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Abstract A new and completely general method for determining the algebraic input-
output (IO) equations for planar and spherical 4R linkages is presented in this pa-
per. First, the forward kinematics transformation matrix of an arbitrary planar or
spherical open 4R kinematic chain is computed in terms of its Denavit-Hartenberg
parameters, where the link twist and joint angles are converted to their tangent half-
angle parameters. This transformation matrix is mapped to its corresponding eight
Study coordinates. The serial kinematic chain is conceptually closed by equating
the forward kinematics transformation to the identity matrix. Equating the two cor-
responding Study arrays yields four equations in terms of the four revolute joint
angle parameters. Gröbner bases are then used to eliminate the two intermediate
joint angle parameters leaving an algebraic polynomial in terms of the input and
output joint angle parameters and the four twist angle or link length parameters. In
the limit, as the sphere radius becomes infinite and the link twist angle parameters
are expressed as ratios of arc length and sphere radius in the general spherical alge-
braic IO equation, the only terms that remain are those in the planar 4R IO equation.

Key words: Algebraic input-output equation, planar and spherical four-bar linkage,
Study coordinates, kinematic mapping.

1 Introduction

Four-bar linkages, consisting of four rigid bodies connected by revolute (R) joints
have fascinated mathematicians and engineers for centuries. One of the greatest
successes was the establishment of an input-output (IO) equation by F. Freudenstein,
which correlates the driver input angle ψ to the follower output angle ϕ according
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to a function ϕ = f (ψ) [5]. The IO equation developed in [5] is trigonometric,
whereas in [6] an algebraic version is derived by mapping the constraint equations
of the driver and follower into Study’s kinematic image space [1, 11]. Let a, b, c, d
be the link lengths of the four-bar mechanism, and ψ and ϕ the respective input and
output angles, then the movement of the mechanism is governed by the following
IO equation
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Fig. 1 Planar 4R function generator.

Au2v2 +Bu2 +Cv2−8abuv+D = 0 (1)

where

A = (a−b− c+d)(a−b+ c+d),

B = (a+b− c+d)(a+b+ c+d),

C = (a+b− c−d)(a+b+ c−d),

D = (a−b+ c−d)(a−b− c−d),

u = tan
ψ

2
,

v = tan
ϕ

2
.

In addition, it was shown in [10] that Equation (1) is not only valid for planar
four-bar linkages containing revolute joints, but also for planar four-bar linkages
containing up to two prismatic joints. In this paper we will describe a method that
can be applied to both planar and spherical four-bar linkages to derive the respective
IO equations. Moreover, we will show that planar linkages can be interpreted as
special cases of spherical linkages, thus, expanding the generality of the IO equation
obtained in [6].

2 Study’s kinematic mapping

Consider a coordinate system Σ2 that moves with a rigid body relative to a sta-
tionary reference frame Σ1. The Euclidean displacement group D ∈ SO(3) can be
represented by

p′ = Ap+ t (2)

where p is a 3× 1 position vector in Σ2, A is a proper orthogonal 3× 3 rotation
matrix, t is a 3×1 position vector of the origin of Σ2 expressed in Σ1, and p′ is the
3×1 position vector of p expressed in Σ1 [7, 9].

Displacements of kinematic chains are often parametrised using the Denavit-
Hartenberg (DH) convention [3]. The four associated DH parameters are the link
lengths ai, link twist angles τi, joint angles θi, and link offsets di. According to
this convention the coordinate transformation from the coordinate system for joint i
relative to the coordinate system of the previous joint i−1 is given by
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i−1
i T =


cosθi −sinθi cosτi sinθi sinτi ai cosθi
sinθi cosθi cosτi −cosθi sinτi ai sinθi

0 sinτi cosτi di
0 0 0 1

=

 A t

0 0 0 1

 . (3)

With Study’s kinematic mapping distinct Euclidean displacements can be repre-
sented as distinct points x = [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]

T ∈ P7 where the first
four entries are obtained using the matrix elements ai j of A

x0 : x1 : x2 : x3 =


1+a11 +a22 +a33 : a32−a23 : a13−a31 : a21−a12,
a32−a23 : 1+a11−a22−a33 : a12 +a21 : a31 +a13,
a13−a31 : a12 +a21 : 1−a11 +a22−a33 : a23 +a32,
a21−a12 : a31 +a13 : a23 +a32 : 1−a11−a22 +a33.

