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Abstract The algebraic input-output (IO) equation expresses one joint angle tangent
half-angle parameter in terms of another as an implicit function scaled by the link
lengths. There are six distinct IO equations for any given four-bar linkage. Using
one of them, we propose algorithms leading to the mechanism configurations cor-
responding to extreme angular velocities and accelerations which, in turn, directly
implies the values for the magnitudes of the extreme shaking forces and moments
in the non-moving ground-fixed link. A detailed example is presented where the
mechanism configurations for extreme shaking force and moment magnitudes are
compared to the configurations corresponding to extreme values of angular velocity
and acceleration.

Key words: Planar 4R mechanism, extreme angular velocity and acceleration, ex-
treme shaking forces and moments.

1 Introduction

An algorithm that generalises the procedure for determining the algebraic IO equa-
tions for any four-bar linkage kinematic architecture, planar, spherical, and spatial,
using only algebraic means can be found in the Ph.D. thesis of Mirja Rotzoll [7,10].
The linkage is initially considered as an open kinematic chain, and Fig. 1a describes
its kinematic geometry using the original Denavit-Hartenberg convention [4, 5].
The resulting forward kinematics transformation matrix for the open chain is then
mapped to Study’s kinematic mapping image space as eight soma coordinates as de-
fined in [8]. This mapping allows one to characterise the displacement from the base
to the end-effector frame as a set of linearly independent algebraic varieties in the
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seven-dimensional projective kinematic mapping image space. To obtain a simple
closed kinematic chain that represents the mechanism, the open chain is conceptu-
ally closed by equating the obtained algebraic parametrisation to its identity, leading
to a set of equations that completely describe the linkage kinematics. We have cho-
sen to close the kinematic chain such that there is a counter-clockwise circulation
of joints, see Fig. 1b for example. With the help of elimination theory, the given
system of polynomial equations is solved such that an equation is obtained that de-
pends on only two joint variables. These equations represent the desired algebraic
IO equations for the respective linkage. In total, there are six algebraic IO equations
for each four-bar linkage kinematic architecture.
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(a) Generic open 4R kinematic chain.
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(b) Generic closed 4R kinematic chain.

Fig. 1: Serial and parallel planar 4R linkages.

In this paper, attention is focused on planar 4R mechanisms, where 4R indicates
four sequential revolute joints connecting four rigid links, a1, a2, and a3 that are two-
force members, and the non-moving rigidly fixed base link a4. Let the input angle
parameter be v1 and the output angle parameter be v4, where vi = tanθi/2. In [10]
two elimination steps were applied to the Gröbner bases of the ideal generated by
the Study soma coordinates to eliminate the angle parameters v2 and v3 from the
equations yielding the algebraic IO equation relating the v1 and v4 angle parameters,
which we call the v1-v4 IO equation:

Av2
1v2

4 +Bv2
1 +Cv2

4 −8a1a3v1v4 +D = 0, (1)

where

A = A1A2 = (a1 −a2 +a3 −a4)(a1 +a2 +a3 −a4),

B = B1B2 = (a1 +a2 −a3 −a4)(a1 −a2 −a3 −a4),

C =C1C2 = (a1 −a2 −a3 +a4)(a1 +a2 −a3 +a4),

D = D1D2 = (a1 +a2 +a3 +a4)(a1 −a2 +a3 +a4),

v1 = tan
θ1

2
, v4 = tan

θ4

2
.
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The coefficients A, B, C, and D all factor into a pair of bi-linear factors each.
One of the advantages of this IO equation formulation is that the five remaining

algebraic IO equations relating the five remaining distinct angle parameter pairings
contain coefficients comprised of pairs of the same bi-linear factors, but in different
distinct permutations:

A1B2v2
1v2

2 +A2B1v2
1 +C1D2v2

2 −8a2a4v1v2 +C2D1 = 0; (2)

