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Abstract.

A planar parallel manipulator with holonomic higher pairs is introduced.
The end effector is a circular disk which rolls with out slip along the straight
lines of the non—grounded rigid links of each of three 2R legs. The contact
points between the disk and legs are holonomic higher pairs. The forward
kinematic problem of this manipulator is unlike that of planar Stewart—
Gough type platforms because the initial assembly configuration must be
included in the analysis. A procedure using kinematic mapping to solve the
forward kinematics is discussed and a numerical example is given.

1. Introduction

Planar kinematic mappings map the set of all planar displacements onto the
points of a three dimensional projective space with Cartesian homogeneous
coordinates X; (1 = 1,2, 3,4). It has recently been shown that this mapping
has important applications in robotics, specifically, in the solution of the
forward kinematics (IF'K) problem of planar and spatial Stewart-Gough
(SG) type platforms [4].

In this paper, a kinematic mapping of planar displacements will be dis-
cussed. Its application will be demonstrated by an example wherein the FK
problem of a planar parallel manipulator with holonomic higher pairs are
solved. An algebraic approach was successfully used in [8] to obtain the FK
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solutions of the general planar three legged platform, but is computation-
ally incompatible for manipulators with higher pairs of the type introduced
in this paper.

2. A Kinematic Mapping of Planar Displacements

A general displacement in the plane requires three independent coordinates
to fully characterise it. It is convenient to think of the relative planar motion
between two rigid bodies as the motion of a Cartesian reference coordinate
system, I attached to one of the bodies, with respect to the Cartesian
coordinate system, ¥ attached to the other, [1]. Without loss of generality,
> may be considered as fixed while F is free to move. Then the position of
a point in F relative to X can be given by

I A | E A P

i. (2',y') are the Cartesian coordinates of a point in F.

ii. (X', Y’) are the Cartesian coordinates of the same point in .

iii. (@,b) are the Cartesian coordinates of the origin of I/ measured in X,
ie, the components of the position vector of the origin of E in 3.

iv. ¢ is the rotation angle measured from the X’-axis to the z’'-axis, the
positive sense being counter—clockwise.

where

Equation (1) does not represent a linear transformation. This fact is
computationally inconvenient, and can be remedied by the use of Cartesian
homogeneous coordinates [7]

2 =

/X'/ -

N|><N|&

Substituting these homogeneous coordinates in equation (1) and setting
the homogenising coordinates to be equal, i.e. set Z = z, then multiplying
through by z yields the following linear transformation

X cos¢ —sing a x
Y = sing cos¢ b y |, (2)
Z 0 0 1 z

which represents a displacement of F with respect to X.

All general planar displacements may be represented as a single rotation
through a finite angle about a fixed axis normal to the plane. The coor-
dinates of the piercing point of this axis is the pole of the displacement.
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If £ and X are initially coincident then after the displacement the pole
has the same coordinates in both F and Y. The location of the pole of a
displacement along with the rotation angle convey sufficient information to
characterise the displacement.

The value of the homogenising coordinate is arbitrary. If it is set equal
to sin ¢/2 it can be shown that the homogeneous coordinates of the pole,
which are identical in each of the two coordinate systems ¥ and F, in terms
of the three displacement parameters a,b and ¢ are determined by the set
of equations (3) [1, 6]

X, = z,= %a sin (¢/2) — %b cos (¢/2)

1 1. .
Y,= yp= gacos(6/2) + sbsin(9/2) 3)
Zy= zp= sin¢/2.
Many mappings can be defined that map a position (a, b, ¢) of the mov-
ing coordinate system F with respect to the fixed system 3. in the plane to
a point described by the homogeneous coordinates (X; : Xg: X3: X4) of a

three dimensional projective image space, ¥'. The mapping used here is as
follows [1, 4, 6]:

(X1:Xo: X3:Xy) = (Xp:Y,:7,:77,), (4)
where

(X1:X2§X33X4) 7£ (0000)

T cot (¢/2)
0< ¢ <27

(X, :Y,: Z,) depend on (a,b, ¢) as given by the set of equations (3). The
image of the pole coordinates under the kinematic mapping is called the
image point of the displacement D(a, b, ¢). The image point is given by

(X1:X2:X3:Xy4) = [(asin(¢/2) —bcos(¢/2):
(acos(¢/2) + bsin (¢/2) :
2sin (¢/2) : 2cos (¢/2)]. (5)