(4)

Four different combinations of the rotation matrix elements are needed since certain
displacements make one or more of the relations lead to (0 : 0 : 0 : 0), the exceptional
generator in P7. Once the xi have been determined, the remaining four entries are
computed as linear combinations of the vector elements of the translation t and the
xi determined above, giving

y0 = 1
2 (t3x3 + t2x2 + t1x1), y1 = 1

2 (t3x2− t2x3− t1x0),

y2 = 1
2 (−t3x1 + t1x3− t2x0), y3 = 1

2 (−t3x0 + t2x1− t1x2).
(5)

These eight Study parameters must fulfill the Study condition in order to represent a
Euclidean displacement, meaning the eight ratios represent a point on Study’s seven
dimensional quadric S

x0y0 + x1y1 + x2y2 + x3y3 = 0 (6)

excluding the exceptional generator E

(x0 : x1 : x2 : x3) = (0 : 0 : 0 : 0). (7)

3 Planar four-bar linkage

To derive the algebraic IO equation for planar four-bar mechanisms using the DH
convention [3] and Study’s kinematic mapping [11], we first consider the four-bar
mechanism to be an open kinematic chain connected by four rotational joints as
shown in Fig. 2. The respective DH parameters are listed in Table 1. Note that for
planar mechanisms all link twists and all link offsets are identically zero. This sim-
plifies the overall transformation matrix 0

4T, which maps the coordinates of points
described in the end-link coordinate frame to those of the base frame:

0
4T =0

1 T 1
2T 2

3T 3
4T, (8)
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Fig. 2 Open 4R chain.

Table 1 DH parameters for open 4R chain.

joint axis i link length ai link angle θi link offset di link twist τi
1 a1 θ1 0 0
2 a2 θ2 0 0
3 a3 θ3 0 0
4 a4 θ4 0 0

where the transformation matrices 0
1T, 1

2T, 2
3T and 3

4T are evaluated according to
Equation (3). The computed transformation matrix can be mapped onto Study’s
quadric using Equations (4, 5) resulting in a Study array with zero entries for x1, x2,
y0 and y3. After normalizing, the remaining four Study parameters become

x0 = (2v2v3v4−2v2−2v3−2v4)v1 +(−2v3−2v4)v2−2v3v4 +2, (9)
x3 = ((−2v3−2v4)v2−2v3v4 +2)v1−2v2v3v4 +2v2 +2v3 +2v4, (10)
y1 = ((v4(a1−a2 +a3−a4)v3−a1 +a2 +a3 +a4)v2 +(−a1−a2 +a3 +a4)v3

−v4(a1 +a2 +a3−a4))v1 +((a1−a2 +a3 +a4)v3 + v4(a1−a2−a3 +a4))v2

+v4(a1 +a2−a3 +a4)v3−a1−a2−a3−a4, (11)
y2 = (((a1−a2 +a3 +a4)v3 + v4(a1−a2−a3 +a4))v2 + v4(a1 +a2−a3 +a4)v3

−a1−a2−a3−a4)v1 +(−v4(a1−a2 +a3−a4)v3 +a1−a2−a3−a4)v2

+(a1 +a2−a3−a4)v3 + v4(a1 +a2 +a3−a4), (12)

where vi = tan(θi/2).
To close the four-bar mechanism, 0

4T is equated to the identity matrix which we
also map using Equations (4, 5) onto Study’s quadric, resulting in the following
Study parameters after normalising:

I 7→ [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]T ∈ P7 (13)

Equating the Study array of the overall transformation 0
4T to the Study array of

the identity matrix, i.e. setting Equations (10-12) equal to zero, forces the coordi-
nate frame of the end-effector to align with that of the base; but to satisfy the DH
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Fig. 3 Closed 4R kinematic chain.

convention they are both rotated by π . Thus, the joint angles, θi, are measured as
illustrated in Fig. 3. We select the three Equations that are equal to zero, (10-12),
and manipulate them with Gröbner bases to eliminate the intermediate joint angle
parameters, v2 and v3. After collecting the input and output angle parameters v1 and
v4, the following algebraic IO equation emerges

Av2
1v2

4 +Bv2
1 +Cv2

4−8a1a3v1v4 +D = 0, (14)

where
A = (a1−a2 +a3−a4)(a1 +a2 +a3−a4) = A1A2,

B = (a1 +a2−a3−a4)(a1−a2−a3−a4) = B1B2,

C = (a1−a2−a3 +a4)(a1 +a2−a3 +a4) = C1C2,

D = (a1 +a2 +a3 +a4)(a1−a2 +a3 +a4) = D1D2.

It can be shown that Equation (14) is identical to Equation (1) if the phase shift of
the input and output angle as well as the different notation are considered.

