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1. PLANAR STEWART-GOUGH PLATFORMS

A planar Stewart-Gough platform (SGP) consists of a
moving platform connected to a fixed base by three
identical kinematic chains. Each chain is connected by
three independent one degree-of-freedom (DOF) joints,
one of which is active. Thus, each chain provides
the control of one of three DOF of the moving plat-
form. When the three actuators are locked the platform
should be a structure, i.e., the degree-of-mobility should
be nil. From a geometric perspective a planar SGP con-
sists of three arbitrary points in a fixed base reference
frame, ¥, and three arbitrary points in a moving plat-
form reference frame, E, with each platform point a
specific distance from each base point. These distances
are determined by the variable joint input parameters
and the particular topology of the characteristic kine-
matic chain.

In this paper we will deal only with lower kinematic
pair joints. Since the displacements of the platform
are confined to the plane, only revolute (R) and pris-
matic (P) pairs are considered. Each kinematic chain
is described by three letters indicating the succession
of joints beginning with the one at the fixed base. The
possible combinations are: RRR, RPR, RRP, PRR,
RPP, PRP, PPR, PPP. The last chain is excluded
because three P-pairs represent three translations in
the plane, which can not be independent [2]. Since
each chain in a planar SGP is identical, there are seven
possible topologies, illustrated in Fig. 1, each described
by one of the three chains.

Since the kinematic chains for each topology are iden-
tical, we require the actuated joint to be the same in
each manipulator. We will identify the active joint by
underlining it. Since any of the three joints may be ac-
tive, there are twenty-one possibilities. However, if the
chain obtained after locking the active joint is of the
PP-type, it must be eliminated [2]. Thus, there are a
total of eighteen possible platforms, listed in Table I.

Table I
The 18 possible planar SGP.
RRR | RPR | RRP | PRR PRP | PPR
RRR | RPR | RRP | PRR | RPP PPR

RRR | RPR | RRP | PRR | RPP | PRP

Examining Table I, it can be seen that there are only
three types of chain when the active joint is locked.
They are RR-type, PR-type and RP-type.

2. KINEMATIC MAPPING

A mapping of planar rigid-body displacements was in-
troduced simultaneously, but independently, in 1912
first by Griinwald and then by Blaschke [1]. Three in-
dependent planar displacement parameters are mapped
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Figure 1. The seven possible topologies.

to the points of a three-dimensional projective homo-
geneous kinematic mapping image space. A detailed
account is given in [1].

We now give a brief summary of the relevant details.
A general displacement of one rigid-body with respect
to another in the plane can be conveniently described
as the relative displacement of two coordinate reference
frames ¥ and E. Without loss in generality, ¥ may be
considered as fixed while F is free to move. The image
point of a displacement of E in ¥ is given by

(X1:Xs: X35:Xy) = (asin(¢/2) —bcos(¢/2) :
acos(¢/2) + bsin (¢/2) : 2sin (¢/2) : 2cos(4/2)), (1)
where (a,b) are the coordinates of the origin of frame
E in ¥, and ¢ is the orientation of £ in X.

Using Eq. (1) we can transform the coordinates of
a point (z : y : 2) in E to those of the same point

© CANCAM 1999



(X:Y:Z)in X:

X = (Xi—-X3)r—2X3Xuy+2(X1 X3 + XoX4)z
Y = 2XaXuz+ (X; — X3)y+ 2(Xo X3z — X1 X4)z
Z = (Xi+X3)z (2)

Consider the motion of a fixed point in E that is
constrained to move on a fixed circle in X,

Ko(X2+Y?) 2K\ XZ - 2K,YZ + K3Z% =0, (3)

where [Ky : Ky : Ky : K3] are the circle coordinates.
The image points will lie on a hyperboloid in the image
space having the equation

H: Koz*(X{ +X3)+ (1/4) [Ko(1 - 2*) (= + y*)+
22(K1z + K»y) + R2°] X3 + (1/4) [R2"+
Ko(1—2°)(2® +y%) — 22(K1x + K2y)] Xi -
(K12% + Koxz) X1 X3 + (K22 — Koyz) X1 X4 —

(Koyz =+ Kzz2)X2X3 + (Kol‘z — K122)X2X4 +
(Klyz — KQ:EZ)X?)X4 = 0, (4)

where K1 = X., Ko = Y,, K3 = R — Ko(2? + y?),
and R = X2 + Y2 —r? + Ko(2* + y?) (the last two
substitutions are made to reduce the quantity of terms
in the equations that follow), with X. and Y. being
the coordinates of the circle centre of radius r, and K
is an arbitrary homogenising constant. If Ko = 0 we
obtain a line, which is a real degenerate circle, with line
coordinates [Ly : Lo : Lg] = [-2K; : —2K5 : K3].

