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1. INTRODUCTION

One may efficiently obtain principal axis direction and
centre of a conic on five given points by expanding three
subdeterminants derived from the singular matrix of
the conic equation. Computation entails solution of a
quadratic equation, in cos? ¢, where ¢ is a principal axis
rotation angle with respect to the frame of the original
points, and linear ones in sy and ty where these are the
respective translations to centre the origin of the new,
aligned frame on the conic. This closed form solution is
coded in an algorithm that needs only 122 arithmetic
operations; no trigonometric ones.

Analysis of quadratic forms plays an important role
in engineering. For example, one may wish to design
an elliptical trammel to guide a manipulator smoothly
through five desired points. However it is not the in-
tention here to dwell on applications and the inter-
ested reader may find some in a brief discourse by
Sawyer[1]. Suffice it to say that linear algebra courses,
e.g., Anton[2], deal with the subject and treat the re-
duction of the two-variable equation

ax® + by’ +cay+dr+ey+ f=0 (1)
to standard form
almz +bly2 +fl — 0 (2)

Without elaboration, the usual approach follows these
steps.

e Orthogonal matrix diagonalization, determina-
tion of eigenvalues and application of the two-
dimensional Principal Azis Theorem yield the
conic axis direction by eliminating the coefficient ¢
in Eq. 1.

e Elimination of coefficients d and e in Eq. 1 pro-
duces the two required translations.

Note that, in [2], the diagonalization step is done nu-
merically and the problem starts with Eq. 1 to obtain
Eq. 2. On the other hand we begin with five given
points to arrive at essentially the same result without
ever bothering with the coefficients of Eq. 1. Further-
more the reader will see immediately that o', ', f' can
be computed, from the results obtained, with three 2 x 2
determinants.

2. THE GRASSMANNIAN

English language literature on Hermann Grassmann is
scarce but his work has, with the dawning of symbolic
computation, aroused interest recently[3]. Furthermore
his theory of determinants was applied to the analy-
sis of conics by Askwith[4]. Let us introduce this by
finding the equation of the circle on three given points
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Pi(z;,y;), i = 1,2,3. Consider the following singular
4 x 4 determinant.
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When this is expanded, the 3 x 3 coefficient cofactors
may be regarded as four circle coordinates.
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3. THE GENERAL QUADRATIC FORM

22 2 xy oz oy 1

Ty Yy Ty 1 U1
Ty, Yy Tayz T2 Y2
T3 Y3 T3Ys T3 Y3
Ty Yy TaYs T4 Y4
Ts Y5 IsYs Ts Ys

Extracting the symbolic coefficients of this equation
needs six 5 X 5 determinants and produces an expres-
sion with far too many terms. Such a futile exercise
will not be attempted.
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=0 (5)
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4. BREAKING DOWN THE PROBLEM

The Rotation

This is obtained by expanding only the cofactor of zy
which vanishes when the coordinate axes are aligned
with those of the conic. The problem is further sim-
plified by choosing a convenient frame for ;. The one
where 1 = y; = x2 = 0 is chosen to begin with. There
is no loss in generality. This frame is placed to produce
the following 5 x 5 determinant.

0 0 0 0 1
2 2 _
azs a3y as3 aze 1 |zy=0 (6)
i1 Q2 Qi3 G4
_ ; _ _ 2 _ 2
a3 = Y28in ¢, aa = Y2C08P, aj = ajz, Aip = ajy,
a;3 = x;co8¢ + y;sin¢g and a;y = y;cos¢ — x;sin @,

i = 3,4,5. With copious help from Maple VIM 4
quadratic equation in cos? ¢ emerges.

Acos*¢p+ Bcos’p+C =0

The coefficients A, B,C are not too daunting as may
be seen in Section 5..
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The Translations

After performing the rotation P;(x;,y;) = Pi(s;,t;) in-
dicated by ¢, the five points in the new s-t frame sat-
isfy Eq. 6 and now only four of the five given points are
needed to get sg along s and ¢y along ¢, the respective
translations to put the translated frame origin on the
conic centre. This is much easier than computing ¢. It
is represented by the two singular determinants below.

