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Abstract In this paper the algebraic polynomial equations relating the relative ori-
entations between the six distinct pairs of rigid links in an arbitrary spherical 4R
mechanism are derived. First, the forward kinematics transformation matrix of an
arbitrary spherical open 4R kinematic chain is computed in terms of its Denavit-
Hartenberg parameters, where all angles are converted to their tangent half-angle pa-
rameters. This transformation matrix is mapped to its corresponding four non-zero
Study soma coordinates. The serial kinematic chain is conceptually closed by equat-
ing the forward kinematics transformation to the identity matrix. Gröbner bases and
resultants are then used to eliminate the two intermediate joint angle parameters
leaving an algebraic polynomial in terms of the selected input and output (IO) joint
angle parameters and the four twist angle or link length parameters. This yields six
independent algebraic IO Equations. Their utility is demonstrated with two function
generator continuous approximate synthesis examples.

Key words: Spherical four-bar linkage, vi-v j algebraic input-output equations, con-
tinuous approximate synthesis.

1 Introduction

Relative motion between mechanically constrained rigid bodies on the surface of a
sphere has fascinated philosophers, mathematicians, and engineers for millennia [3].
The design of predictable motion of a four-bar spherical mechanism appears to have
its origins in the development of universal joints based on gimbals, which have been
investigated since antiquity [10]. Arguably the most significant modern spherical
four-bar mechanism is the Agile Eye [5], which is used as a camera pointing system.
While there is a substantial volume of archival literature regarding spherical 4R
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mechanisms, this type of mechanical system still excites the imagination, see [8]
for a recent example. Hence, we believe there is sufficient justification to present
the work on the derivation of the six vi-v j algebraic input-output (IO) equations
reported in this paper.

Fig. 1: Spherical 4R DH reference frames and parameters.

Consider the arbitrary spherical 4R linkage illustrated in Fig. 1. The IO equation
expresses the implicit functional relationship between the input and output angles,
θi and θ j in terms of the constant arc lengths between the four R-pair centres, τi. The
derivation of the algebraic form of the spherical IO equation [9] makes use of the
original Denavit-Hartenberg (DH) parametrisation of the kinematic geometry [6]. It
requires that all measures of angle be converted to algebraic parameters using the
tangent half-angle substitutions:

vi = tan
θi

2
, cosθi =

1− v2
i

1+ v2
i
, sinθi =

2vi

1+ v2
i
,

αi = tan
τi

2
, cosτi =

1−α2
i

1+α2
i
, sinτi =

2αi

1+α2
i
.

The forward kinematics of an arbitrary kinematic chain is obtained as a linear
transformation matrix in terms of the DH parameters. This linear transformation
can then be mapped to the corresponding eight Study soma coordinates [9]. For
spherical kinematic chains there are only four homogeneous soma coordinates. The
ideal generated by the three soma that equate to zero are used to derive the algebraic
IO equations relating the six distinct edges of an arbitrary spherical quadrangle.

Making these substitutions, the algebraic form of the IO equation is derived as [9]

Av2
1v2

4 +Bv2
1 +Cv2

4 +8α1α3
(
α2

4 +1
)(

α2
2 +1

)
v1v4 +D = 0, (1)

where
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A = A1A2 = (α1α2α3 −α1α2α4 +α1α3α4 −α2α3α4 +α1 −α2 +α3 −α4)

(α1α2α3 −α1α2α4 −α1α3α4 −α2α3α4 −α1 −α2 −α3 +α4) ,

B = B1B2 = (α1α2α3 +α1α2α4 −α1α3α4 −α2α3α4 +α1 +α2 −α3 −α4)

(α1α2α3 +α1α2α4 +α1α3α4 −α2α3α4 −α1 +α2 +α3 +α4) ,

C = C1C2 = (α1α2α3 −α1α2α4 −α1α3α4 +α2α3α4 −α1 +α2 +α3 −α4)

(α1α2α3 −α1α2α4 +α1α3α4 +α2α3α4 +α1 +α2 −α3 +α4) ,

D = D1D2 = (α1α2α3 +α1α2α4 +α1α3α4 +α2α3α4 −α1 −α2 −α3 −α4)

(α1α2α3 +α1α2α4 −α1α3α4 +α2α3α4 +α1 −α2 +α3 +α4) .