By virtue of the relationships expressed in (5), the linear transformation
operator, the matrix from equation (2), may be expressed in terms of the
homogeneous coordinates of the image space, ¥'. This means that we now
have a linear transformation to express a displacement of F with respect
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to X in terms of the image point as given by (5):

/Xr (/YZ - /X'?? ) _2/Y3/Y4 2(/Y1 /ng + /Y21X74) X
Y = 2X3X4 (XZ - )(9?) 2(X2X3 - X1X4) Y (6)
Z 0 0 (Xi+X3) z

Since equation (6) is a linear transformation, for each unique displacement
described by (a,b, ¢) there is a corresponding point in the image space.
From equation (5), the inverse mapping is obtained. That is, for a given
point of the image space, the displacement parameters are obtained from

a = 2(X1X3+ X2X4)/(XF+ XJ) (7)
b = 2(1¥2/¥3 - /Yl/Y;l)/(/Y?? + /YZ).
Any image point with X3 = X4 = 0 can not be mapped to a displace-

ment of the plane, and must be disregarded. It can be seen from equation
(5) that this condition requires ¢ = 0° and ¢ = 180° simultaneously.

3. An Application for Planar Parallel Manipulators

Home (zero) position

Figure 1. A planar manipulator with three DOF.

Consider the planar manipulator shown in Fig. 1. It consists of three
closed kinematic chains. The disk, which is modelled as a pinion gear, rolls
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without slip on each of the three racks tangent to it. The rolling constraints
are holonomic due to the pure rolling constraint and because the motion
is planar, hence the constraint equations can be expressed in terms of dis-
placement, i.e. in integral form. Each of the three legs connect a rack to a
base point via two revolute (R) pairs. The leg links are rigid and the rack
is welded at a right angle to the second leg link. The R—pairs connecting
two links in a leg shall be referred to as knee joints A, B and C. The three
base points Ag, By, Co, are rigidly fixed.

Joint and fixed link parameters along with link reference frames are
identified by left and right sub and superscripts. The generic parameter

is identified as follows:

la. For a joint variable the right sub—script 4,7 € {1, 2, 3} identifies the joint
number. For each manipulator leg, the joint number at the connection
between the first link and the base is 1. Between the first and second
links is 2. The higher pair between link 2 and the disk is 3.

1b. For a coordinate axis, the right sub—script ¢, ¢ € {0, 1, 2,3} represents
the link to which the coordinate system is attached. 0 is for the base,
1 is for the first link, etc..

2. The right super—script, j, j € {A, B,C'} denotes a particular manipu-
lator leg.

3. The left super—script, k, & € {¥,0,1,2, F,T} refers to the reference
frame in which the variable is represented.

4. [ is the length of link 7 in leg j.
5. r is the radius of the disk.

The link reference frames, save for F and T', were assigned using the De-
navit and Hartenberg procedure [2], modified to accommodate the higher
pairs. For reasons discussed below, it is convenient to have these two refer-
ence frames with origins incident on the disk centre. Both F and T translate
with the disk, but only F rotates with it.

3.1. THE FORWARD KINEMATICS PROBLEM

The FK problem is conventionally expressed as a transformation of the po-
sition and orientation of the end effector from a joint space representation
to a Cartesian space representation. That is, given a set of n joint variables,
one for each n degrees of freedom, determine the position and orientation of
the end effector with respect to a non—moving reference coordinate system.
The pure rolling nature of the higher pairs make this manipulator markedly
different from planar SG type platforms because the pure rolling condition
renders FK solutions completely dependent on the initial assembly con-
figuration (IAC). The FK analysis can not be reduced to the planar SG
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case because no equivalent mechanism exists which can exactly reproduce
a rack-and-pinion motion, p.106 [3], hence the method in [8] can not be
used. Furthermore, some displacements require a combination of two dis-
tinct types of rolling with respect to the fixed reference frame: 1) The disk
rolls on a rack, or 2), a rack rolls on the disk. Each type of rolling produces
a change in the location of the contact point but yields an entirely differ-
ent displacement. As a result, conventional joint variable inputs can not be
used.

