, or a purely imaginary value in the case of the first 
zero. In essence, there is one real maximum area, and that is the area defined by the second coordinate. It
would also appear, regardless of the initially defined quadrilateral, to always be the second zero of the 
area derivative function.



(38)(38)

(31)(31)

(25)(25)

(50)(50)

(57)(57)

(6)(6)

(18)(18)

From here, it is quite useful to plot this maximum ellipse.

While it is possible that this code will fail for certain specific orientations of ellipses, specifically those 
that are translated in such a way that one of the line coordinates is purely negative with respect to X__1, 
this general approach is a good start for the majority of quadrilaterals.



(38)(38)

(31)(31)

(25)(25)

(50)(50)

(6)(6)

(18)(18)

Obviously, more test cases will be required in the event that this is to be made truly robust, however, the 
solution method presented herein will always allow for solution of the maximum area inscribing ellipse 
within a convex quadrilateral.

Further expansion of this code is possible in order to demonstrate that the centre location for all of the 
ellipses lies along the line that bisects the corner connecting lines of the quadrilateral.
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