While the derivation of this algebraised v1-v4 IO equation is novel and far from in-
tuitive, the algebraic form of this fourth degree polynomial in the v1-v4 IO angle
parameters is not. The earliest derivations of similar equations representing manip-
ulatable octahedra, identical in form, is due to R. Bricard in 1897 [2].

2 Derivation of the Six Spherical vvviii-vvv jjj IO Equations

Using the eight bi-cubic coefficient definitions from Eq. (1), the remaining five vi-v j
equations contain all eight of the bi-cubic coefficients, but in different permutations:

A1B2v2
1v2

2 +A2B1v2
1 +C1D2v2

2 +8α2α4
(
α2

1 +1
)(

α2
3 +1

)
v1v2 +C2D1 = 0; (2)

A1B1v2
1v2

3 +A2B2v2
1 +C2D2v2

3 +C1D1 = 0; (3)

A1D2v2
2v2

3 +B2C1v2
2 +B1C2v2

3 −8α1α3
(
α2

2 +1
)(

α2
4 +1

)
v2v3 +A2D1 = 0; (4)

A1C1v2
2v2

4 +B2D2v2
2 +A2C2v2

4 +B1D1 = 0; (5)

A1C2v2
3v2

4 +B1D2v2
3 +A2C1v2

4 +8α2α4
(
α2

1 +1
)(

α2
3 +1

)
v3v4 +B2D1 = 0. (6)

The vvv111-vvv444 IO Equation. To obtain this IO equation from the ideal generated by the
three soma coordinates that equate to zero, both v2 and v3 are eliminated by first
computing the Gröbner bases using the Maple 2021 “tdeg” monomial ordering
with the list sequence (v3,v2,v4,v1). This is graded reverse lexicographic order,
also known as degrevlex in the literature [1], with indeterminate ordering v3 > v2 >
v4 > v1. This monomial ordering sorts the terms by total degree before breaking ties
between terms with identical degree by comparing the smallest indeterminate first
and considering a higher degree as smaller in the term ordering. In this case, 12 bases
are computed, all functions of all four vi. We eliminate v2 and v3 by computing the
bases of these 12 with the reverse monomial ordering by using “plex”, which is the
pure lexicographic order, also known as lex. This results in 10 new bases, with one
that is a function of only v1 and v4 and the four αi, which represents the IO equation
we are looking for. This polynomial splits into three factors. The first two are (1+
v2

1)(1+v2
4), a product that is always greater than zero, and can be safely factored out,

leaving us with Eq. (1). This, and some of the other IO equations are computable
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in one application of the elimination monomial ordering called “lexdeg”, but the
computation time is about 3500 s compared to 120 s for the sequential application
of “tdeg” and “plex” on an Intel Core i7-7700 CPU @ 3.60 GHz.

It is important to note that we are using the standard Denavit-Hartenberg [6]
relative joint angle parameters, which are each a measure of the angle a link makes
with the previous link in the kinematic chain. This fact enables us to derive the
remaining five IO equations such that the same eight bi-cubic coefficient factors
characterise all six IO equations. This is generally not the case when vector loop
methods are used together with trigonometry, see [7] for a detailed example.

The vvv111-vvv222 IO Equation. The derivation steps are precisely the same as for the
v1-v4 IO equation. Eliminating v3 and v4 from the same three soma coordinates,
the resulting v1-v2 IO equation splits into three similar factors. The first two, (1+
v2

1)(1+ v2
2), can be safely factored out, leaving us with Eq. (2).