52 0 0 1
(82 — 80)2 t% t2 1 _
(83 — 80)2 t% t3 1 5= 0 (7)
(84 - 80)2 t?l t4 1
0 t2 0 1
2 2
S (t2 — t()) S2 1 _
53 (t3 —to)® s3 1 =0 ®)
SZ (t4 — t0)2 S4 1

5. THE ALGORITHM

It is hoped that the reader will forgive, in the inter-
ests of brevity and an example of a working program,
a coded listing. The seven non-trivial given point coor-
dinates are supplied to produce cos ¢, sin ¢, sg and tg-
I is the only “tweak” required to resolve the possibility
that the sign combination of cos ¢ and sin ¢ reflects the
desired axis direction about a coordinates axis. The
quadratic in cos® ¢ poses an ambiguity in ¢. There-
fore I=-1 will correct an unsuccessful try with I=1. The
test example is shown in Fig. 1.

Programmed Example

100 INPUT Y2,X3,Y3,X4,Y4,X5,Y5,I:Y23=Y2-Y3:
Y24=Y2-Y4:Y25=Y2-Y5:REM End of setup

110 Q1=X3*X4* (X4*(Y5-Y3)+X5*(Y3-Y4)+X3
*(Y4-Y5) : Q2=X5* (Q1+Y3*Y4* (X3*xY24-X4*Y23))

120 Q3=Y5* (X4*Y3*(X5*Y23-X3*Y25) +X3xY4
* (X4*Y25-X5%Y24) ) : Q=2*Y2x* (Q2+Q3)

130 R=Y2x (X4*X5*Y3*Y23* (X4-X5) +X3* (X6xY4*Y24
* (X5-X3) +X4%Y25%* (X3-X4)))

140 P=-2%R:QQ=0Q*Q:A=P*P+QQ:B=QQ-2*%P*R:C=R*R
A2=2xA:IF A=0 THEN STOP

150 D=B*B-4*A*C:IF D<O THEN STOP

160 DR=SQR(D) :CP=SQR((B+DR) /A2): SP=I*SQR(1
-CP*CP) :REM End of rotation routine

170 S2=Y2x%SP:T2=Y2*CP:33=X3*CP+Y3*SP:T3=Y3
*CP-X3*SP : 34=X4*CP+Y4*SP : T4=Y4*CP-X4*SP

180 REM End of rotated coord. transformation

190 S01=52*T3*T4* (T4-T3) :502=S3*T2*T4* (T2-T4)
S03=S4*T2*T3* (T3-T2)

200 DS0=2%(S01+502+S03) : IF DSO=0 THEN STOP

210 NS0=S2xS01+S3%S502+34*S503:50=NS0/DS0
REM End of s-axial displacement routine

220 T01=S2*S4*T3* (S4-52) : T02=S2*33*T4* (52-S3)
T03=S3*S4xT2* (S3-S4)

230 DT0=2%(T01+T02+T03) : IF DTO=0 THEN STOP

240 NTO=T3*T01+T4*T02+T2*T03:TO=NT0/DTO
REM End of t-axial displacement routine

250 PRINT CP,SP,SO,TO:END

Ok

run

? 7.209,9.391,8.05,-4.919,0.894,7.155,3.578,1

0.8943964 0.4472752 4.000085 2.999937

Break in 250

1(0,0)
S, =4 2(0'7209)
te = 3(9.391,8.05)
. y 4(-4.919,0.894)
5(7.155,3.578)

Figure 1. Reduction of an ellipse

6. CONCLUSION

Geometric thinking, a hallmark of engineering design, is
exemplified by careful choice of initial conditions when
formulating a problem, in this case a good coordinate
frame. All the theory presented above is pure classical
geometry too; largely unknown or forgotten. Anton[2]
mentions advanced methods to do the rotation, La-
garange’s and Kronecker’s reductions, but there is no
word of Grassmann. As methods of symbolic compu-
tation, which are still quite primitive in this regard,
develop, the design engineer will become more a de-
signer of algorithms than a designer of specific solutions
which will fall into the domain of engineering techni-
cians skilled in the use of advanced software. Similarly,
advances in symbolic software will inevitably ressurect
the dormant methods of Grassmann and his successors
whose results were eclipsed by the “new age” of quan-
tum and relativistic mechanics. These results have lain
fallow awaiting application in a future with appropri-
ate computational tools. One may recall that numerical
analysis remained an impractical mathematical curios-
ity until automatic numerical computation established
its importance in the ’60s and ’70s. We toilers in clas-
sical mechanics can look forward to the next millenium
with great confidence that new tools will enhance, not
eliminate, our jobs, whether in practice or academe.
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