4 Spherical four-bar linkage

It will now be demonstrated that the same procedure can be applied to determine
the IO equation for spherical linkages. The DH parameters for a spherical open 4R
kinematic chain are listed in Table 2. Note that in the spherical case all link lengths,
ai, and offsets, di, are zero with strict adherence to the DH conventions for assigning
parameters [3]. After evaluating the overall transformation matrix in terms of DH
parameters by applying Equation (3), the result can be mapped with Equations (4, 5)
onto Study’s quadric. Then setting vi = tan(θi/2) and αi = tan(τi/2) into the result

Table 2 Open spherical 4R kinematic chain DH parameters.

joint axis i link length ai link angle θi link offset di link twist τi
1 0 θ1 0 τ1
2 0 θ2 0 τ2
3 0 θ3 0 τ3
4 0 θ4 0 τ4
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gives a Study array with non-zero entries for x0, x1, x2 and x3, while the yi are all
identically zero, as expected:

x0 = ((2α4((v2v3v4 + v2− v3 + v4)v1 +(v3− v4)v2 + v3v4 +1)α3

+(2v2v3v4−2v2 +2v3 +2v4)v1 +(−2v3−2v4)v2 +2v3v4−2)α2

+((−2v2v3v4−2v2−2v3 +2v4)v1 +(2v3−2v4)v2−2v3v4−2)α3

+(2((v2v3v4− v2− v3− v4)v1 +(v3 + v4)v2 + v3v4−1))α4)α1

+(((2v2v3v4 +2v2−2v3 +2v4)v1 +(−2v3 +2v4)v2−2v3v4−2)α3

−(2((v2v3v4− v2 + v3 + v4)v1 +(v3 + v4)v2− v3v4 +1))α4)α2

+(2((v2v3v4 + v2 + v3− v4)v1 +(v3− v4)v2− v3v4−1))α4α3

+(2v2v3v4−2v2−2v3−2v4)v1 +(−2v3−2v4)v2−2v3v4 +2; (15)
x1 = ((((−2v2v3v4−2v2 +2v3−2v4)v1 +(−2v3 +2v4)v2−2v3v4−2)α3

+(2((v2v3v4− v2 + v3 + v4)v1 +(−v3− v4)v2 + v3v4−1))α4)α2

−2α4((v2v3v4 + v2 + v3− v4)v1 +(−v3 + v4)v2 + v3v4 +1)α3

+(−2v2v3v4 +2v2 +2v3 +2v4)v1 +(−2v3−2v4)v2−2v3v4 +2)α1

+((2((v2v3v4 + v2− v3 + v4)v1 +(−v3 + v4)v2− v3v4−1))α4α3

+(2v2v3v4−2v2 +2v3 +2v4)v1 +(2v3 +2v4)v2−2v3v4 +2)α2

+((−2v2v3v4−2v2−2v3 +2v4)v1 +(−2v3 +2v4)v2 +2v3v4 +2)α3

+(2((v2v3v4− v2− v3− v4)v1 +(−v3− v4)v2− v3v4 +1))α4; (16)
x2 = (((((−2v3 +2v4)v2−2v3v4−2)v1 +2v2v3v4 +2v2−2v3 +2v4)α3

−(2(((v3 + v4)v2− v3v4 +1)v1 + v2v3v4− v2 + v3 + v4))α4)α2

+(2(((v3− v4)v2− v3v4−1)v1 + v2v3v4 + v2 + v3− v4))α4α3

+((−2v3−2v4)v2−2v3v4 +2)v1 +2v2v3v4−2v2−2v3−2v4)α1

+(−(2(((v3− v4)v2 + v3v4 +1)v1 + v2v3v4 + v2− v3 + v4))α4α3

+((2v3 +2v4)v2−2v3v4 +2)v1−2v2v3v4 +2v2−2v3−2v4)α2

+(((−2v3 +2v4)v2 +2v3v4 +2)v1 +2v2v3v4 +2v2 +2v3−2v4)α3

−(2(((v3 + v4)v2 + v3v4−1)v1 + v2v3v4− v2− v3− v4))α4; (17)
x3 = (((2(((v3− v4)v2 + v3v4 +1)v1− v2v3v4− v2 + v3− v4))α4α3