A1B1v2
1v2

3 +A2B2v2
1 +C2D2v2

3 +C1D1 = 0; (3)

A1D2v2
2v2

3 +B2C1v2
2 +B1C2v2

3 −8a1a3v2v3 +A2D1 = 0; (4)

A1C1v2
2v2

4 +B2D2v2
2 +A2C2v2

4 +B1D1 = 0; (5)

A1C2v2
3v2

4 +B1D2v2
3 +A2C1v2

4 +8a2a4v3v4 +B2D1 = 0. (6)

It is a straightforward exercise to differentiate the six algebraic IO equations re-
vealing the angular velocity and acceleration level kinematics. Again, because these
are algebraic polynomials, it is equally straight forward to determine the critical
input angles leading to the mechanism configurations where extreme output angu-
lar velocities and accelerations occur given a constant input angular velocity. We
propose that the extreme magnitudes of shaking force and moment in a planar 4R
mechanism occur in configurations of extreme output angular velocity and accelera-
tion for a given constant input angular velocity, where the input is θ1 and the output
is θ4, see Fig. 1b. Papers examining extreme shaking forces and moments and pa-
pers examining extreme angular velocities and accelerations are readily available
in the literature, see [1, 3, 6] for example. But work examining the configurations
for extreme output angular velocity and acceleration, and the implications for shak-
ing forces and moments appear to be absent from the archival literature; hence, the
present work.

2 Differential Kinematics

The algebraic angular velocity parameter IO equations are obtained by differentiat-
ing Equations (1-6) with respect to time. Since we only require the time derivatives
of the v1-v4 IO equation for the analysis in this paper we will not discuss the remain-
ing five, still the interested reader can find all six angular velocity and acceleration
IO equations in [6]. However, the details of the first time derivative need a few words
of discussion. Because the angle parameter is v = tan(θ/2), the time derivative is
configuration dependent in the following way

v̇ =
d
dt

tan(θ/2) =
θ̇

2
sec2 (θ/2) =

θ̇

2

(
cos2 (θ/2)+ sin2 (θ/2)

cos2 (θ/2)

)
=

θ̇

2
(
1+ v2) .

Therefore, the v̇1-v̇4 angular velocity parameter IO equation is
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Av2

4 +B
)

v1 −4a1a3v4
)

v̇1 +
((

Av2
1 +C

)
v4 −4a1a3v1

)
v̇4 = 0, (7)

where the coefficients A, B, and C are defined in Equation (1).
The six angular acceleration parameter IO equations are obtained as the time

derivatives of the angular velocity parameter IO equations. The time derivative of v̇
is a somewhat more complicated compound function requiring a combination of the
chain and power rules from elementary differential calculus [2] to determine

v̈ =
1
2
(
θ̈ + θ̇

2)(1+ v2) ,
which reveals that the angular acceleration parameter v̈ depends not only on angular
acceleration, but on angular velocity and instantaneous position of the linkage as
well. The six angular acceleration parameter equations are to be found in [6], but
we shall only list the v̈1-v̈4 angular acceleration parameter IO equation:

(
(Av2

4 +B)v1 −4a1a3v4
)

v̈1 +
(
(Av2

1 +C)v4 −4a1a3v1
)

v̈4 +

(Av2
4 +B)v̇2

1 +(Av2
1 +C)v̇2

4 +4(Av1v4 −2a1a3)v̇1v̇4 = 0. (8)

3 Extreme Angular Velocity and Accelerations

Using Equations (7) and (8) it is possible to determine the mechanism configura-
tions where the extreme output angular velocities and accelerations occur [6]. The
extreme angular velocities, along with the configurations in which they occur in
both assembly modes, can be obtained computationally with the following algo-
rithm, where θi and θ j are the input and output, respectively.

Extreme planar 4R angular velocity algorithm.