We propose to modify the problem by using instead a set of pseudo in-
puts from which the position and orientation of the disk in the non-moving
reference frame can be determined. The pseudo inputs are the positions of
the knee joints in the rotating disk frame, . These positions are

EA
EB . (8)
EC

Each position is specified by a 2 x 1 array of Cartesian coordinates, having

the form
E;r]
[ "y ]
Hence, six pseudo input variables are required. Because the knee joints are
constrained to move on circles, the position and orientation of the disk in
the non-moving frame ¥ can be determined with the kinematic mapping
discussed earlier and the procedure introduced by Husty [4].

The actual joint inputs are the change in variable joint lengths A%d} =
2di —2d%,, j € {A, B,C}, where the subscript ‘30’ denotes the initial condi-
tion. These lengths are the change in distance of the contact point measured
along the yJ coordinate axis, which is always parallel to the rack. This is
why the solution is coupled with the ICA. They are related to the pseudo
inputs in the following way:

E$] _ o s¥P T% _ (l% + fr)czﬂé — AQdészﬁé )

Byl | 7| =s%¢ & Tyl | | (154 r)s®9) + A2die ),
where ¢ = cos, s = sin, and “¢ is the orientation angle of the disk with
respect to 3. Since the reference frame T translates with the disk, T¢p = ¥¢
and, of course, 799 = 9. So, the pseudo inputs are theoretically valid as
input parameters, except that the actual inputs can not be specified until
the disk orientation is known. The higher pair variables along with the ICA

must be specified or the disk orientation can not be determined. A cart—
before—horse scenario, to be sure. While this approach to the FK problem
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is not necessarily practical, it is a start. To the best of our knowledge the
FK of such a planar parallel platform with higher pairs have never been
addressed.

Using the pseudo inputs, the FK problem of the manipulator shown
in Fig. 1 can be stated in the following way: Given the coordinates of the
three base points Ag, Bg,Cy in an arbitrary fixed coordinate system, 3,
the coordinates of the knee joints A, PB,FC expressed in an arbitrary
coordinate system, F/, which moves with the disk, the fixed lengths of each
link, #, i € {1,2}, j € {A, B,C}, and the radius of the disk, find the
positions and orientations of the disk such that the knee joints ®A, ¥ B, EC
can be joined to the base points Ag, By, Cp with legs of the given lengths.

To obtain the solutions for a given set of inputs and ICA, begin by
removing the disk connections with legs B and C'. Observe that the higher
pairs are locked by virtue of the specified input parameter. The knee joint
B A is constrained to move on a circle with Ay as its centre and radius /{.
Furthermore, the rigid body comprised of link /{ and the disk can rotate
about P A. This two parameter motion corresponds to a two parameter set
of points in the image space called a constraint surface, H. The equation
of H is found using equation (6) and the fact that the moving point £ A is
bound to a circle, which gives

H: 0=22(X}+ XD+ (1/9)[(z*+y?) — 2C122 — 2Cyz + C32%] X5 +
(1/4 [($2 + y2) + 2C122z 4+ 2Cyz + CgZQ]XZ + (Chz —2)zX1 X3+
(Coz —y)z X2 Xs — (y+ Ca2)2 X1 Xa + (Crz 4+ 2)2 X2 X4 +
(Coz — Chy)zX3X,. (10)

It is shown in [1] that this constraint surface is a hyperboloid which
contains the isotropic points J1(1:7:0:0) and Jo(1 : —7 : 0 : 0). Recall
that any point with X3 = X4 = 0 can not be mapped to a displacement
of the plane. When the other two points B and C' are examined in turn,
three hyperboloidal surfaces are generated, H4, Hp, and H¢, which corre-
spond to the complete range of possible displacements around the points
still connected. The points of intersection of H4, Hg and H¢ represent the
positions of the end—effector where its three knee joints are on their respec-
tive circles. Therefore, these points of intersection constitute the solutions
to the FK problem. It is to be noted that three hyperboloids can intersect
in at most eight points. However, all hyperboloidal constraint surfaces cor-
responding to planar displacements with one point that moves on a circle
contain the points J; and .J; and hence, these two points are always in the
solution set, and must be disregarded. Therefore, there is a maximum of
six real solutions to the FK problem for manipulators of this type.
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3.2. EXAMPLE

Table 1 gives the coordinates of the base points Ag, Bg,Cy in the fixed
frame 3 with origin at Ag, the input variable coordinates of the knee joints
EA,FB,FC in the moving frame F, with origin at centre of the disk, along
with the [CA. The ICA parameters are distinguished by adjoining a ‘0’ to
the right subscript. The fixed link lengths, in generic units are r = 4, [] = 4,

1L =10,j€{A, B,C}.