Figure 2. The fixed and moving frames.

Consider the RPR SGP shown in Fig. 2. The three
chains are identified with subscripts A, B, C. Let the
actuated joint in each leg be the P-pair, making this
an RR-type SGP. Opening the platform connections
at points Mp and Mg we see that point M4 remains
on a circle around F4 with radius r4 (the prismatic
input for leg A), while frame E can still rotate about
M 4. Opening the connections of the other two platform
points, in turn, we obtain three hyperboloid equations,

H,, Hp and H¢, representing the possible displace-
ments of E about the base point still connected. For
the frames shown in Fig. 2 we have the following ho-
mogeneous coordinates for the fixed and moving points:
Fas =(0:0:1), Fgys = (B1:0:1), Feys = (Cy -
Cy: 1), Myyp = (0:0:1), Mgjg = (b : 0 : 1),
Meyg = (c1 @ co @ 1). Substituting these quantities,
along with the three inputs, into Eq. (4) gives three
specific hyperboloid equations.

Platform rotations of ¢ = 7 (half-turns) signifies that
X, = 0. However, this condition means there are no
real common intersections for any set of three constraint
hyperboloids. After having checked this, we normalise
the image space coordinates by setting X, = 1. Next,
we subtract Hg from H4 and H¢ from Hy, giving two
equations linear in X; and X,. The resulting expres-
sions for X; and X, are substituted into H¢, yielding
a univariate sextic polynomial in X3. In the general
case, i.e., leaving Ky arbitrary, the univariate has 3613
terms.

3. THE FORWARD KINEMATICS PROBLEM

The forward kinematics (FK) problem involves deter-
mining all possible poses of the moving platform for a
given set of actuator inputs. The FK problem of all
planar SGP, listed in Table I, can be solved by finding
the roots of the univariate polynomial. The remain-
ing image space coordinates are linearly dependent on
each root and give the intersection points of the three
hyperboloids. Each point of intersection is the image
of a pose of the moving platform such that the plat-
form points are on their respective circles, hence they
represent the solutions to the FK problem.

Examining Fig. 1, it is easy to see that RR-type plat-
forms require a fixed point in E to move on a fixed non-
degenerate real circle in . Thus, we can set Ky =1 in
the hyperboloid equations which reduces the number of
terms in the univariate to 694.

The PR-types require a fixed point in £ to move on
a fixed line in ¥, and the RP-types require a fixed line
in E to move on a fixed point in X. These two types
are inversions: one can be obtained from the other by
changing the roles of £ and ¥. Because a line is a
degenerate circle we may still express the problem as a
fixed point in a moving frame (either E or X, depending
whether the platform is PR or RP) constrained to be
on a fixed circle in a fixed frame. Thus, we set Ky =0
and use K, Ko, K5 as images of the line coordinates.
The number of terms in the univariate then reduces to
26.

Finally, we must deal with the fact that the solution
for RP-type platforms gives the pose (a’,b';¢') of the
base frame, X, with respect to the moving frame, E.
However, we require the pose (a,b;¢) of E in X. Tt is
easy to show that ¢ = —¢’'. We then obtain (a, b) with a
coordinate transformation using ¢ as the rotation angle.

REFERENCES

[1] Bottema, O., Roth, B., 1990, Theoretical Kine-
matics, Dover Publications, Inc., New York,
N.Y., USA.

[2] Merlet, J-P., 1996, “Direct Kinematics of Pla-
nar Parallel Manipulators”, IEEE Int. Conf. on
Robotics and Automation, Minneapolis, U.S.A.
pp. 3744-3749.