If values for a1, a2, a3, and a4 are given and the input angular velocity is a constant
specified value, we wish to determine the critical values θicrit that result in θ̇ jmin/max ,
so θ j must be eliminated from both the position and angular velocity IO equations.

1. Convert vi and vj in the IO equation to angles as v = tan(θ/2) and solve for θ j.
There will be two solutions, one for each assembly mode.

2. Substitute the expression for θ j from Step 1 into the θ̇i-θ̇ j equation and solve for
θ̇ j, which gives θ̇ j = f (θi) since θ̇i is a specified constant.

3. Solve
dθ̇ j

dθi
= 0 for θicrit and determine the values of θ̇ jmin/max corresponding to

each distinct value of θicrit .

Similarly, the extreme angular accelerations, along with the configurations in
which they occur in both assembly modes, can be obtained computationally with
the following algorithm.
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Extreme planar 4R angular acceleration algorithm.

If values for a1, a2, a3, and a4 are given and the input angular velocity is a constant
specified value, we wish to determine the critical values θicrit that result in θ̈ jmin/max ,
so both θ j and θ̇ j must be eliminated from the position, angular velocity, and accel-
eration IO equations.

1. Convert vi and vj in the IO equation to angles as v = tan(θ/2) and solve for θ j.
2. Substitute the expression for θ j from Step 1 into the θ̇i-θ̇ j equation and solve for

θ̇ j, which gives θ̇ j = f (θi), since θ̇i is a specified constant.
3. Substitute the expressions for θ j and θ̇ j into the θ̈i-θ̈ j equation.
4. Solve the resulting equation for θ̈ j, which gives θ̈ j = f (θi), since θ̈i = 0.

5. Solve
dθ̈ j

dθi
= 0 for θicrit and determine the values of θ̈ jmin/max corresponding to

each distinct value of θicrit .

4 Implications for Extreme Shaking Forces and Moments

To demonstrate that the configurations where the extreme angular velocity and ac-
celeration outputs, θ̇4max and θ̈4max , given a constant angular velocity input, θ̇1, imply
the configurations for the extreme shaking forces and moments, we will consider the
following example of a planar 4R mechanism. The relevant mechanism properties
are listed in Tab. 1 where the density and radius of each link is 7750 kg/m3 and
0.01 m respectively.

Table 1: Mechanism properties.

Link Length Volume Mass

a1 0.4 m V1 = π/25000 m3 m1 = 31π/100 kg

a2 1.2 m V2 = 3π/25000 m3 m2 = 93π/100 kg

a3 0.8 m V3 = π/12500 m3 m3 = 31π/50 kg

a4 1.0 m Not relevant Not relevant

To test our proposal we need the extreme angular velocity and acceleration, θ̇4max

and θ̈4max , as functions of the input angle θ1. Using Equations (7) and (8) and the
algorithms for determining the configuration dependent extreme values for θ̇4max

and θ̈4max , the resulting IO functions for assembly mode 2 are plotted in Fig. 3 and
the extreme values for both assembly modes are listed in Tab. 2.

The force analysis follows the matrix method for identifying joint reaction forces,
as well as shaking forces and moments acting on the ground-fixed, non-moving
frame [9], link a4. For our example, given in Fig. 2, the centres of gravity (CG) are
located at the geometric centres of each link for simplicity, but they may be located
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Fig. 2: Locating the centres of gravity (CG) for the force analysis.

Table 2: Mechanism angular velocity and acceleration extrema for θ̇1 = 25 rad/s.

Assembly mode θ1crit rad (deg) θ̇4min/max rad/s θ1crit rad (deg) θ̈4min/max rad/s2

1

0.36933536508
-23.95938176

0.8382412814
462.6986574

(21.16135764◦) (48.02768764◦)
-1.667165012

13.51343678
-0.1482557001

-1062.775829
(-95.52151894◦) (-8.494425904◦)

2

1.667165012
13.51343678

0.1482557001
1062.775829

(95.52151894◦) (8.494425904◦)
5.913849943

-23.95938176
5.444944024

-462.6986574
(338.8386424◦) (311.9723124◦)

in any location relative to the two joints of each link. The vectors ri j specify the
direction cosines of Joint j relative to CGi, expressed in the base-fixed, non-moving
x-y coordinate system, see Fig. 2.