TABLE 1. Input parameters and ICA.

W}
)
o]

Jo T Y J Py Ey J 2d§)0 079]10 179%0

Ay O 0o B4 9 11 A 0 135°  270°
B, 13 0 ®B 9 11 B 0 45°  90°
Co 10 26 fC 95 105 C 0 180°  270°

Substituting the input data from Table 1 into equation (10) gives the
following three constraint surfaces in the image space:

Hy:  X}4+ X3 +465X34+46.5X7 +9X1 X3+ 11XoX3 +

X1 Xy — 9X, Xy =0 (11)
Hp:  X{+ X5+ 147.25X3 +30.25X7 — 22X, X3 — 4 X, X4 +

X, X3+ 11X, X4 =0 (12)
Ho:  X{+ X5 4424.125X3 4 56.125X7 — 19.5X, X5 —

36.5X, X3 + 155X X4 — .5X X4 — 142X3X4 = 0. (13)

Since X4 is the homogenising coordinate, its value is arbitrary, hence
it is set X4 = 1. Fig. 2 is a view of the resulting constraint hyperboloids
where one of the intersections is visible. The set of three equations H4 =
0,Hg = 0, Hc = 0 can now be solved for the variables Xy, X9, X3. The
following solutions are obtained:

S1: X7 = —5.35817508, Xy = 1.69375244, X3 = 0.18597447

Set Xy = —4.23444169, X, = 3.13635972, X3 = 0.15325037

Ss X7 = —4.71288212, X, = 2.25800666, X35 = 0.20703047

Sa: X7 =-6.90743973, X, = 2.76957064, X3 = 0.03229377

S5+ X1 = —4.306063 + 2.801994¢, X2 = 0.652824 + 0.1026597,
X3 =—-0.043999 + 0.180029:

Se: X1 = —4.306063 — 2.801994¢, X5 = 0.652824 — 0.1026597,
X3 = —0.043999 — 0.180029:
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Figure 2. The constraint hyperboloids in the image space.

A
Solution 1 Sol ution 2 Sol ution 3 Sol ution 4

Figure 3. The four real solutions.

There are four real and one set of complex conjugate solutions for a
total of six solutions, as expected. The position and orientation of the end—
effector corresponding to each of these solutions in terms of the displace-
ment parameters a, b, and ¢ can be found by substituting the solutions for
X1, X2, X3, along with X4 = 1 into equations (7). The subsequent four sets
of displacement parameters are given in Table 2. It is a simple matter of
planar trigonometry to determine the the link parameters A%d} and T2,
j € {A, B,C}, also printed in Table 2, given the locations of the knee joints
in I along with the fixed link lengths, disk radius and ICA. Recall that
because the reference frame 7" translates with the disk but does not rotate,
T = E9}. The four real solutions are illustrated in Figure 3.

As anticipated, the actual inputs, Ang are consistent in magnitude.
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TABLE 2. Four real solutions.

Sol'n 1 Sol’'n 2 Sol’'n 3 Sol’'n 4

a 1.347918 4.860703 2.459188 5.087701
b 10.967028 9.213788 9.934891 13.979180

1) (deg.) 21.070388 17.425626 23.393454 3.699307
A2d§4 2.449489 2.449489 2.449489 2.449489
A2d§9 -2.449489 2.449489 2.449489 2.449489
A2d§ -2.121320 -2.121320 -2.121320 -2.121320

93t (deg.) 241.856762  238.211999  244.179828  224.485681
T9F (deg.) -19.715986  -43.200187  -37.241359  -56.935505
T9§ (deg.) 77.548874  73.904112  79.871940  60.177794

There is one anomaly in the single negative A2d% in the first solution. This
anomaly appears to expose a flaw in the algorithm, but we are provided
with three solutions where the magnitudes and sense of the actual inputs
agree.

4. Conclusions

A kinematic mapping for planar displacements has been presented. An im-
portant application of this mapping is the solution of the forward kinematics
problem of a planar parallel manipulator with holonomic higher pairs.
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