The vvv111-vvv333 IO Equation. The derivation steps are precisely the same as for the
previous two IO equations. But, after the elimination of v2 and v4 from the same
three soma coordinates, the resulting v1-v3 IO equation splits into five factors. The
first two are (1+ v2

1)(1+ v2
3), and can be safely factored out. The next two are

(α2
2 α2

3 +2α2α3 +1)v2
3 +α2

2 α2
3 −2α2α3 +1, (7)

(α2
2 −2α2α3 +α2

3 )v
2
3 +α2

2 +2α2α3 +α2
3 . (8)

In order for either, or both, of Eqs. (7) or (8) to be identically zero the arc length
parameters α2 and α3 must be complex, meaning these two factors may also elimi-
nated, leaving us with Eq. (3).

The vvv222-vvv333 IO Equation. To derive this IO equation using elimination methods on
the three soma coordinates we have been using requires a very different approach.
We were successful by first applying grevlex to the three soma coordinates using
the list sequence (v1,v4,v2,v3), then applying graded lexicographic order using
“grlex” to the bases identified with grevlex. After each computation we obtain
12 bases, all in terms of the four αi and the four vi, with the exception of one in the
graded lexicographic order set of bases, which is in terms of the four αi, but only v1,
v2, and v3, and is used in the elimination steps. Next, resultants are used to eliminate
v4 first, then v1. We obtain a v2-v3 IO equation that splits into nine factors.

The first five of these factors are simple to divide out since they are trivially non-
zero: the first is -1; the other four are the squares of a single αi added to a positive
integer. The next three factors are functions of v2 and v3, but only α1, α2, and α3:

(α1α2 −α1α3 +α2α3 +1)2v2
2v2

3 +(α1α2 +α1α3 −α2α3 +1)2v2
2+

8α1α3(α
2
2 +1)v2v3 +(α1α2 −α1α3 −α2α3 −1)2v2

3 +(α1α2 +α1α3 +α2α3 −1)2; (9)

(α1α2α3 +α1 −α2 +α3)
2v2

2v2
3 +(α1α2α3 −α1 +α2 +α3)

2v2
2−

8α1α3(α
2
2 +1)v2v3 +(α1α2α3 +α1 +α2 −α3)

2v2
3 +(α1α2α3 −α1 −α2 −α3)

2; (10)
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α3(α1α2 +1)(α1 −α2)v2
2 +2α1α3(α

2
2 +1)v2v3 −α1(α2α3 +1)(α2 −α3)v2

3+

α2(α1 +α3)(α1α3 −1). (11)

In order for Eqs. (9), (10), and/or (11) to be identically zero the arc length parameters
α1, α2, and/or α3 must be complex numbers, so we may safely divide these three
factors out, leaving only Eq. (4) as the desired IO equation.

The vvv222-vvv444 IO Equation. The derivation steps for the v2-v4 IO equation are the same
as those for the v1-v3 IO equation. The the second set of Gröbner bases computed
using the pure lexicographic order with list sequence (v3,v1,v2,v4) lead to an IO
equation that splits into five factors, the first two are trivial.The next two are

(α2
1 α2

2 +2α1α2 +1)v2
2 +α2

1 α2
2 −2α1α2 +1, (12)

(α2
1 −2α1α2 +α2

2 )v
2
2 +α2

1 +2α1α2 +α2
2 . (13)

For either, or both of Eqs. (12) and (13) to equate to zero, it requires both α1 and α2
to be complex. We can therefore factor both of these out, leaving only the desired
v2-v4 IO, Eq. (5).

The vvv333-vvv444 IO Equation. Finally, the derivation steps for the v3-v4 IO equation are
precisely the same as for the v1-v4 and v1-v2 IO equations. After the elimination
of v1 and v2 from the same three soma coordinates, the resulting v3-v4 IO equation
splits into three factors. The first two are safely divided out, leaving us with Eq. (6).