The reaction forces in the joints and the shaking force and moment transferred to
the base by the motion of the mechanism are determined using the system of linear
equations collected in the linear algebraic equation Ax = b, where A is a sparse
9× 9 matrix of constant coefficients scaling the vector of unknown joint reaction
forces and moment, x, while the vector b contains the inertial forces and moments.
The matrix and vector elements are determined from free body diagrams of links
a1, a2, a3, and a4. The matrix equation is



1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

−r11y r11x −r12y r12x 0 0 0 0 1

0 0 −1 0 1 0 0 0 0

0 0 0 −1 0 1 0 0 0

0 0 r22y −r22x −r23y r23x 0 0 0

0 0 0 0 −1 0 1 0 0

0 0 0 0 0 −1 0 1 0

0 0 0 0 r33y −r33x −r34y r34x 0





F41x

F41y

F21x

F21y

F32x

F32y

F43x

F43y

T41



=



m1aCG1x

m1aCG1y

ICG1 α1

m2aCG2x

m2aCG2y

ICG2 α2

m3aCG3x

m3aCG3y

ICG3 α3



. (9)
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and the unknown reaction forces for a given input angle are computed as

x = A−1b (10)

.
[rad/s]

[rad]

(a) Angular velocity output θ̇4 = f (θ1).

[rad]

[rad/s2]
..

(b) Angular acceleration output θ̈4 = f (θ1).

Fig. 3: Angular velocity and acceleration output as a function of input angle.

(a) Shaking force magnitude. (b) Shaking moment magnitude.

Fig. 4: Shaking force and moment magnitudes as functions of input angle.

5 Discussion and Conclusions

The shaking force is computed as the vector sum of F14+F34, the forces transferred
to the base link a4 through the input and output links, a1 and a3, respectively, noting
that Fi j =−F ji . The shaking moment is computed as T14 +r34 ×F34, where T14 is
the reaction torque that a1 exerts on a4 through Joint 1. The maximum shaking force
and moment magnitudes as well as corresponding input angle θ1 given the mecha-
nism data listed in Tab. 2 for a constant input angular velocity of θ̇1 = 25 rad/s are
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listed in Tab. 3. Comparing the peaks in angular velocity and acceleration output
for assembly mode 2, Fig. 3, with those of the peaks in shaking force and moment
magnitude for assembly mode 2, Fig. 4, it is clear that the extreme values of shak-
ing force and moment occur at input joint angles very close to those where the
extreme values of angular velocity and acceleration occur. For example, the maxi-
mum shaking force of 56.9764 N occurs when θ1 = 5.7299 rad, while the maximum
shaking moment 154.9566 Nm occurs when θ1 = 5.7352 rad. The maximum value
of θ̇4 =−23.9594 rad/s occurs when θ1 = 5.9138 rad, which is 3.2% different from
θ1 = 5.7299 when the maximum shaking force occurs. Similar agreement can be
observed between the angles θ1 where the extreme shaking moments and output an-
gular accelerations, θ̈4, occur. These results suggest that the output angular velocity
and acceleration are the dominant contributors to shaking forces and moments, and
that this tendency should be further investigated. If this is so, then for many appli-
cations, if the mechanism instantaneous configuration for θ̇4max is known, the linear
accelerations can be computed and the ground forces estimated with reasonable ac-
curacy.

Table 3: Shaking force and moment extrema for assembly mode 2.

Max. Shaking Force [N] θ1 [rad] Max. Shaking Moment [Nm] θ1 [rad]

56.9764 5.7299 ±n2π 154.9566 5.7352 ±n2π
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