+((−2v3−2v4)v2 +2v3v4−2)v1−2v2v3v4 +2v2−2v3−2v4)α2

+(((2v3−2v4)v2−2v3v4−2)v1 +2v2v3v4 +2v2 +2v3−2v4)α3

+2α4(((v3 + v4)v2 + v3v4−1)v1− v2v3v4 + v2 + v3 + v4))α1

+((((−2v3 +2v4)v2−2v3v4−2)v1−2v2v3v4−2v2 +2v3−2v4)α3

−(2(((v3 + v4)v2− v3v4 +1)v1− v2v3v4 + v2− v3− v4))α4)α2

+2α4(((v3− v4)v2− v3v4−1)v1− v2v3v4− v2− v3 + v4)α3

+((−2v3−2v4)v2−2v3v4 +2)v1−2v2v3v4 +2v2 +2v3 +2v4. (18)

Again, the open kinematic chain is closed by equating the Study array to the cor-
responding identity array in Study coordinates, i.e. setting Equations (16-18) equal
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to zero. Subsequently, we use Gröbner bases to eliminate the intermediate angle
parameters v2 and v3 from Equations (16-18), and obtain the desired IO equation

Av2
1v2

4 +Bv2
1 +Cv2

4 +8α1α3
(
α2

4 +1
)(

α2
2 +1

)
v1v4 +D = 0, (19)

where

A = (α1α2α3−α1α2α4 +α1α3α4−α2α3α4 +α1−α2 +α3−α4)

(α1α2α3−α1α2α4−α1α3α4−α2α3α4−α1−α2−α3 +α4) ,

B = (α1α2α3 +α1α2α4−α1α3α4−α2α3α4 +α1 +α2−α3−α4)

(α1α2α3 +α1α2α4 +α1α3α4−α2α3α4−α1 +α2 +α3 +α4) ,

C = (α1α2α3−α1α2α4−α1α3α4 +α2α3α4−α1 +α2 +α3−α4)

(α1α2α3−α1α2α4 +α1α3α4 +α2α3α4 +α1 +α2−α3 +α4) ,

D = (α1α2α3 +α1α2α4 +α1α3α4 +α2α3α4−α1−α2−α3−α4)

(α1α2α3 +α1α2α4−α1α3α4 +α2α3α4 +α1−α2 +α3 +α4) .

It can be shown that Equation (19) is identical to the corresponding trigonometric
IO equation for spherical four-bar linkages found in [9].

5 Planar 4R linkages as a special case of the spherical 4R linkage

The two algebraic IO equations for planar and spherical 4R linkages already sug-
gest some similarities. As demonstrated in [8], the motion of the planar 4R linkage
represents a special case of the spherical 4R linkage. To show that the same relation-
ship is true for the IO equations, we consider the directions of the joint axes. While
the joint axes of the spherical 4R linkage intersect in the centre of the sphere, the
joint axes of the planar 4R linkage are all parallel. In Euclidean space E3 parallel
lines never intersect, however, they do meet in a point at infinity in any projective
extension of E3 [2, 4]. This suggests that if the radius of a spherical linkage ap-
proaches infinity, the linkage becomes a planar mechanism in the limit [8]. As the
link twist parameters αi of the spherical IO equation are proportional to the ratios
of the arc lengths to the sphere radius [12], we can make the following substitution
in Equation (19)

αi ∝
ai

r
. (20)

In the resulting equation the first two cubic factors simplify to

lim
r→∞
−1

r

(a1a2a3

r2 − a1a2a4

r2 +
a1a3a4

r2 − a2a3a4

r2 +a1−a2 +a3−a4

)
(
−a1a2a3

r2 +
a1a2a4

r2 +
a1a3a4

r2 +
a2a3a4

r2 +a1 +a2 +a3−a4

)
. (21)

In the limit the only terms remaining inside the parentheses in Equation (21) are

(a1−a2 +a3−a4)(a1 +a2 +a3−a4) = A1A2. (22)
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Proceeding with the other cubic factors in the same manner the algebraic IO equa-
tion for a spherical 4R mechanism leads directly to that of a planar 4R, Equa-
tion (14), in the limit. As mentioned, this aligns with the results from [8], and further
confirms the validity of the derived IO equations as well as the observation in [9]
that there exists a connection between the planar and the spherical 4R IO equations
via the RSSR linkage.

6 Conclusions

We have successfully demonstrated a general method to derive the algebraic IO
equations for spherical and planar 4R linkages. It requires defining the DH parame-
ters for an open 4R kinematic chain, mapping its coordinate transformation matrix
onto Study’s quadric, conceptually closing the 4R chain by equating the correspond-
ing Study coordinates to the identity array and eliminating the intermediate joint an-
gles using Gröbner bases. Moreover, we have shown that the planar 4R IO equation
represents a special case of the spherical 4R by evaluating the limit at infinity of the
equation.
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