3 Application

The utility of these six spherical 4R algebraic IO equations is nicely demonstrated
by the following two continuous approximate dimensional synthesis examples for
function generation.

vvv333 === fff (((vvv111))) Function Generator. For this example, we will apply a modified form
of the continuous approximate syntheses method [4] to function generation for v3 =
f (v1) using Eq. (3). The prescribed function is

v3 = 2+ tan
(

v2
1

v2
1 +1

)
, (14)

over the range −2 ≤ v1 ≤ 2.
The v1-v3 IO equation relates the input angle parameter to a measure of the trans-

mission angle. We begin by squaring Eq. (3) to eliminate the residual error values
that are equal in magnitude yet opposite in sense. We partition the result into a 9x1
array of angle parameters and a 9x1 array of associated link arc length parameter
coefficients. The array sv1,v3 of angle parameters is used to generate the synthesis
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equation

sv1,v3 = [v4
1v4

3,v
4
1v2

3,v
4
1,v

2
1v4

3,v
2
1v2

3,v
2
1,v

4
3,v

2
3,1]

T , (15)

while the corresponding 9x1 array of link arc length parameters αααv1,v3 are the coef-
ficients scaled by the v1 and v3 variable elements in sv1,v3 . Once the v3 parameters
are replaced by the prescribed function v3 = f (v1), the array is integrated between
the desired bounds of v1min and v1max , the only synthesis equation required is re-
vealed with the numerical minimisation of an Euclidean inner product, which can
be generalised for all six v j = f (vi) function generator possibilities:

min
(α1,α2,α3,α4)∈R

(
αααvi,v j ·

∫ vimax

vimin

svi, f (vi)dvi

)
. (16)

The numerical integrator and optimiser used in Maple 2021 require initial guesses
for the link arc length parameters. Three reasonable initial guesses are those that sat-
isfy the exact synthesis problem after setting α4 = 1 to normalise the equation. For
the three precision pairs of (v1,v3) = (−2,3.0296),(0,2),(2,3.0296) the standard
Maple solver could not identify any real, or non-trivial solutions. We decided in-
stead to use the optimiser, which also requires initial guesses. We arbitrarily selected
(α1,α2,α3) = (3/10,7/12,11/10): these Maple algorithms are more reliable when
rational numbers, ideally with prime numerators, are used for the initial guesses
rather than floating point decimals. For the exact synthesis problem, the Maple op-
timiser returned the floating point numbers listed in Table 1, with α4 = 1. For the
integrator initial guesses we used the same as those for the exact synthesis optimiser
and the continuous approximate synthesis yielded the results listed in Table 1.

The structural error (S.E.) of a function generator is considered to be a useful
performance indicator for the utility of the identified linkage. It is defined to be
the difference between the prescribed linkage output value and the actual generated
output value for a given input value [6]. Using Eq. (3) and the prescribed function
equation itself, we can visualise the S.E. by examining the plots of the correspond-
ing v1-v3 curves, see Fig. 2a, and by computing the area between the two curves.
Since we have algebraic expressions for the three curves generated by the exact and
continuous approximate synthesis and the prescribed function, it is a simple matter
to re-define the S.E. as the difference of the integrals of the prescribed and gen-
erated functions. Comparing two different linkages designed to generate the same
function over the same range, the one with the smallest structural error generates
the prescribed function with the greatest precision. For the synthesis results listed
in Table 1 of the v3 = f (v1) function generator, we observe that the linkage iden-
tified with our modified continuous approximate synthesis method generates the
prescribed function with a S.E. that is an order of magnitude smaller than the S.E.
of the linkage identified with the standard exact precision point method.

vvv444 === fff (((vvv111))) Function Generator. The prescribed v4 = f (v1) function for this ex-
ample is
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v4 = 2+ tan
(

v1

v2
1 +1

)
, (17)

over the same range as the previous example, −2 ≤ v1 ≤ 2. We will again use the
modified continuous approximate synthesis using Eq. (1) after making the substitu-
tion v4 = f (v1) and integrating the square of the resulting equation over the specified
bounds. In this case the 13x1 array sv1,v4 of angle parameters is

sv1,v4 = [v4
1v4

4,v
4
1v2

4,v
4
1,v

3
1v3

4,v
3
1v4,v2

1v4
4,v

2
1v2

4,v
2
1,v1v3

4,v1v4,v4
4,v

2
4,1]

T , (18)

while the corresponding 13x1 array of link arc length parameters αααv1,v4 are the co-
efficients scaled by the v1 and v4 elements in sv1,v4 . Proceeding as in the previous
example, we use as our initial guesses for the integrator the αi that satisfy the exact
synthesis problem by solving the three equations generated by the three IO preci-
sion pairs of (v1,v4) = (−2,1.5772),(0,2),(2,2.4228). It is important to note that
the exact synthesis using the spherical 4R algebraic IO equation can, according to
Bezout’s theorem, lead to as many as 216 solutions for α1, α2, and α3, all in terms
of α4. In this example there are 32 solutions. We used the first, α1 = −0.1083,
α2 = 0.5183, and α3 = 1.0432 for an initial guess in the optimiser. The resulting
continuous approximate synthesis results are listed in Table 1. Again, the S.E. for
linkage identified with the continuous approach is an order of magnitude smaller
than that of the linkage identified with exact synthesis, as illustrated in Fig. 2b.

Table 1: Exact and continuous approximate synthesis results.

Function Synthesis α1 α2 α3 α4 S.E.

v3 = 2+ tan
(

v2
1

v2
1 +1

)
Exact 0.0226 0.2023 1.3459 1 0.0052

Continuous 0.0372 0.3460 1.3244 0.7998 0.0007

v4 = 2+ tan
(

v1

v2
1 +1

)
Exact -0.1083 0.5183 1.0432 1 0.1010

Continuous -0.1030 0.4920 0.7512 0.6199 0.0165

4 Conclusions

In this paper we have derived the six possible spherical 4R algebraic IO equations
that describe the relative input and output angles between different pairs of edges
in a spherical quadrangle. The equations were derived using Study’s soma coordi-
nates that represent the displacement space of all spherical 4R kinematic chains, and
elimination methods to reveal the desired algebraic IO equation. We also illustrated
the utility of the equations to function generator synthesis using a novel continuous
approximate synthesis approach to implicitly minimise the structural error.
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v3

v1

(a) Synthesis results for v3 = f (v1).

v4

v1

(b) Synthesis results for v4 = f (v1).

Fig. 2: Synthesis results.
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(1897)

3. Ceccarelli, M. (ed.): Distinguished Figures in Mechanism and Machine Science, Their Con-
tributions and Legacies Part 1. Springer, New York, U.S.A. (2007)

4. Copeland, Z., Rotzoll, M., Hayes, M.J.D.: Concurrent Type and Dimensional Continuous Ap-
proximate Function Generator Synthesis for All Planar Four-bar Mechanisms. 11th CCToMM
Symposium on Mechanisms, Machines, and Mechatronics, Ontario Tech University, Oshawa,
ON, Canada (2021)

5. Gosselin, C.M., Hamel, J.F.: The Agile Eye: a High-performance Three-degree-of-freedom
Camera-orienting Device. Proceedings of the 1994 IEEE International Conference on
Robotics and Automation (1994)

6. Hartenberg, R., Denavit, J.: Kinematic Synthesis of Linkages. McGraw-Hill, Book Co., New
York, N.Y., U.S.A. (1964)

7. Hayes, M.J.D., Rotzoll, M., Iraei, A., Nichol, A., Bucciol, Q.: Algebraic Differential Kine-
matics of Planar 4R Linkages. 20th International Conference on Advanced Robotics, ICAR
2021, Ljubljana, Slovenia (2021)

8. Moazami, S., Zargarzadeh, H., Palanki, S.: Kinematics of Spherical Robots Rolling Over 3D
Terrains. Complexity 2019, https://doi.org/10.1155/2019/7543,969 (2019)

9. Rotzoll, M., Hayes, M.J.D., Husty, M.L., Pfurner, M.: A General Method for Determining Al-
gebraic Input-output Equations for Planar and Spherical 4R Linkages. pp. 90–97. Advances in
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